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Abstract. It is well known that any graph admits a crossing-free
straight-line drawing in R3 and that any planar graph admits the
same even in R2. For a graph G and d ∈ {2, 3}, let ρ1d(G) denote the
minimum number of lines in Rd that together can cover all edges
of a drawing of G. For d = 2, G must be planar. We investigate the
complexity of computing these parameters and obtain the following
hardness and algorithmic results.

– For d ∈ {2, 3}, we prove that deciding whether ρ1d(G) ≤ k for a
given graph G and integer k is ∃R-complete.

– Since NP ⊆ ∃R, deciding ρ1d(G) ≤ k is NP-hard for d ∈ {2, 3}.
On the positive side, we show that the problem is fixed-parameter
tractable with respect to k.

– Since ∃R ⊆ PSPACE, both ρ12(G) and ρ13(G) are computable in
polynomial space. On the negative side, we show that drawings
that are optimal with respect to ρ12 or ρ13 sometimes require
irrational coordinates.

– Let ρ23(G) be the minimum number of planes in R3 needed to
cover a straight-line drawing of a graph G. We prove that decid-
ing whether ρ23(G) ≤ k is NP-hard for any fixed k ≥ 2. Hence,
the problem is not fixed-parameter tractable with respect to k
unless P = NP.
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1 Introduction

As is well known, any graph can be drawn in R3 without crossings so that all
edges are segments of straight lines. Suppose that we have a supply L of lines in
R3, and the edges are allowed to be drawn only on lines in L. How large does
L need to be for a given graph G? For planar graphs, a similar question makes
sense also in R2, since planar graphs admit straight-line drawings in R2 by the
Wagner–Fáry–Stein theorem. Let ρ13(G) denote the minimum size of L which is
sufficient to cover a drawing of G in R3. For a planar graph G, we denote the cor-
responding parameter in R2 by ρ12(G). The study of these parameters was posed
as an open problem by Durocher et al. [10]. The two parameters are related to
several challenging graph-drawing problems such as small-area or small-volume
drawings [9], layered or track drawings [8], and drawing graphs with low visual
complexity. Recently, we studied the extremal values of ρ13(G) and ρ12(G) for
various classes of graphs and examined their relations to other characteristics
of graphs [6]. In particular, we showed that there are planar graphs where the
parameter ρ13(G) is much smaller than ρ12(G). Determining the exact values of
ρ13(G) and ρ12(G) for particular graphs seems to be tricky even for trees.

In fact, the setting that we suggested is more general [6]. Let 1 ≤ l < d. We
define the affine cover number ρld(G) as the minimum number of l-dimensional
planes in Rd such that G has a straight-line drawing that is contained in the
union of these planes. We suppose that l ≤ 2 as otherwise ρld(G) = 1.

Moreover, we can focus on d ≤ 3 as every graph can be drawn in 3-space
as efficiently as in higher dimensions, that is, ρld(G) = ρl3(G) if d ≥ 3 [6]. This
implies that, besides the line cover numbers in 2D and 3D, ρ12(G) and ρ13(G),
the only interesting affine cover number is the plane cover number ρ23(G). Note
that ρ23(G) = 1 if and only if G is planar. Let Kn denote the complete graph
on n vertices. For the smallest non-planar graph K5, we have ρ23(K5) = 3. The
parameters ρ23(Kn) are not so easy to determine even for small values of n. We
have shown that ρ23(K6) = 4, ρ23(K7) = 6, and 6 ≤ ρ23(K8) ≤ 7 [6]. It is not hard
to show that ρ23(Kn) = Θ(n2), and we determined the asymptotics of ρ23(Kn) up
to a factor of 2 using the relations of these numbers to Steiner systems.

