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Abstract

We introduce boundary labeling, a new model for labeling point sites
with large labels. According to the boundary-labeling model, labels are
placed around an axis-parallel rectangle that contains the point sites,
each label is connected to its corresponding site through a polygonal line
called leader, and no two leaders intersect. Although boundary labeling
is commonly used, e.g., for technical drawings and illustrations in medi-
cal atlases, this problem has not yet been studied in the literature. The
problem is interesting in that it is a mixture of a label-placement and a
graph-drawing problem.

In this paper we investigate several variants of the boundary-labeling
problem. We consider labels of identical or different size, straight-line or
rectilinear leaders, fixed or sliding ports for attaching leaders to sites and
attaching labels to one, two or all four sides of the bounding rectangle. For
any variant of the boundary labeling model, we aim at highly esthetical
placements of labels and leaders. We present simple and efficient algo-
rithms that minimize the total leader length or, in the case of rectilinear
leaders, the total number of bends.
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1 Introduction

Label placement is one of the key tasks in the process of information visual-
ization. In diagrams, maps, technical or graph drawings, features like points,
lines, and polygons must be labeled to convey information. The interest in
algorithms that automate this task has increased with the advance in type-
setting technology and the amount of information to be visualized. Due to the
computational complexity of the label-placement problem, which is NP-hard
in general [FW09I], cartographers, graph drawers, and computational geometers
have suggested numerous approaches, such as expert systems [AF84], zero-one
integer programming [Zor90], approximation algorithms [FW91], simulated an-
nealing [Zor97] and force-driven algorithms [Hir82] to name only a few. Wolff
and Strijk [WS96] maintain an extensive bibliography about label placement.
The ACM Computational Geometry Impact Task Force report [Cc99] denotes
label placement as an important research area. Manually labeling a map is a
tedious task that is estimated to take 50% of total map production time [Mor8Q].

In this paper, we deal with labeling dense point sets with comparatively
large labels. This is a common problem, e.g., in medical atlases, where certain
features of a drawing or photo are explained by blocks of text that are arranged
around the drawing. The same problem occurs when several locations on a map
are to be labeled with large labels that must not occlude the map; see Figure [Ta}
Our model is as follows: we assume that we are given a set P = {p1,...,pn}
of points and an axis-parallel rectangle R that contains P. Each point, or site,
p; is associated with an axis-parallel rectangular open label. The labels have
to be placed and connected to their corresponding sites by polygonal lines, so-
called leaders, such that (a) no two labels intersect, (b) no two leaders intersect,
and (c) the labels lie outside R but touch R. We investigate various constraints
concerning the location of the labels and the type of leaders. More specifically,
we allow labels to be attached to one side, two sides, or all four sides of R, and
we either use straight-line or rectilinear leaders. We refer to straight-line leaders
as type-s leaders, and we consider two types of rectilinear leaders, namely type-
po and type-opo leaders that consists of two and three axis-parallel segments,
respectively. We also consider two ways to attach leaders to labels: using fixed
and sliding ports. For details refer to Section[2] We propose efficient algorithms
that find some non-intersecting leader-label placement, but we also consider two
natural objectives: minimize the total length of the leaders (see e.g., Figure
and, if leaders are not straight-line segments, minimize the total number of
bends over all leaders. Table [1] gives an overview over our results.

These new problems are combinations of label-placement and graph-drawing
problems. They are somewhat related to graph-drawing problems arising in the
automated layout of UML class diagrams where sometimes boxes with notes
have to be attached to class nodes [BRJ99]. Similar layout problems arise when
labels are placed after the layout of the graph structure [KT03]. The reason
might be that the layout algorithm does not support immediate labeling or the
size of the labels is not known during the layout process but changing interac-
tively. Due to the complexity of either step there are still very few publications
that combine graph drawing and label placement. Klau and Mutzel [KMQ3] have
coined the term graph labeling for this discipline and have given a mixed-integer
program for computing orthogonal graph layouts with node labels. Their ap-
proach has recently been extended by Binucci et al. [BDLNO05S] who additionally
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Table 1: Running times of our algorithms (in big-Oh-Notation) for various versions
of boundary labeling, where ¢ is an arbitrarily small positive constant. The
time bound in square parentheses refers to the case of non-uniform labels.
The problem marked by * is NP-hard. Our pseudo-polynomial solution (see
Theorem [5)) assumes that label heights and the height H of the bounding
rectangle are integers. N/A stands for non-applicable. Entries in column
“Feasible solution” are filled only if we can compute a feasible solution
asymptotically faster than a bend- or length-optimal solution.



allow edge labels.

Leaders have so far only been used by Zoraster [Zor97] and Freeman et
al. [FMCO96]. Zoraster [Zor97 investigates the labeling of seismic survey maps.
Such maps are special in that the sites typically lie on a few seismic lines, which
also must be labeled, and in that a site-label is placed orthogonally to the line
that contains the corresponding site. In order to cope with the density of the
site sets, Zoraster used 24 instead of the usual four label positions and connected
each label to its site by a leader. He uses simulated annealing to minimize an
objective function that takes into account (a) the number of objects that receive
a label and (b) the position of labels. The objective function favors labels that
are close to the object they annotate.

Freeman et al. [FMCO6] present ALPS, a software system for automated
labeling of soil survey maps. If a soil polygon is too small to accommodate its
own label, the system tries to place the polygon’s label into an adjacent polygon.
If this is possible, a straight-line leader is used to connect label and polygon,
otherwise the polygon remains unlabeled. Label positions are determined by an
iterative raster-based method.

An example of interactive label placement can be found in the widely used
infotip mechanism which supplies the user with additional information about
screen objects whenever the mouse pointer rests a certain amount of time in their
vicinity. Fekete and Plaisant [FP99] extend the infotip paradigm to cope with
labeling of dense maps interactively. They draw a circle of fixed radius around
the current cursor position, the so-called focus circle, and label the sites that
fall into the circle by axis-parallel rectangles that contain the names associated
with the sites. Labels are left-aligned and placed in two stacks to the left and
the right of the circle. If the cursor is too close to the left or right border of the
screen, only one stack is employed. The labels in the right (left) stack correspond
to those sites whose projection is on the right (left) half of the focus circle. The
order of the labels corresponds to that of the projected sites. To connect a site
with its label, Fekete and Plaisant use a non-orthogonal leader that consists of
two line segments: one radially from the site to its projection on the focus circle
and one from there to the midpoint of the left edge of the corresponding label.
For labels on the left side, sometimes a third segment is used. This approach
guarantees that no two leaders cross. In the worst case they may overlap within
the focus circle. Fekete and Plaisant do not specify any asymptotic running
time, but it is obvious that their algorithm runs in O(]S|log|S]) time once the
set S of sites in the focus circle has been determined.

Iturriaga and Lubiw [[L03] give an O(n*)-time decision algorithm for at-
taching elastic labels to n sites on the perimeter of a rectangle. An elastic label
models a block of text of fixed area, but varying width and height. Iturriaga
and Lubiw place their labels inside the rectangle. The problem is motivated by
labeling shops on maps of the downtown areas of North American cities such
that the text labels are placed within the rectangles defined by the surrounding
streets.

Tturriaga [[fu99] also briefly investigates the inverse problem, where elastic
labels must be attached to their sites outside the given rectangle R. She presents
an algorithm that finds a label placement that uses the minimum-width strip
around R. If n sites are given in order on the boundary of R, the algorithm
takes O(n) time.

