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In the classical Steiner tree problem, given an undirected, connected graph𝐺 = (𝑉 , 𝐸) with non-negative edge

costs and a set of terminals 𝑇 ⊆ 𝑉 , the objective is to find a minimum-cost tree 𝐸 ′ ⊆ 𝐸 that spans the terminals.

The problem is APX-hard; the best known approximation algorithm has a ratio of 𝜌 = ln(4) + 𝜀 < 1.39. In this

paper, we study a natural generalization, the multi-level Steiner tree (MLST) problem: given a nested sequence

of terminals𝑇ℓ ⊂ · · · ⊂ 𝑇1 ⊆ 𝑉 , compute nested trees 𝐸ℓ ⊆ · · · ⊆ 𝐸1 ⊆ 𝐸 that span the corresponding terminal

sets with minimum total cost.

The MLST problem and variants thereof have been studied under various names including Multi-level

Network Design, Quality-of-Service Multicast tree, Grade-of-Service Steiner tree, and Multi-Tier tree. Several

approximation results are known. We first present two simple 𝑂 (ℓ)-approximation heuristics. Based on

these, we introduce a rudimentary composite algorithm that generalizes the above heuristics, and determine

its approximation ratio by solving a linear program. We then present a method that guarantees the same

approximation ratio using at most 2ℓ Steiner tree computations. We compare these heuristics experimentally

on various instances of up to 500 vertices using three different network generation models. We also present

several integer linear programming formulations for the MLST problem, and compare their running times on

these instances. To our knowledge, the composite algorithm achieves the best approximation ratio for up to

ℓ = 100 levels, which is sufficient for most applications such as network visualization or designing multi-level

infrastructure.
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1 INTRODUCTION
Let 𝐺 = (𝑉 , 𝐸) be an undirected, connected graph with positive edge costs 𝑐 : 𝐸 → R+, and let

𝑇 ⊆ 𝑉 be a set of vertices called terminals. A Steiner tree is a tree in𝐺 that spans 𝑇 . The network
(graph) Steiner tree problem (ST) is to find a minimum-cost Steiner tree 𝐸 ′ ⊆ 𝐸, where the cost of 𝐸 ′

is 𝑐 (𝐸 ′) = ∑
𝑒∈𝐸′ 𝑐 (𝑒). ST is one of Karp’s initial NP-hard problems [13]; see also a survey [22], an

online compendium [12], and a textbook [19].

Due to its practical importance in many domains, there is a long history of exact and approxi-

mation algorithms for the problem. The classical 2-approximation algorithm for ST [11] uses the

metric closure of𝐺 , i.e., the complete edge-weighted graph𝐺∗
with vertex set 𝑇 in which, for every

edge 𝑢𝑣 , the cost of 𝑢𝑣 equals the length of a shortest 𝑢–𝑣 path in 𝐺 . A minimum spanning tree

of 𝐺∗
corresponds to a 2-approximate Steiner tree in 𝐺 .

Currently, the last in a long list of improvements is the LP-based approximation algorithm

of Byrka et al. [6], which has a ratio of ln(4) + 𝜀 < 1.39. Their algorithm uses a new iterative

randomized rounding technique. Note that ST is APX-hard [4]; more concretely, it is NP-hard to

approximate the problem within a factor of 96/95 [8]. This is in contrast to the geometric variant

of the problem, where terminals correspond to points in the Euclidean or rectilinear plane. Both

variants admit polynomial-time approximation schemes (PTAS) [1, 16], while this is not true for

the general metric case [4].

In this paper, we consider the natural generalization of ST where the terminals appear on “levels”

(or “grades of service”) and must be connected by edges of appropriate levels. We propose new

approximation algorithms and compare them to existing ones both theoretically and experimentally.

Definition 1.1 (Multi-Level Steiner Tree (MLST) Problem). Given a connected, undirected graph

𝐺 = (𝑉 , 𝐸) with edge weights 𝑐 : 𝐸 → R+ and ℓ nested terminal sets 𝑇ℓ ⊂ · · · ⊂ 𝑇1 ⊆ 𝑉 , a

multi-level Steiner tree consists of ℓ nested edge sets 𝐸ℓ ⊆ · · · ⊆ 𝐸1 ⊆ 𝐸 such that 𝐸𝑖 spans 𝑇𝑖 for

all 1 ≤ 𝑖 ≤ ℓ . The cost of an MLST is defined by the sum of the edge weights across all levels,∑ℓ
𝑖=1 𝑐 (𝐸𝑖 ) =

∑ℓ
𝑖=1

∑
𝑒∈𝐸𝑖 𝑐 (𝑒). The MLST problem is to find an MLST 𝐸OPT,ℓ ⊆ · · · ⊆ 𝐸OPT,1 ⊆ 𝐸

with minimum cost.

Since the edge sets are nested, the cost of an MLST equivalently equals

∑
𝑒∈𝐸 𝐿(𝑒)𝑐 (𝑒), where

𝐿(𝑒) denotes the highest level that edge 𝑒 appears in, where 𝐿(𝑒) = 0 if 𝑒 ∉ 𝐸1. This emphasizes

that the cost of each edge is multiplied by the number of levels it appears on.

We denote the cost of an optimal MLST by OPT. We can write

OPT = ℓOPTℓ + (ℓ − 1)OPTℓ−1 + · · · + OPT1

where OPTℓ = 𝑐 (𝐸OPT,ℓ ) and OPT𝑖 = 𝑐 (𝐸OPT,𝑖\𝐸OPT,𝑖+1) for ℓ − 1 ≥ 𝑖 ≥ 1. Thus OPT𝑖 represents the

cost of edges on level 𝑖 but not on level 𝑖 + 1 in the minimum cost MLST. Figure 1 shows an example

of an MLST for ℓ = 3.
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Multi-Level Steiner Trees 3

(a) (b) (c) (d)

Fig. 1. An MLST with ℓ = 3 for the input graph (a). Filled and empty circles represent terminal and non-

terminal nodes, respectively. Note that the level-3 tree (b) is contained in the level-2 tree (c), which is in turn

contained in the level-1 tree (d).

Applications. This problem has natural applications in designing multi-level infrastructure of

low cost. Apart from this application in network design, multi-scale representations of graphs are

useful in applications such as network visualization, where the goal is to represent a given graph

at different levels of detail.

PreviousWork. Variants of the MLST problem have been studied previously under various names,

such asMulti-Level Network Design (MLND) [2],Multi-Tier Tree (MTT) [15], Quality-of-Service (QoS)
Multicast Tree [7], and Priority-Steiner Tree [9].

In MLND, the vertices of the given graph are partitioned into ℓ levels, and the task is to construct

an ℓ-level network. Each edge (𝑖, 𝑗) ∈ 𝐸 can contain one of ℓ different facility types (levels), each

with a different cost (denoted “secondary” and “primary” with costs 0 ≤ 𝑏𝑖 𝑗 ≤ 𝑎𝑖 𝑗 for 2 levels).

The vertices on each level must be connected by edges of the corresponding level or higher, and

edges of higher level are more costly. The cost of an edge partition is the sum of all edge costs,

and the task is to find a partition of minimum cost. Let 𝜌 be the ratio of the best approximation

algorithm for (single-level) ST, that is, currently 𝜌 = ln(4) + 𝜀 < 1.39. Balakrishnan et al. [2] gave

a (4/3)𝜌-approximation algorithm for 2-level MLND with proportional edge costs. Note that the

definitions of MLND and MLST treat the bottom level differently. While MLND requires that all
vertices are connected eventually, this is not the case for MLST.

For MTT, which is equivalent to MLND, Mirchandani [15] presented a recursive algorithm

that involves 2
ℓ
Steiner tree computations. For ℓ = 3, the algorithm achieves an approximation

ratio of 1.522𝜌 independently of the edge costs 𝑐1, . . . , 𝑐ℓ : 𝐸 → R+. For proportional edge costs,
Mirchandani’s analysis yields even an approximation ratio of 1.5𝜌 for ℓ = 3. Recall, however, that

this assumes 𝑇1 = 𝑉 , and setting the edge costs on the bottom level to zero means that edge costs

are not proportional.
In the QoSMulticast Tree problem [7] one is given a graph, a source vertex 𝑠 , and a level between 1

and 𝑘 for each terminal (1 for highest priority). The task is to find a minimum-cost Steiner tree that

connects all terminals to 𝑠 . The level of an edge 𝑒 in this tree is the minimum over the levels of

the terminals that are connected to 𝑠 via 𝑒 . The cost of the edges and of the tree are as above. As

a special case, Charikar et al. [7] studied the rate model, where edge costs are proportional, and
show that the problem remains NP-hard if all vertices (except the source) are terminals (at some

level). Note that if we choose as source any vertex at the top level 𝑇ℓ , then MLST can be seen as an

instance of the rate model.

Charikar et al. [7] gave a simple 4𝜌-approximation algorithm for the rate model. Given an

instance 𝜑 , their algorithm constructs an instance 𝜑 ′
where the levels of all vertices are rounded up

to the nearest power of 2. Then the algorithm simply computes a Steiner tree at each level of 𝜑 ′
and

prunes the union of these Steiner trees into a single tree. The ratio can be improved to 𝑒𝜌 , where 𝑒

is the base of the natural logarithm, using randomized doubling.

Instead of taking the union of the Steiner trees on each rounded level, Karpinski et al. [14]

contract them into the source in each step, which yields a 2.454𝜌-approximation. They also gave a
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(1.265 + 𝜀)𝜌-approximation for the 2-level case. (Since these results are not stated with respect to 𝜌 ,

but depend on several Steiner tree approximation algorithms – among them the best approximation

algorithm with ratio 1.549 [20] available at the time – we obtained the numbers given here by

dividing their results by 1.549 and stating the factor 𝜌 .)

