Drawing Graphs on Few Circles and Few Spheres

Myroslav Kryven¹ Alexander Ravsky² Alexander Wolff¹

¹Lehrstuhl für Informatik I, Universität Würzburg, Germany

²IAPMM, National Academy of Sciences of Ukraine, Lviv

without edge crossings on as few spheres as possible.

Sphere Covers

book-thickness(G)/2 \leq sphere-cover-number(G) \leq thickness(*G*)

Proposition: Any *n*-vertex graph *G* has sphere cover number O(n).

G = (V, E)	V	E	F	segment number	line cover number	arc number	circle cover number
tetrahedron	4	6	4	6	6	3	3
cube	8	12	6	7	7	4	4
octahedron	6	12	8	9	9	3	3
dodecahedron	20	30	12	13	910	10	5
icosahedron	12	30	20	15	1315	7	7

Optimal Drawings of the Platonic Solids

Upper bounds – follow from the drawings below.

Optimal sphere cover of K_5

Lower bounds

Segment number: Using an ILP, we find a locally consistent angle assignment with maximum number of 180°-angles.

Line cover number:

We use the number of nested cycles and the *internal de*gree of the outer face.

Circle cover number:

We argue via the minimum number of circular arcs to cover the intersection points.

https://arxiv.org/abs/1709.06965

× 0 3 θ 5 5 +

Line cover vs. circle cover

Is there a family of planar graphs whose circle cover number grows asymptotically more slowly than their line cover number?

