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Abstract. We study contact representations for graphs, which we call pixel rep-
resentations in 2D and voxel representations in 3D. Our representations are based
on the unit square grid whose cells we call pixels in 2D and voxels in 3D. Two
pixels are adjacent if they share an edge, two voxels if they share a face. We call
a connected set of pixels or voxels a blob. Given a graph, we represent its ver-
tices by disjoint blobs such that two blobs contain adjacent pixels or voxels if and
only if the corresponding vertices are adjacent. We are interested in the size of a
representation, which is the number of pixels or voxels it consists of.
We first show that finding minimum-size representations is NP-complete. Then,
we bound representation sizes needed for certain graph classes. In 2D, we show
that, for k-outerplanar graphs with n vertices, Θ(kn) pixels are always sufficient
and sometimes necessary. In particular, outerplanar graphs can be represented
with a linear number of pixels, whereas general planar graphs sometimes need
a quadratic number. In 3D, Θ(n2) voxels are always sufficient and sometimes
necessary for any n-vertex graph. We improve this bound to Θ(n · τ) for graphs
of treewidth τ and to O((g+ 1)2n log2 n) for graphs of genus g. In particular,
planar graphs admit representations with O(n log2 n) voxels.

1 Introduction

In Tutte’s landmark paper “How to draw a graph”, he introduces barycentric coordi-
nates as a tool to draw triconnected planar graphs. Given the positions of the vertices
on the outer face (which must be in convex position), the positions of the remaining
vertices are determined as the solutions of a set of equations. While the solutions can
be approximated numerically, and symmetries tend to be reflected nicely in the result-
ing drawings, the ratio between the lengths of the longest edge and the shortest edge is
exponential in many cases. This deficiency triggered research directed towards drawing
graphs on grids of small size in both 2D and 3D for different graph drawing paradigms;
Brandenburg et al. [12] listed this as an important open problem. In straight-line grid
drawings, the vertices are at integer grid points and the edges are drawn as straight-line
segments. Both Schnyder [36] and de Fraysseix et al. [30], gave algorithms for drawing
any n-vertex planar graph on a grid of size O(n)×O(n). There has also been research
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towards drawing subclasses of planar graphs on small-area grids. For example, any n-
vertex outerplanar graph can be drawn in area O(n1.48) [19]. Similar research has also
been done for other graph drawing problems, such as polyline drawings, where edges
can have bends [9], orthogonal drawings, where edges are polylines consisting of only
axis-aligned segments [9, 17], and for drawing graphs in 3D [21, 34, 35]

A bar visibility representation [37] draws a graph in a different way: the vertices are
horizontal segments and the edges are realized by vertical line-of-sights between cor-
responding segments. Improving earlier results, Fan et al. [24] showed that any planar
graph admits a visibility representation of size (b4n/3c−2)× (n−1). Generalized vis-
ibility representations for non-planar graphs have been considered in 2D [13, 23], and
in 3D [11]. In all these and many subsequent papers, the size of a drawing is measured
as the area or volume of the bounding box.

Yet another approach to drawing graphs are the so-called contact representations,
where vertices are interior-disjoint geometric objects such as lines, curves, circles, poly-
gons, polyhedra, etc. and edges correspond to pairs of objects touching in some spec-
ified way. An early work by Koebe [32] represents planar graphs with touching disks
in 2D. Any planar graph can also be represented by contacts of triangles [29], by side-
to-side contacts of hexagons [22] and of axis-aligned T-shape polygons [2, 29]. 2D-
contact representations of graphs with line segments [28], L-shapes [18], homothetic
triangles [4], squares and rectangles [15,25] have also been studied. Of particular inter-
est are the so-called VCPG-representations introduced by Aerts and Felsner [1]. In such
a representation, vertices are represented by interior-disjoint paths in the plane square
grid and an edge is a contact between an endpoint of one path and an interior point
of another. Aerts and Felsner showed that for certain subclasses of planar graphs, the
maximum number of bends per path can be bounded by a small constant.