This paper is structured as follows: In Section [2] we model and define the



boundary labeling problem. In Section [3] we are concerned with rectilinear
leaders. We present algorithms for leader-bend minimization, legal leader-label
placement, and leader-length minimization. Straight-line leaders are considered
in Section[d] In Section[5] we give example layouts produced by our algorithms.
We conclude in Section [6] with open problems and directions for future work.

2 Defining and modeling the problem

We consider the following problem. Given an axis-parallel rectangle R = [Ig, rr] %
[br,tr] of width W = rg — lr and height H = tg — bg, and a set P C Rof n

sites p; = (x4,¥:), each associated with an axis-parallel rectangular open label [;

of width w; and height h;, our task is to find a legal or an optimal leader-label

placement. Our criteria for a legal leader-label placement are the following:

1. Labels have to be disjoint.
2. Labels have to lie outside R, close to the boundary of R.
Leader ¢; connects site p; with label [; for 1 <1i < n.

Intersections of leaders with other leaders, sites or labels are not allowed.

AN

The ports where leaders touch labels may be fized (the center of a label
edge, say) or may be arbitrary (sliding ports).

In this paper we present algorithms that compute legal leader-label placements
(for brevity, simply referred to as labelings) for various types of leaders defined
below, but we also approach optimal placements according to the following two
objective functions:

e short leaders (minimum total length) and
e simple leader layout (minimum number of bends).

These criteria have been adopted from the area of graph drawing since leaders do
not play a significant role in the label-placement literature. In Zoraster’s work
[Zor97T), the leader length is only indirectly minimized by ranking the above-
mentioned 24 label positions such that positions closer to the site are favored.
We will evaluate the two criteria under two models for drawing leaders. In the
first model we require that each leader is rectilinear, i.e., a connected sequence
of orthogonal line segments. In the second model each leader is drawn as a
straight-line segment.

A rectilinear leader consists of a sequence of axis-parallel segments that con-
nects a site with its label. These segments are either parallel (p) or orthogonal
(0) to the side of the bounding rectangle R to which the label is attached. This
notation yields a classification scheme for rectilinear leaders: let a type be an
alternating string over the alphabet {p,o}. Then a leader of type t = t1 ...
consists of an z- and y-monotone connected sequence (eq,...,ex) of segments
from site to label, where each segment e; has the direction that the letter ¢;
prescribes. In this paper we focus on leaders of the types po (see Figure|2) and
opo (see Figures [1b|and . We consider type-o leaders to be of type opo and of
type po as well. We extend this notation by referring to straight-line leaders as
type-s leaders; see Figure [
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Fig. 2: Type-po leaders.

For each type-opo leader we further insist that the central p-segment is im-
mediately outside the bounding rectangle R and is routed in a so-called track-
routing area. We assume that the width of the track-routing area is fixed and
large enough to accomodate all leaders with a sufficient distance. Due to this
assumption the total length of the o-segments of all leaders is identical in all
label-leader placements. Thus we are left with optimizing the length of the p-
segments. Minimizing the width of the track-routing area for a given minimum
leader distance is an interesting problem in itself, which is not the topic of this
work.

We start with a negative result. Assume that the labels must be attached
either to the right or to the left side of the rectangle R and that their heights
are not equal. Furthermore, assume that the label heights sum up to twice the
height of R. Clearly, the task of assigning the labels to the two sides corresponds
to the well known problem PARTITION, which is weakly NP-complete [GI79].
Because of the NP-completeness of the general problem, it is reasonable to study
the case of uniform labels, i.e., labels that have the same size. Throughout this
paper we assume that input sites are in general position, i.e., no three sites lie
on a line and no two sites have the same z- or y-coordinate.

3 Rectilinear leaders

In this section, we investigate different ways of drawing rectilinear leaders. We
present algorithms for leader-bend minimization, legal leader-label placement,
and leader-length minimization. We consider attaching labels to one, two, and
four sides of the rectangle R and connecting sites to their labels with leaders of
type po and opo; see Figures [2| and [3] respectively.

In the description of our algorithms for type-opo leaders we focus on label
placement and ignore the leader routing. For the routing we assume that there is
arectangle R’ D R broader than R and use R'\ R as a fixed-width track-routing
area, i.e., we place all leader segments which are parallel to the corresponding
side of R in R'\ R. If the track-routing area is not of fixed width, our algorithms
become more complicated and slower by a factor of 2(n)—mnote that the worst-
case track width is O(n).

3.1 Leader-bend minimization

In this subsection we consider the problem of attaching labels of variable height
to one, say the right, side of the rectangle R. We use type-opo leaders and sliding
ports, i.e., every leader simply has to touch some point on the perimeter of the



corresponding label. We assume that the sum of the label heights is at most the
height of R and that the sites are sorted according to increasing y-coordinate.

Observe that, in any legal one-side labeling with type-opo leaders, the ver-
tical order of the sites is identical to the vertical order of their corresponding
labels. This, together with the assumption that no two sites share the same
y-coordinate, guarantees that leaders do not intersect. We summarize this ob-
servation in the following lemma.

Lemma 1 Given a rectangle R of sufficient size, a side s of R, a set P C R
of n sites in general position and a rectangular label for each site, there is an
O(nlogn)-time algorithm that attaches labels to s and connects the sites with
non-intersecting type-opo leaders to the corresponding leaders using sliding ports.

Proof. Without loss of generality, assume that s is the right side of rectangle
R. We first stack the labels (in increasing order of the y-coordinate of the
corresponding sites) immediately to the right of the track-routing area (i.e., to
the right of rectangle R’) and on top of each other such that the bottom side of
label /; has the same y-coordinate with the bottom side of rectangle R. Then,
we connect each site p; by a horizontal segment y; X [z;, 7| to the right side of
rectangle R. Finally we use the track-routing area to lay out the remaining parts
of the leaders from the right side of R to the, say, midpoints of the left label
sides; see Figure 8] We note that there are several efficient ways to determine
the z-coordinate of the vertical leader segments, which are placed in the track-
routing area. The simplest one uses, as offset from the boundary, the index of
the sites in a bottom-to-top ordering. More sophisticated linear-time methods
can be based of computing the number of vertically overlapping p-segments.
The time complexity of our algorithm is due to the sorting of the sites.

Remark 1 For the case of uniform labels of maximum size (or, in general of
fixed size and location) and fixed ports, there only exists a single legal labeling.
Thus, the algorithm described in the proof of Lemma [I] also yields a labeling
that minimizes the total leader length (the topic of Section .

Clearly, this approach is not optimal in terms of the total number of leader
bends. Each type-opo leader contributes up to two bends. By sliding the labels
along the side of R (without changing the order of the labels) and by allowing
sliding label ports, it is possible to connect some of the sites to their corre-
sponding labels by leaders that consist of a single straight-line segment and
contribute zero bends to the total number of bends. Thus, minimizing the to-
tal number of bends is equivalent to placing the labels to appropriate locations
so that the number of straight-line (zero-bend) leaders is maximized. This is
a one-dimensional label-placement problem. There has been work on similar
problems where labels are not restricted to a constant number of positions, but
can slide. Kim et al. [KSY0I] have observed that it is trivial to decide whether
a set of points on a line can be labeled with (unit) intervals such that each
interval contains the point it labels. In the same paper, however, they also
considered the problem of finding the maximum interval length that allows to
label all points. By a clever geometric transformation they managed to solve the
problem in linear time if the points are given in order. Garrido et al. m
have investigated the problem of deciding whether a set of points on a line can
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Fig. 5: Label placements that the dynamic programming algorithm takes into account
when computing T'[i, k].

be labeled with labels of given lengths. They showed that the problem becomes
NP-hard if labels can be placed both above and below the line.