The present paper is focused on the computational complexity of the affine
cover numbers. A good starting point is to observe that, for given G and k, the
statement ρld(G) ≤ k can be expressed by a first-order formula about the reals
of the form ∃x1 . . . ∃xmΦ(x1, . . . , xm), where the quantifier-free subformula Φ is
written using the constants 0 and 1, the basic arithmetic operations, and the
order and equality relations. If, for example, l = 1, then we just have to write
that there are k pairs of points, determining a set L of k lines, and there are n
points representing the vertices of G such that the segments corresponding to
the edges of G lie on the lines in L and do not cross each other. This observation
shows that deciding whether or not ρld(G) ≤ k reduces in polynomial time to
the decision problem (Hilbert’s Entscheidungsproblem) for the existential theory
of the reals. The problems admitting such a reduction form the complexity class
∃R introduced by Schaefer [23], whose importance in computational geometry
has been recognized recently [4,16,24]. In the complexity-theoretic hierarchy,
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this class occupies a position between NP and PSPACE. It possesses natural
complete problems like the decision version of the rectilinear crossing number [1],
the recognition of segment intersection graphs [15] or unit disk graphs [13].

Below, we summarize our results on the computational complexity of the
affine cover numbers.

The complexity of the line cover numbers in 2D and 3D. We begin by showing
that it is ∃R-hard to compute, for a given graph G, its line cover numbers ρ12(G)
and ρ13(G); see Section 2.

Our proof uses some ingredients from a paper of Durocher et al. [10] who
showed that it is NP-hard to compute the segment number segm(G) of a graph G.
This parameter was introduced by Dujmović et al. [7] as a measure of the vi-
sual complexity of a planar graph. A segment in a straight-line drawing of a
graph G is an inclusion-maximal connected path of edges of G lying on a line,
and the segment number segm(G) of a planar graph G is the minimum num-
ber of segments in a straight-line drawing of G in the plane. Note that while
ρ12(G) ≤ segm(G), the parameters can be far apart, e.g., as shown by a graph
with m isolated edges. For connected graphs, we have shown earlier [6] that
segm(G) ∈ O(ρ12(G)2) and that this bound is optimal as there exist planar tri-
angulations with ρ12(G) ∈ O(

√
n) and segm(G) ∈ Ω(n). Still, we follow Durocher

et al. [10] to some extent in that we also reduce from Arrangement Graph
Recognition (see Theorem 1).

Parameterized complexity of computing the line cover numbers in 2D and 3D. It
follows from the inclusion NP ⊆ ∃R that the decision problems ρ12(G) ≤ k and
ρ13(G) ≤ k are NP-hard if k is given as a part of the input. On the positive side,
in Section 3, we show that both problems are fixed-parameter tractable. To this
end, we first describe a linear-time kernelization procedure that reduces the given
graph to one of size O(k4). Then, in kO(k2) time, we carefully solve the problem
on this reduced instance by using the exponential-time decision procedure for
the existential theory of the reals by Renegar [20,21,22] as a subroutine. To the
best of our knowledge, this is the first application of Renegar’s algorithm for
obtaining an FPT result, in particular, in the area of graph drawing where FPT
algorithms are widely known.

The space complexity of ρ1d-optimal drawings. Since ∃R belongs to PSPACE (as
shown by Canny [3]), the parameters ρ1d(G) for both d = 2 and 3 are com-
putable in polynomial space. On the negative side, we construct a graph G with
a ρ12-optimal drawing requiring irrational coordinates; we provide a more com-
plex argument to show that any ρ12-optimal drawing of G requires irrational
coordinates; for details see the full version [5].

The complexity of the plane cover number. Though the decision problem ρ23(G) ≤
k also belongs to ∃R, its complexity status is different from that of the line
cover numbers. In Section 4, we establish the NP-hardness of deciding whether
ρ23(G) ≤ k for any fixed k ≥ 2, which excludes an FPT algorithm for this problem
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unless P = NP. To show this, we first prove NP-hardness of Positive Planar
Cycle 1-in-3-Sat (a new problem of planar 3-SAT type), which we think is of
independent interest.

Weak affine cover numbers. We previously defined the weak affine cover number
πld(G) of a graph G similarly to ρld(G) but under the weaker requirement that
the l-dimensional planes in Rd whose number has to be minimized contain the
vertices (and not necessarily the edges) of G [6]. Based on our combinatorial
characterization of π1

3 and π2
3 [6], we show in Section 5 that the decision problem

πl3(G) ≤ 2 is NP-complete, and that it is NP-hard to approximate πl3(G) within
a factor of O(n1−ε), for any ε > 0. Asymmetrically to the affine cover numbers
ρ12, ρ13, and ρ23, here it is the parameter π1

2 (for planar graphs) whose complexity
remains open. For more open problems, see Section 6.

