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Abstract
An effective way to reduce clutter in a graph drawing that has (many) crossings is to group
edges into bundles when they travel in parallel. Each edge can participate in many such bundles.
Any crossing in this bundled graph occurs between two bundles, i.e., as a bundled crossing. We
minimize the number of bundled crossings in circular layouts, where vertices are placed on a
circle and edges are routed inside the circle.

For a given graph the goal is to find a bundled drawing with at most k crossings. We show
that the problem has an FPT algorithm (in k) when we require a simple circular layout.

1 Introduction

In traditional node–link diagrams, vertices are mapped to points in the plane and edges are
usually drawn as straight-line segments connecting the vertices. For large and somewhat
dense graphs, however, such layouts tend to be so cluttered that it is hard to see any
structure in the data. For this reason, Holten [14] introduced bundled drawings, where edges
that are close together and roughly go into the same direction are drawn using Bézier curves
such that the grouping becomes visible. Due to the practical effectiveness of this approach,
it has quickly been adopted by the information visualization community [9, 12, 15, 16, 19].
However, bundled drawings have only recently attracted study from a theoretical point of
view. Nevertheless, in his survey on crossing minimization, Schaefer already listed bundled
crossing minimization as an open problem [20, page 35].

Fink et al. [11] considered bundled crossings in the context of drawing metro maps. They
suggested replacing the classical objective of crossing minimization [3, 13, 17] by what they
called block crossing minimization. Given a set of x-monotone curves (the metro lines that
go through two neighboring stations), a block crossing is the exchange of two adjacent blocks
of curves. Fink et al. also introduced monotone block crossing minimization where each pair
of lines can intersect at most once. They considered various network topologies: single edge,
path, (upward) tree, planar graph, (bounded-degree) general graph.

Our research builds on recent work of Fink et al. [10] and Alam et al. [1] who extended
the notion of block crossings from sets of x-monotone curves to general drawings of graphs.
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Figure 1 (a) A non-degenerate bundled crossing B and (b) a degenerate bundled crossing B′

where one bundle consists of just one edge piece ẽ1 (ẽ1 = ẽ3 = R(B′)) with endpoints ẽ2 and ẽ4.

It is common to define a drawing of a graph as a function that maps vertices to points
in the plane and edges to Jordan arcs that connect the corresponding points. Here we
will consider simple drawings, that is, any two edges intersect at most once and no edge
self-intersects. We will often identify vertices with their points and edges with their curves.

Let D be a drawing, and let I(D) be the set of intersection points among the edges
in D. We say that a bundling of D is a partition of I(D) into bundled crossings, where a set
B ⊆ I(D) is a bundled crossing if the following holds (see Fig. 1).

B is contained in a closed Jordan region R(B) whose boundary consists of four Jordan
arcs ẽ1, ẽ2, ẽ3, and ẽ4 that are pieces of edges e1, e2, e3, and e4 in D.

The pieces of the edges cut out by the region R(B) can be partitioned into two sets Ẽ1
and Ẽ2 such that ẽ1, ẽ3 ∈ Ẽ1, ẽ2, ẽ4 ∈ Ẽ2, and each pair of edge pieces in Ẽ1 × Ẽ2 has
exactly one intersection point in R(B), whereas no two edge pieces in Ẽ1 (respectively
Ẽ2) have a common point in R(B).

We call the sets of edges E1 and E2 corresponding to edge pieces Ẽ1 and Ẽ2 bundles. We
call the edges that bound the two bundles of a bundled crossing frame edges. We say that a
bundled crossing is degenerate if at least one of the bundles consists of only one edge piece;
see Fig. 1(b). In this case, the region of the plane associated with the crossing coincides with
that edge piece. In particular, any point in I(D) by itself is a degenerate bundled crossing.

We consider circular layouts, where vertices are on a circle and edges are inside the circle.
We denote by bc◦(G) the circular bundled crossing numbers of a graph G, i.e., the smallest
number of bundled crossings over all bundlings of all simple circular layouts of G.

For computing bc◦(G), Alam et al. [1] gave an algorithm whose approximation factor
depends on the density of the graph. They posed the existence of an FPT algorithm for
bc◦(G) as an open question, which we answer in the affirmative. In this note, we first show
how to decide whether bc◦(G) ≤ 1. Then, we generalize our result as follows.

I Theorem 1. There is a computable function f such that for any n-vertex graph G and
integer k, we can check, in O(f(k)n) time, if bc◦(G) ≤ k, i.e., if G admits a circular layout
with k bundled crossings. Within the same time bound, we can compute such a layout.
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Figure 2 (a) A bundled drawing D with six bundled crossings (pink); parallel (blue) edges can
be inserted to avoid degenerate bundled crossings; (b) the corresponding surface of genus 6; the
components of the surface which are not regions are marked in green

2 An FPT Algorithm for Simple Circular Layouts

Our algorithm is inspired by works on circular layouts with at most k crossings [2] and
circular layouts where each edge is crossed at most k times [4]. Both first observed that the
graphs admitting such circular layouts have treewidth O(k), and then developed algorithms
using Courcelle’s theorem, which establishes that expressions in extended monadic second
order logic can be evaluated efficiently. We define treewidth and MSO2 in the full version [5].