For the more general Priority-Steiner Tree problem, where edge costs are not necessarily pro-

portional, Charikar et al. [7] gave a min{2 ln |𝑇 |, ℓ𝜌}-approximation algorithm. Chuzhoy et al. [9]

showed that Priority-Steiner Tree does not admit an 𝑂 (log log𝑛)-approximation algorithm unless

NP ⊆DTIME(𝑛𝑂 (log log log𝑛) ). For Euclidean MLST, Xue at al. [23] gave a recursive algorithm that

uses any algorithm for Euclidean Steiner Tree (EST) as a subroutine. With a PTAS [1, 16] for EST,

the approximation ratio of their algorithm is 4/3 + 𝜀 for ℓ = 2 and (5 + 4

√
2)/7 + 𝜀 ≈ 1.522 + 𝜀 for

ℓ = 3.

Our Contribution. We give two simple approximation algorithms for MLST, bottom-up and

top-down, in Section 2.1. The bottom-up heuristic uses a Steiner tree at the bottom level for the

higher levels after pruning unnecessary edges at each level. The top-down heuristic first computes

a Steiner tree on the top level. Then it passes edges down from level to level until the bottom level

terminals are spanned.

In Section 2.2, we propose a composite heuristic that generalizes these, by examining all possible

2
ℓ−1

(partial) top-down and bottom-up combinations and returning the one with the lowest cost.

We propose a linear program that finds the approximation ratio of the composite heuristic for any

fixed value of ℓ , and compute approximation ratios for up to ℓ = 100 levels, which turn out to

be better than those of previously known algorithms. However, the composite heuristic requires

roughly 2
ℓ ℓ ST computations.

Therefore, we propose a procedure that achieves the same approximation ratio as the composite

heuristic but needs at most 2ℓ ST computations. In particular, it achieves a ratio of 1.5𝜌 for ℓ = 3

levels, which settles a question posed by Karpinski et al. [14] who were asking whether the

(1.522 + 𝜀)-approximation of Xue at al. [23] can be improved for ℓ = 3. Note that Xue et al. treated

the Euclidean case, so their ratio does not include the factor 𝜌 . We generalize an integer linear

programming (ILP) formulation for ST [18] to obtain an ILP formulation for the MLST problem in

Section 3. We experimentally evaluate several approximation and exact algorithms on a wide range

of problem instances in Section 4. The results show that the new algorithms are also surprisingly

good in practice. We conclude in Section 5.

2 APPROXIMATION ALGORITHMS
In this section we propose several approximation algorithms for the MLST problem.

In Section 2.1, we show that the natural approach of computing edge sets either from top to

bottom or vice versa, already yields 𝑂 (ℓ)-approximations; we call these two approaches top-down
and bottom-up, and denote their costs by TOP and BOT, respectively. Then, we show that running

the two approaches and selecting the solution with minimum cost produces a better approximation

ratio than either top-down or bottom-up.

In Section 2.2, we propose a composite approach that mixes the top-down and bottom-up

approaches by solving ST on a certain subset of levels, then propagating the chosen edges to higher

and lower levels in a way similar to the previous approaches. We then run the algorithm for each

of the 2
ℓ−1

possible subsets, and select the solution with minimum cost. For all practically relevant

values of ℓ (ℓ ≤ 100), our results improve over the state of the art.

ACM J. Exp. Algor., Vol. 1, No. 1, Article . Publication date: November 2020.
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2.1 Top-Down and Bottom-Up Approaches
We present top-down and bottom-up approaches for computing approximate multi-level Steiner

trees. The approaches are similar to the MST and Forward Steiner Tree (FST) heuristics by Balakr-

ishnan et al. [2]; however, we generalize the analysis to an arbitrary number of levels.

In the top-down approach, an exact or approximate Steiner tree 𝐸TOP,ℓ spanning the top level 𝑇ℓ
is computed. Then we modify the edge weights by setting 𝑐 (𝑒) := 0 for every edge 𝑒 ∈ 𝐸TOP,ℓ . In the

resulting graph, we compute a Steiner tree 𝐸TOP,ℓ−1 spanning the terminals in 𝑇ℓ−1. This extends
𝐸TOP,ℓ in a greedy way to span the terminals in 𝑇ℓ−1 not already spanned by 𝐸TOP,ℓ . Iterating this

procedure for all levels yields a solution 𝐸TOP,ℓ ⊆ · · · ⊆ 𝐸TOP,1 ⊆ 𝐸 with cost TOP.

In the bottom-up approach, a Steiner tree 𝐸BOT,1 spanning the bottom level 𝑇1 is computed. This

induces a valid solution for all levels. We can “prune” edges by letting 𝐸BOT,𝑖 be the smallest subtree

of 𝐸BOT,1 that spans all the terminals in𝑇𝑖 , giving a solution with cost BOT. Note that the top-down

and bottom-up approaches involve ℓ and 1 Steiner tree computations, respectively.

A natural approach is to run both top-down and bottom-up approaches and select the solution

with minimum cost. This yields an approximation ratio better than those from top-down or bottom-

up. Let 𝜌 ≥ 1 denote the approximation ratio for ST (that is, 𝜌 = 1 corresponds to using an exact

ST subroutine). Let MIN𝑖 denote the cost of a minimum Steiner tree over the terminal set 𝑇𝑖 with

original edge weights, independently of other levels, so that MINℓ ≤ MINℓ−1 ≤ . . . ≤ MIN1. Then

OPT ≥ ∑ℓ
𝑖=1 MIN𝑖 trivially.

Theorem 2.1. For ℓ ≥ 2 levels, the top-down approach is an ℓ+1
2
𝜌-approximation to the MLST

problem, the bottom-up approach is an ℓ𝜌-approximation, and the algorithm returning the minimum
of TOP and BOT is an ℓ+2

3
𝜌-approximation.

In the following we give the proof of Theorem 2.1. Let TOP be the total cost produced by the

top-down approach, and let TOP𝑖 = 𝑐 (𝐸TOP,𝑖\𝐸TOP,𝑖+1) be the cost of edges on level 𝑖 but not on

level 𝑖 + 1. Then TOP =
∑ℓ

𝑖=1 𝑖TOP𝑖 . Define BOT and BOT𝑖 analogously.

Lemma 2.2. The following inequalities relate TOP with OPT:

TOPℓ ≤ 𝜌OPTℓ (2.1)

TOPℓ−𝑖 ≤ 𝜌 (OPTℓ−𝑖 + . . . + OPTℓ ) for all 1 ≤ 𝑖 ≤ ℓ − 1 (2.2)

Proof. Inequality (2.1) follows from the fact that 𝐸TOP,ℓ is a 𝜌-approximation for ST over𝑇ℓ , that

is, TOPℓ ≤ 𝜌MINℓ ≤ 𝜌OPTℓ . To show (2.2), note that TOPℓ−𝑖 represents the cost of the Steiner
tree over terminals 𝑇ℓ−𝑖 with some edges (those already included in 𝐸ℓ−𝑖+1) having weight 𝑐 (𝑒)
set to zero. Then TOPℓ−𝑖 ≤ 𝜌MINℓ−𝑖 . Since 𝐸OPT,ℓ−𝑖 spans 𝑇ℓ−𝑖 by definition, we have MINℓ−𝑖 ≤
𝑐 (𝐸OPT,ℓ−𝑖 ) = OPTℓ−𝑖 + . . . +OPTℓ . By transitivity, TOPℓ−𝑖 ≤ 𝜌 (OPTℓ−𝑖 + . . . +OPTℓ ) as desired. □

Using Lemma 2.2 yields an upper bound on TOP in terms of OPT1, . . . ,OPTℓ :

TOP = ℓTOPℓ + (ℓ − 1)TOPℓ−1 + . . . + TOP1

≤ ℓ𝜌OPTℓ + (ℓ − 1)𝜌 (OPTℓ−1 + OPTℓ ) + . . . + 𝜌 (OPT1 + OPT2 + . . . + OPTℓ )

= 𝜌

(
(ℓ + 1)ℓ

2

OPTℓ +
ℓ (ℓ − 1)

2

OPTℓ−1 + . . . +
2 · 1
2

OPT1

)
≤ ℓ + 1

2

𝜌 · OPT.

Therefore the top-down approach is an
ℓ+1
2
𝜌-approximation. In Fig. 2 we provide an example

showing that our analysis is tight for 𝜌 = 1.
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The bottom-up approach is a fairly trivial ℓ𝜌-approximation to the MLST problem, even without

pruning edges. Consequentially, BOT ≤ ℓ · 𝑐 (𝐸BOT,1) as pruning no edges results in a solution with

cost ℓ · 𝑐 (𝐸BOT,1).
As 𝐸BOT,1 is found by computing a Steiner tree over the bottom level 𝑇1, we have 𝑐 (𝐸BOT,1) ≤

𝜌MIN1. Additionally, MIN1 ≤ 𝑐 (𝐸OPT,1) = OPT1 + OPT2 + . . . + OPTℓ as 𝐸OPT,1 is necessarily a

Steiner tree spanning 𝑇1. Combining these inequalities yields

BOT ≤ ℓ · 𝑐 (𝐸BOT,1)
≤ ℓ𝜌MIN1

≤ ℓ𝜌 (OPT1 + OPT2 + . . . + OPTℓ )

≤ ℓ𝜌

ℓ∑
𝑖=1

𝑖OPT𝑖

= ℓ𝜌 · OPT
Again, the approximation ratio (for 𝜌 = 1) is asymptotically tight; see Figure 3.