2 Computational Hardness of the Line Cover Numbers

In this section, we show that deciding, for a given graph G and integer k, whether
ρ12(G) ≤ k or ρ13(G) ≤ k is an ∃R-complete problem. The ∃R-hardness results
are often established by a reduction from the Pseudoline Stretchability
problem: Given an arrangement of pseudolines in the projective plane, decide
whether it is stretchable, that is, equivalent to an arrangement of lines [17,18].
Our reduction is based on an argument of Durocher et al. [10] who designed a
reduction of the Arrangement Graph Recognition problem, defined below,
to the problem of computing the segment number of a graph.

A simple line arrangement is a set L of k lines in R2 such that each pair
of lines has one intersection point and no three lines share a common point. In
the following, we assume that every line arrangement is simple. We define the
arrangement graph for a set of lines as follows [2]: The vertices correspond to the
intersection points of lines and two vertices are adjacent in the graph if and only
if they are adjacent along some line. The Arrangement Graph Recognition
problem is to decide whether a given graph is the arrangement graph of some
set of lines.

Bose et al. [2] showed that this problem is NP-hard by reduction from a
version of Pseudoline Stretchability for the Euclidean plane, whose NP-
hardness was proved by Shor [25]. It turns out that Arrangement Graph
Recognition is actually an ∃R-complete problem [11, page 212]. This stronger
statement follows from the fact that the Euclidean Pseudoline Stretchabil-
ity is ∃R-hard as well as the original projective version [16,23].

Theorem 1. Given a planar graph G and an integer k, it is ∃R-hard to decide
whether ρ12(G) ≤ k and whether ρ13(G) ≤ k.

Proof. We first treat the 2D case. We show hardness by a reduction from Ar-
rangement Graph Recognition. Let G be an instance of this problem. If
G is an arrangement graph, there must be an integer ` such that G consists of
`(`−1)/2 vertices and `(`−2) edges, and each of its vertices has degree d where
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d ∈ [2, 4]. So, we first check these easy conditions to determine ` and reject G if
one of them fails. Let G′ be the graph obtained from G by adding one tail (i. e.,
a degree-1 vertex) to each degree-3 vertex and two tails to each degree-2 vertex.
So every vertex of G′ has degree 1 or 4. Note that, if G is an arrangement graph,
then there are exactly 2` tails in G′ (2 for each line) – if this is not true we can
already safely reject G. We now pick k = `, and show that G is an arrangement
graph if and only if ρ12(G′) ≤ k.

For the first direction, let G be an arrangement graph. By our choice of k,
it is clear that G corresponds to a line arrangement of k lines. Clearly, all edges
of G lie on these k lines and the tails of G′ can be added without increasing the
number of lines. Hence, ρ12(G′) ≤ k.

For the other direction, assume ρ12(G′) ≤ k and let Γ ′ be a straight-line
drawing of G′ on ρ12(G′) lines. The graph G′ contains

(
k
2

)
degree-4 vertices.

As each of these vertices lies on the intersection of two lines in Γ ′, we need k
lines to get enough intersections, that is, ρ12(G′) = k. Additionally, there are
no intersections of more than two lines. The most extreme points on any line
have degree 1, that is, they are tails, because degree 4 would imply a more
extreme vertex. We can assume that there are exactly 2k tails, otherwise G
would have been rejected before as it could not be an arrangement graph. Each
line contains exactly two of them. Let n2 (resp. n3) be the number of degree-2
(resp. degree-3) vertices. As we added 2 (resp. 1) tails to each of these vertices,
we have 2k = 2n2 + n3. By contradiction, we show that the edges on each line
form a single segment. Otherwise, there would be a line with two segments.
Note that the vertices at the ends of each segment have degree less than 4 (that
is, degree 1). This would imply more than two degree-1 vertices on one line, a
contradiction. So Γ ′ is indeed a drawing of G′ using k segments. By removing
the tails, we obtain a straight-line drawing of G using k = n2 + n3/2 segments.
The result by Durocher et al. [10, Lemma 2] implies that G is an arrangement
graph.