Contact representations in 3D allow us to visualize non-planar graphs, but little is
known about contact representations in 3D: Any planar graph can be represented by
contacts of cubes [26], and by face-to-face contact of boxes [14, 38]. Contact represen-
tations of complete graphs and complete bipartite graphs in 3D have been studied using
spheres [6, 31], cylinders [5], and tetrahedra [39]. In 3D as well as in 2D, the complex-
ity of a contact representation is usually measured in terms of the polygonal complexity
(i.e., the number of corners) of the objects used in the representation.

In this paper, in contrast, we are interested in “building” graphs, and so we aim at
minimizing the cost of the building material—think of unit-size Lego-like blocks that
can be connected to each other face-to-face. We represent each vertex by a connected
set of building blocks, which we call a blob. If two vertices are adjacent, the blob of
one vertex contains a block that is connected (face-to-face) to a block in the blob of the
other. The blobs of two non-adjacent vertices are not connected. We call the building
blocks pixels in 2D and voxels in 3D. Accordingly, the 2D and 3D variants of such
representations are called pixel and voxel representations, respectively. We define the
size of a pixel or voxel representation to be the total number of boxes it consists of. (We
use box to denote either pixel or voxel when the dimension is not important.)

The same representation was introduced very recently and independently by Cano
et al. [16] under the name mosaic drawings for interior-triangulated planar graphs and
triangular, square, or hexagonal pixels. They want each blob to use a given number



of pixels (to represent statistical data, such as population) and to imitate the shapes of
given geometric objects (such as countries).

Although pixel representations can be seen as generalizations of VCPG-representa-
tions where grid subgraphs instead of grid paths are used, minimizing or bounding the
size of such representations has so far been studied neither in 2D nor in 3D.

Our Contribution. We first investigate the complexity of our problem: finding mini-
mum-size representations turns out to be NP-complete (Section 2). Then, we give lower
and upper bounds for the sizes of 2D- and 3D-representations for certain graph classes:

In 2D, we show that, for k-outerplanar graphs with n vertices, Θ(kn) pixels are
always sufficient and sometimes necessary (see Section 3). In particular, outerplanar
graphs can be represented with a linear number of pixels, whereas general planar graphs
sometimes need a quadratic number.

In 3D, Θ(n2) voxels are always sufficient and sometimes necessary for any n-vertex
graph (see Section 4). We improve this bound to Θ(n · τ) for graphs of treewidth τ and
to O((g+1)2n log2 n) for graphs of genus g. In particular, n-vertex planar graphs admit
voxel representations with O(n log2 n) voxels.

2 Complexity

First, we show that it is NP-hard to compute minimum-size pixel representations. We
reduce from the problem of deciding whether a planar graph of maximum degree 4 has
a grid drawing with edges of length 1. This problem is known to be NP-hard [7]. The
hardness proof still works if the angles between adjacent edges are specified. Note that
specifying the angles also prescribes the circular order of edges around vertices (up to
reversal). We can only sketch the hardness proof here, details are in the full paper [3].

Theorem 1. It is NP-complete to minimize the size of a pixel representation of a planar
graph.

G

H

Fig. 1: A graph G drawn with length-1
edges and prescribed angles between ad-
jacent edges, and the resulting graph H
drawn with length-1 edges and pixel
representation (in gray).

Proof sketch. Clearly the decision problem is in
NP. Let G be a planar graph of maximum de-
gree 4 with prescribed angles between edges.
Construct a graph H by replacing each vertex
by a five-vertex wheel so that the angles be-
tween the edges are respected, and subdividing
each edge except the ones incident to the wheel
centers. Then G has a grid drawing with edge
length 1 if and only if H has a representation
where each vertex is a pixel. Indeed, from a grid
drawing of G one can obtain a drawing of H
where two vertices have distance 1 if and only
if they are adjacent; see Fig. 1. Represent each vertex v of H by a pixel with v at its
center. Conversely, if H has a representation where each vertex is a pixel, then for each



vertex v of G, the subdivided wheel is a 3×3 square. Placing each vertex v at the center
of the square and scaling by 1/4 yields the grid drawing of G. ut

Next, we reduce computing minimum-size pixel representations to computing mini-
mum-size voxel representations. In our reduction [3], we build a rigid structure around
the given graph that forces the given graph to be drawn in a single plane.

