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Abstract
Level Planarity asks for a planar drawing of a graph G on horizontal lines called
levels under the constraint that each vertex can only be drawn on a specific level, also
called a level-planar drawing of G.
In the problem Partial Level Planarity (PLP) we are additionally given a level-

planar partial drawing H of a subgraph H of G and want to know whether it is possible
to find a level-planar drawing of G which coincides with H on H. Constrained Level
Planarity (CLP) adds further restrictions via a set of constraints on the order of
some of the vertices and asks whether it is possible to find a level-planar drawing of
G such that all constraints are fulfilled. For all of these versions we can formulate
a Radial counterpart, in which the vertices are not assigned onto levels but nested
circles. While (Radial) Level Planarity can be solved in polynomial time [BR21],
deciding (Radial) PLP and (Radial) CLP is NP hard [BR17].
In this thesis we investigate the parameterized complexity of Constrained and Par-

tial Level Planarity for several parameters. Using that PLP is NP-hard even for
seven levels [BR22a] and that every graph which can be drawn planar onto h levels has
at most pathwidth h [DFK+08], we show that it is impossible to find an FPT algorithm
for any of the problems (Radial) PLP/CLP parameterized by the number of levels,
pathwidth or treewidth. We further demonstrate that it is possible to solve CLP and
(Radial) PLP for two levels in polynomial time and present an algorithm accomplish-
ing this. In contrast to that, we prove that Radial CLP is NP-hard even for one level.
We then give a reduction from 3-Partition to CLP with four levels, and show how
a reduction from Brückner and Rutter [BR22a] from 3-Partition to PLP with seven
levels can be adapted to Radial PLP with six levels, showing that these numbers are
an upper bound for the number of levels needed for these problems to be NP-hard.

For the restricted case of a proper input instance, i.e., every edge connects vertices
on adjacent levels, we show that we can solve CLP and PLP with an FPT algorithm
parameterized by the vertex cover number of the input graph.
We then describe an expansion technique with which we can reduce PLP to PLP

with exactly one vertex per level, and CLP to CLP with at most two vertices and
one constraint per level, showing that there can neither exist an FPT algorithm for
PLP or CLP parameterized by the maximal number of vertices per level, nor an FPT
algorithm for (Proper) CLP parameterized by the maximal number of constraints per
level. However, for the restricted problems Proper CLP and Proper PLP we present
an FPT algorithm parameterized by the number of vertices per level.
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Zusammenfassung

In dem Problem Level Planarity bekommen wir einen Graphen G übergeben, in dem
jeder Knoten einem Level zugewiesen ist, und wir wollen wissen, ob wir diesen Graphen
levelplanar zeichnen können, also so, dass die Zeichnung planar ist und jeder Knoten auf
einer zu seinem Level gehörigen horizontalen Linie liegt.
In dem Problem Partial Level Planarity (PLP) bekommen wir zusätzlich noch

eine levelplanare partielle Zeichnung H von einem Teilgraphen H von G gegeben, und
wollen wissen, ob es möglich ist eine levelplanare Zeichnung von G zu finden, die auf H
mit H übereinstimmt. In dem Problem Constrained Level Planarity (CLP) erhal-
ten wir zusätzlich eine Menge an Beschränkungen, die eine partielle Ordnung für Knoten
auf jeweils einem Level beschreibt, und wollen wissen, ob es eine levelplanare Zeichnung
von G gibt, in der alle diese Beschränkungen erfüllt sind. Für beide Versionen von Level
Planarity können wir eine entsprechende radiale Variante formulieren, in der die Kno-
ten nicht horizontalen Leveln, sondern ineinander verschachtelten Kreisen zugewiesen
werden. Während (Radial) Level Planarity in Polynomialzeit gelöst werden kann
[BR21], ist es NP-schwer (Radial) PLP und (Radial) CLP zu entscheiden [BR17].
In dieser Arbeit untersuchen wir die parametrisierte Komplexität von Constrained

und Partial Level Planarity für verschiedene Parameter. Indem wir ausnutzen, dass
PLP mit sieben Leveln NP-schwer ist [BR22a], und dass jeder Graph, der planar auf h
Leveln gezeichnet werden kann höchstens Pfadweite h hat [DFK+08], zeigen wir, dass es
nicht möglich ist, einen FPT-Algorithmus für eines der Probleme (Radial) PLP/CLP
parametrisiert nach der Anzahl der Level, Pfadweite oder Baumweite zu finden. Wei-
terhin zeigen wir, dass es es möglich ist, CLP und (Radial) PLP für zwei Level in
Polynomialzeit zu lösen. Im Gegensatz dazu beweisen wir, dass Radial CLP bereits ab
einem Level NP-schwer ist. Dann präsentieren wir eine Reduktion von 3-Partition auf
CLP mit vier Leveln. Darüber hinaus beschreiben wir, wie eine Reduktion von Brück-
ner und Rutter [BR22a] von 3-Partition nach PLP mit sieben Leveln auf Radial
PLP mit sechs Leveln angepasst werden kann. Diese Werte sind also obere Schranken
für die Anzahl an Leveln sind, die benötigt werden, damit die entsprechenden Probleme
NP-schwer werden.