Our problem is new in that labels do not necessarily have to contain the
point they label, but even if they do not (and thus contribute to the objective
function in a negative way), they must be placed within an interval whose length
is restricted (by the height of R). We now give an algorithm for placing labels
that uses as many horizontal (i.e., zero-bend) leaders as possible. We have the
following result:

Theorem 1 Given a rectangle R of sufficient size, a side s of R, a set P C R
of n sites in gemeral position and a rectangular label for each site, there is an
O(n?)-time algorithm that attaches the labels to s and connects the sites with
non-intersecting type-opo leaders to the corresponding leaders using sliding ports
such that the total number of leader bends is minimized.

Proof. Without loss of generality, we assume that s is the right side of rectangle
R. We also assume that the sum of the label heights is at most the height of R
and that the sites are sorted according to increasing y-coordinate. Recall that
by p; = (z;,y;) we denote the i-th site, by h; we denote the height of the i-th
label, 1 < i < n, and by br and tr we denote the y-coordinate of the bottom
right and top right corner of R, respectively.

Our dynamic programming algorithm employs a table T of size (n+1) X (n+
1). For 0 < k < i < n the entry T7i, k] will contain the minimum y-coordinate
that is needed to accommodate the lowest ¢ labels such that at least k of them
use horizontal leaders. If it is impossible to connect k out of the lowest i labels
with horizontal leaders, we set T[i, k] to co. As usual, the table entries are
computed in a bottom-up fashion. By definition of T'[¢, k], it always holds that:

Ti,k] < T[i, k + 1]

For computing T'[i, k] we only need to know the entries T[i — 1,k — 1] and
T[i — 1, k]. We distinguish two cases based on whether y; < T[i — 1,k — 1].

Case 1: y; <T[i—1,k—1].
Refer to Figure [f[a). In the case where y; < T'[i — 1,k — 1] it is obvious
that p; cannot be connected to label I; with a horizontal leader and, thus,
the leader out of p; cannot be the k* horizontal leader.

Ti, k] can have a finite value only if T[i — 1, k| is finite. In this subcase,
we stack label [; on top of the ¢ — 1 already placed labels, and obtain a
placement with k horizontal leaders and height T'[¢ — 1, k] + h;.



If T[i — 1, k] = oo, no solution with k horizontal leaders out of the lowest
i sites exists and, thus, T[i — 1, k] = occ.

Since we assume that oo + h; = 0o, both subcases can be described by the
equation:
Tli, k] =T[i — 1,k] + h;

Case 2: y; >T[i — 1,k —1].

Refer to Figure [f[b). Consider first the subcase where y; < T[i — 1,k —
1] + h;. If we place label [; on top of the already placed labels then it
will be “hit” by the horizontal leader out of site p;. In the subcase where
y; > T[i — 1,k — 1] 4+ h;, we can place label I; (above the already placed
labels) so that its top side lies on line y = y;. From these two subcases,
we conclude that if site p; is connected to its corresponding label by a
horizontal leader, then T'[i, k] = max (y;, T[i — 1,k — 1] + h;).

If T[i—1, k] is finite then a different solution, which is obtained by stacking
label I; on top of the already placed labels, is also possible. The height of
this solution is T'[i — 1, k] + h;.

The above subcases can be expressed by the equation:

T[i, k] = min (T[i — 1,k] + h;, max(y;, T[i — 1,k — 1]+ h;))

Based on the above cases, we conclude that T'[i, k] can be computed by using
the following recurrence relation:

Tli, k] =
o Tli— 1,k + ks if y; <Tli— 1,k — 1]
~ | min (T[i — 1, k] + hs, max(y;, T[i — 1,k — 1] + h;)) ify; > T[i — 1,k — 1]

Algorithm [I] computes the maximum possible number of horizontal leaders.
A placement with the maximum number of horizontal leaders has the minimum
number of bends. The algorithm is directly based on the recurrence relation
computed above (see blockof the algorithm). Blockof Algorithm computes
the maximum possible number of zero-bend leaders by identifying the largest j
with 0 < j < n such that T[n,j] < tg, that is, such that all labels fit on the
side of rectangle R.

It is obvious that Algorithm [1| runs in O(n?) time and uses O(n?) space.
The algorithm can easily be modified such that it also computes the label and
leader positions in an optimal solution. In that case the algorithm needs an
extra table of the same size as T.

3.2 Legal leader-label placement

In this subsection we investigate the problem of attaching labels to all sides
of the rectangle R. Since optimizing leader length or bend number is difficult
in this setting we content ourselves with a legal placement. Our basic idea is
simple: we partition R into four disjoint regions such that the algorithms for
type-opo leaders from the previous subsection can be applied to each region
separately. For the sake of brevity our discussion ignores the problem of how to
distribute the boundary of the areas between them.



Algorithm 1: 1SIDEROUTEOPO

Input: a set P of n point sites with y-coordinates y; < --- < yn, an
axis-parallel rectangle R = [lg,Tr| X [bgr, tr] that contains P, and n labels
of heights hy,..., h,.

Output: the maximum possible number of horizontal leaders.

1 {Fill dynamic programming table T}
T00,0] =bgr
fori=1tondo
T[i,0] =T[i — 1,0] + h;
Tli—1,i = o0
for k=1toido
if T[i — 1,k — 1] > y; then
Tli, k] =T[i — 1,k] + h;
else
T[i, k] = min (T[i — 1,k] 4+ h;, max(y;, T[i — 1,k — 1]+ h;))
end
end
end

2 {Determine best placement below tg}
j=0
while T'[n, j] < tr do
j=j+1
end
return j —1

We have two requirements for a region A in the partition of R: (a) A must be
adjacent to a specific side s 4 of R and (b) each site in A must see the point with
the same z- or y-coordinate on s4. Requirement (b) is a consequence of using
type-opo leaders. We observe that a partition of R into four regions such that
each region A contains the side sy of R and A is monotone in the direction of
s satisfies both requirements (for example; see the partition of the rectangle in
Figure @ As a consequence, we focus on the identification of such a partition.

We introduce some notation; see Figure[6] Let vy, ..., vs be the corners of R
from the lower left corner in counterclockwise order, and let s; = 7703, ...,54 =
U407 be the sides of R. For the sake of brevity we view the sides of R as line
segments that do not contain their endpoints. We assume that the corners of R
do not lie on any line determined by a pair of sites.

To avoid the NP-hard problem PARTITION as discussed in Section [2] we
assume that we know how many labels have to be attached to which side of
R. In case we want to attach labels to non-parallel sides of R this assumption
makes good sense if we have uniform square labels. Let ny,...,n4 be the number
of labels that have to be attached to the sides si,...,s4, respectively, and let
n=mny+---+ng.

We construct the partition of the rectangle R as follows:

1. We first partition R into two regions Ajo and Asy such that Aj contains
n1 + ngy sites as well as the sides s; and sy. We proceed as follows. Let
h1 be the halfplane below the horizontal line through v, and let hz be

10



the halfplane to the right of the vertical line through vz. Now we turn
h1 around v; in counterclockwise direction and h3 around vs in clockwise
direction until A;2 = RN (hy U h) contains exactly ny + na sites. Due
to our assumption concerning the general position of the sites and the
corners of R this is always possible. The two resulting regions are both x-
and y-monotone; one is a convex, one a non-convex quadrilateral; see the
bold solid line segments in Figure [6}

2. Now we split A2 into two regions A; and A such that for i € {1,2}, A;
contains side s; and n; sites. Let ho be the halfplane below the horizontal
line through vy. We turn hs in clockwise direction around vy until A; =
ha N Ay contains ny sites. Again this is possible due to our assumption
regarding the general position of sites and corners. Clearly, Ay = A2\ A4
contains side sy and the remaining no sites. In the same fashion we split
Asy into Az and A4. All four resulting regions are z- and y-monotone; see
the dotted lines in Figure [6}

Fig. 6: Partition into monotone regions.