We show that taking the better of the two solutions returned by the top-down and the bottom-up

approach provides a
4

3
𝜌-approximation to MLST for ℓ = 2. To prove this, we use the simple fact

that min{𝑥,𝑦} ≤ 𝛼𝑥 + (1 − 𝛼)𝑦 for all 𝑥,𝑦 ∈ R and 𝛼 ∈ [0, 1]. Using the previous results on the

upper bounds for TOP and BOT for ℓ = 2:

min{TOP, BOT} ≤ 𝛼 (3𝜌 OPT2 + 𝜌 OPT1) + (1 − 𝛼) (2𝜌 OPT2 + 2𝜌 OPT1)
= (2 + 𝛼)𝜌 OPT2 + (2 − 𝛼)𝜌 OPT1

Setting 𝛼 = 2

3
gives min{TOP, BOT} ≤ 8

3
𝜌 OPT2 + 4

3
𝜌 OPT1 =

4

3
𝜌 OPT.

For ℓ > 2 levels, using the same idea gives

min{TOP, BOT} ≤ 𝛼𝜌
ℓ∑

𝑖=1

𝑖 (𝑖 + 1)
2

OPT𝑖 + (1 − 𝛼)ℓ𝜌
ℓ∑

𝑖=1

OPT𝑖

=

ℓ∑
𝑖=1

[(
𝑖 (𝑖 + 1)

2

− ℓ
)
𝛼 + ℓ

]
𝜌OPT𝑖

Since we are comparing min{TOP, BOT} to 𝑡 · OPT for some approximation ratio 𝑡 > 1, we can

compare coefficients and find the smallest 𝑡 ≥ 1 such that the system of inequalities(
ℓ (ℓ + 1)

2

− ℓ
)
𝜌𝛼 + ℓ𝜌 ≤ ℓ𝑡(

(ℓ − 1)ℓ
2

− ℓ
)
𝜌𝛼 + ℓ𝜌 ≤ (ℓ − 1)𝑡

...(
2 · 1
2

− ℓ
)
𝜌𝛼 + ℓ𝜌 ≤ 𝑡

has a solution 𝛼 ∈ [0, 1]. Adding the first inequality to ℓ/2 times the last inequality yields
ℓ2+2ℓ
2
𝜌 ≤

3ℓ𝑡
2
. This leads to 𝑡 ≥ ℓ+2

3
𝜌 . Also, it can be shown algebraically that (𝑡, 𝛼) = ( ℓ+2

3
𝜌, 2

3
) simultaneously

satisfies the above inequalities. This implies that min{TOP, BOT} ≤ ℓ+2
3
𝜌 · OPT and concludes the

proof of Theorem 2.1.

Combining the graphs in Figures 2 and 3 shows that our analysis of the combined top-down and

bottom-up approaches (with ratio
4

3
) is asymptotically tight.
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𝑘 − 𝜀
1

1

1

1

1

1

𝑘 − 𝜀
1

1

1

1

1

1

𝑘 − 𝜀
1

1

1

1

1

1

𝑘 − 𝜀
1

1

1

1

1

1

Level 1

|𝑇1 | = 𝑘 + 1

Level 2

|𝑇2 | = 2

Fig. 2. The approximation ratio of
ℓ+1
2

for the top-down approach is asymptotically tight. In the example

above for ℓ = 2, the input graph (left) consists of a (𝑘 + 1)-cycle with one edge of weight 𝑘 − 𝜀. The solution
returned by top-down (right) has cost TOP = (𝑘 − 𝜀) + (𝑘 − 𝜀 + 𝑘) ≈ 3𝑘 , whereas OPT = 2𝑘 .

1 + 𝜀
1

1

1

1

1

1

1 + 𝜀
1

1

1

1

1

1

1 + 𝜀
1

1

1

1

1

1

1 + 𝜀
1

1

1

1

1

1

Level 1

Level 2

Fig. 3. The approximation ratio of ℓ for the bottom-up approach is asymptotically tight. Using the same input

graph as in Figure 2, except by modifying the edge of weight 𝑘 − 𝜀 so that its weight is 1 + 𝜀, we see that
BOT = 2𝑘 , whereas OPT = (1 + 𝜀) + (1 + 𝜀 + 𝑘 − 1) ≈ 𝑘 + 1.

2.2 Composite Algorithm
We describe an approach that generalizes the above approaches in order to obtain a better approxi-

mation ratio for ℓ > 2 levels. The main idea behind this composite approach is the following: In the

top-down approach, we choose a set of edges 𝐸TOP,ℓ that spans 𝑇ℓ , and then propagate this choice

to levels ℓ − 1, . . . , 1 by setting the cost of these edges to 0. On the other hand, in the bottom-up

approach, we choose a set of edges 𝐸BOT,1 that spans 𝑇1, which is propagated to levels 2, . . . , ℓ

(possibly with some pruning of unneeded edges). The idea is that for ℓ > 2, we can choose a set of

intermediate levels and propagate our choices between these levels in a top-down manner, and to

the levels lying in between them in a bottom-up manner.

Formally, let Q = {𝑖1, 𝑖2, . . . , 𝑖𝑚} with 1 = 𝑖1 < 𝑖2 < · · · < 𝑖𝑚 ≤ ℓ be a subset of levels sorted in

increasing order. We first compute a Steiner tree 𝐸𝑖𝑚 = 𝑆𝑇 (𝐺,𝑇𝑖𝑚 ) on the highest level 𝑖𝑚 , which

induces trees 𝐸𝑖𝑚+1, . . . , 𝐸ℓ similar to the bottom-up approach. Then, we set the weights of edges in

𝐸𝑖𝑚 in 𝐺 to zero (as in the top-down approach) and compute a Steiner tree 𝐸𝑖𝑚−1 = 𝑆𝑇 (𝐺,𝑇𝑖𝑚−1 ) for
level 𝑖𝑚−1 in the reweighed graph. Again, we can use 𝐸𝑖𝑚−1 to construct the trees 𝐸𝑖𝑚−1+1, . . . , 𝐸𝑖𝑚−1.
Repeating this procedure until spanning 𝐸𝑖1 = 𝐸1 results in a valid solution to the MLST problem.

Note that the top-down and bottom-up heuristics are special cases of this approach, with Q =

{1, 2, . . . , ℓ} and Q = {1}, respectively. Figure 4 provides an illustration of how such a solution

is computed in the top-down, bottom-up, and an arbitrary heuristic. Given Q ⊆ {1, 2, . . . , ℓ}, let
CMP(Q) be the cost of the MLST solution returned by the composite approach over Q.
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Q = {1, 2, 3, 4, 5} Q = {1} Q = {1, 3, 4}
Level 1

Level 2

Level 3

Level 4

Level 5

Fig. 4. Illustration of the composite heuristic for various subsets Q, with ℓ = 5. Orange arrows pointing

downward indicate propagation of edges similar to the top-down approach. Blue arrows pointing upward

indicate pruning of unneeded edges, similar to the bottom-up approach.

Lemma 2.3. For any set Q = {𝑖1, . . . , 𝑖𝑚} ⊆ {1, 2, . . . , ℓ} with 1 = 𝑖1 < . . . < 𝑖𝑚 ≤ ℓ , we have

CMP(Q) ≤ 𝜌

𝑚∑
𝑘=1

(𝑖𝑘+1 − 1)MIN𝑖𝑘

with the convention 𝑖𝑚+1 = ℓ + 1.

For example, Q = {1, 3, 4} with ℓ = 5 in Figure 4 yields CMP(Q) ≤ 𝜌 (2MIN1 + 3MIN3 + 5MIN4).
With Q = {1, 2, 3, 4, 5}, we have CMP(Q) ≤ 𝜌 (MIN1 + 2MIN2 + . . . + 5MIN5), similar to Lemma 2.2.

Proof. The proof is similar to that of Lemma 2.2: when we compute 𝐸𝑖𝑚 , a 𝜌-approximate Steiner

tree for 𝑇𝑖𝑚 , we incur a cost of at most ℓ𝜌MIN𝑖𝑚 . This is due to the fact that the cost of 𝐸𝑖𝑚 is at

most 𝜌MIN𝑖𝑚 , and these edges are propagated to all levels 1 through ℓ , incurring a cost of at most

ℓ𝜌MIN𝑖𝑚 . When we compute 𝐸𝑖𝑘 , we incur a cost of at most 𝜌MIN𝑖𝑘 , and these edges are propagated

to levels 1 through 𝑖𝑘+1 − 1, incurring a cost of at most (𝑖𝑘+1 − 1)𝜌MIN𝑖𝑘 . □

Using the trivial lower bound OPT ≥ ∑ℓ
𝑖=1 MIN𝑖 , we can find an upper bound for the approxima-

tion ratio. Without loss of generality, assume

∑ℓ
𝑖=1 MIN𝑖 = 1, so that OPT ≥ 1; otherwise the edge

weights can be scaled linearly. Also, since all the equations and inequalities scale linearly in 𝜌 , we

assume 𝜌 = 1. Then for a given Q, the ratio
CMP(Q)
OPT

is upper bounded by

CMP(Q)
OPT

≤
𝜌
∑𝑚

𝑘=1
(𝑖𝑘+1 − 1)MIN𝑖𝑘∑ℓ
𝑖=1 MIN𝑖

=

𝑚∑
𝑘=1

(𝑖𝑘+1 − 1)MIN𝑖𝑘 .

Given any Q, we determine an approximation ratio to the MLST problem, in a way similar to

the top-down and bottom-up approaches. We start with the following lemma:

Lemma 2.4. Let 𝑐1, 𝑐2, . . . , 𝑐ℓ be given non-negative real numbers with the property that 𝑐1 > 0,
and the nonzero ones are strictly increasing (i.e., if 𝑖 < 𝑗 and 𝑐𝑖 , 𝑐 𝑗 ≠ 0, then 0 < 𝑐𝑖 < 𝑐 𝑗 .) Consider
the following linear program: max 𝑐1𝑦1 + 𝑐2𝑦2 + . . . + 𝑐ℓ𝑦ℓ subject to 𝑦1 ≥ 𝑦2 ≥ . . . ≥ 𝑦ℓ ≥ 0, and∑ℓ

𝑖=1 𝑦𝑖 = 1. Then the optimal solution has 𝑦1 = 𝑦2 = . . . = 𝑦𝑘 = 1

𝑘
for some 𝑘 , and 𝑦𝑖 = 0 for 𝑖 > 𝑘 .