Für den eingeschränkten Fall, dass der Eingabegraph proper ist (also dass jede Kante
Knoten verbindet, die auf benachbarten Leveln liegen), zeigen wir, dass CLP und PLP
mit einem FPT-Algorithmus parametrisiert nach der Knotenüberdeckungszahl des Ein-
gabegraphen gelöst werden kann.

Wir beschreiben anschließend ein Ausdehnungsverfahren, mithilfe dessen wir PLP
zu PLP mit genau einem Knoten pro Level, und CLP zu CLP mit höchstens zwei
Knoten pro Level und höchstens einer Beschränkung pro Level reduzieren können. Damit
beweisen wir, dass weder ein FPT-Algorithmus für PLP oder CLP parametrisiert nach
der maximalen Anzahl an Knoten pro Level, noch ein FPT-Algorithmus für (Proper)
CLP parametrisiert nach der maximalen Anzahl an Beschränkungen pro Level existieren
kann. Für den eingeschränkten Fall Proper CLP und Proper PLP präsentieren wir
jedoch einen FPT Algorithmus parametrisiert nach der maximalen Anzahl an Knoten
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pro Level.
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1 Introduction
Visualizing hierarchical data is ubiquitous in many areas such as network visualization,
marketing, business analytics and engineering. Often, this hierarchy is best represented
in a top-down fashion to make the order of the data clear and understandable. It can be
phrased as the problem of drawing so called level graphs. Since crossings in a drawing
greatly impact clarity and readability of visualized data, it is desirable to devise crossing
free drawings of this data. The question whether a given level graph can be drawn in a
level-planar way arises naturally. Since specific data might contain additional structure
besides the levels it is reasonable to require a drawing to fulfil a few additional properties.
Such requirements can be represented in various forms. In this work we will consider
two of them. The first one aims to expand a given partial drawing of a subgraph, the
other one has its restrictions given in the form of a partial order on the set of vertices.

1.1 Related work
Level Planarity asks for a planar drawing of a graph G on horizontal lines called
levels under the constraint that each vertex can only be drawn on a specific level, also
called a level-planar drawing of G. Di Battista and Nardelli showed that the problem can
be solved in polynomial time if G has only one source [DN88a]. Jünger et al. [JLM98]
gave a linear-time recognition algorithm for the general case, which was refined to also
compute an embedding within the same running time by Jünger and Leipert [JL99].

Radial Level Planarity augments Level Planarity in such a way that the ver-
tices are not assigned to levels but to nested circles. Bachmaier et al. [BBF04] presented
a linear-time testing and embedding algorithm for Radial Level Planarity. Brück-
ner and Rutter [BR22b] described another approach for a linear time algorithm solving
(Radial) Level Planarity, while pointing out some critical gaps in the preceding
linear-time results and providing a detailed survey of previous work on the subject. They
also developed a linear time algorithm for testing (Radial) Level Planarity with a
fixed embedding [BR21].
Various versions of Level Planarity with additional restrictions have also been

considered. Harrigan and Healy [HH08] gave an algorithm with quadratic running time
for Level Planarity, in which constraints on the order of incident edges around the
vertices could be given. Angelini et al. [ADD+15] considered two restricted versions
called t-Level Planarity and Clustered Level Planarity, and showed that both
problems are NP-complete in the general case, but become solvable in polynomial time
if the input is required to be proper (i.e., every edge connects vertices on adjacent levels).
Brückner and Rutter [BR17] introduced Constrained Level Planarity, in which a
partial order on the set of vertices is given, and Partial Level Planarity, in which
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the drawing of a subgraph is fixed. They showed that in the general case, both problems
are NP-hard, but are solvable in polynomial time with only one source. Later, Brückner
and Rutter [BR22a] offered another NP-hardness proof for both problems, in which it
is shown that the problems are already NP-hard with only seven levels.

There also exists a variety of problems similar to Level Planarity, for which FPT
algorithms have been found.
In Upward Planarity we are given an acyclic digraph G and ask for a planar

drawing of G in which every edge is drawn strictly upward. Garg and Tamassia [GT01]
showed that Upward Planarity is NP-hard via reduction of a variant of 3-SAT. Chan
[Cha04] presented the first FPT algorithm for Upward Planarity. His algorithm has
a running time of O(t!8tn(G)3 + 23·2l

t3·2l
t!8t), where k is the number of triconnected

components, and l the number of cut vertices. Healy and Lynch [HL06] gave two further
FPT algorithms, one with a running time of O(2t · t! · n(G)2), where t again denotes
the number of triconnected components of the graph, and the other one with a running
time of O(n(G)2 + k4 · (2k)!), where k = |E| − |V |.