Theorem 2. It is NP-complete to minimize the size of a voxel representation of a graph.

3 Lower and Upper Bounds in 2D

Here we only consider planar graphs since only planar graphs admit pixel representa-
tions. Let G be a planar graph with fixed plane embedding E . The embedding E is 1-
outerplane (or simply outerplane) if all vertices are on the outer face. It is k-outerplane
if removing all vertices on the outer face yields a (k− 1)-outerplane embedding. A
graph G is k-outerplanar if it admits a k-outerplane embedding but no k′-outerplane
embedding for k′ < k. Note that k ∈ O(n), where n is the number of vertices of G.

In Section 3.1, we show that pixel representations of an n-vertex k-outerplanar graph
sometimes requires Ω(kn) pixels. As the number of pixels is a lower bound for the
area consumption, this strengthens a result by Dolev et al. [20] that says that orthogonal
drawings of planar graphs of maximum degree 4 and width w sometimes require Ω(wn)
area. As we will see later, width and k-outerplanarity are very similar concepts.

In Section 3.2, we show that O(kn) area and thus using O(kn) pixels is also suffi-
cient. We use a result by Dolev et al. [20] who proved that any n-vertex planar graph
of maximum degree 4 and width w admits a planar orthogonal drawing of area O(wn).
The main difficulty is to extend their result to general planar graphs.

3.1 Lower Bound

Let G be a k-outerplanar graph with a pixel representation Γ . Note that a pixel repre-
sentation Γ induces an embedding of G. Let Γ induce a k-outerplane embedding of G,
which we call a k-outerplane pixel representation for short. We claim that the width and
the height of Γ are at least 2k−1. For k = 1 this is trivial as every (non-empty) graph
requires width and height at least 1. For k ≥ 2, let Vext = {v1, . . . ,v`} be the set of ver-
tices incident to the outer face of Γ . Removing Vext from G yields a (k−1)-outerplane
graph G′ with corresponding pixel representation Γ ′. By induction, Γ ′ requires width
and height 2(k−1)−1. As the representation of Vext in Γ encloses the whole represen-
tation Γ ′ in its interior, the width and the height of Γ are at least two units larger than
the width and the height of Γ ′, respectively.

Clearly, the number of pixels required by the vertices in Vext is at least the perimeter
of Γ (twice the width plus twice the height minus 4 for the corners, which are shared)
and thus at least 8k−8. After removing the vertices in Vext, the new vertices on the outer
face require 8(k−1)−8 pixels, and so on. Thus, the representation Γ requires overall
at least ∑

k
i=1(8i−8) = 4k2−4k pixels, which gives the following lemma.

Lemma 1. Any k-outerplane pixel representation has size at least 4k2−4k.



Fig. 2: A nested triangle graph
of outerplanarity Ω(n).
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Fig. 3: Constructing a representation of a minor with
asymptotically the same number of blocks.

There are k-outerplanar graphs with n vertices such that k ∈ Θ(n). For example,
the nested triangle graph with 2k triangles (see Fig. 2) has n = 6k vertices and is k-
outerplanar for k ≥ 2. Let G be a graph with c connected components each of which is
k-outerplanar and has Θ(k) vertices. Then each connected component requires 4k2−4k
pixels (due to Lemma 1) and thus we need at least (4k2−4k)c pixels in total. As G has
n =Θ(kc) vertices, we get (4k2−4k)c ∈Θ(kn), which proves the following.

Theorem 3. Some k-outerplanar graphs require Ω(kn)-size pixel representations.