Now we turn to 3D. Let G be a graph and let G′ be the augmented graph as
above. We show that ρ13(G′) = ρ12(G′), which yields that deciding ρ13(G′) is also
NP-hard. Clearly, ρ13(G′) ≤ ρ12(G′). Conversely, assume that G′ can be drawn
on k lines in 3-space. Since G′ has

(
k
2

)
vertices of degree 4, each of them must

be a crossing point of two lines. It follows that each of the k lines crosses all
the others. Fix any two of the lines and consider the plane that they determine.
Then all k lines must lie in this plane, which shows that ρ12(G′) ≤ ρ13(G′). ut

It remains to notice that the decision problems under consideration lie in
the complexity class ∃R. To this end, we transform the inequalities ρld(G) ≤ k
into first-order existential expressions about the reals. For details, see the full
version [5].

Lemma 2. Each of the following decision problems belongs to the complexity
class ∃R
(a) deciding, for a planar graph G and an integer k, whether ρ12(G) ≤ k;
(b) deciding, for a graph G and an integer k, whether ρ13(G) ≤ k;
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(c) deciding, for a graph G and an integer k, whether ρ23(G) ≤ k.

3 Fixed-Parameter Tractability of the Line Cover
Numbers

In this section we show that, for an input graph G and integer k, both testing
whether ρ12(G) ≤ k, and testing whether ρ13(G) ≤ k are decidable in FPT time
(in k). Moreover, for both the 2D and 3D cases, for positive instances (G, k), we
can compute the combinatorial description of a solution also in time FPT in k.
One subtle point here is that there are graphs where each ρ12-optimal drawing
requires irrational coordinates; see the full version for details [5]. Thus, in some
sense, a combinatorial description of a solution can be seen as a best possible
output from an algorithm for these problems. Note that, by a k-line cover in Rd
of a graph G, we mean a drawing D of G together with a set L of k lines such
that (D,L) certifies ρ1d(G) ≤ k.

Our FPT algorithm follows from a simple kernelization/pre-processing pro-
cedure in which we reduce a given instance (G, k) to a reduced instance (H, k)
where H has O(k4) vertices and edges, and G has a k-line cover if and only if
H does as well. After this reduction, we can then apply any decision procedure
for the existential theory of the reals since we have shown in Lemma 2 that
both k-line cover problems are indeed both members of this complexity class.
Our kernelization approach is given as Theorem 3 and our FPT result follows
as described in Corollary 4. We denote the number of vertices and the number
of edges in the input graph by n and m respectively.

Theorem 3. For each d ∈ {2, 3}, graph G, and integer k, the problem of de-
ciding whether ρ1d(G) ≤ k admits a kernel of size O(k4), i.e., we can produce a
graph H such that H has O(k4) vertices and edges and ρ1d(G) ≤ k if and only if
ρ1d(H) ≤ k. Moreover, H can be computed in O(n+m) time.

Proof. For a graph G, if G is going to have a k-line cover (D,L), then there are
several necessary conditions about G which we can exploit to shrink G. First,
notice that any connected components of G which are paths can easily be placed
on any line in L without interfering with the other components, i.e., these can
be disregarded. This provides a new instance G′. Second, there are at most

(
k
2

)
intersection points among the lines in L. Thus, G has at most

(
k
2

)
vertices with

degree larger than two. Moreover, each line ` ∈ L will contain at most k − 1
of these vertices. Thus, the total number of edges which are incident to vertices
with degree larger than two, is at most 2 · (k − 1) per line, or 2 · (k2 − k) in
total. Thus, G′ contains at most 2 · (k2 − k) vertices of degree one (since each
one occurs at the end of a path originating from a vertex of degree larger than
two where all the internal vertices have degree 2). Similarly, G′ contains at most
2 · (k2−k) paths where every internal vertex has degree two and the end vertices
either have degree one or degree larger than two. Finally, for each such path,
at most

(
k
2

)
vertices are mapped to intersection points in L. Thus, any path
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with more than
(
k
2

)
vertices can be safely contracted to a path with at most(

k
2

)
vertices. This results in our final graph G′′ which can easily be seen to have

O(k4) vertices and O(k4) edges (when G has a k-line cover). Now, if G′′ does
not satisfy one of the necessary conditions described above, we use the graph
K1,2k+1 as H, i.e., this way H has no k-line cover.