Proof. Suppose that in the optimal solution, there exists some 𝑖 such that 𝑦𝑖 > 𝑦𝑖+1 > 0. If

𝑐𝑖+1 = 0, then setting 𝑦1 := 𝑦1 +𝑦𝑖+1 and 𝑦𝑖+1 = 0 improves the objective function, a contradiction. If

𝑐𝑖+1 ≠ 0, then 𝑐𝑖 < 𝑐𝑖+1, and it can be shown with elementary algebra that replacing 𝑦𝑖 and 𝑦𝑖+1 by
their arithmetic mean,

𝑦𝑖+𝑦𝑖+1
2

, improves the objective function as well. □
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A simple corollary of Lemma 2.4 is that the maximum value of the objective in the LP equals

max

(
𝑐1,

1

2
(𝑐1 + 𝑐2), 1

3
(𝑐1 + 𝑐2 + 𝑐3), . . . , 1ℓ (𝑐1 + . . . + 𝑐ℓ )

)
. For a given Q (assuming 𝜌 = 1), the com-

posite heuristic on Q = {𝑖1, . . . , 𝑖𝑚} is a 𝑡-approximation, where 𝑡 is the solution to the following

simple linear program: max 𝑡 subject to 𝑡 ≤ ∑𝑚
𝑘=1

(𝑖𝑘+1 − 1)𝑦𝑖𝑘 ; 𝑦1 ≥ 𝑦2 ≥ · · · ≥ 𝑦ℓ ≥ 0;

∑ℓ
𝑖=1 𝑦𝑖 = 1.

As this LP is of the form given in Lemma 2.4, we can easily compute an approximation ratio for a

given Q as

𝑡 (Q) = max

𝑚′≤𝑚

∑𝑚′

𝑘=1
(𝑖𝑘+1 − 1)
𝑖𝑚′

.

For example, the corresponding objective function for TOP is max𝑦1+2𝑦2+ . . .+ℓ𝑦ℓ , and the max-

imum equals max

(
1, 1

2
(1 + 2), . . . , 1

ℓ
(1 + 2 + . . . + ℓ)

)
= ℓ+1

2
, which is consistent with Theorem 2.1.

The corresponding objective function for BOT is max ℓ = ℓ .

An important choice of Q is Q = {1, 2, 4, . . . , 2𝑚} where 𝑚 = ⌊log
2
ℓ⌋. Charikar et al. [7]

show that this is a 4-approximation, assuming 𝜌 = 1. Indeed, according to the above formula

𝑡 = max(1, (2−1)+(2
2−1)

2
1

, . . . ,
∑𝑚

𝑖=0 (2𝑖+1−1)
2
𝑚 ) = 4 −𝑚/2𝑚 ≤ 4.

When ℓ ≥ 2, there are 2
ℓ−1

possible subsets Q, giving 2
ℓ−1

possible heuristics. In particular,

for ℓ = 2, the only 2
2−1 = 2 heuristics are top-down and bottom-up (Section 2.1). The composite

algorithm executes all possible heuristics and selects the MLST with minimum cost (denoted CMP):

CMP = min

Q⊆{1,...,ℓ }
1∈Q

CMP(Q) .

Theorem 2.5. For ℓ ≥ 2, the composite heuristic produces a 𝑡ℓ -approximation, where 𝑡ℓ is the
solution to the following linear program (LP):

max 𝑡

subject to 𝑡 ≤
𝑚∑
𝑘=1

(𝑖𝑘+1 − 1)𝑦𝑖𝑘 ∀Q = {𝑖1, . . . , 𝑖𝑚}

𝑦𝑖 ≥ 𝑦𝑖+1 ∀ 1 ≤ 𝑖 ≤ ℓ − 1

ℓ∑
𝑖=1

𝑦𝑖 = 1

𝑦𝑖 ≥ 0 ∀ 1 ≤ 𝑖 ≤ ℓ

Proof. Again we assume, without loss of generality, that 𝜌 = 1 and that

∑ℓ
𝑖=1 MIN𝑖 = 1. Given

an instance of MLST and the corresponding values MIN1, . . . , MINℓ , let Q∗ = {𝑖1, . . . , 𝑖𝑚} denote the
subset of {1, . . . , ℓ} for which the quantity

∑𝑚
𝑘=1

(𝑖𝑘+1 − 1)MIN𝑖𝑘 is minimized. Then by Lemma 2.3,

we have CMP ≤ CMP(Q∗) ≤ ∑𝑚
𝑘=1

(𝑖𝑘+1 − 1)MIN𝑖𝑘 = 𝑡 . So for a specific instance of the MLST

problem, CMP is upper bounded by 𝑡 , which is the minimum over 2
ℓ−1

different expressions, all

linear combinations of MIN1, . . . , MINℓ .

As 𝑡ℓ is the maximum of the objective over all feasible MIN1, . . . , MINℓ , we have 𝑡 ≤ 𝑡ℓ , so

CMP ≤ 𝑡ℓ = 𝑡ℓ · OPT as desired. □

The above LP has ℓ + 1 variables and 2
ℓ−1 + 2ℓ constraints. Each subset Q ∈ {1, 2, . . . , ℓ} with

1 ∈ Q corresponds to one constraint.

Lemma 2.6. The system of 2ℓ−1 inequalities can be expressed in matrix form as

𝑡 · 1
2
ℓ−1×1 ≤ 𝑀ℓ𝒚
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10 R. Ahmed et al.

where 𝒚 = [𝑦1, 𝑦2, · · · , 𝑦ℓ ]𝑇 and𝑀ℓ is a (2ℓ−1 × ℓ)-matrix that can be constructed recursively as

𝑀ℓ =

[
𝑃ℓ−1 +𝑀ℓ−1 0

2
ℓ−2×1

𝑀ℓ−1 ℓ · 1
2
ℓ−2×1

]
and 𝑃ℓ =

[
𝑃ℓ−1 0

2
ℓ−2×1

0
2
ℓ−2×(ℓ−1) 1

2
ℓ−2×1

]
starting with the 1 × 1 matrices𝑀1 = [1] and 𝑃1 = [1].

Proof. The idea is that the rows of 𝑃ℓ encode the largest element of their corresponding subsets –

if we list the 2
ℓ−1

subsets of {1, 2, . . . , ℓ} in the usual ordering ({1}, {1, 2}, {1, 3}, {1, 2, 3}, {1, 4}, . . . ),
then 𝑃𝑖, 𝑗 = 1 if 𝑗 is the largest element of the 𝑖th subset.

We provide proof by induction. If ℓ = 1, we have only one possible subset of levels Q = {1} and
one inequality: 𝑡 < 𝑦1. Hence, 𝑀1 = [1] and 𝑃1 = [1]. We assume that the claim is true for ℓ − 1

levels. To show that the claim is also true for ℓ levels we first prove that the recursive construction

of 𝑃ℓ is valid. We now have one more level, which is the ℓ𝑡ℎ level. Hence, all possible subsets of

levels for ℓ − 1 levels are still valid subsets of levels for the new configuration where we have one

additional level. However, we now have ℓ − 1 additional subsets of levels, each of which can be

generated from a previous subset of levels by just adding the new level ℓ in the subset. The previous

subset of levels will have the same encoding in 𝑃ℓ . Hence, we just concatenate 02ℓ−2×1 in the upper

right corner of of 𝑃ℓ . For the new possible subsets, the largest element is always ℓ . Which validates

the recursive formulation of 𝑃ℓ .

It remains to show that the recursive construction of𝑀ℓ is valid. Given𝑀ℓ−1 and 𝑃ℓ−1, we can
construct𝑀ℓ by casework on whether ℓ ∈ Q or not. If ℓ ∉ Q, then we build the first 2

ℓ−2
rows by

using the previous matrix𝑀ℓ−1, and adding 1 to the rightmost nonzero entry of each column (which

is equivalent to adding 𝑃ℓ−1). If ℓ ∈ Q, we build the remaining 2
ℓ−2

rows by using the previous

matrix𝑀ℓ−1, and appending a 2
ℓ−2 × 1 column whose values are equal to ℓ . □

This recursively defined matrix is not central to the composite algorithm, but gives a nice way

of formulating the LP above.

Solving the above LP directly is challenging for large ℓ due to its size. We instead use a column

generation method. The idea is that solving the LP for only a subset of the constraints will produce

an upper bound for the approximation ratio—larger values can be returned due to relaxing the

constraints. Now, the objective would be to add “effective” constraints that would be most needed

for getting a more accurate solution.

In our column generation, we only add one single constraint at a time. Let Q denote the set of all

the constraints at the running step. Solving the LP provides a vector y and an upper bound for the

approximation ratio 𝑡 . Our goal is to find a new set Qnew = {𝑖1, 𝑖2, . . . , 𝑖𝑘 } that gives the smallest

value of

∑𝑚
𝑘=1

(𝑖𝑘+1 − 1)𝑦𝑖𝑘 given the vector y from the current LP solver. We can use an ILP to find

the set Qnew. Specifically, we define indicator variables 𝜃𝑖 𝑗 so that 𝜃𝑖 𝑗 = 1 if and only if 𝑖 and 𝑗 are

consecutive level choices for the new constraint Qnew, and 𝜃𝑖 𝑗 = 0 otherwise. For example, for

Qnew = {1, 3, 7} with ℓ = 10 we must have 𝜃1,3 = 𝜃3,7 = 𝜃7,11 = 1 and all other 𝜃𝑖 𝑗 ’s equal to zero.

