Drawing Graphs on Few Circles and Few Spheres

Myroslav Kryven ${ }^{1} \quad$ Alexander Ravsky ${ }^{2} \quad$ Alexander Wolff ${ }^{1}$
${ }^{1}$ Lehrstuhl für Informatik I, Universität Würzburg, Germany $\quad{ }^{2}$ IAPMM, National Academy of Sciences of Ukraine, Lviv

Given a planar graph G,

Optimal Drawings of the Platonic Solids

$G=(V, E)$	$\|V\|$	$\|E\|$	$\|F\|$	segment number	line cover number	arc number	circle cover number
tetrahedron	4	6	4	6	6	3	3
cube	8	12	6	7	7	4	4
octahedron	6	12	8	9	9	3	3
dodecahedron	20	30	12	13	$9 \ldots 10$	10	5
icosahedron	12	30	20	15	$13 \ldots 15$	7	7

Upper bounds - follow from the drawings below.

Platonic solids:
(Near-) optimal line covers with min. number of segments:

Optimal
circle covers with minimum number of arcs:

Lower bounds

Segment number:
Using an ILP, we find a locally consistent angle assignment with maximum number of 180°-angles.

Line cover number: We use the number of nested cycles and the internal degree of the outer face.

Circle cover number: We argue via the minimum number of circular arcs to cover the intersection points.

Given a (non-planar) graph G,

find a circular-arc drawing without edge crossings on as few spheres as possible.

Sphere Covers

book-thickness(G)/2
\leq sphere-cover-number (G)
\leq thickness (G)
\&
thickness $\left(K_{n}\right) \approx \frac{n+7}{6}$
\Downarrow

Proposition:

Any n-vertex graph G has sphere cover number $O(n)$.

Optimal sphere cover of K_{5}

https://arxiv.org/abs/1709.06965

Line cover vs. circle cover

Is there a family of planar graphs whose circle cover number grows asymptotically more slowly than their line cover number?

Size of circle cover

vs. angular resolution