We conclude by remarking that this transformation of G to G′′ can be per-
formed in O(n + m) time. The transformation from G to G′ is trivial. The
transformation from G′ to G′′ can be performed by two traversals of the graph
(e.g., breadth first searches) where we first measure the lengths of the paths of
degree-2 vertices, then we shrink them as needed. ut

In the notation of the above proof, note that the statement ρ1d(G
′′) ≤ k can

be expressed as a prenex formula Φ in the existential first-order theory of the
reals. The proof of Lemma 2 shows that such a formula can be written using
O(k4) first-order variables and involving O(k4) polynomial inequalities, each of
total degree at most 4 and with coefficients ±1. We could now directly apply
the decision procedure of Renegar [20,21,22] to Φ and obtain an FPT algorithm
for deciding whether ρ1d(G) ≤ k, but that would only provide a running time of

(kO(k4) + O(n + m)). We can be a little more clever and reduce the exponent
from O(k4) to O(k2). This is described in the proof of the following corollary.

Corollary 4. For each d ∈ {2, 3}, graph G, and integer k, we can decide whether

ρ1d(G) ≤ k in kO(k2) +O(n+m) time, i.e., FPT time in k.

Proof. First, we apply to the given graph G the kernelization procedure from the
proof of Theorem 3 to obtain a reduced graph G′′. Now, notice that G′′ has at
most O(k4) vertices of degree two, but only

(
k
2

)
of these can be bend points and

are actually important in a solution, i.e., at most
(
k
2

)
of these vertices are mapped

to intersection points of the lines. Thus, we can simply enumerate all possible

O
((

k4

(k
2)
))

subsets which will occur as intersection points, and, for each of these,

test whether this further reduced instance has a k-line cover using Renegar’s
decision algorithm. This leads to a total running time of kO(k2) + O(n + m) as
needed. ut

We have now seen how to decide if a given graph G has a k-line cover in both
2D and 3D. Moreover, when G is a positive instance, our approach provides a
reduced graph G′′′ where G′′′ also has a k-line cover, G′′′ has O(k2) vertices and
edges, and any k-line cover of G′′′ naturally induces a k-line cover of G. In the
following theorem, whose proof can be found in the full version [5], we show that
we can further determine the combinatorial structure of some k-line cover of G′′′

in kO(k2) time and use this to recover a corresponding combinatorial structure
for G. Here, the combinatorial structure is a set of k linear forests since each
line in a k-line cover naturally induces a linear forest in G. Recall that a linear
forest is a forest whose connected components are paths.

Theorem 5. For each d ∈ {2, 3}, graph G, and integer k, in 2O(k3) +O(n+m)
time we can not only decide whether ρ1d(G) ≤ k but, if so, also partition the edge
set of G into linear forests accordingly to a k-line cover of G in Rd.
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4 Computational Complexity of the Plane Cover Number

While graphs with ρ23-value 1 are exactly the planar graphs, recognizing graphs
with ρ23-value k, for any k > 1, immediately becomes NP-hard. This requires a
detour via the NP-hardness of a new problem of planar 3-SAT type, which we
think is of independent interest. Full proofs for this section are given in the full
version [5].

Definition 6 ([19]). Let Φ be a Boolean formula in 3-CNF. The associated
graph of Φ, G(Φ), has a vertex vx for each variable x in Φ and a vertex vc for
each clause c in Φ. There is an edge between a variable-vertex vx and a clause-
vertex vc if and only if x or ¬x appears in c. The Boolean formula Φ is called
planar if G(Φ) is planar.

Kratochv́ıl et al. [14] proved NP-hardness of Planar Cycle 3-Sat, which is
a variant of Planar 3-Sat where the clauses are connected by a simple cycle in
the associated graph without introducing crossings. Their reduction even shows
hardness of a special case, where all clauses consist of at least two variables.
We consider only this special case. Mulzer and Rote [19] proved NP-hardness
of Positive Planar 1-in-3-Sat, another variant of Planar 3-Sat where all
literals are positive and the assignment must be such that, in each clause, exactly
one of the three variables is true. We combine proof ideas from the two to show
NP-hardness of the following new problem.