3.2 Upper Bound

In the following two lemmas, we first show how to construct a pixel representation
from a given orthogonal drawing and that taking minors does not heavily increase the
number of pixels we need. Both lemmas aim at extending a result of Dolev et al. [20] on
orthogonal drawings of planar graphs with maximum degree 4 to pixel representations
of general planar graphs. As we re-use both lemmas in the 3D case (Section 4), we state
them in the general d-dimensional setting.

Lemma 2. Let G be a graph with n vertices, m edges, and an orthogonal drawing of
total edge length ` in d-dimensional space. Then G admits a d-dimensional representa-
tion of size 2`+n−m.

Proof. We first scale the given drawing Γ of G by a factor of 2 and subdivide the edges
of G such that every edge has length 1. Denote the resulting graph by G′ and its drawing
by Γ ′. An edge e of length `e in Γ is represented by a path with 2`e−1 internal vertices
(the subdivision vertices). Thus, the total number of subdivision vertices is 2`−m. Due
to the scaling, non-adjacent vertices in G′ have distance greater than 1 in Γ ′ (adjacent
vertices have distance 1). Thus, representing every vertex v by the box having v as
center yields a representation of G′ with 2`+ n−m boxes (one box per vertex of G′).
If we assign the boxes representing subdivision vertices to one of the endpoints of the
corresponding edge, we get a representation of G with 2`+n−m boxes. ut

Lemma 3. Let G be a graph that has a d-dimensional representation of size b. Every
minor of G admits a d-dimensional representation of size at most 3db.



Proof. Let H be a minor obtained from G by first deleting some edges, then deleting
isolated vertices, and finally contracting edges. We start with the representation Γ of G
using b boxes and scale it by a factor of 3. This yields a representation 3Γ using 3db
boxes. Then we modify 3Γ , without adding boxes, to represent the minor H. For con-
venience, we consider the 2D case; the case d > 2 works analogously.

Let uv be an edge in G that is deleted. In 3Γ we delete every pixel in the repre-
sentation of u that touches a pixel of the representation of v. We claim that this neither
destroys the contact of u with any other vertex nor does it disconnect the shape repre-
senting u. Consider a single pixel B in Γ . In 3Γ it is represented by a square of 3× 3
pixels belonging to B. If B is in contact to another pixel A in Γ , then there is a pair
of pixels A′ and B′ in 3Γ such that A′ and B′ are in contact, while all other pixels that
touch A′ and B′ belong to A and B, respectively; see Figs. 3a and 3b. Assume that we
remove in 3Γ all pixels belonging to B that are in contact to pixels belonging to an-
other pixel C touching B in Γ ; see Fig. 3c. Obviously, this does not effect the contact
between A′ and B′. Moreover, the remaining pixels belonging to B form a connected
blob. The above claim follows immediately.

Removing isolated vertices can be done by simply removing their representation.
Moreover, contracting an edge uv into a vertex w can be done by merging the blobs
representing u and v into a single blob representing w. This blob is obviously connected
and touches the blob of another vertex if and only if either u or v touch this vertex. ut

Now let G be a k-outerplanar graph. Applying the algorithm of Dolev et al. [20]
yields an orthogonal drawing of total length O(wn), where w is the width of G. The
width w of G is the maximum number of vertices contained in a shortest path from an ar-
bitrary vertex of G to a vertex on the outer face. Given the orthogonal drawing, Lemma 2
gives us a pixel representation of G. There are, however, two issues. First, k and w are
not the same (e.g., subdividing edges increases w but not k). Second, G does not have
maximum degree 4, thus we cannot simply apply the algorithm of Dolev et al. [20].

Concerning the first issue, we note that the algorithm of Dolev et al. exploits that G
has width w only to find a special type of separator [20, Theorem 1]. For this, it is
sufficient that G is a subgraph of a graph of width w (not necessarily with maximum
degree 4; in fact Dolev et al. triangulate the graph before finding the separator).

Lemma 4. Every k-outerplanar graph has a planar supergraph of width w = k.