In the problem h-Layered Graph Drawing we are given a graph G, but no pre-
determined level assignment. The problems asks for a level drawing of G on h levels.
Heath and Rosenberg [HR92] showed that this problem is NP-hard. Dujmovic et al.
[DFK+08] proved that h-Layered Graph Drawing is in FPT parameterized by h.

1.2 Contribution
We introduce the problems Radial Partial Level Planarity and Radial Con-
strained Level Planarity and set them in relation to PLP and CLP, see Chapter
2. We are not aware of former work on these problems. We show that the problems
(Radial) PLP and (Radial) CLP are not in FPT parameterized by the number of
levels, pathwidth or treewidth, see Section 3.1. In a refined analysis on the number of
levels needed to achieve NP-hardness (see Section 3.2), we show that it is possible to
solve CLP and (Radial) PLP for two levels in polynomial time and present an algo-
rithm doing so. In contrast to that, we prove that Radial CLP is NP-hard even for one
level. We give a reduction from 3-Partition to CLP with four levels, and show how
a reduction from Brückner and Rutter [BR22a] from 3-Partition to PLP with seven
levels can be adjusted to Radial PLP with six levels, showing that these numbers are
upper bounds for the numbers of levels needed for these problems to be NP-hard.
For the restricted case of a proper input instance, we show that we can solve CLP and

PLP with an FPT algorithm parameterized by the vertex cover number of the input
graph, see Chapter 4.

We describe an expansion technique with which we can reduce PLP to PLP with
exactly one vertex per level, and CLP to CLP with at most two vertices and one
constraint per level, showing that there can neither exist an FPT algorithm for PLP or
CLP parameterized by the maximal number of vertices per level, nor an FPT algorithm
for (Proper) CLP parameterized by the maximum number of constraints per level. For
the restricted problems Proper CLP and Proper PLP, however, we present an FPT
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algorithm parameterized by the number of vertices per level, see Chapter 5.
Finally, we conclude and outline questions for future work in Chapter 6.
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2 Preliminaries
Before we can proceed to the main part of this work, we at first need some formal
definitions.

Definition 1 (General terms and conventions). Let G be a graph (or, in most cases in
this work, a digraph). We define V (G) to be the set of vertices and E(G) to be the set of
edges of G. Similarly we define n(G) = |V (G)| and m(G) = |E(G)| to be the number of
vertices and edges of G, respectively. As shorthand, we will use n, m if G is clear from
context.
For k ∈ N we define [k] = {1, 2 . . . , k} ⊂ N.

We can now state the problem this work focuses on.

Definition 2 (Level Planarity). Let G be a digraph together with a level assignment
` : V (G) → [h] such that `(u) ≤ `(v) for each edge (u, v) ∈ E(G). We say that G is an
h-level graph. Let further Vj(G) = `(j)−1 be the vertices of level j.
A drawing of G is called a level drawing if for every level j ∈ [h] all vertices v ∈ Vj(G)

are drawn on the same horizontal line, the line of level j lies below the line of level j′ if
and only if j > j′, and every edge e = (u, v) is drawn strictly downward (`(u) ≤ y(e) ≤
`(v)). We say a level drawing of G is a level-planar drawing if it is crossing-free, and G
is level-planar if it admits a level-planar drawing.
We say that a level graph G is proper if, for every edge e = (u, v) ∈ E(G), the incident

vertices lie on consecutive levels (that is, if `(v) = `(u) + 1).

As we can simply subdivide each edge spanning several levels with more vertices
without changing planar drawability, we can in most cases assume that our input instance
is proper. Figure 2.1 shows the drawing of a level graph before (Figure 2.1a) and after
(Figure 2.1b) subdividing all edges spanning over more than one level, and the graph
shown in Figure 2.1b is proper. In a level graph G every edge spans at most over n− 2
levels, and we can assume that our input instance is planar and thus has at most O(n(G))
edges. Hence, this properization step increases the size of G at most quadratically.
Since the direction of the edges is clear from context, we will from now on omit them

in drawings. If we want to implement some restrictions on the drawing of a level graph,
it is natural to define a partial order on the levels.

Definition 3 (Constrained Level Planarity (CLP)). Let G be an h-level graph.
Let further some constraints on the order of vertices in form of a partial order ≺j for
each level j ∈ [h] be given. In the problem Constrained Level Planarity (CLP)
we ask for a level-planar drawing G of G compatible with ≺j. In order for a level-planar
drawing G to be compatible with these constraints, the vertex order of each level j must
be a linear extension of ≺j.
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(a) A drawing of a level graph which is not
proper due to some edges spanning over
more than one level.