Turning the halfplanes can be implemented by sorting the sites according
to the angles they enclose with the horizontal or vertical lines through the
appropriate corners of R. Using the O(nlogn)-time algorithm of Lemma we
have the following result:

Theorem 2 Given a rectangle R of sufficient size, a set P C R of n sites in
general position, square uniform labels, one per site, and numbers ni,...,ny
that express how many labels are to be attached to which side of R, there is an
O(nlogn)-time algorithm that attaches the labels to R and connects them to the
corresponding sites with non-intersecting type-opo leaders.

Recall that our objective in this subsection is to obtain a legal label place-
ment. This is what the O(nlogn)-time algorithm of Lemmal(l]yields. In general,
we will obtain a drawing with fewer bends by investing a running time of O(n?)
and using Algorithm[I} However, in order to obtain a routing with the minimum
number of bends with type-opo leaders in the four-side case, we would have to
go through all combinatorially different ways of partitioning the set of sites into
four subsets with the cardinality and monotonicity constraints listed above.

A related problem has been considered by Iturriaga and Lubiw [[L03]. Given
a set of n points on the boundary of a rectangle and for each point an elastic label
of a certain area, they want to decide whether it is possible to attach these labels

11



to their points inside the rectangle. To solve this problem they observe that
in any solution the rectangle can be split by a so-called corridor partition into
at most four corner blocks and a corridor such that each label lies completely
within one of these areas. For the two types of areas they use different label-
placement algorithms. They state that the number of combinatorially different
corridor partitions is O(n%). It seems that such an approach that enumerates
all possible partitions of R into four areas cannot be used to obtain an efficient
algorithm for bend minimization. The problem is that there are site sets that
cause an exponential number of such partitions—even in the two-side case. For
example, if n is even, there are (732) different ways to split a rectangle containing
the sites (1,1),(2,2), ..., (n,n) such that half of the sites lie in the area incident
to s1 and sy, respectively. It is an interesting open question how a minimum-
bend type-opo routing can be found in the two- or four-side case.

3.3 Leader-length minimization

In this section we focus on computing label placements of minimum total leader
length. We present a variety of algorithms that attach labels to one side (right),
two opposite sites (left and right) and four sides of rectangle R, examine uniform
and non-uniform labels, and fixed or sliding ports.

3.3.1 Two-side labeling with type-opo leaders and uniform labels.

Labels are placed on opposite sides of the rectangle, say Siery and Syignt, 1/2
labels on each side. The labels are assumed to be uniform in the sense that they
all are of identical height (or width, if they are placed on the top and the bottom
sides of the rectangle). The n/2 labels are of maximum height, covering the full
length of the side of the rectangle they reside at, and hence their position at
each side is determined. We are given n sites p; = (z;,;), 9 = 1,2, ...,n, which
have to be connected with leaders to labels on siefe and syignt so that the total
leader length is minimized.

We consider type-opo leaders which may connect to the labels with fixed or
sliding ports. The i-th site p which is assigned to sjef; is connected to the i-th
label of sjes With a type-opo leader. Since the location of each label is fixed, the
length of the leader to the i-th label of sjef; is determined. In the case of fixed
ports we define Left(p, ) to be the distance from site p to the (closest) port of
the i-th label of sjef, while in the case of sliding ports Left(p,4) is defined as
the distance from site p to the closest point of the i-th label of sjef;. Right(p, )
is defined similarly. We obtain the following result:

Theorem 3 Given a rectangle R with n/2 uniform labels of mazimum height
on its left and right side, and a set P C R of n sites in general position, a non-
crossing minimum-length type-opo leader placement can be computed in O(n?)
time for both fized and sliding ports.

Proof. To compute a label placement of minimum total leader length, we use
dynamic programming (see Algorithm. We first assume that n is even. Later
we describe how to deal with the case that n is odd. The algorithm maintains a
table T[0 : n/2,0 : n/2]. Entry T[l,r] contains the minimum total leader length
for the [ + r lowest sites under the condition that [ are connected to labels on
Stety and the remaining r to labels on spgn.

12



It can easily be proven by induction that T'[l, r| satisfies the following recur-
rence relation for 0 < 1,7 < n/2:

700, 0] 0 (1)
T[0,r] = TI[0,r — 1] + Right(p,, ) (2)
T[,0] = T[l —1,0] + Left(p;, 1) (3)
Tl,r] = min{T[l,r — 1] + Right(pi4r,7), T[l = 1,7] + Left(pi4r,1)} (4)

Having computed table T, entry T'[n/2,n/2] corresponds to a label placement
of minimum total leader length. In order to compute the actual placement and
not only its cost, we need to maintain an additional table T". For 0 < I,r < n/2
entry T'[l,r] stores the side of the rectangle to which the label of site p, is
attached. This is determined by the term that minimizes .

Since the algorithm maintains an (n/2+1) x (n/2+ 1) table and each entry
is computed in constant time, the time complexity of our algorithm is O(n?).

To complete the proof of the theorem, we have to show how to deal with the
case that n is odd. Assume that n = 2k — 1 for some k& > 0. In this case, we
will attach k labels to one side of the rectangle and k& — 1 to the other. Since we
are using uniform labels, the side which receives k — 1 labels can be considered
to have an unoccupied label slot. Note that the label slot can be on either the
left or the right side. The revised dynamic programming algorithm maintains a
table T'[0: n/2,0:n/2,0: 1,0 : 1] such that T'[l,r, a, b] gives the minimum total
leader length for the [ + r lowest sites where [ of them have labels on Sjef;, 7 on
sright and so far we have used a empty label slots on the left side and b empty
label slots on the right, with a, b € {0,1} satisfying a + b < 1. The recurrence
relation which must be satisfied by T can be easily obtained as an extension of
the one for the case of an even number of sites. Finally, observe that the size of
the table remains O(n?), leaving time and space complexity unchanged.

Algorithm 2: UNIFORMLABEL2SIDEROUTEOPO
Input: a set P of n sites p1(z1,y1),- .-, Pn(@n, Yn), sorted in order of
increasing y-coordinate.
Output: the minimum total leader length
T[0,0] =0
for i =1tondo
T, —1] =T[-1,i] =
for | = 0 to min{i,n/2} do

r=1—1
T[l,7] = min{T[l,r — 1] + Right(p;, r), T[l — 1,r] + Left(p;, 1)}
end

end
return T[n/2,n/2]

3.3.2 Four-side labeling with type-opo leaders.

We present a polynomial-time algorithm that computes type-opo leaders of min-
imum total length and places labels on all four sides of the boundary of the
rectangle R. We assume labels of uniform size and sliding ports.
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Fig. 7: Leader c is oriented towards corner A and away from corner B.