Definition 7. In the Positive Planar Cycle 1-in-3-Sat problem, we are
given a collection Φ of clauses each of which contains exactly three variables,
together with a planar embedding of G(Φ) + C where C is a cycle through all
clause-vertices. Again, all literals are positive. The problem is to decide whether
there exists an assignment of truth values to the variables of Φ such that exactly
one variable in each clause is true.

Lemma 8. Positive Planar Cycle 1-in-3-Sat is NP-complete.

Proof (sketch). We reduce from Planar Cycle 3-Sat. We iteratively replace
the clauses by positive 1-in-3-Sat clauses while maintaining the cycle through
these clauses. Our reduction uses some of the gadgets from the proof of Mulzer
and Rote [19]. We show how to maintain the cycle when inserting these gadgets.

We consider the interaction between the cycle and the clauses. Every clause
consists of two or three literals and thus there are two or three faces around a
clause in the drawing. There are two options for the cycle: (O1) it can “touch”
the clause, that is, the incoming and the outgoing edge are drawn in the same
face; (O2) it can “pass through” the clause, that is, incoming and outgoing edge
are drawn in different faces. As an example, Fig. 1a shows how we weave the
cycle through the inequality gadget by Mulzer and Rote. As a replacement for
the clauses with 2 variables we cannot use the gadget described by Mulzer and
Rote as it does not allow us to add a cycle through the clauses. Therefore, we
use a new gadget that is depicted in Fig. 1b. ut
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(a) Mulzer and Rote’s gadget for x 6= y.
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(b) Our gadget for the clause (x∨ y).

x

y z

a

q b

u e

c
d
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6=

6=

6=

O1

O2

(c) Mulzer and Rote’s gadget for the clause: x∨y∨z.

v1,
v2,
v3

u1

u2

u3u4

u1

(d) The intersection line gadget
and how it is depicted in Fig. 2.

Fig. 1: Gadgets for our NP-hardness proof. Variables are drawn in circles, clauses are
represented by squares. The boxes with the inequality sign represent the inequality
gadget. The dashed line shows how we weave the cycle through the clauses. There are
two variants of the cycle, which differ only in one edge: (O1) The cycle touches the
gadget; (O2) the cycle passes through the gadget.

We now introduce what we call the intersection line gadget ; see Fig. 1d. It
consists of a K3,4 in which the vertices in the smaller set of the bipartition—
denoted by v1, v2, and v3—are connected by a path. We denote the vertices in
the other set by u1, u2, u3, and u4.

Lemma 9. If a graph containing the intersection line gadget can be embedded
on two non-parallel planes, the vertices v1, v2, and v3 must be drawn on the
intersection line of the two planes while the vertices u1, u2, u3, and u4 cannot
lie on the intersection line.

Theorem 10. Let G be a graph. Deciding whether ρ23(G) = 2 is NP-hard.

Proof (sketch). We show NP-hardness by reduction from Positive Planar
Cycle 1-in-3-Sat. We build the graph G∗(Φ) = (V,E) for formula Φ that
consists of n clauses as follows: Each clause c is represented by a clause gadget
that consists of three vertices v1c , v2c , and v3c that are connected by a path. Let
x be a variable that occurs in the clauses ci1 , ci2 , . . . , cil with i1 < i2 < · · · < il.
Each variable x is represented by a tree with the vertices wx1 , w

x
2 , . . . , w

x
l that

are connected to the relevant clauses, and the vertices vx1 , v
x
2 , . . . , v

x
l that lie on a

path and are connected to these vertices. To each of the vertices vx1 , v
x
2 , . . . , v

x
l one
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vx1 vx2 vx3

wx
1 wx

2 wx
3

x

vb1 vb2 vb7

v1c1 v3c1v
1
c2 v3c2 v1c7 v3c7

Fig. 2: Example for the graph G∗(Φ) constructed from a Positive Planar Cycle
1-in-3-Sat instance Φ. The clauses are depicted by the black boxes with three vertices
inside and denoted by c1, . . . , c7 from left to right. The variables are drawn in pale
red (true) and blue (false). The variable x is highlighted by a shaded background. The
ellipses attached to variable-vertices stand for the intersection line gadget (see Fig. 1d).
The depicted vertices incident to the gadget correspond to u1 in Fig. 1d; u2 to u4 are
not shown. If Φ is true, one plane covers the blue variable gadgets and one plane covers
the blocking caterpillar (bold black) and the pale red variable gadgets.

instance of the intersection line gadget is connected. Finally, we add a blocking
caterpillar consisting of the vertices vb1 , . . . , v

b
n that are connected to the clauses

in their cyclic order, which exists for the Positive Planar Cycle 1-in-3-Sat
instance by definition. See Fig. 2 for an example of this construction.