Given a vector y = [𝑦1, . . . , 𝑦ℓ ], the choice of Qnew = {𝑖 : 𝜃𝑖 𝑗 = 1, 𝑖 < 𝑗 and 𝑖, 𝑗 ∈ {1, 2, . . . , ℓ}}

Lemma 2.7. The following ILP minimizes
∑𝑚

𝑘=1
(𝑖𝑘+1 − 1)𝑦𝑖𝑘 , where 𝑖𝑘 is the 𝑘-th smallest element

of Q and 𝑖𝑚+1 = ℓ + 1.
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Minimize
ℓ∑

𝑖=1

ℓ+1∑
𝑗=𝑖+1

( 𝑗 − 1)𝜃𝑖 𝑗𝑦𝑖

subject to
∑
𝑖 : 𝑗>𝑖

𝜃𝑖 𝑗 ≤ 1,∑
𝑗 : 𝑖< 𝑗

𝜃𝑖 𝑗 ≤ 1, ∀𝑖 ∈ {1, . . . , ℓ}, 𝑗 ∈ {2, . . . , ℓ + 1}∑
𝑖 : 𝑖<𝑘

𝜃𝑖𝑘 =
∑
𝑗 : 𝑗>𝑘

𝜃𝑘 𝑗 ∀𝑘 ∈ {2, . . . , ℓ}∑
𝑗 : 1< 𝑗

𝜃1𝑗 = 1,∑
𝑖 : 𝑖<ℓ+1

𝜃𝑖 (ℓ+1) = 1,

𝜃𝑖 𝑗 ∈ {0, 1}

Proof. Using the indicator variables,

∑𝑚
𝑘=1

(𝑖𝑘+1−1)𝑦𝑖𝑘 can be expressed as
∑ℓ

𝑖=1

∑ℓ+1
𝑗=𝑖+1 ( 𝑗−1)𝜃𝑖 𝑗𝑦𝑖

because 𝜃𝑖𝑘 ,𝑖𝑘+1 = 1 and the other 𝜃𝑖 𝑗 ’s are zero. In the above formulation, the first constraint indicates

that, for every given 𝑖 or 𝑗 , at most one 𝜃𝑖 𝑗 is equal to one. The second constraint indicates that, for

a given 𝑘 , if 𝜃𝑖𝑘 = 1 for some 𝑖 , then there is also a 𝑗 such that 𝜃𝑘 𝑗 = 1. In other words, there are no

overlapping intervals. For example, 𝜃3,7 and 𝜃4,9 cannot both equal 1 because [3, 7] overlaps [4, 9].
Consider the example provided above; Qnew = {1, 3, 7}. Here, 𝜃1,3 = 1. Hence, there is exactly one

possible 𝑗 > 3 such that 𝜃3, 𝑗 = 1. In our example, this is 𝑗 = 7. The last constraints guarantees that

level 1 is chosen for Qnew. □

Lemma 2.7 allows for a column generation technique to solve the LP of Theorem 2.5 for com-

puting the approximation ratio of CMP algorithm. We initially start with an empty set Q and

y = [1, 1
2
, . . . , 1

ℓ
]. Using Lemma 2.7, we then find Qnew and add it to the constraint set Q. We repeat

the process until Qnew already belongs to Q. Without the column generation technique, we could

reach only ℓ = 22 levels. The new techniques, however, allows us to solve for much larger values

of ℓ . In the following, we report the results up to 100 levels.

Theorem 2.8. For any ℓ = 2, . . . , 100, the MLST returned by the composite algorithm yields a
solution whose cost is at most 𝑡ℓ · OPT, where the values of 𝑡ℓ are listed in Figure 5.

Neglecting the factor 𝜌 for now (i.e., assuming 𝜌 = 1), the approximation ratio 𝑡 = 3/2 for ℓ = 3

is slightly better than the ratio of (5 + 4

√
2)/7 + 𝜀 ≈ 1.522 + 𝜀 guaranteed by Xue et al. [23] for

the Euclidean case. (The additive constant 𝜀 in their ratio stems from using Arora’s PTAS as a

subroutine for Euclidean ST, which corresponds to the multiplicative constant 𝜌 for using an ST

algorithm as a subroutine for MLST.) Recall that an improvement for ℓ = 3 was posed as an open

problem by Karpinski et al. [14]. Also, for each of the cases 4 ≤ ℓ ≤ 100 our results in Theorem 2.8

improve the approximation ratios of 𝑒𝜌 ≈ 2.718𝜌 and 2.454𝜌 guaranteed by Charikar et al. [7]

and by Karpinski et al. [14], respectively. The graph of the approximation ratio of the composite

algorithm (see Figure 5) for ℓ = 1, . . . , 100 suggests that it will stay below 2.454𝜌 for values of ℓ

much larger than 100.
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0 10 20 30 40 50 60 70 80 90 100

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8 ℓ 𝑡ℓ

1 𝜌

2 1.333𝜌

3 1.500𝜌

4 1.630𝜌

5 1.713𝜌

6 1.778𝜌

7 1.828𝜌

8 1.869𝜌

9 1.905𝜌

10 1.936𝜌

11 1.963𝜌

ℓ 𝑡ℓ

12 1.986𝜌

13 2.007𝜌

14 2.025𝜌

15 2.041𝜌

16 2.056𝜌

17 2.070𝜌

18 2.083𝜌

19 2.094𝜌

20 2.106𝜌

50 2.265𝜌

100 2.351𝜌

Fig. 5. Approximation ratios for the composite algorithm for ℓ = 1, . . . , 100 (black curve), compared to the

ratio 𝑡 = 𝑒𝜌 (red dashed line) guaranteed by the algorithm of Charikar et al. [7] and 𝑡 = 2.454𝜌 (green dashed

line) guaranteed by the algorithm of Karpinski et al. [14]. The table to the right lists the exact values of 𝑡ℓ .

The obvious disadvantage is that computing CMP involves 2
ℓ−1

different heuristics, requiring

2
ℓ−2 (ℓ + 1) ST computations, which is not feasible for large ℓ . In the following, we show that we

can achieve the same approximation guarantee with at most 𝑂 (ℓ) ST computations.

Theorem 2.9. Given an instance of the MLST problem, a specific subset Q∗ ⊆ {1, 2, . . . , ℓ} (with
1 ∈ Q∗) can be found through ℓ ST computations, such that running the composite heuristic on Q∗ is a
𝑡ℓ -approximation.

Proof. Given a graph𝐺 = (𝑉 , 𝐸) with cost function 𝑐 , and terminal sets𝑇ℓ ⊂ 𝑇ℓ−1 ⊂ · · · ⊂ 𝑇1 ⊆ 𝑉 ,
compute a Steiner tree on each level and set MIN𝑖 = 𝑐 (𝑆𝑇 (𝐺,𝑇𝑖 )). Again, assume w.l.o.g. that∑ℓ

𝑖=1 MIN𝑖 = 1, which can be done by scaling the edge weights appropriately after computing the

minimum Steiner trees.

Since 𝒚 = [MIN1, . . . ,MINℓ ]𝑇 and 𝑡 = min𝑀ℓ𝒚 is a feasible, but not necessarily optimal, solution

to the LP for computing the approximation ratio 𝑡ℓ , we havemin𝑀ℓ𝒚 = 𝑡 ≤ 𝑡ℓ . Let𝑞 ∈ {1, 2, . . . , 2ℓ−1}
be the row of𝑀ℓ whose dot product with 𝒚 is minimized (i.e., equals 𝑡 ), and let Q∗

be the subset

of levels corresponding to the 𝑞th row of𝑀ℓ , which can be obtained from the non-zero entries of

the 𝑞th row. Then for this specific subset Q∗
of levels, we have CMP(Q∗) ≤ 𝑡 ≤ 𝑡ℓ ≤ 𝑡ℓOPT. The

optimal choice of Q∗
given 𝒚 = [MIN1, . . . ,MINℓ ]𝑇 can be obtained very efficiently using the ILP

with column generation. □

Note that the total number of ST computations is reduced from 2
ℓ−2 (ℓ + 1) to at most 2ℓ ; we

need ℓ ST computations to determine Qnew (according to the proof of Theorem 2.9) and another at

most ℓ ST computations to “execute” Qnew. The resulting solution with cost CMP(Q∗) does not
necessarily have the same cost as the solution with cost CMP, however, the solution returned is still

at most 𝑡ℓ times the optimum. It is worth noting that the analyses in this section did not assume

that the computed edge sets are trees, only that the edge sets are nested and that the cost of a

solution is the sum of the costs over all levels.

3 INTEGER LINEAR PROGRAMMING (ILP) FORMULATIONS
In this section, we discuss several different ILP formulations for the MLST problem.
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3.1 ILP Based on Cuts
This is a standard ILP formulation for the (single-level) Steiner tree problem. Recall that 𝑇 ⊆ 𝑉 is

the set of terminals. Given a cut 𝑆 ⊆ 𝑉 , let 𝛿 (𝑆) = {𝑢𝑣 ∈ 𝐸 | 𝑢 ∈ 𝑆, 𝑣 ∉ 𝑆} denote the set of all edges
that have exactly one endpoint in 𝑆 . Given an undirected edge 𝑢𝑣 ∈ 𝐸, let 𝑥𝑢𝑣 = 1 if 𝑢𝑣 is present in

the solution, 0 otherwise. An ILP formulation for ST is as follows:

Minimize

∑
𝑢𝑣∈𝐸

𝑐 (𝑢, 𝑣) · 𝑥𝑢𝑣

subject to

∑
𝑢𝑣∈𝛿 (𝑆)

𝑥𝑢𝑣 ≥ 1 ∀𝑆 ⊂ 𝑉 ; 𝑆 ∩𝑇 ≠ ∅; 𝑆 ∩𝑇 ≠ 𝑇

𝑥𝑢𝑣 ∈ {0, 1} ∀𝑢𝑣 ∈ 𝐸

The cut-based formulation generalizes to ℓ levels naturally. Let 𝑥𝑖𝑢𝑣 = 1 if edge 𝑢𝑣 is present on

level 𝑖 , and 0 otherwise. We constrain that the graph on level 𝑖 is a subgraph of the graph on level

𝑖 − 1 by requiring 𝑥𝑖𝑢𝑣 ≤ 𝑥𝑖−1𝑢𝑣 for all 2 ≤ 𝑖 ≤ ℓ and for all 𝑢𝑣 ∈ 𝐸. Then a cut-based formulation for

the MLST problem is as follows:

Minimize

ℓ∑
𝑖=1

∑
𝑢𝑣∈𝐸

𝑐 (𝑢, 𝑣) · 𝑥𝑖𝑢𝑣

subject to

∑
𝑢𝑣∈𝛿 (𝑆)

𝑥𝑖𝑢𝑣 ≥ 1 ∀𝑆 ∈ 𝑉 ; 𝑆 ∩𝑇 ≠ ∅,𝑇 ; 1 ≤ 𝑖 ≤ ℓ

𝑥𝑖𝑢𝑣 ≤ 𝑥𝑖−1𝑢𝑣 ∀𝑢𝑣 ∈ 𝐸; 2 ≤ 𝑖 ≤ ℓ

𝑥𝑖𝑢𝑣 ∈ {0, 1} ∀𝑢𝑣 ∈ 𝐸; 1 ≤ 𝑖 ≤ ℓ

The number of variables is 𝑂 (ℓ · |𝐸 |), however, the number of constraints is 𝑂 (ℓ · 2 |𝑉 |).