Before we proceed with the description of our algorithm, we make some
observations regarding opo-labeling (which might contain crossings) of minimum
total leader length for the case of four-side labeling with labels of uniform size
and sliding ports. Consider an opo-leader ¢ which originates from point p and
is connected to a label on side AB of the rectangle at port ¢ (see Figure @
The line containing the segment of the leader which is incident to site p (and
is orthogonal to side AB) divides the plane into two half-planes. We say that
that leader ¢ is oriented towards corner A of the rectangle if port ¢ and corner
A are on the same half-plane, otherwise, we say that leader ¢ is oriented away
from corner A. In the case where the opo-leader consists of only one segment,
i.e., the port lies on the line which defines the two half-planes, we consider the
leader to be oriented towards corner A (and also towards corner B).

Lemma 2 Consider four-side labeling with labels of uniform size and sliding
ports and let L be an opo-labeling (which might contain crossings) of minimum
total leader length. Let c; and c; be two leaders that connect sites p; and p; to
labels l; and l;, respectively. If c; and c; cross, the following statements hold:

(i) Labels l; and l; lie on adjacent sides of the rectangle.
(i1) Leaders c; and c; are oriented towards the same corner of the rectangle.

(11i) Leaders ¢; and c; can be rerouted so that they do not cross each other and
the sum of their leader lengths remains unchanged.

Proof. For proving statement (i) we show labels [; and {; cannot both lie on the
same side or on opposite sides of the rectangle. For the sake of contradiction,
assume first that the labels lie on the same side, say AB, of the rectangle. Then
the segments of the leaders which are incident to the sites are parallel to each
other. Since the sites have distinct - and y-coordinates, these segments do
not overlap each other, and thus, the intersection of the two leaders takes place
outside the rectangle, i.e., in the track-routing area. This implies that, along
the direction of side AB, the order of the sites is the reverse of the order of their
associated labels. However, by swapping the labels, we can reduce the total
leader length (and also eliminate a crossing). This is a contradiction since we
assumed that the total leader length of the labeling is minimum (see Figure .

Consider now the case where, for the sake of contradiction, the labels lie on
opposite sides of the rectangle. Then, since the leaders intersect each other, the
segments of the leaders which are inside the rectangle (and incident to the sites)
have to intersect. However, since these segments are parallel to each other, they

14



B

, | c
Pie t ﬁ: reroute(c;, CJ) e —
.

p.i,}E

R
[ ]

<O

] J C.
#g j

A

Fig. 8: Rerouting used to prove that in an opo-labeling (where crossings are allowed)
of minimum total leader length, the labels associated with two crossing leaders
do not lie on the same side of the rectangle.

have to overlap, and thus have the same z- or y-coordinates. This is the desired
contradiction since we assume that the sites are in general position. Having
eliminated the cases that the labels lie on the same or on opposite sides of the
rectangle implies that labels must lie on adjacent sides of the rectangle if their
leaders intersect.

Let A be the corner which is incident to the two sides of the rectangle contain-
ing the labels associated with leaders ¢; and ¢;. In order to prove statement (ii)
of the lemma, it is enough to show that (in a labeling of minimum total leader
length) it is impossible to have one or both leaders oriented away from corner
A. We consider these two cases.

Case 1: Exactly one leader, say c¢;, is oriented away from corner A.

This case is depicted in the left-hand side of Figure El (a). Rerouting the
leaders as described in Figure@l (a) results in a reduction of the total leader
length, a contradiction since we assumed that the total leader length of the
labeling is minimum. Note that in the figure we only show the sub-case
where site p; is below the horizontal line passing through port ¢;. When
p; is on or above the horizontal line passing through port ¢;, rerouting
again results in a reduction of the total leader length. Thus, a labeling of
minimum total leader length does not contain two crossing leaders where
one of them is oriented away from the corner A incident to the sides
containing their associated labels.

Case 2: Both leaders ¢; and ¢; are oriented away from corner A.

The rerouting of the leaders is shown in Figure |§| (b). Again, only one of
the four possible sub-cases based on whether site p; (p;) is to the right
(below) the vertical (horizontal) line passing through port g; (¢;) is shown.
Given that rerouting results in a reduction of the total leader length, we
conclude that a labeling of minimum total leader length does not contain
two crossing leaders where both of them are oriented away from the corner
A incident to the sides containing their associated labels.

Having eliminated the cases where one or both crossing leaders are oriented away
from corner A, implies that they are both oriented towards corner A(assuming
that we can identify two crossing leaders).

It remains to show statement (iii) of the lemma, namely that leaders ¢; and
c; can be rerouted so that they do not cross each other and the sum of their
leader lengths remains unchanged. In the rerouting described in Figure El (c),
we use the crossing point O to partition the first segment of each leader ¢; and
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(c) Both leaders ¢; and c; are oriented towards corner A.

Fig. 9: In an opo-labeling of minimum total leader length, two crossing leaders are
always oriented towards the corner that is incident to the rectangle sides with
the associated labels. The crossing can be eliminated without changing the
sum of the leader lengths.

¢; into two sub-segments. Then, leaders ¢, and c; can be obtained by a parallel
translation of the (sub)segments of leaders ¢; and ¢;. This does not change the
sum of the leader lengths.

To complete the proof of the lemma, we note that whenever we perform a
rerouting, we never change the position of a port. Since the used port would
also be available in the case of sliding ports, the lemma applies to sliding ports,
as stated.

Lemma 3 Given a set P of n sites and an opo-labeling L of P with uniform
labels and sliding ports that has minimum total leader length, there is a crossing-
free opo-labeling L' whose total leader length equals that of L. Moreover, labeling
L’ can be obtained from L in O(nlogn) time.

Proof. We will show how to eliminate all crossings in L by rerouting the
intersecting leaders. Our method performs two passes over the sites, one from
left to right and one from right to left.

We first do the left-to-right pass. Consider all sites with labels on the right
side of the rectangle which are incident to crossing leaders. Let p be the leftmost
such site and let ¢ be the leader that connects p to its corresponding label on
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length.

the right side of the rectangle (see Figure[10). Given that L is an opo-labeling
of minimum total leader length, Lemma [2| (i) implies that leader ¢ intersects
only leaders that are connected to labels on the top and bottom sides of the
rectangle. Without loss of generality, assume that c is oriented towards the
bottom-right corner of the rectangle, say A. Then all leaders that intersect ¢
have their labels on the bottom of the rectangle and are also oriented towards
A (Lemma 2] (ii)). Let ¢; be the leftmost leader that intersects c, and let p; be
its incident site. According to Lemma [2| (iii), we can reroute leaders ¢ and ¢;
so that the total leader length remains unchanged (Figure . Observe that
the rerouting possibly eliminates more than one crossing (e.g., the crossings
between leader ¢ and leaders ¢; and ¢;) but, in general, it might also introduce
new crossings (e.g., the crossings between leaders ¢; and ¢;). However, the
leftmost site that is (a) incident to an intersecting leader and (b) connected to a
label on the right side of the rectangle, now lies to the right of site p. Continuing
in this manner, the leftmost site which participates in a crossing (in the left-
to-right pass) is pushed to the right, which guarantees that all “left-to-right”
crossings are eventually eliminated.

The left-to-right pass eliminates all crossings involving leaders attached to
labels on the right side of the rectangle. Now we want to show that during the
left-to-right pass we do not introduce any crossings that involve leaders attached
to labels on the left side of the rectangle (and have to be examined during a
right-to-left pass). This will guarantee that only two passes are required to
resolve all crossings. To see this, assume that such a crossing was introduced
and that it involves leader ¢’ and the leader ¢; which connects site p; to a label
on the left side of the rectangle (Figure [L1]). Given that the rerouting does
not increase the total leader length, the labeling resulting after all rerouting is
still one of minimum total leader length. Then, according to Lemma [2] (i), both
leaders ¢’ and ¢; must be oriented towards corner D, a contradiction since leader
' is oriented away from corner D (and towards corner A).