Proof. Let G be a graph with a k-outerplane embedding. Iteratively deleting the vertices
on the outer face gives us a sequence of deletion phases. For each vertex v, let kv be the
phase in which v is deleted. Note that the maximum over all values of kv is exactly k.
For any vertex v, either kv = 1 or there is a vertex u with ku = kv−1 such that u and v are
incident to a common face. Thus, there is a sequence v1, . . . ,vkv of kv vertices such that
(i) v1 = v, (ii) vkv lies on the outer face, and (iii) vi, vi+1 are incident to a common face.
If the graph G was triangulated, this would yield a path containing kv vertices from v to
a vertex on the outer face. Thus, triangulated k-outerplanar graphs have width w = k.

It remains to show that G can be triangulated without increasing kv for any vertex v.
Consider a face f and let u be the vertex incident to f for which ku is minimal. Let
v 6= u be any other vertex incident to f . Adding the edge uv clearly does not increase
the value kx for any vertex x. We add edges in this way until the graph is triangulated.
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Fig. 4: Replacement of high-degree vertices while preserving k-outerplanarity.

Alternatively, we can use a result of Biedl [8] to triangulate G. Note that we do not need
to triangulate the outer face of G. Hence, we do not increase the outerplanarity. ut

To solve the second issue (the k-outerplanar graph G not having maximum de-
gree 4), we construct a graph G′ such that G is a minor of G′, G′ is k-outerplanar,
and G′ has maximum degree 4. Then, (due to Lemma 4) we can apply the algorithm
of Dolev et al. [20] to G′. Next, we apply Lemma 2 to the resulting drawing to get
a representation of G′ with O(kn) pixels. As G is a minor of G′, Lemma 3 yields a
representation of G that, too, requires O(kn) pixels.

Theorem 4. Every k-outerplanar n-vertex graph has a size O(kn) pixel representation.

Proof. Let G be a k-outerplanar graph. After the above considerations, it remains to
construct a k-outerplanar graph G′ with maximum degree 4 such that G is a minor
of G′. Let u be a vertex with deg(u)> 4. We replace u with a path of length deg(u) and
connect each neighbor of u to a unique vertex of this path. This can be done maintaining
a plane embedding. We now show that the resulting graph remains k-outerplanar.

Consider a vertex u on the outer face with neighbors v1, . . . ,v`. Assume the neigh-
bors appear in that order around u such that v1 is the counter-clockwise successor of u
on the outer face; see Fig. 4. We replace u with the path u1, . . . ,u` and connect ui to vi
for 1≤ i≤ `. Call the resulting graph Gu. Note that all ui in Gu are incident to the outer
face. Thus, if G was k-outerplanar, Gu is also k-outerplanar. Moreover, the degrees of
the new vertices do not exceed 4 (actually not even 3), and G is a minor of Gu—one can
simply contract the inserted path to obtain G.

We can basically apply the same replacement if u is not incident to the outer face.
Assume that we delete u in phase ku if we iteratively delete vertices incident to the outer
face. When replacing u with the vertices u1, . . . ,u`, we have to make sure that all these
vertices get deleted in phase ku. Let f be a face incident to u that is merged with the
outer face after ku−1 deletion phases (such a face must exist, otherwise u is not deleted
in phase ku). We apply the same replacement as for the case where u was incident to the
outer face, but this time we ensure that the new vertices ui are incident to the face f .
Thus, after ku− 1 deletion phases they are all incident to the outer face and thus they
are deleted in phase ku. Hence, the resulting graph Gu is k-outerplanar. Again the new
vertices have degree at most 3 and G is obviously a minor of Gu. Iteratively applying
this kind of replacement for every vertex u with deg(u)> 4 yields the claimed graph G′.

The corresponding drawing can then be obtained as follows. Since G′ has a super-
graph of width w = k by Lemma 4, and G′ has maximum degree 4, we use the algorithm
of Dolev et al. [20] to obtain a drawing of G′ with area (and hence total edge length)
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Fig. 5: (a) The basic contact representation without any contacts between vertices. (b) If v1 and v4
are adjacent, it suffices to add a single voxel to the representation of v1 (or to that of v4).