We show that the formula Φ has a truth assignment with exactly one true
variable in each clause if and only if the graph G∗(Φ) can be drawn onto two
planes. The idea of our construction is that only two variables can be connected
to a clause gadget on each of the planes. One plane contains the blocking cater-
pillar and one variable per clause (corresponding to true variables). The other
plane contains two variables per clause (corresponding to false variables). Our
construction ensures that the vertices of a variable cannot be partitioned onto
both planes in any drawing. ut

Corollary 11. Deciding whether ρ23(G) = k is NP-hard for any k ≥ 2.

Proof (sketch). We add a blocking gadget for each additional plane. ut

5 Complexity of the Weak Affine Cover Numbers π1
3 / π2

3

Recall that a linear forest is a forest whose connected components are paths.
The linear vertex arboricity lva(G) of a graph G equals the smallest size r of a
partition V (G) = V1 ∪ · · · ∪ Vr such that every Vi induces a linear forest. The
vertex thickness vt(G) of a graph G is the smallest size r of a partition V (G) =
V1∪· · ·∪Vr such that G[V1], . . . , G[Vr] are all planar. Obviously, vt(G) ≤ lva(G).
We recently used these notions to characterize the 3D weak affine cover numbers
in purely combinatorial terms [6]: π1

3(G) = lva(G) and π2
3(G) = vt(G).
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Theorem 12. For l ∈ {1, 2},
(a) deciding whether or not πl3(G) ≤ 2 is NP-complete, and
(b) approximating πl3(G) within a factor of O(n1−ε), for any ε > 0, is NP-hard.

Proof. (a) The membership in NP follows directly from the above combinatorial
characterization [6], which also allows us to deduce NP-hardness from a much
more general hardness result by Farrugia [12]: For any two graph classes P and
Q that are closed under vertex-disjoint unions and taking induced subgraphs,
deciding whether the vertex set of a given graph G can be partitioned into two
parts X and Y such that G[X] ∈ P and G[Y ] ∈ Q is NP-hard unless both P
and Q consist of all graphs or all empty graphs. To see the hardness of our two
problems, we set P = Q to the class of linear forests (for l = 1) and to the class
of planar graphs (for l = 2).

(b) The combinatorial characterization [6] given above implies that χ(G) ≤
4 vt(G) = 4π2

3(G) (by the four-color theorem). Note that each color class can be
placed on its own line, so π1

3(G) ≤ χ(G). As π2
3(G) ≤ π1

3(G), both parameters are
linearly related to the chromatic number of G. Now, the approximation hardness
of our problems follows from that of the chromatic number [26]. ut

6 Conclusion and Open Problems

1. We have determined the computational complexity of the affine cover numbers
ρ12 and ρ13. The corresponding decision problems ρ12(G) ≤ k and ρ13(G) ≤ k
turn out to be ∃R-complete. On the positive side, these problems admit an
FPT algorithm (Corollary 4). This is impossible for the plane cover number
ρ23, unless P = NP, because the decision problem ρ23(G) ≤ k is NP-hard even
for k = 2 (Theorem 10 in Section 4). If k is arbitrary and given as a part of
the input, then this problem is in ∃R (Lemma 2)—but is it ∃R-hard?

2. Is the segment number segm(G) introduced in [7] fixed-parameter tractable?
3. Our proof of Theorem 1 implies that computing ρ12(G) and ρ13(G) is hard even

for planar graphs of maximum degree 4. Can ρ12(G) and ρ13(G) be computed
efficiently for trees? This is true for the segment number segm(G) [7].

4. How hard is it to approximate ρ12, ρ13, and ρ23?
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