From the above discussion, it follows that a left-to-right pass eliminating
crossings involving leaders with their associated labels on the right side of the
rectangle, followed by a similar right-to-left pass, results in a labeling L” without
any crossings and of total leader length equal to that of L, i.e., minimum.

To complete the proof of the lemma, it remains to explain how to obtain in
O(nlogn) time the new labeling L', given labeling L of minimum total leader
length. Consider the left-to-right pass. The analysis for the right-to-left pass is
symmetric. During the pass, we process the sites with labels on the right side
of the enclosing rectangle in order of increasing xz-coordinate. Sorting the sites
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Fig. 11: No right-to-left crossing is introduced during the left-to-right pass described
in the proof of Lemma [3]

in increasing order with respect to their z-coordinate can be done in O(nlogn)
time.

In order to process site p = (,,y,) and to eliminate the crossings (if any)
involving its leader ¢, we have to identify the leftmost site p; such that its corre-
sponding leader (say ¢;) intersects leader ¢. Of course, the intersection involves
the first segment of leader ¢; that is parallel to the y-axis. The processing of
the sites during the left-to-right pass can be accomplished by employing a data
structure that stores vertical line segments and supports visibility queries of the
form: given a query point pg = (2, yo) return the first line segment to the right
of py that is intersected by line y = yo. The same data structure supports insert
(for initialization) and delete operations. For the case of vertical line segments
of finite size, the visibility query can be answered in O(log2 n) time by employ-
ing a combination of interval trees and priority search trees [Meh84l pp. 211].
This results in O(n log? n) time for the left-to-right pass and, consequently, for
the elimination of all crossings. However, as we will show next, the time needed
to eliminate all crossings can be further reduced to O(nlogn) if we take into
account the fact that all vertical segments considered during the left-to-right
pass have one of their endpoints on the bottom or the top side of the enclosing
rectangle.

Without loss of generality, assume that leader c¢ is oriented towards the
bottom-right corner of the enclosing rectangle. (The case where it is oriented
towards the top-right corner can be handled in a symmetric manner.) Then,
according to Lemma [2| (ii) all leaders intersecting leader ¢ are also oriented
towards the bottom-left corner and, thus, their associated labels are placed on
the bottom side of the enclosing rectangle. Therefore, leader ¢ can only intersect
vertical line segments which have one of their end-points on the bottom side of
the enclosing rectangle.

When we have to solve a visibility query on the set of line segments having
one of their end-points on the bottom side of the enclosing rectangle, we can
relax the restriction that the segments are of finite size and assume that they
are semi-infinite rays having their associated site as their higher endpoint. This
is due to the fact that all leader intersections take place inside the enclosing
rectangle. Recall that rr denotes the y-coordinate of the right side of the
enclosing rectangle R. In the case of semi-infinite segments, the visibility query
(with po = (x0,y0) as the query point) on set of vertical line segments reduces to
finding the site of smallest z-coordinate in the semi-infinite vertical strip defined
by x > xg, y < yo, and x < rr. The query just described can be answered
in time O(logn) by employing a dynamic priority search tree based on half-
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balanced trees [Meh84] pp. 209]. Insertions and deletions are also supported in
O(logn) time.

Thus, identifying the (at most n) pairs of leaders to be rerouted during the
left-to-right pass takes only O(nlogn) time, resulting in a total time complexity
of O(nlogn) for computing the crossing-free boundary labeling L'.

Now we are ready to present the main theorem of the section:

Theorem 4 Consider four-side opo-labeling of n sites with uniform labels. A
crossing-free solution of minimum total length can be computed in O(n? log® n)
time in the case of fived ports and in O(n3) time in the case of sliding ports.

Proof. For the sake of simplicty let us assume that we attach labels to the
right side of R. To compute an assignment that is minimum in terms of total
leader length for fixed ports we compute a Manhattan minimum-cost bipartite
matching between sites and ports using Vaidya’s algorithm [Vai89]. It runs in
O(n? log® n) time and finds a matching that minimizes the total Manhattan
distance of the matched pairs.

Note that this approach fails for sliding ports, although there is a small set
of candidate positions for ports, namely the bottom- and topmost points of each
left label edge and the horizontal projections of the sites to the corresponding la-
bel edges. In a Manhattan minimum-cost bipartite matching each site would be
matched to its horizontal projection — even if several such candidate ports were
lying on the same left label edge. Instead we compute the complete bipartite
graph between sites and labels where the weight of an edge is the Manhattan
distance of the site to the closest point on the corresponding label. Computing
a minimum-cost bipartite matching in this graph takes O(n®) time [Law76].

The leaders induced by this solution may overlap (in the track-routing area).
However, by Lemma [3| we can obtain a crossing-free solution in O(nlogn) ad-
ditional time.

3.3.3 Type-opo leaders and non-uniform labels.

We focus on two-side label placement of type-opo leaders. We are given n
sites p; = (w4,9:),4 = 1,2,...,n, each associated with a label I; of height h;
which can be placed on either the left side (i) or the right side (syignt) of
rectangle R. We assume that the heights of the rectangle and the labels are
all integers. Observe that the height of rectangle R must be large enough to
accommodate the labels. In the event that the height of rectangle R is equal
to half the sum of the label heights, just placing the labels amounts to solving
the NP-hard problem PARTITION. Therefore, we cannot expect an algorithm
whose running time is polynomial just in n, the number of sites. Instead we
present an algorithm whose running time is a polynomial in n and the height
H of the rectangle R. This algorithm can be considered the counterpart of the
pseudo-polynomial solution for PARTITION.

Here we again ignore the routing of the type-opo leaders and assume the
existence of a slightly wider rectangle R’. We obtain the following theorem:

Theorem 5 Given a rectangle R of integral height H, a set P C R of n sites

in general position, where site p; is associated with label l; of integral height h;,
there is an O(nH?)-time algorithm that places the labels to the right and left
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side of the rectangle and attaches the corresponding sites with non-intersecting
type-opo leaders such that the total leader length is minimized.

Proof. We say that label [ is placed at height h if its bottom edge has y-
coordinate h. If the i-th site p; is connected to si.f and its label [; is placed
at height y then the length of the leader from p; to I; leftward is well defined.
Call this length Left(p;,y) and call the analogously defined right leader length
Right(p:, y).

We denote by T'[i, A, p] the total length of the type-opo leaders of the i lowest
sites, where the left side of the rectangle is occupied up to A and the right side
is occupied up to p. By L[i, A, p| we denote the total leader length for the case
where the i-th site has its label on the left side, the left side of the rectangle
R is occupied up to y-coordinate A (including label [;) and the right side of
R is occupied up to p. Similarly we define R[i, A, p]. Then, by induction we
can show that the following recurrence relations hold. (We omit the boundary
conditions.)

Tli, A pl = wmin{L[i, A, pl, R[i, A, pl} (5)
R[iv A p+ hl] = T[Z - LA, P] + Right(pi7 P) (7)

Table T can be computed by dynamic programming. Having computed table
T, the desired minimum total leader length is given by ming<q s<z IT'[n, a,b]. We
can recover the label placement which realizes the minimum total leader length
by maintaining an additional table containing information regarding the routing
of the i-th leader (to the left or to the right side). The dynamic programming
algorithm that computes table T' takes O(nH?) time and space.