O(nk). By Lemma 2, we thus obtain a representation of G′ with O(nk) pixels. Since G
is a minor of G′, Lemma 3 yields a representation of G with O(nk) pixels. ut

4 Representations in 3D

In this section, we consider voxel representations. We start with some basic considera-
tions showing that every n-vertex graph admits a representation with O(n2) voxels. Note
that Ω(n2) is obviously necessary for Kn as every edge corresponds to a face-to-face
contact and every voxel has at most 6 such contacts. We improve on this simple general
result in two ways. First, we show that n-vertex graphs with treewidth at most τ admit
voxel representations of size O(n ·τ) (see Section 4.1). Second, for n-vertex graphs with
genus at most g, we obtain representations with O(g2n log2 n) voxels (see Section 4.2).

Theorem 5. Any n-vertex graph admits a voxel representation of size O(n2).

Proof. Let G be a graph with vertices v1, . . . ,vn. Vertex vi (i= 1, . . . ,n) is represented by
three cuboids (see Fig. 5a), namely a vertical cuboid consisting of the voxels centered at
the points (2i,2,0),(2i,3,0), . . . ,(2i,2n,0), a horizontal cuboid consisting of the voxels
centered at (2,2i,2),(3,2i,2), . . . ,(2n,2i,2), and the voxel centered at (2i,2i,1). This
yields a representation where every vertex is a connected blob and no two blobs are in
contact. Moreover, for every pair of vertices vi and v j, there is a voxel of vi at (2i,2 j,0)
and a voxel of v j at (2i,2 j,2) and no voxel between them at (2i,2 j,1). Thus, one can
easily represent an arbitrary edge (vi,v j) by extending the representation of vi to also
contain (2i,2 j,1); see Fig. 5b. Clearly, this representation consists of O(n2) voxels. ut

4.1 Graphs of Bounded Treewidth

Let G = (V,E) be a graph. A tree decomposition of G is a tree T where each node µ

in T is associated with a bag Xµ ⊆V such that: (i) for each v ∈V , the nodes of T whose
bags contain v form a connected subtree, and (ii) for each edge uv ∈ E, T contains a
node µ such that u,v ∈ Xµ .

Note that we use (lower case) Greek letters for the nodes of T to distinguish them
from the vertices of G. The width of the tree decomposition is the maximum bag size
minus 1. The treewidth of G is the minimum width over all tree decompositions of G.
A tree decomposition is nice if T is a rooted binary tree, where for every node µ:



– µ is a leaf and |Xµ |= 1 (leaf node), or
– µ has a single child η with Xµ ⊆ Xη and |Xµ |= |Xη |−1 (forget node), or
– µ has a single child η with Xη ⊆ Xµ and |Xµ |= |Xη |+1 (introduce node), or
– µ has two children η and κ with Xµ = Xη = Xκ (join node).

Any tree decomposition can be transformed (without increasing its width) into a nice
tree decomposition such that the resulting tree T has O(n) nodes, where n is the number
of vertices of G [10]. This transformation can be done in linear time. Thus, we can
assume any tree decomposition to be a nice tree decomposition with a tree of size O(n).

Lemma 5. Let T be a nice tree decomposition of a graph G. The edges of G can be
mapped to the nodes of T such that every edge uv of G is mapped to a node µ with
u,v ∈ Xµ and the edges mapped to each node µ form a star.

Proof. We say that a node µ represents the edge uv if uv is mapped to µ . Consider a
node µ during a bottom-up traversal of T . We want to maintain the invariant that, after
processing µ , all edges between vertices in Xµ are represented by µ or by a descendant
of µ . This ensures that every edge is represented by at least one node. Every edge can
then be mapped to one of the nodes representing it.