3.2 ILP Based on Multi-Commodity Flow
We recall here the well-known undirected flow formulation for ST [2, 18]. Let 𝑠 ∈ 𝑇 be a fixed

terminal node, the source. Given an edge 𝑢𝑣 ∈ 𝐸, the indicator variable 𝑥𝑢𝑣 equals 1 if the edge 𝑢𝑣
is present in the solution and 0 otherwise. This formulation sends |𝑇 | − 1 unit commodities from

the source 𝑠 to each terminal in 𝑇 − {𝑠}. The variable 𝑓 𝑝𝑢𝑣 denotes the (integer) flow from 𝑢 to 𝑣 of

commodity 𝑝 . A multi-commodity ILP formulation for ST is as follows:

Minimize

∑
𝑢𝑣∈𝐸

𝑐 (𝑢, 𝑣) · 𝑥𝑢𝑣

subject to

∑
𝑣𝑤∈𝐸

𝑓
𝑝
𝑣𝑤 −

∑
𝑢𝑣∈𝐸

𝑓
𝑝
𝑢𝑣 =


1 if 𝑣 = 𝑠

−1 if 𝑣 = 𝑝

0 otherwise

∀ 𝑣 ∈ 𝑉

0 ≤ 𝑓
𝑝
𝑢𝑣 ≤ 1 ∀𝑢𝑣 ∈ 𝐸

0 ≤ 𝑓
𝑝
𝑣𝑢 ≤ 1 ∀𝑢𝑣 ∈ 𝐸
𝑥𝑢𝑣 ∈ {0, 1} ∀𝑢𝑣 ∈ 𝐸

To generalize to the MLST problem, we add the linking constraints (𝑥𝑖𝑢𝑣 ≤ 𝑥𝑖−1𝑢𝑣 as before) and

enforce the flow constraints on levels 1, . . . , ℓ .
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3.3 ILP Based on Single-Commodity Flow
ST can also be formulated using a single commodity flow, instead of multiple commodities. Here,

we will assume the input graph is directed, by replacing each edge 𝑢𝑣 with directed edges (𝑢, 𝑣)
and (𝑣,𝑢) of the same cost. As before, 𝑓𝑢𝑣 denotes the flow from 𝑢 to 𝑣 :

Minimize

∑
(𝑢,𝑣) ∈𝐸

𝑐 (𝑢, 𝑣) · 𝑥𝑢𝑣

subject to

∑
(𝑣,𝑤) ∈𝐸

𝑓𝑣𝑤 −
∑

(𝑢,𝑣) ∈𝐸
𝑓𝑢𝑣 =


|𝑇 | − 1 if 𝑣 = 𝑠

−1 if 𝑣 ∈ 𝑇 \ {𝑠}
0 otherwise

∀ 𝑣 ∈ 𝑉

0 ≤ 𝑓𝑢𝑣 ≤ (|𝑇 | − 1) · 𝑥𝑢𝑣 ∀ (𝑢, 𝑣) ∈ 𝐸
𝑥𝑢𝑣 ∈ {0, 1} ∀ (𝑢, 𝑣) ∈ 𝐸

To generalize to multiple levels, we add the linking constraints 𝑥𝑖𝑢𝑣 ≥ 𝑥𝑖−1𝑢𝑣 as before. Let 𝑓 𝑖𝑢𝑣 denote

the integer flow along edge (𝑢, 𝑣) on level 𝑖 . Let 𝑠 ∈ 𝑇ℓ be a source terminal on the top level𝑇ℓ . Then

the MLST problem can be formulated using single-commodity flows on each level:

Minimize

ℓ∑
𝑖=1

∑
(𝑢,𝑣) ∈𝐸

𝑐 (𝑢, 𝑣)𝑥𝑖𝑢𝑣

subject to

∑
(𝑣,𝑤) ∈𝐸

𝑓 𝑖𝑣𝑤 −
∑

(𝑢,𝑣) ∈𝐸
𝑓 𝑖𝑢𝑣 =


|𝑇𝑖 | − 1 if 𝑣 = 𝑠

−1 if 𝑣 ∈ 𝑇𝑖 \ {𝑠}
0 else

∀ 𝑣 ∈ 𝑉 ; 1 ≤ 𝑖 ≤ ℓ

𝑥𝑖𝑢𝑣 ≥ 𝑥𝑖−1𝑢𝑣 ∀ (𝑢, 𝑣) ∈ 𝐸; 2 ≤ 𝑖 ≤ ℓ

0 ≤ 𝑓 𝑖𝑢𝑣 ≤ (|𝑇𝑖 | − 1) · 𝑥𝑖𝑢𝑣 ∀ (𝑢, 𝑣) ∈ 𝐸; 1 ≤ 𝑖 ≤ ℓ

𝑥𝑖𝑢𝑣 ∈ {0, 1} ∀ (𝑢, 𝑣) ∈ 𝐸; 1 ≤ 𝑖 ≤ ℓ

The number of variables is 𝑂 (ℓ |𝐸 |) and the number of constraints is 𝑂 (ℓ ( |𝐸 | + |𝑉 |)). In Section 3.4,

we reduce the number of variables and constraints to 𝑂 ( |𝐸 |) and 𝑂 ( |𝐸 | + |𝑉 |), respectively.

3.4 A Smaller ILP Based on Single-Commodity Flow
We can simplify the flow-based ILP in Section 3.3 so that the number of variables is 𝑂 ( |𝐸 |) and the

number of constraints is𝑂 ( |𝐸 | + |𝑉 |). This is done by only enforcing the single-commodity flow on

the bottom level. Let 𝐿(𝑣) denote the highest level that 𝑣 is a terminal in, i.e., if 𝑣 ∈ 𝑇𝑖 and 𝑣 ∉ 𝑇𝑖+1,
then 𝐿(𝑣) = 𝑖 . If 𝑣 ∉ 𝑇1, then 𝐿(𝑣) = 0. For each directed edge (𝑢, 𝑣) ∈ 𝐸, let 𝑥𝑢𝑣 = 1 if (𝑢, 𝑣) appears
on the bottom level (level 1) in the solution, and 𝑥𝑢𝑣 = 0 otherwise. Let 𝑦𝑢𝑣 denote the highest level

that (𝑢, 𝑣) appears in, i.e., 𝑦𝑢𝑣 = 𝑖 if (𝑢, 𝑣) is present on level 𝑖 but not on level 𝑖 + 1, and 𝑦𝑢𝑣 = 0

if (𝑢, 𝑣) is not present anywhere. The variables 𝑦𝑢𝑣 indicate the number of times we pay the cost

of edge (𝑢, 𝑣) in the solution. Let 𝑁 (𝑣) = {𝑢 ∈ 𝑉 | (𝑢, 𝑣) ∈ 𝐸} denote the neighborhood of 𝑣 . As

in Section 3.3, let 𝑓𝑢𝑣 denote the flow along directed edge (𝑢, 𝑣), and let 𝑠 ∈ 𝑇ℓ be the source. A
reduced ILP formulation is as follows:
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Multi-Level Steiner Trees 15

Minimize

∑
𝑢𝑣∈𝐸

𝑐 (𝑢, 𝑣) (𝑦𝑢𝑣 + 𝑦𝑣𝑢) (3.1)

subject to

∑
(𝑣,𝑤) ∈𝐸

𝑓𝑣𝑤 −
∑

(𝑢,𝑣) ∈𝐸
𝑓𝑢𝑣 =


|𝑇1 | − 1 𝑣 = 𝑠

−1 𝑣 ∈ 𝑇1 − {𝑠}
0 otherwise

∀𝑣 ∈ 𝑉 (3.2)

0 ≤ 𝑓𝑢𝑣 ≤ (|𝑇1 | − 1)𝑥𝑢𝑣 ∀𝑢𝑣 ∈ 𝐸 (3.3)∑
𝑢∈𝑁 (𝑣)

𝑥𝑢𝑣 ≤ 1 ∀𝑣 ∈ 𝑉 (3.4)

𝑥𝑢𝑣 ≤ 𝑦𝑢𝑣 ≤ ℓ𝑥𝑢𝑣 ∀𝑢𝑣 ∈ 𝐸 (3.5)∑
𝑢∈𝑁 (𝑣)−{𝑤 }

𝑦𝑢𝑣 ≥ 𝑦𝑣𝑤 ∀𝑣𝑤 ∈ 𝐸, 𝑣 ≠ 𝑠 (3.6)∑
𝑢∈𝑁 (𝑣)

𝑦𝑢𝑣 ≥ 𝐿(𝑣) ∀𝑣 ∈ 𝑇1 − {𝑠} (3.7)

𝑥𝑢𝑣 ∈ {0, 1} ∀𝑢𝑣 ∈ 𝐸 (3.8)

Constraints (3.2) and (3.3) are the same as before, but we only enforce the flow constraint on the

bottom level (level 1).