3.3.4 One-side labeling with type-po leaders and uniform labels.

In this subsection we first describe how to compute a legal labeling with leaders
of type-po and uniform labels at fixed positions; see Figure [2l Then, we show
that the computed labeling also minimizes the total leader length. We restrict
ourselves to attaching labels to one side s of R. For our description we assume
that s is the right vertical side of R, and that the sites p1,...,p, are sorted
according to increasing y-coordinate.

Our algorithm is very simple: we simply stack labels to the right of s in
the same vertical order as the corresponding sites. Then we process the sites
(and the corresponding labels) from bottom to top. Assume we have already
placed non-intersecting leaders for the first ¢ — 1 sites. Then, we connect p; to
l; by a leader ¢; of type po, i.e., by a vertical segment (possibly of length zero)
followed by a horizontal segment. If ¢; intersects previously placed leaders', we
determine the rightmost site p; whose leader c; intersects ¢; and reroute as in
Figure we connect p; to l; and p; to [;. We observe that the new leader 09 of
p; does not intersect any other leader. This is due to the fact that the vertical
part of ¢ is contained in c;, the horizontal part of ¢} is contained in ¢;, and p;

1The case where leader ¢; passes through a site is treated as an intersection. In the case
where the labels are attached to the vertical (horizontal) sides of the rectangle, the site and
the port have the same y-coordinate (z-coordinate).
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Algorithm 3: UNIFORMLABEL1ISIDEROUTEP O CROSSINGELIMINATION
Input: a po-placement for sites pi,...,p; and their labels such that:

1. Leaders c1,...,c;_1 out of sites p1,...,p;—1 are mutually disjoint, and

2. Leader ¢; out of site p; is the only (possibly) disturbing leader.

Output: a legal po-placement for sites py,...,p; and their labels.

Let p',...,p" be an ordering of py,...,p; such that z(pt) > --- > z(p").
Let ¢!, ..., c" be the corresponding leaders.
Let j be the index with p/ = p;, i.e., ¢/ is the only (possibly) disturbing
leader.
k=1
while £ < i and k < j do
{there are more leaders to examine for possible intersection with ¢/}
if ¢/ N c* # () then reroute(j, k)
invariant: ¢/ is the only (possibly) disturbing leader, and ¢/ does not

intersect any of {c!,...,cF}
k=k+1
end
return ci,...,¢;

was the rightmost site whose leader intersected c¢;. By going through the sites
D1, -.,Pi—1 from right to left (i.e., in order of decreasing z-coordinate), we test
their leaders for intersection with ¢; and possibly reroute. This is detailed in
Algorithm [3] where we refer to a leader as disturbing if its horizontal segment
intersects other leaders in {ci,...,¢;}. To compute a legal po-routing, we call
Algorithm [3| for ¢« = 2,...,n. Clearly, each call takes O(i) time, resulting in
an O(n?) algorithm. The correctness rests on our observation above and on
the invariant specified in the loop of Algorithm [3] Thus we have the following
result:

Theorem 6 Given a rectangle R, a side s of R, a set P C R of n sites in general
position and a rectangular uniform label for each site, there is an O(n?)-time
algorithm that attaches the labels to s and connects them to the corresponding
sites with non-intersecting type-po leaders.

Our claim that the computed labeling also minimizes the total leader length
is based on the following lemma:
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Lemma 4 Rerouting two po-leaders as described in Figure leaves the sum
of their lengths unchanged.

Proof. The length of the horizontal segments does not change. Thus, to prove
the lemma, we show that the sum of the lengths of the vertical segments of
the two leaders remain unchanged. For the case of fixed ports this is obvious,
however, it also holds for the case of sliding ports, assuming that we use as port
the point of the left side of the label that is closest to the site. Figure [[2] shows
that a crossing can only occur if the ports of both labels lie below both sites
or both ports lie above both sites (equal y-coordinates are allowed but due to
our assumption concerning general position at most one site and one port can
have the same y-coordinates). In the case of sliding ports, the leaders use as
ports the top points of the left side of the labels (or, in the symmetric case, the
bottom points). After rerouting of the leaders, the same ports are used and the
sum of their lengths remains unchanged.

To complete the proof for the case of sliding ports, we have to examine
the case where the port is somewhere along the left side of the label. This
can happen only in the case that the site can be connected to the label by a
horizontal leader (assuming leaders of minimum length), and as it can be easily
verified (see Figure the rerouting still works fine. (However, notice that
this case will never occur if the labels are placed in the same order with their
corresponding sites.)

Theorem 7 Given a rectangle R, a side s of R, a set P C R of n sites in general
position and a rectangular uniform label for each site, there is an O(n?)-time
algorithm that produces a legal type-po labeling of minimum total leader length.

Proof. The proof of this theorem is based on the algorithm used to construct a
legal one-side type-po labeling for rectangular uniform labels (see Theorem @
The algorithm repeatedly invokes the crossing-reducing step; see Algorithm
By Lemma EL the total leader length is left unchanged (for fixed and sliding
ports). Thus, the total leader length of the labeling is identical to the total
leader length of the initial labeling, before any effort to remove the crossings
was made.

Recall that in the initial labeling the i-th site is connected with a po-leader
to the i-th label (if we go through both sites and labels from bottom to top).
This labeling possibly has crossings. We want to show that it has minimum
total leader length. To see this, consider the case where, instead of type-po
leaders, we use type-opo leaders. Observe that the length of a type-opo leader
connecting a site to its corresponding label does not change when the leader is
converted to type-po (we ignore the width of the track-routing area). However,
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as we pointed out in Remark [1] a legal labeling with type-opo leaders is unique
and, thus, of minimum total leader length.

3.3.5 Two-side labeling with type-po leaders and uniform labels of
maximum height.

Our next result deals with two-side placement of uniform labels of maximum
height. We consider type-po leaders and we again aim to minimize the total
leader length. We obtain the following theorem:

Theorem 8 Given a rectangle R with n/2 uniform labels of maximum height on
each of its left and right sides, and a set P C R of n sites in general position,
there is an O(n?)-time algorithm that attaches each site to a label with non-
intersecting type-po leaders such that the total leader length is minimized.

Proof. We use the dynamic-programming algorithm of Theorem [3| for the
case of type-opo leaders to obtain the label placement of minimum total leader
length. It runs in O(n?) time. As before (proof of Theorem , we observe
that connecting a site to its label with a type-opo or a type-po leader requires
the same leader length, namely, the Manhattan distance of site and port. So
after obtaining the label placement (for type-opo leaders) we use type-po leaders
routed in the way described in Section Possible crossings of leaders to
the same side are resolved as in Section [3.3.4 without changing the total length,
while crossings of leaders that go to opposite sides cannot occur. This is due
to the fact that swapping labels between a pair of sites with crossing leaders
would result in a solution with smaller total leader length, a contradiction since
we assume that the original solution minimizes the total leader length.

4 Straight-line leaders

In this section we investigate straight-line or type-s leaders, i.e., we relax the
rectilinearity constraint on the leaders. We first give a simple algorithm that
computes a legal one-side labeling. Then we show how this algorithm can be
improved either in terms of runtime or in terms of total leader length. Finally
we describe how it can be applied to four-side labeling.

4.1 One-side labeling

We adopt the scenario of Section [3.1] Let R be the bounding rectangle and let
P be the set of sites inside R. We want to attach labels to the right side of R.
We assume that labels are uniform and that their heights add up to the height
of R. We also assume that the port m; where the leader is connected to its label
l; is fixed, say m; is in the middle of the left label edge. Thus the only task is to
assign ports to sites such that no two leaders intersect. Let M = {mq,...,m,}
be the ports sorted by y-coordinate from bottom to top. Simple examples show
that a bottom-to-top assignment of the sites to the ports might lead to crossing
leaders (for example, see Figure [12)).