If µ is a leaf, it cannot represent an edge as |Xµ | = 1. If µ is a forget node, it
has a child η with Xµ ⊆ Xη . Thus, by induction, all edges between vertices in Xµ are
already represented by descendants of µ . If µ is an introduce node, it has a child η

and Xµ = Xη ∪{u} for a vertex u of G. By induction, all edges between nodes in Xη

are already represented by descendants of µ . Thus, µ only needs to represent the edges
between the new node u and other nodes in Xµ . Note that these edges form a star with
center u. Finally, if µ is a join node, no edge needs to be represented by µ (by the same
argument as for forget nodes). This concludes the proof. ut

We obtain a small voxel representation of G from a nice tree decomposition T of G
of treewidth τ roughly as follows. We start with a “2D” voxel representation of the
tree T , that is, all voxel centers lie in the x–y plane. We take τ +1 copies of this repre-
sentation and place them in different layers in 3D space. We then assign to each vertex v
of G a piece of this layered representation such that its piece contains all nodes of T
that include v in their bags. For an edge uv, let µ be the node to which uv is mapped by
Lemma 5. By construction, the representation of µ occurs multiple times representing u
and v in different layers. To represent uv, we only have to connect the representations
of u and v. As it suffices to represent a star for each node µ in this way, the number of
voxels additionally used for these connections is small.

Theorem 6. Any n-vertex graph of treewidth τ has a voxel representation of size O(nτ).

Proof. Let G be an n-vertex graph of treewidth τ . During our construction, we will get
some contacts between the blobs of vertices that are actually not adjacent in G. As G is
a minor of the graph that we represent this way, we can use Lemma 3 to get a represen-
tation of G. Let T be a nice tree decomposition of G. As a tree, T is outerplanar and,
hence, admits a pixel representation Γ with O(n) pixels (by Theorem 4). Let Γ1, . . . ,Γk
be voxel representations corresponding to Γ with z-coordinates 1, . . . ,k = τ +1.



For a vertex v of G, we denote by Γi(v) the sub-representation of Γi induced by
the nodes of T whose bags contain v. Now let c : V → {1, . . . ,k} be a k-coloring of G
with color set {1, . . . ,k} such that no two vertices sharing a bag have the same color.
Such a coloring can be computed by traversing T bottom up, assigning in every in-
troduce node µ a color to the new vertex that is not already used by any other vertex
in Xµ . As a basis for our construction, we represent each vertex v of G by the sub-
representation Γc(v)(v).

So far, we did not represent any edge of G. Our construction, however, has the
following properties: (i) it uses O(nk) voxels. (ii) every vertex is a connected set of
voxels. (iii) for every node µ of T , there is a position (xµ ,yµ) in the plane such that,
for every vertex v ∈ Xµ , the voxel at (xµ ,yµ ,c(v)) belongs to the representation of v.
Scaling the representation by a factor of 2 ensures that this is not the only voxel for v
and that v is not disconnected if this voxel is removed (or reassigned to another vertex).

By Lemma 5 it suffices to represent for every node µ edges between vertices in Xµ

that form a star. Let u be the center of this star. We simply assign the voxels centered
at (xµ ,yµ ,1), . . . ,(xµ ,yµ ,k) to the blob of u. This creates a contact between u and ev-
ery other vertex v ∈ Xµ (by the above property that the voxel (xµ ,yµ ,c(v)) belonged
to v before). Finally, we apply Lemma 3 to get rid of unwanted contacts. The resulting
representation uses O(nk) voxels, which concludes the proof. ut

Note that cliques of size k require Ω(k2) voxels. Taking the disjoint union of n/k
such cliques yields graphs with n vertices requiring Ω(nk) voxels. Note that these
graphs have treewidth τ = k−1. Thus, the bound of Theorem 6 is asymptotically tight.

Theorem 7. Some n-vertex graphs of treewidth τ require Ω(nτ) voxels.

4.2 Graphs of Bounded Genus

Since planar graphs (genus 0) have treewidth O(
√

n) [27], we can obtain a voxel rep-
resentation of size O(n1.5) for any planar graph, from Theorem 6. Next, we improve
this bound to O(n log2 n) by proving a more general result for graphs of bounded genus.
Recall that we used known results on orthogonal drawings with small area to obtain
small pixel representations in Section 3.2. Here we follow a similar approach (re-using
Lemmas 2 and 3), now allowing the orthogonal drawing we start with to be non-planar.