(b) A drawing of the same graph, in which ev-
ery edge spanning more than one level got
subdivided.

Fig. 2.1: A visualization of how to properize a graph.

In the following we assume that the partial orders are given in the form of a set
C =

⋃
j∈[h] Cj , where Cj contains the constraints of level j. A constraint has the form

v ≺ v′, v, v′ ∈ V meaning that in a drawing of G, v must lie before v′. We can observe
that not every constraint must be explicitly contained in C. For example v1 ≺ v2 and
v2 ≺ v3, v1, v2, v3 ∈ V also enforce v1 ≺ v3, even if this constraint is not contained in
C. We say C is closed, if for all v1 ≺ v2 and v2 ≺ v3, v1, v2, v3 ∈ V , v1 ≺ v3 is explicitly
contained in C. As we can include all these transitive constraints in quadratic time we
can assume in most cases that C is closed.

Another way to implement restrictions on a drawing of a level graph is to fix a partial
drawing in advance.

Definition 4 (Partial Level Planarity (PLP)). Let G be an h-level graph and let
H be a level-planar drawing of a subgraph H ⊆ G (also called a partial drawing of G).
In the problem Partial Level Planarity (PLP) we ask for a level-planar drawing of
G compatible with H. In order for a level-planar drawing G of G to be compatible with
H it must coincide with H on H.

If we consider a level-planar drawing G of a graph G, then every other straight-line level
drawing of G in which the vertices lie in the same order as in G is also planar [DN88b].
We are therefore only interested in the order of vertices and not in their exact vertical
placement. This means that proper PLP reduces to a special case of CLP, because all
necessary information provided by the partial drawing can be expressed in terms of a
total order on the vertices in this partial drawing [BR17]. The converse does not hold,
since a partial drawing H always defines a total order on H. This is because in CLP we
can require for a vertex v ∈ V (G) to lie before or after some vertices v1, v2 ∈ V (G), and
leave the relation between v1, v2 open, which is not possible in PLP.
While Level Planarity can be solved in polynomial and even linear time [BR22b],

CLP and PLP remain NP-hard [BR17].
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A problem closely related to Level Planarity is Radial Level Planarity, which
– while not the main focus of this work – will be considered and compared to Level
Planarity in Chapter 3. We first need to adapt the concept of a (partial) order to
circles.

Definition 5 (Partial cyclic order, [GM77]). Let M be a finite set. A partial cyclic
order on M is a set Λ of ordered triples (x, y, z) out of M3, x, y, z pairwise unequal,
such that

1. with a triplet (x, y, z) all cyclic equivalents are also included:
(x, y, z) ∈ Λ⇒ (y, z, x), (z, x, y) ∈ Λ

2. Λ is antisymmetric: (x, y, z) ∈ Λ⇒ (z, y, x) /∈ Λ

3. Λ is transitive: (x, y, z), (x, z, w) ∈ Λ⇒ (x, y, w) ∈ Λ

We understand (x, y, z) ∈ Λ such that if we want to place M on a circle, if we start from
x and traverse M counter-clockwise, we find y before z.
We say Λ over M is saturated, if for every triplet (x, y, z) ∈ M3, x, y, z pairwise

unequal, either (x, y, z) ∈ Λ or (z, y, x) ∈ Λ holds. In other words for every triplet a
cyclic order is given. A saturated cyclic partial order on M corresponds directly to a
cyclic order on M . Let further Λ′ be another partial cyclic order on M . We say Λ is
extendable to Λ′ if Λ ⊆ Λ′.

In opposition to the corresponding problem on a line, there are partial cyclic orders
which cannot be extended to a saturated cyclic order [Meg76]. In fact, it is even NP-
hard to decide for a given partial cyclic order Λ whether it is extendable to a saturated
cyclic order [GM77].
We can now proceed to the definition of Radial Level Planarity.

Definition 6 (Radial Level Planarity). Let G be an h-level graph together with a
radial level assignment ` : V (G) → [h], such that `(u) ≤ `(v) for all edges (u, v) ∈ E.
We say that Vj = `(j)−1 are the vertices of the radial level j.
A radial level drawing of G is a drawing in which every vertex v ∈ V (G) is drawn on

a circle with radius `(v) around some origin, and every edge e = (u, v) is drawn as a
continuous curve between u, v such that every circle with radius r, `(u) ≤ r ≤ `(v) and
e cross at exactly one point. We say a radial level drawing of G is a radial level-planar
drawing if it is crossing-free, and G is radial level-planar if it admits a radial level-planar
drawing.

Just like with Level Planarity, an h-level graph G is proper if every edge e connects
only vertices on consecutive radial levels, and we can properize every given instance by
subdividing edges.
We can now define some restricted versions of Radial Level Planarity.

Definition 7 (Radial Constrained Level Planarity (Radial CLP)). Let G be
an h-level graph. Let further some constraints on the order of vertices in form of a partial

11



(a) An example of a graph that is radial level-
planar, but not level-planar.