I Theorem 2 (Courcelle [7,8]). For any integer t ≥ 0 and any MSO2 formula ψ of length `,
an algorithm can be constructed which takes a graph G with n vertices, m edges, and treewidth
at most t and decides in O(f(t, `) · (n+m)) time whether G |= ψ where the function f from
this time bound is a computable function of t and `.

We recall the observation of Alam et al. [1] that a drawing with k bundled crossings
can be lifted onto a surface of genus k; see Fig. 2. Then we examine the structure of such
a surface and present our algorithm for the case of one bundled crossing and finally for k
bundled crossings.

2.1 Constructing the surface determined by a bundled drawing
Consider a bundled circular drawing D, i.e., it is drawn on a disk D residing on a sphere,
where the boundary ofD is the circle ofD. Note that inserting parallel edges into the drawing
(i.e., making our graph a multi-graph) can be done without modifying the bundled drawing,
but allows us to assume that every bundled crossing has four distinct frame edges; see Fig. 2.
Each bundled crossing B defines a Jordan curve CB made up of the four Jordan arcs ẽ1, ẽ2,
ẽ3, ẽ4 in clockwise order taken from its four frame edges e1, . . . , e4 respectively (here (e1, e3)
and (e2, e4) frame the two bundles; ei = uivi). Let C ′B (see Fig. 3) denote a Jordan curve on
D outside of CB where every point on C ′B lies at a sufficiently small distance ε > 0 from CB
so that C ′B only contains the crossings in B and the distance from C ′B to the crossings
outside of C ′B is at least 2

3 of the distance from CB to these crossings. Note that C ′B consists
of eight Jordan arcs (in clockwise order) c′2,1, c′1,3, c′3,2, c′2,4, c′4,3, c′3,1, c′1,4, c′4,2, where c′i,j goes
from ei to ej . The surface D′ is constructed by creating a flat handle on top of D which
connects c′1,3 to c′3,1 (when we lift the drawing onto this surface the bundle containing e1 and
e3 will go over this handle), and doing so for each bundled crossing. We lift the drawing D
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Figure 3 The curve C′
B ; the regions r1, . . . , r6; augmented graphs G′
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onto D′ obtaining the lifted drawing D′. Clearly, D′ is crossing-free. Note that each Jordan
curve C ′B remains on our original disk. We will now cut D′ into components (maximal
connected subsets) using the frame edges and the Jordan curves C ′B for each B. Namely,
for each bundled crossing B, we first cut D′ along each of the frame edges e1, . . . , e4 of B.
We additionally cut D′ along the four corner Jordan curves c′2,1, c′3,2, c′4,3, and c′1,4 of C ′B .
This results in a subdivision of D′ which we call S. Here, we also use DS to denote the
sub-drawing of D′ on S, i.e., DS is missing the frame edges since these have been cut out.
Let us now consider the components of S. Notice that every edge of DS is contained in one
component of S. Furthermore, in order for a component s of S to contain an edge of DS,
s must have two endpoints on its boundary—to be precise, we consider the boundary of s
in D′ whenever we think of the boundary of such a component of S. With this in mind,
we focus on each component of S with a vertex of G on its boundary and call it a region.
Observe that a crossing in D which does not involve a frame edge corresponds, in DS, to a
pair of edges where one goes over a handle and the other goes underneath.

2.2 Recognizing a graph with k bundled crossings
Consider a bundled circular drawing D of G consisting of one bundled crossing. The bundled
crossing consists of two bundles, so we have up to four frame edges, whose set will be denoted
by F . By V (F), we denote the set of vertices incident to frame edges. Via the construction
above, we obtain the subdivided surface S; see Fig. 3. Let r1 and r2 be the regions each
bounded by the pair of frame edges corresponding to one of the bundles, and let r3, . . . , r6
be the regions each bounded by one edge from one pair and one from the other pair; see
Fig. 3. These are all the regions of S. Since, as mentioned before, each of the non-frame
edges of G (i.e., each e ∈ E(G) \ F) along with two endpoints are contained in exactly one
of these regions, each component of G\V (F) including the edges connecting it to vertices of
V (F) is drawn in DS in some region of S. In this sense, for each region r of S, we use Gr
to denote the subgraph of G induced by the components of G \ V (F) contained in r in DS

including the edges connecting them to elements of V (F). Additionally, each vertex of G is
incident to an edge in F (in which case it is on the boundary of at least two regions) or it
is on the boundary of exactly one region.