Lemma 5 A legal one-side type-s leader-label placement for fixed labels with
fized ports can be constructed in O(n?) time.
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Proof. For i =1,...,n we assign to m; the first unlabeled site p € P that is
hit by a ray r; that emanates from m; and is rotated around m; in clockwise
order. Initially r; is pointing vertically downwards.

We prove correctness by contradiction: if a crossing would occur between
the first and second line, the rotating line would have found the second site first
and connected it to the first label. A straightforward implementation yields a
time complexity of O(n?) if we perform a linear search for site p each time.

The time complexity of Lemma [5| can be improved to O(nlogn) by using a
semi-dynamic convex-hull algorithm.

Theorem 9 A legal one-side type-s leader-label placement for fixed labels with
fized ports can be computed in O(nlogn) time.

Proof. Let C'H be the convex hull of P U M. Note that CH has an edge
between the lowest port m; and the first site p reached by the rotating ray ry.
This edge is the first leader. Removing p and m; from CH yields the next
leader and so on. Using a semi-dynamic convex-hull data structure which only
supports deletion of points [HS92] yields a total running time of O(nlogn).
This algorithm is correct since it mimics the O(n?)-time algorithm in the proof
of Lemma [fl
Now we tackle the optimization problem.

Theorem 10 A one-side type-s leader-label placement of minimum total leader
length for fized labels can be computed in O(n?*¢) time for any ¢ > 0 in the case
of fized ports and in O(n®) time in the case of sliding ports.

Proof.  For fixed ports, we proceed as described in the proof of Theorem [
except now we use Fuclidean minimum-cost bipartite matching between sites
and ports in the case of fixed ports. This takes O(n?**¢) time [AES99], where
€ > 0 can be chosen arbitrarily small. For sliding ports we again use minimum-
cost bipartite matching in an appropriately defined auxiliary graph, which takes
cubic time.

In both cases, fixed and sliding ports, the triangle inequality ensures that
the leaders corresponding to the matching do not intersect.

4.2 Four-side labeling

In this subsection, we consider four-side type-s labeling. We describe how to
obtain a legal labeling for fixed labels with fixed ports and a minimum total
leader length labeling for fixed labels. Our results are extensions of the results
on one-side type-s labeling.

Theorem 11 A legal four-side type-s leader-label placement for fixed uniformly
distributed labels of equal size and fixed ports can be computed in O(nlogn) time.

Proof. We partition the rectangle into convex polygons, such that the sites in
each polygon can be connected to the labels on the boundary of the polygon
using the O(nlogn) one-side routing in the proof of Theorem El Note that the
only assumption we used about the relative position of sets P and M of sites
and ports, respectively, was that M is contained in an edge of the convex hull
of PU M. To make the one-side routing algorithm work, the convex polygons
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must be chosen such that they contain exactly as many sites as there are labels
on their boundary. We construct our partition as follows:

1. Rotate a straight line ¢ through the center of the rectangle R until on
each side of ¢ there are exactly n/2 sites. Since ¢ is rotated through the
center of the rectangle, and the labels are uniformly distributed around
the rectangle’s boundary, there are always n/2 labels on each side of line
£. For simplicity, we assume that ¢ intersects the top and bottom side of
the rectangle R; see the solid line in Figure

2. For the left half, we sweep a horizontal line £o; from bottom to top until
both polygons contain as many sites as there are labels on their boundaries.
We proceed similarly for the right half.

3. From each of the corners vy to vy of R we rotate a line ¢; (1 < ¢ < 4) which
divides the corresponding partitioned area into two adjacent polygons until
both contain as many sites as there are labels on their boundaries.

14

Fig. 14: Partition of R for straight-line leaders.

Since we always divide a convex polygon with a straight line, the resulting
polygons are also convex. We did not succeed to partition the rectangle into just
four convex polygons but we need two polygons for each side which makes eight
in total. Moreover, by construction, the number of sites in each polygon exactly
equals the number of adjacent labels. Thus, the one-side type-s O(nlogn)-time
labeling algorithm of Theorem [J] can be applied, leading to an O(nlogn)-time
algorithm for legal four-side type-s labeling.

Since the partition procedure is independent of the scheme that assigns the
sites to the label ports the quality of the resulting leaders is not always good. A
labeling of minimum total leader length can be obtained by using the method
based on minimum bipartite matching in a way identical to that for the one-side
type-s leader-label placement. Thus, we can state the following theorem:

Theorem 12 A four-side type-s leader-label placement of minimum total leader
length for fized labels can be computed in O(n?*¢) time for any ¢ > 0 in the case
of fized ports and in O(n®) time in the case of sliding ports.

5 Examples

In this section, we present some characteristic drawings obtained by implemen-
tations of the algorithms presented in this paper. Figure [1]in the introduction
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shows a map of the city of Karlsruhe boundary-labeled with the names and
addresses of kindergartens. Figure [15]| depicts a relatively small medical map of
a skeleton. The original labels and leaders are on the right side of the draw-
ing. We have mirrored the sites at the vertical line through the spine and have
applied our algorithm (presented in Section Theorem (1}, Algorithm (1)) for
type-opo leaders such that labels were placed to the left of the drawing and the
number of bends is minimum.

Figure[L6|shows two boundary labelings for the map of Italy. We use uniform
labels of maximum size placed to the left and the right of the map and we
minimize the total leader length. The top labeling uses type-opo leaders and
was obtained by an implementation of Algorithm [2| (presented in Section
Theorem , while the bottom drawing uses type-po leaders and was obtained
by an implementation of the algorithm presented in Section m (Theorem.
Although in the type-po labeling (bottom figure) the number of bends is smaller
and the bends are better distributed, the relative top-to-bottom order between
the sites and the labels is not preserved, which might lead to confusion. This
order is preserved in type-opo labelings.

6 Conclusion

We have defined boundary labeling and have presented a series of models and
algorithms for efficient boundary labeling of site sets. Originally, we were mo-
tivated by a map of the infrastructure network of the Greek school system; see
Figure This example indicates some possible generalizations of our model:
graph labeling with objectives like the minimization of crossings between graph
edges and leaders.

Here is a list of interesting open problems:

e The minimum-weight bipartite matching algorithm for four-side labeling
is quite powerful, but it is not very efficient in practice.

e The dynamic programming algorithms for two-side labeling (minimizing
the total leader length as well as the number of bends) should be general-
ized to three and four boundary sides.

e The examples for type-opo and type-po leaders show advantages and also
some disadvantages of both types. A practical solution may be to mix
both types in order to cope with disadvantages while keeping advantages.

e Type-opo minimum-bend routing can be computed efficiently for the case
where labels are attached only to one side of the enclosing rectangle. What
about the cases where the labels are placed on the two opposite sides, or
on all four sides?

e In all of the type-opo drawings presented in the paper, the p-segment of
the leaders is routed inside the track-routing area. Can this restriction be
relaxed, i.e., can the routing of the leaders be done exclusively within the
rectangle?
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Fig. 15: A medical map with original labels and leaders (right) as well as labels and
type-opo leaders computed by our algorithm that minimizes the number of
leader bends (left). Drawing from the Internet service of the Vorarlberger
Bildungsserver [Vor].
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Fig. 16: Two boundary labelings of the map of Italy. We attach labels to opposite
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of type opo (top figure) and po (bottom figure). The total leader length is
minimized in both cases.
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Fig. 17: A map of the infrastructure network of the Greek school system.
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