(b) A level-planar drawing of K2,2 demonstrat-
ing the level function.

Fig. 2.2: A non-planar radial level-planar drawing of K2,2.

cyclic order Cj for every radial level j be given and define the set of cyclic constraints
C =

⋃
j∈[h] Cj as their union.

In the problem Constrained Radial Level Planarity (radial CLP) we ask for
a radial level-planar drawing G of G compatible with C. In order for a radial level-planar
drawing G to be compatible with C the circular order of vertices on level j in G must be
an extension of Cj for every level j.

Definition 8 (Radial Partial Level Planarity (Radial PLP)). Let G be an
h-level graph and let H be a partial radial level-planar drawing of a subgraph H ⊆ G.
In the problem Partial Radial Level Planarity (radial PLP) we ask for a

radial level-planar drawing G of G compatible with H. In order for a level-planar drawing
G of G to be compatible with H it must must coincide with H on H.

We can show that radial PLP reduces to (proper) radial CLP analogue to how
it can be shown that PLP reduces to (proper) CLP. To differentiate between Radial
Level Planarity and Level Planarity as defined in Definition 2, we will sometimes
refer to Level Planarity as Plain Level Planarity.
It is quite obvious that every level graph which is level-planar is also radial level-

planar, but the other way around is not true. There exist level graphs which are radial
level-planar, but not level-planar. An example for such a graph is the K2,2 on two levels
as shown in Figure 2.2a. We can see that in every level drawing there exists an edge
from the upper left to the lower right vertex and an edge from the upper right to the
lower left, so no crossing-free and thus no planar level drawing exists. But Figure 2.2b
gives a radial level planar drawing of the K2,2. Testing radial level planarity can be done
in linear time [BR22b].
Now let G be an h-level graph, and G′ be the graph obtained from G by adding one

vertex v1 on level 1, one vertex vh on level h and an edge (v1, vh) (or, if we want a proper
instance, a subdivided edge) between them. Then there exists a level-planar drawing of
G if and only if there exists a radial level-planar drawing of G′, because we can treat the
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(a) A radial level-planar drawing of a graph G together
with an edge e from the first to the last layer.

(b) A level-planar drawing of G. The circles
have been broken up and stretched out.

Fig. 2.3: A visualization of how a level-planar drawing of a graph can be obtained from a radial
level-planar drawing of this graph together with an edge (dashed).

edge (v1, vh) as a line at which we can split our radial drawing as shown in Figure 2.3.
Conversely, it it is easy to see that G stays level-planar if we add the edge and every
level-planar graph is also radial level-planar.
Following this thought, we can show that every version of Level Planarity reduces

to its respective version of Radial Level Planarity.

Lemma 9. Let G be an h-level graph together with a partial drawing H of a subgraph H,
and let H′ be a drawing of H ′ = H + e (where e is constructed as described above) which
we obtain from H by drawing e to the left (or right) of it. Then G has a level-planar
drawing respecting H if and only if G′ has a radial level-planar drawing respecting H′.

Proof. Adding e to the left (or right) of H guarantees that by obtaining a plain level
drawing from the radial level drawing we do not cut through H. The rest follows directly
from the construction described above.

Lemma 10. Let G be a h-level graph together with a closed set of constraints C =⋃
j∈[h] Cj. Let further G′ be the graph obtained from G by adding the vertices v1, vh,

the edge (v1, vh) and then subdividing (v1, vh) with a vertex vj for every inner level j.
Generate a partial cyclic order C ′j for every level j by adding a constraint (vj , x, y) and
all its cyclic equivalents to C ′j for every constraint x ≺ y in Cj. This way, all the C ′j are
partial cyclic orders. Let C ′ =

⋃
j∈[h] C ′j be the set of all these partial cyclic orders.

Then G has a level-planar drawing respecting C if and only if G′ has a radial level-
planar drawing respecting C ′.

Proof. Every C ′j is a partial cyclic order because transitivity follows from the fact that

13



Level Planarity PLP CLP

Radial Level Planarity Radial PLP Radial CLP

a b

c d e

f g

Fig. 2.4: An overview of the introduced problems and their relation to each other. An arrow
leads from problem A to problem B if we can directly reduce A to B. Gray problems
can be solved in linear time, the black ones are NP-hard.

C is closed and antisymmetry follows from the fact that C as a partial order is antisym-
metric. The remaining claim follows directly from the construction described above.

Figure 2.4 gives the reducibility correspondences discussed in this chapter. The re-
duction follows from:

a : Trivial.
b : [BR17].
c : Trivial.
d : Lemma 9.
e : Lemma 10.
f : Trivial.
g : Analogue to [BR17].