Constraint (3.4) enforces that each vertex has at most one incoming edge in the solution.

The combination of constraints (3.2) and (3.3) ensures that if (𝑣,𝑤) is an edge in the solution,

and 𝑣 is not the root, then there is some 𝑢 ≠ 𝑤 for which (𝑢, 𝑣) is an edge in the solution. Combined

with constraint (3.4), this implies that 𝑣 has exactly one incoming edge, and it is not the edge (𝑤, 𝑣).
Constraint (3.5) ensures that if 𝑥𝑢𝑣 = 0, then we do not incur cost for edge (𝑢, 𝑣), and so 𝑦𝑢𝑣 = 0.

Otherwise, if 𝑥𝑢𝑣 = 1, then we pay for edge (𝑢, 𝑣) between 1 and ℓ times, or 1 ≤ 𝑦𝑢𝑣 ≤ ℓ .

Constraint (3.6) ensures that if edge (𝑣,𝑤) appears on levels 1, . . . , 𝑖 (i.e., 𝑦𝑢𝑣 = 𝑖), and 𝑣 is not the

root, then the sum over all neighbors 𝑢 of 𝑣 (other than𝑤 ) of 𝑦𝑢𝑣 is at least 𝑖 . As 𝑣 has exactly one

incoming edge (𝑢, 𝑣) and 𝑢 ≠ 𝑤 , constraint (3.6) combined with constraints (3.4) and (3.5) together

imply that 𝑣 has exactly one incoming edge, and its level is greater than or equal to 𝑦𝑣𝑤 .

Constraint (3.7) ensures that if 𝑣 is any terminal besides the root, then the sum over all neighbors

𝑢 of 𝑦𝑢𝑣 is at least its level, 𝐿(𝑣). Combined with constraints (3.4) and (3.5), this implies that every

non-root terminal has exactly one incoming edge that appears on at least 𝐿(𝑣) levels.
Constraint (3.8) ensures that all 𝑥𝑢𝑣 variables are binary, which implies 0 ≤ 𝑦𝑢𝑣 ≤ ℓ for all

variables 𝑦𝑢𝑣 . Given a solution to the above ILP, the graph 𝐺1 is such that 𝑢𝑣 ∈ 𝐺1 if 𝑥𝑢𝑣 = 1 or

𝑥𝑣𝑢 = 1. More generally, 𝑢𝑣 ∈ 𝐺𝑖 if 𝑦𝑢𝑣 ≥ 𝑖 or 𝑦𝑣𝑢 ≥ 𝑖 .

Lemma 3.1. In the optimal solution to the above ILP, the graph 𝐺1 = (𝑉 , 𝐸1) with 𝐸1 = {𝑢𝑣 ∈ 𝐸 |
𝑥𝑢𝑣 = 1 or 𝑥𝑣𝑢 = 1} is a Steiner tree spanning the terminals in 𝑇1.

Proof. We show that (i)𝐺1 contains no cycle, (ii) there exists a path in 𝐺1 from the source 𝑠 to

every terminal 𝑣 ∈ 𝑇1, and (iii) 𝐺1 is connected.

(i) Assume otherwise that 𝐺1 contains a cycle 𝐶 . Such a cycle contains directed edges oriented

in the same direction; otherwise, there exist vertices 𝑢, 𝑣 ,𝑤 along the cycle such that 𝑥𝑢𝑣 =

𝑥𝑤𝑣 = 1, which violates (3.4). Additionally, such a cycle cannot have any “incoming” edges

(edges (𝑢, 𝑣) where 𝑢 ∉ 𝐶 and 𝑣 ∈ 𝐶), as this violates (3.4) as well.
If 𝐶 contains 𝑠 , then removing its preceding edge (𝑣, 𝑠) and reducing all flows on 𝐶 by 𝑓𝑣𝑠
yields a feasible solution with lower cost, contradicting optimality. If 𝐶 does not contain 𝑠 ,
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but contains some terminal 𝑣 ∈ 𝑇1, then since there are no incoming edges into 𝐶 , we cannot

satisfy the flow constraint on 𝑣 . If 𝐶 contains no terminal, then removing 𝐶 along with its

edge flows gives a solution with lower cost.

(ii) Consider an arbitrary terminal 𝑣 ∈ 𝑇1 with 𝑣 ≠ 𝑠 . Then using previous arguments, 𝑣 has

exactly one incoming edge (𝑢, 𝑣) (whose level is at least 𝐿(𝑣)). If𝑢 = 𝑠 , we are done. Otherwise,

we continue this process until we reach the source 𝑠 . Note that continuing this process does

not revisit a vertex, as 𝐺1 contains no cycle.

(iii) Since there exists a directed path from 𝑠 to each terminal 𝑣 ∈ 𝑇1, then all terminals are in

the same connected component in 𝐺1. If there exist other connected components in 𝐺1, then

removing them and setting flows to zero yields a solution with lower cost.

□

Lemma 3.2. In the optimal solution to the above ILP, the graph 𝐺𝑖 = (𝑉 , 𝐸𝑖 ) with 𝐸𝑖 = {𝑢𝑣 ∈ 𝐸 |
𝑦𝑢𝑣 ≥ 𝑖 or 𝑦𝑣𝑢 ≥ 𝑖} is a Steiner tree spanning all terminals 𝑇𝑖 .

Proof. The graph 𝐺𝑖 is necessarily a subgraph of 𝐺1, since 𝑦𝑢𝑣 ≥ 𝑖 or 𝑦𝑣𝑢 ≥ 𝑖 implies 𝑥𝑢𝑣 ≥ 1

or 𝑥𝑣𝑢 ≥ 1 by (3.5). Consider some terminal 𝑣 ∈ 𝑇𝑖 , 𝑣 ≠ 𝑠 . By constraint (3.7), there is exactly one

incoming edge (𝑢, 𝑣) to 𝑣 such that 𝑦𝑢𝑣 ≥ 𝐿(𝑣). Applying similar arguments using constraint (3.6),

we will eventually reach the root via a path, all of whose edges appear at least 𝐿(𝑣) times. □

Theorem 3.3. The optimal solution to the above ILP with cost OPT𝐼𝐿𝑃 yields the optimal MLST
solution.

Proof. The optimal MLST solution whose cost is OPT is a feasible solution to the ILP, as we

can set the 𝑥𝑢𝑣 , 𝑦𝑢𝑣 , and 𝑓𝑢𝑣 variables accordingly, so OPT𝐼𝐿𝑃 ≤ OPT. By Lemmas 3.1 and 3.2, the

optimal solution OPT𝐼𝐿𝑃 gives a feasible solution to the MLST problem, so OPT ≤ OPT𝐼𝐿𝑃 . Then

OPT = OPT𝐼𝐿𝑃 . □

The number of flow variables is 2|𝐸 | (where |𝐸 | is the number of edges in the input graph), and

the total number of variables is 𝑂 ( |𝐸 |). The number of flow constraints is 𝑂 ( |𝑉 |) and the total

number of constraints is𝑂 ( |𝑉 | + |𝐸 |). Additionally, the integrality constraints on the flow variables

𝑓𝑢𝑣 as well as the variables 𝑦𝑢𝑣 may be dropped without affecting the optimal solution.

4 EXPERIMENTAL RESULTS

Graph Data Synthesis. The graphs we used in our experiment are synthesized from graph

generation models. In particular, we used three random network generation models: Erdős–Renyi

(ER) [10], Watts–Strogatz (WS) [21], and Barabási–Albert (BA) [3]. These networks are very well

studied in the literature [17].

The Erdős–Renyi model, ER(𝑛, 𝑝), assigns an edge to every possible pair among 𝑛 = |𝑉 | vertices
with probability 𝑝 , independently of other edges. It is well-known that an instance of ER(𝑛, 𝑝) with
𝑝 = (1+𝜀) ln𝑛

𝑛
is almost surely connected for 𝜀 > 0 [10]. For our experiment, 𝑛 = 50, 100, 150, . . . , 500,

and 𝜀 = 1.

The Watts–Strogatz model, WS(𝑛, 𝐾, 𝛽), initially creates a ring lattice of constant degree 𝐾 , and

then rewires each edge with probability 0 ≤ 𝛽 ≤ 1 while avoiding self-loops or duplicate edges.

Interestingly, the Watts–Strogatz model generates graphs that have the small-world property while

having high clustering coefficient [21]. In our experiment, the values of 𝐾 and 𝛽 are equal to 6 and

0.2 respectively.

The Barabási–Albert model, BA(𝑚0,𝑚), uses a preferential attachment mechanism to generate a

growing scale-free network. The model starts with a graph of𝑚0 vertices. Then, each new vertex

connects to𝑚 ≤ 𝑚0 existing nodes with probability proportional to its instantaneous degree. The
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BA model generates networks with power-law degree distribution, i.e., few vertices become hubs

with extremely large degree [3]. This model is a network growth model. In our experiments, we

let the network grow until a desired network size 𝑛 is attained. We vary𝑚0 from 10 to 100 in our

experiments. We keep the value of𝑚 equal to 5.

For each generation model, we generate graphs on size |𝑉 | = 50, 100, 150, . . . , 500. On each graph

instance, we assign integer edge weights 𝑐 (𝑒) randomly and uniformly between 1 and 10 inclusive.

We only consider connected graphs in our experiment. Computational challenges of solving an ILP

limit the size of the graphs to a few hundred in practice.