We obtain small voxel representations by first showing that it is sufficient to con-
sider graphs of maximum degree 4: we replace higher-degree vertices by connected
subgraphs as in the proof of Theorem 4. Then we use a result of Leiserson [33] who
showed that any graph of genus g and maximum degree 4 admits a 2D orthogonal draw-
ing of area O((g+1)2n log2 n), possibly with edge crossings. The area of an orthogonal
drawing is clearly an upper bound for its total edge length. Finally we turn the pixels
into voxels and use the third dimension to get rid of the crossings without using too
many additional voxels.

Theorem 8. Every n-vertex graph of genus g admits a voxel representation of size
O((g+1)2n log2 n).
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Fig. 6: Constructing voxel representations for bounded-genus graphs: (a) replacing high-degree
vertices while preserving the genus, (b) subdividing and decomposing a graph according to a
non-planar orthogonal drawing with small area, and (c) constructing a 3D drawing with small
total edge length from the decomposition in (b).

Proof. Let G be an n-vertex graph, and let u be a vertex of degree ` > 4. Assume G to
be embedded on a surface of genus g, and let v1, . . . ,v` be the neighbors of u appearing
in that order around u (with respect to the embedding). We replace u with the cycle
u1, . . . ,u` and connect ui to vi for 1 ≤ i ≤ `; see Fig. 6a. Clearly, the new vertices have
degree 3 and the genus of the graph has not increased. Applying this modification to
every vertex of degree at least 5 yields a graph G4 of maximum degree 4 and genus g.
Moreover, G is a minor of G4 as one can undo the cycle replacements by contracting all
edges in the cycles. Thus, we can transform a voxel representation of G4 into a voxel
representation of G by applying Lemma 3.

We claim that the number n4 of vertices in G4 is linear in n. Indeed, if m denotes the
number of edges in G, then we have n4 ≤ n+ 2m. Moreover, we can assume without
loss of generality that g ∈ O(n) (otherwise Theorem 5 already gives a better bound).
This implies that m ∈ O(n) and hence, n4 ∈ O(n), as we claimed.

We thus assume that G has maximum degree 4. Then G has a (possibly non-planar)
orthogonal drawing Γ of total edge length O(g2n log2 n) [33]. We modify G and Γ

as follows. For every bend on an edge e in Γ , we subdivide the edge e once yielding
a partition of the edges of the subdivided graph into horizontal and vertical edges. We
obtain a graph G′ from this subdivision of G by replacing every vertex v by two adjacent
vertices v1 and v2, and connecting v1 and w1 (respectively v2 and w2) by an edge if v
and w are connected by a horizontal (respectively vertical edge); see Fig. 6b.

We draw G′ in 3D space by using the drawing Γ and setting for every vertex v the
z-coordinate of v1 and v2 to 0 and 1, respectively. The x- and y-coordinates of vertices
and edges are the same as in Γ ; see Fig. 6b. Note that G is a minor of G′: we obtain G
from G′ by contracting (i) the edge v0v1 for every vertex v and (ii) any subdivision
vertex. Asymptotically, the total edge length of Γ ′ is the same as that of Γ , that is,
O((g+1)2n log2 n). By Lemma 2, we turn Γ ′ into a voxel representation of G′ and, by
Lemma 3, into a voxel representation of G with size O((g+1)2n log2 n). ut



5 Conclusion

In this paper, we have studied pixel representations and voxel representations of graphs,
where vertices are represented by disjoint blobs (that is, connected sets of grid cells) and
edges correspond to pairs of blobs with face-to-face contact. We have shown that it is
NP-complete to minimize the number of pixels or voxels in such representations. Does
this problem admit an approximation algorithm?

We have shown that O((g+ 1)2n log2 n) voxels suffice for any n-vertex graph of
genus g. It remains open to improve this upper bound or to give a non-trivial lower
bound. We believe that any planar graph admits a voxel representation of linear size.
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