In particular, this means that Radial CCP and Radial PLP are NP-hard.
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3 Number of Levels, Pathwidth and
Treewidth

One of the most intrinsic parameters to Level Planarity is the number of levels h.
Surprisingly, besides turning out to not be solvable by an PFT algorithm, this param-
eter also nearly immediately leads to a similar result for the more general parameters
pathwidth and treewidth.

3.1 Parametrization by Number of Levels, Pathwidth and
Treewidth

We first outline an NP-hardness proof for PLP by Brückner and Rutter [BR22a]. They
reduce from 3-Partition, which is NP-hard.

Definition 11 (3-Partition). Let m ∈ N be a positive integer, let A be a multiset
with n = 3m positive integers a1, . . . , a3m, and let B ∈ Z+ be a bound, such that both
B/4 < a < B/2 for each a ∈ A and

∑
a∈A a = m ·B hold.

3-Partition then asks whether A can be partitioned into m disjoint sets A1, A2, . . . , Am,
such that for every j ∈ [m] the equation

∑
a∈Aj

a = B holds.
We refer to the sets A1, A2, . . . , Am as buckets.

Note that since we required B/4 < a < B/2 for each a ∈ A, in a valid solution every
bucket Aj , j ∈ [m] contains exactly three elements.

3-Partition is strongly NP-complete, meaning that it stays NP-complete even if we
require B to be at most a polynomial of n [GJ75].

The reduction itself is built around a socket gadget as shown in Figure 3.1. The whole
asset is fixed in a partial drawing as shown in Figure 3.1a. The key observation is that,
for a path (also referred to as pin) as shown in Figure 3.1b there is only one possible
way to traverse through the socket, and every socket can contain at most one pin.
The reduction is visualized in Figure 3.2. Let (m, A, B) be an instance of 3-partition.

Our goal is to subdivide A into m buckets. For each i ∈ [m] we glue together B/m socket
gadgets and add an additional vertex one level above, which we connect to the left- and
rightmost bucket line. We then combine m buckets together so that we have used exactly
B sockets overall. To represent A, for every element a ∈ A we combine a pins into a
plug pa. To make sure that all pins out of a plug pa have to be drawn into one bucket,
we combine them at level 6. One level above, we draw three additional vertices r1, t, r2.
Vertex t gets connected towards the leftmost and the rightmost bucket separator, and
additionally to all plugs. We also connect r1, r2 to the leftmost and the rightmost bucket
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(a) A socket with its given drawing. (b) A socket (black) used by a pin (grey).

Fig. 3.1: The socket gadget used and unused.

r1 r2t

A1 A2, . . . , Am

1

2

3

4

5

6

7

Fig. 3.2: [BR22a]. A visualization of the graph constructed during reduction from 3-Partition
to PLP. The black part of the graph is fixed in a partial drawing as shown in this
figure. Grey vertices can be moved. Note that this represents a proper graph, in which
most vertices have ben omitted in the drawing for clarity.
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separator respectively, and demand with the partial drawing the total order r1 < r2 < r3
on them.
We have fixed the drawing of everything except the plugs with the partial drawing

as described and demonstrated in Figure 3.2 and leave the plugs free, enabling them to
move freely between the buckets but ensuring at the same time that no plug is outside
of the bucket structure (this is guaranteed by r1, r2) and that no plug can stretch over
several buckets because of the bucket separators.
We can now observe that with every level drawing of this construction compatible

with the partial drawing every plug pa uses exactly a sockets out of the bucket it sits
in, and since B/4 < a < B/2 every bucket contains exactly three plugs. So in order to
find a solution for (m, A, B) we can define each subset Aj as the elements a1, a2, a3, such
that bucket bj contains the plugs pa1 , pa2 , pa3 .
The other way around, if there exists a solution A1, A2, . . . , Am for (m, A, B), we can

draw the constructed graph by for every a ∈ Aj placing the plug pa into the bucket bj .
Since 3-Partition is strongly NP-complete, this gives us a reduction to PLP. What

makes it special is that the constructed level graphs all have a constant (seven to be
precise) number of levels. This immediately results in the following theorem.

Theorem 12. Consider the problem PLP and let h denote the number of levels in
an input instance. Then, under the assumption that P 6= NP , there do not exist any
functions f, g : N → N, such that there exists an algorithm A solving PLP in O(f(h) ·
ng(h)) time.
In particular there exists no FPT-algorithm solving PLP parameterized by the number

of levels.

Proof. Assume there exist such functions f, g. Then there exists an algorithm A′ solving
7-level PLP in O(c1 · nc2) time, c1, c2 being constants. Since there exists the method
found by [BR22a] to reduce every instance of 3-Partition with size n to a 7-level
PLP with polynomial size poly(n), we can solve 3-Partition in O(poly(n)c2) and thus
polynomial time, a contradiction if P 6= NP .

Since every FPT algorithm solving PLP parameterized by the number of levels would
provide some functions f, g with these properties such an algorithm cannot exist.