Selection of Levels and Terminals. For each generated graph, we generated MLST instances

with ℓ = 2, 3, 4, 5 levels. We adopted two strategies for selecting the terminals on the ℓ levels: linear
vs. exponential. In the linear case, we select the terminals on each level by randomly sampling

⌊|𝑉 | · (ℓ − 𝑖 + 1)/(ℓ + 1)⌋ vertices on level 𝑖 so that the size of the terminal sets decreases linearly.

As the terminal sets are nested, 𝑇𝑖 can be selected by sampling from 𝑇𝑖−1 (or from 𝑉 if 𝑖 = 1). In the

exponential case, we select the terminals on each level by randomly sampling ⌊|𝑉 |/2ℓ−𝑖+1⌋ vertices
so that the size of the terminal sets decreases exponentially by a factor of 2.

To summarize, a single instance of an input to the MLST problem is characterized by four

parameters: network generation model NGM ∈ {ER,WS,BA}, number of vertices |𝑉 |, number of

levels ℓ , and the terminal selection method TSM ∈ {Linear,Exponential}. Since each instance of

the experiment setup involves randomness at different steps, we generated 5 instances for every

choice of parameters (e.g., WS, |𝑉 | = 100, ℓ = 5, Linear).

Algorithms and Outputs.We implemented the bottom-up, top-down, and composite heuristics

described in Section 2.

For evaluating the heuristics, we also implemented all ILPs described in Section 3 using CPLEX

12.6.2 as an ILP solver. The ILP described in Section 3.4 works very well in practice. Hence, we

have used this ILP for our experiment. The model of the HPC system we used for our experiment

is Lenovo NeXtScale nx360 M5. It is a distributed system; the models of the processors in this HPC

are Xeon Haswell E5-2695 Dual 14-core and Xeon Broadwell E5-2695 Dual 14-core. The speed of a

processor is 2.3 GHz. There are 400 nodes each having 28 cores. Each node has 192 GB memory.

The operating system is CentOS 6.10.

For each instance of the MLST problem, we compute the costs of the MLST from the ILP solution

(OPT), the bottom-up solution (BOT), the top-down solution (TOP), the quality-of-service solution

(QoS) from [7], the composite heuristic (CMP), and the guaranteed performance heuristic (CMP(Q∗)
where Q∗

is chosen suitably). The four heuristics involve a (single-level) ST subroutine; we used

both the 2-approximation algorithm of Gilbert and Pollak [11], as well as the flow formulation

described in Section 3.4 which solves ST optimally. The purpose of this is to assess whether solving

ST optimally significantly improves the approximation ratio.

After completing the experiment, we compared the results of the heuristics with exact solutions.

We show the performance ratio for each heuristic (defined as the heuristic cost divided by OPT), and

how the ratio depends on the experiment parameters (number of levels ℓ , terminal selection method,

number of vertices |𝑉 |). We record the number of ST computations involved for the guaranteed

performance heuristic (CMP(Q∗)) (note that this equals ℓ + |Q∗ |). Finally, we discuss the running
time of the ILP we have used in our experiment. All box plots shown below show the minimum,

interquartile range (IQR) and maximum, aggregated over all instances using the parameter being

compared.
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(a) Barabási–Albert (b) Erdős–Rényi (c) Watts–Strogatz

Fig. 6. Performance of BOT, TOP, QoS, CMP, and CMP(Q∗) w.r.t. the number ℓ of levels using the 2-

approximation for ST as a subroutine. Note that the range of the 𝑌 -axis is not the same for all plots in

the row.

(a) Barabási–Albert (b) Erdős–Rényi (c) Watts–Strogatz

Fig. 7. Performance of BOT, TOP, QoS, CMP, and CMP(Q∗) w.r.t. the terminal selection method using the

2-approximation for ST as a subroutine. Note that the range of the 𝑌 -axis is not the same for all plots in the

row.

Results.We found that the four heuristics perform very well in practice using the 2-approximation

algorithm as a (single-level) ST subroutine, and that using an exact ST subroutine did not signifi-

cantly improve performance. Hence, we only discuss the results that use the 2-approximation as a

subroutine.

Figure 6 shows the performance of the four heuristics compared with the optimal solution as a

function of ℓ . As expected, the performance of the heuristics gets slightly worse as ℓ increases. The

bottom-up approach had the worst performance, while the composite heuristic performed very

well in practice.

Figure 7 shows the performance of the four heuristics compared with the optimal solution as a

function of terminal selection, either linear or exponential. Overall, the heuristics performed

slightly worse when the sizes of the terminal sets decrease exponentially.

Figures 8 through 10 show the performance of the heuristics compared with the optimal solution,

as a function of the number of vertices |𝑉 |. The minimum, average, and maximum values for “Ratio”

are aggregated over all instances of |𝑉 | vertices (terminal selection, number of levels ℓ , 5 instances

for each). Due to space, we omit the bottom-up (BU) heuristic here, which tends to be comparable

or slightly worse in performance than the top-down (TD) heuristic. Again, the composite (CMP)

has the best ratio as it selects the best over all 2
ℓ−1

possible solutions; top-down and CMP(Q∗)
were comparable.
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(a) Top-down (b) Composite (c) CMP(Q∗)

Fig. 8. Performance of TOP, CMP, and CMP(Q∗) on Erdős–Rényi graphs using the 2-approximation for ST

as a subroutine.

(a) Top-down (b) Composite (c) CMP(Q∗)

Fig. 9. Performance of TOP, CMP, and CMP(Q∗) on Watts–Strogatz graphs.

(a) Top-down (b) Composite (c) CMP(Q∗)

Fig. 10. Performance of TOP, CMP, and CMP(Q∗) on Barabási–Albert graphs using the 2-approximation for

ST as a subroutine.

The most time consuming part of this experiment was calculating the exact solutions of all MLST

instances. It took 88.64 hours to compute all exact solutions. The computation time for network

models ER, WS, and BA were 73.8, 7.84 and 7 hours respectively. Figure 11 shows the time taken to

compute the exact solutions (with cost OPT), as a function of the number of levels ℓ . As expected,

the running time of the heuristics gets worse as ℓ increases. Note that the 𝑦-axes of the graphs in

these figures have different scales for different network models. The Erdős–Rényi network model

had the highest running time in the worst case.
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(a) Barabási–Albert (b) Erdős–Rényi (c) Watts–Strogatz

Fig. 11. Experimental running times for computing exact solutions w.r.t. the number ℓ of levels, aggregated

over all instances with ℓ levels.

(a) Barabási–Albert (b) Erdős–Rényi (c) Watts–Strogatz

Fig. 12. Experimental running times for computing exact solutions w.r.t. the terminal selection method,

aggregated over all instances with Linear or Exponential terminal selection.

(a) Barabási–Albert (b) Erdős–Rényi (c) Watts–Strogatz

Fig. 13. Experimental running times for computing exact solutions w.r.t. the graph size |𝑉 |, aggregated over

all instances of |𝑉 | vertices.

Figure 12 shows the time taken to compute the exact solutions, as a function of the terminal

selection method, either linear or exponential. Overall, the running times are slightly worse

when the size of the terminal sets decreases exponentially, especially in the worst case.

Figure 13 shows the time taken to compute the exact solutions, for each of the network models

BA, ER, WS, as a function of the number of vertices |𝑉 |. Since several instances share the same

network size, we show minimum, mean, and maximum values. Note that the 𝑦-axes of the graphs

in these figures have different scales for different network models. As expected, the running time

slightly deteriorated as |𝑉 | increased, especially in the worst case.
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Fig. 14. A multi-level view of UAMap. At the top level, the main topics are shown. More details view can be

seen in terms of subtopics by zooming in at bottom levels.

One motivation for the MLST problem is the visualization of large networks. We have used

the algorithms described in this paper on a real-world network, originating from a visualization

project called UAMap. The underlying data for UAMap is obtained from Google Scholar academic

research profiles and is used to create a weighted research topic graph. The vertices of the graph

correspond to self-reported research topics and the edges indicate co-occurring topics in the profiles.

The system supports map-based interactive features, including semantic zooming, panning, and

searching [5]; see Figure 14. The graph contains 5,947 vertices and 26,695 edges. There are eight

levels determined by the popularity of the corresponding research topics. We have run BOT, TOP,

and CMP on this graph using the 2-approximation algorithm as a (single-level) ST subroutine. The

total cost of BOT, TOP, and CMP is 1702.14, 1701.31, and 1700.66 respectively.

5 CONCLUSIONS
We presented several heuristics for the MLST problem and analyzed them both theoretically and

experimentally. All the software (new heusritcs, approximation algorithms, ILP solvers, experimen-

tal data and analysis) are available online https://github.com/abureyanahmed/multi_level_steiner_

trees.

The heuristics in this article rely on single level ST subroutines. The composite heuristic CMP

achieves the best approximation ratio, as it is the minimum of all possible combinations of single

level ST computations. Importantly, we showed that CMP(Q∗) guarantees the same approximation

ratio that CMP can provide, using 𝑂 (ℓ) rather than 𝑂 (2ℓ−1ℓ) ST computations. One important

question is to consider whether it is possible to directly approximate the MLST problem, without

the use of multiple single level ST subroutines, and whether it is possible to do better than the CMP

approximation ratio. Further, it is natural to study whether there are stronger inapproximability

results for the MLST problem, compared to the standard ST problem.
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Another interesting open problem is whether the approximation ratios 𝑡ℓ (Section 2.2) are tight

for any ℓ , and whether the output y from the LP formulation can help in designing worst-case

examples. In particular, even though we have computed the approximation ratio for up to ℓ = 100

levels, it remains to determine the limit limℓ→∞ 𝑡ℓ .
As a final remark, even though our investigation focused on the MLST problem, much of the

analysis does not depend on the fact that we computed Steiner trees, but only that the computed

graphs were nested. We thus wonder whether it is possible to generalize our results to other

“sparsifiers” (e.g., node-weighted Steiner trees, graph 𝑡-spanners).
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