Notice that there are two types of regions: {r1, r2} and {r3, r4, r5, r6}. Consider a
region of the first type, for example r1, and note that it is a topological disk1, i.e., Gr1

is outerplanar. Moreover, it has a special drawing where the two frame edges e1 and e3
bounding the region r1 are on the outerface. Now, consider adding a new vertex wj , for
j = 1, 3 adjacent to both uj and vj so that wj is placed slightly outside of the region; see
Fig. 3. Denote the resulting augmented graph by G∗r1

and the corresponding drawing by

1 We slightly abuse this notion to also mean a simply connected set.
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D∗r1
– it is easy to see that D∗r1

is outerplanar. Moreover, in every outerplanar embedding
of G∗r1

, the vertices uj , wj , vj , j = 1, 3, occur consecutively on the outerface.
Similarly for a region of the second type, for example r3, the graph Gr3 is outerplanar also

with a special drawing where all the vertices must be on the arc u3u2 of the disk subtended
by the two frame edges e3 and e2 bounding the region r3. We construct the augmented
graph G∗r3

by adding to Gr3 an edge u3u2 and adding a vertex w adjacent to both u3 and
u2. Again, G∗r3

is outerplanar as r3 is a topological disk. Moreover, in every outerplanar
embedding of G∗r3

, the vertices u3, w, u2 occur consecutively on the outerface.
In other words, Gri

“fits” into ri because its augmented graph G∗ri
is outerplanar (?) –

note: that we do not require the specific outerplanar embedding of Gri
for this augmentation.

To sum up, G has a circular drawing D with at most one bundled crossing, because there
exist (i) a set of β ≤ 4 frame edges F = {e1, e2, . . . , eβ}, (ii) a particular circular drawing
DF of frame edges, (iii) the drawing of the one bundled crossing B, and (iv) corresponding
regions r1, . . . , rγ(γ ≤ 6) of the subdivided surface S such that the following properties hold:

1. The set of edges E(G) is partitioned into E0, E1, . . . , Eγ .
2. There is a bijection from E0 to F so that the subgraph of G formed by E0 is isomorphic

to the graph formed by F .
3. No vertex in V (G) \ V (E0) has incident edges e ∈ Ei, e′ ∈ Ej for i 6= j.
4. For each v ∈ V (E0), and each edge e incident to v, exactly one of the following is true:

(i) e ∈ E0 or (ii) e ∈ Ei and v is on the boundary of ri.
5. For each region ri, let Gi be the graph formed by Ei and vertices in V (E0) on the

boundary of ri (even if they are not incident to an edge in Ei), and let G∗i be the
corresponding augmented graph (i.e., as in ? above). Then, G∗i must be outerplanar.

To test for a drawing with one bundled crossing, we first enumerate drawings DF of
up to four lines in the circle. For each drawing DF that is valid for frame edges of one
bundled crossing, we define our surface and its regions (which will allow the augmentation
to be well-defined). Then, we will build an MSO2 formula to express Properties 1–5 above.
We have intentionally phrased these properties in a logical way so that it is clear that
they are expressible in MSO2. The only condition which is not obviously expressible is
the outerplanarity check. For this, we recall that outerplanarity is characterized by two
forbidden minors (i.e., K4 and K2,3) [6] and that, for every fixed graph H, there is an MSO2
formula minorH so that for all graphs G, G |= minorH if and only if G contains H as a
minor [8, Corollary 1.15]. Thus, Properties 1–5 can be expressed as an MSO2 formula ψ and,
by Courcelle’s theorem, there is a computable function f such that we can test if G |= ψ

in O(f(ψ, t)n) time for input graphs of treewidth at most t. Since outerplanar graphs have
treewidth at most two [18], the region graphs are outerplanar, and adding the (up to) 8
frame vertices raises the treewidth by at most 8, G must also have treewidth at most 10.

The key ingredient above was that every region was a topological disk. However, in
a subdivision S constructed from a bundled drawing with k bundled crossings this is not
trivial as regions can go over and under many handles; see Fig. 2. We state this result in
the following lemma, whose proof can be found in the full version [5].

I Lemma 3. Each region r of S is a topological disk.

Properties 1–5 and Lemma 3 allow us to construct an MSO2 formula ϕ to test whether
bc◦(G) ≤ k with pattern F of frame edges. The size of ϕ depends only on k. This lemma
further implies that the treewidth of a graph G with bc◦(G) ≤ k is at most 8k + 2 since
deleting a vertex from a graph lowers its treewidth by at most one and the treewidth of an
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outerplanar graph is at most two [18]. So, applying Courcelle’s Theorem (2) on ϕ of each
pattern F leads to an FPT algorithm to test whether bc◦(G) ≤ k. This proves Theorem 1.
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