We will now extend this result to the parameters pathwidth and treewidth.

Theorem 13. Consider the problem PLP, and let w denote the pathwidth or treewidth
of an input instance. Then, under the assumption that P 6= NP , there do not exist any
functions f, g : N → N, such that there exists an algorithm A solving PLP in O(f(w) ·
ng(w)) time.
In particular there exists no FPT algorithm solving PLP parameterized by pathwidth

or treewidth.

Proof. Consider an instance of 3-partition and let G be a level graph obtained from
this instance by the reduction onto PLP as described above. Note that the proof that
the reduction from 3-Partition to PLP works only guarantees that G is level-planar
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. . .

Fig. 3.3: A socket where the partial drawing got disregarded. It can now contain an arbitrary
number of pins.

. . .

. . .

Fig. 3.4: A level-planar drawing of the 3-Partition reduction graph, which is not compatible
with the constructed partial drawing. Every constructed graph can be drawn this way
regardles of the question whether the original instance of 3-Partition has a solution.
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if the starting instance of 3-Partition is solvable. Thus we will show at first that if
omitting the partial drawing, every level graph constructed during the reduction from
3-Partition to PLP is level-planar.
Figure 3.3 shows a drawing of a socket where the given partial drawing got disregarded.

We can see that we are now able to lead an arbitrary number of pins through the socket.
We thus obtain a level-planar drawing of G if we leave most of the partial drawing intact,
but lead all pins through the first socket as shown in Figure 3.4. Since every level-planar
graph with h levels has at most pathwidth (and thus also at most treewidth) h [DFK+08],
we know that we can reduce 3-Partition onto PLP with constant pathwidth and thus
treewidth.
Assume now that there exist such functions f, g. Then there exists an algorithm A′

solving PLP with constant w in O(c1 ·nc2) time, c1, c2 being constants. With this, we can
solve 3-Partition3 -Partition in O(poly(n)c2) and thus polynomial time, a contradiction
if P 6= NP .
Since every FPT-algorithm solving PLP parameterized by the number of levels would

provide some functions f, g with these properties such an algorithm cannot exist.

We are now able to generalize these results.

Theorem 14. Let K be a problem out of PLP, CLP, Radial PLP, Radial CLP
and let k denote the number of levels/circles, the pathwidth or the treewidth of an input
instance. Then, under the assumption that P 6= NP , there do not exist functions f, g :
N→ N, such that there exists an algorithm A solving K in O(f(k) · ng(k)) time.
In particular there exists no FPT-algorithm solving K parameterized by k..

Proof. As this at most squares the size of the input instance, we assume that all of
them proper. We thus know that we are able to express PLP as a special case of CLP,
Radial CLP, Radial PLP. Therefore, if we had such f, g and an algorithm A solving
K in O(f(k) ·ng(k)) time, this would also solve every instance of PLP in the same time,
a contradiction to Theorem 12 or Theorem 13.

3.2 A Refined Analysis of the Number of Levels
Theorem 14 motivates the question whether there exists a number of levels for which we
can solve CLP or PLP (and also Radial CLP and Radial PCP) in polynomial time,
and if there are at which point the change to NP-hardness is.
Since CLP with only one-level is equal to the problem of extending a partial to a

total order, this special case can be solved in quadratic time, and this also follows from
lemma 15 shown below since a one-level graph has no edges. It turns out that also the
case with two levels is solvable in polynomial time.

To show that we will first prove a lemma which will be useful in several topics.

Lemma 15. Let G be an h-level graph together with a level assignment ` : V → [h], let
V ′ ⊆ V (G) be a set of vertices such that deg(v) = 0 for all v ∈ V ′, and let C =

⋃
j∈[h] Cj

a closed set of constraints. Let further G′ be a level-planar drawing respecting C of the
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Fig. 3.5: A caterpillar graph. The underlying path p is represented by boxes, the degree 1 set
V ′ is represented by points. Notice that the two vertices on the respective sides of p
are not contained in p

subgraph G′ ⊆ G containing of all of G except the vertices in V ′. Then there exists a
level-planar drawing G of G respecting C, such that G reduced to G′ equals G′.
We can further obtain G from G′ in O(n(G)2) time.

Proof. Let v ∈ V ′ be an arbitrary vertex not drawn in G′ with `(v) = j. If no vertex
v′ in G′ with `(v′) = j exists such that there is constraint (v ≺ v′) ∈ C we can draw
v at the right of level j. Similarly if no vertex v∗ in G′ with `(v′) = j exists such that
there is a constraint (v∗ ≺ v) ∈ C we can draw v at the left of level j. Now assume that
there exist vertices v′, v∗ ∈ G such that (v∗ ≺ v) ∈ C and (v ≺ v′) ∈ C. We can assume
that v′ to be leftmost and v∗ to be the rightmost vertex on level j with this property.
Because C is closed we know that (v∗ ≺ v) is a constraint in contained explicitly in C,
and therefore v∗ must be left of v′. We can therefore draw v somewhere in between v∗, v′.
Since those two were the leftmost respectively rightmost vertices with these properties,
the insertion of v into G does not contradict any other constraint out of C.

This step can be performed in linear time, thus iterating it yields a level-planar drawing
G of G which can be computed in quadratic time.

We now take a closer look at the class of graphs which can be drawn level-planar
between two levels.

Definition 16 (Caterpillar, [HS73]). Let G be a graph with at least n(G) ≥ 3 vertices
and let V ′ = {v ∈ V (G) | deg(v) = 1} ⊆ V (G) be the set of leaves in G with degree 1.
Then we call G a caterpillar if G becomes a path p through removal of V ′.

Figure 3.5 shows a caterpillar graph and its underlying path p. We will now see that
caterpillar graphs are precisely those connected graphs we can draw on two levels.

Lemma 17. Let G be a connected 2-level graph with n(G) ≥ 3 together with a level
assignment ` : V (G) → [2]. Then G is level-planar if and only if G is a caterpillar and
`v 6= `u for every edge (u, v) in G.
In particular, every 2-level graph which is level-planar consists of caterpillars, singular

vertices and singular edges (a component consisting out of two vertices and an edge
between them).
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vl vr

v

vm

Fig. 3.6: A vertex v together with its set of neighbours. We can see that only the leftmost
neighbour vl and the rightmost vertex vr can have neighbours besides v, since every
further neighbour of a middle neighbour vm would generate a crossing.

Fig. 3.7: The caterpillar out of Figure 3.5 drawn on two levels.

Proof. Let G be a connected 2-level graph with n(G) ≥ 3 together with a level assignment
` : V (G)→ [2]. Note that the condition `v 6= `u follows directly from the fact that G is
a level-graph.
If G is a caterpillar we can draw the underlying path p of G as zigzag line between

the levels, and afterwards we can insert all leaves of a path vertex v ∈ V in the interval
between its (at most two) neighbours on the path. Now let G be level-planar, G be a
level-planar drawing of G, and let v in G be a vertex with deg(v) ≥ 2. We assume that
without loss of generality `(v) = 1. Let vl be the leftmost and vr be rightmost neighbour
of v in G. We can observe that only vl, vr can have another adjacent vertex besides
v, because for every other neighbour vm of v each edge (vm, x) would necessarily cross
(vl, v) or (vr, v), as can be seen in Figure 3.6. Thus v has at most two neighbours with a
degree ≥ 2. We can also see that G cannot contain a cycle, since every cycle in G would
necessarily create a crossing in a 2− level drawing. Thus G is a tree in which the subset
of non leaves forms paths. We cannot have more than one path since G is connected,
thus the subset of non leaves forms one path and G is a caterpillar.
Therefore every graph which can be drawn level-planar on two levels is build up out

of caterpillars, singular vertices and singular edges.

Figure 3.7 shows a 2-level drawing of the caterpillar shown in Figure 3.5. We can
observe that for the drawing of the underlying path p we have essentially two options,
because we can draw p from left to right or the other way around. We will now see that
we will be able to consider all components of a 2-level graph independently.

Lemma 18. Let G1 be two 2-level caterpillar graph and let G2 be a 2-level caterpillar
graph or a component consisting out of single edge. Let further G be a level-planar
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drawing of G1 and G2. Then on both level 1 and level 2 the vertices out of G1 are drawn
successively, and they are drawn before the vertices out of G2 on level 1 if and only if
they are drawn befor the vertices out of G2 on level 2.
Further, in every level-planar drawing G of a 2-level graph G without single vertices

the following condition holds: the vertices of every component are drawn successive on
each level and the order of these components is the same on both levels.
In particular, every partial order ≺ in a level-planar 2-level graph G induces ≺v induces

a partial order ≺′ on the non-singular components out of G.

Proof. Let G be a drawing of G1, G2 and let v1, v′1 in G1 and v2 in G2 be some vertices
such that they occur from left to right in the order v1, v2, v′1 on level 1 or 2. Since G2
has at least 2 vertices v2 has to have an incident edge e. Since v1 and v2 are connected
through a path in G1 e has to cross this path, and G cannot be level-planar. So the
vertices out of G1, G2 must be drawn succesively on both levels, and the vertices are
drawn before the vertices out of G2 on level 1 if and only if they are drawn before the
vertices out of G2 on level 2 because both components have at least one edge and they
would cross otherwise. This statement holds if we also allow for G1 to be a single edge.

Iterating this proof gives us that in every level-planar drawing G of a 2-level graph
G without single vertices the vertices of every component are drawn successive on each
level and the order of these components is the same on both levels.
This means that the non-singular components can be ordered from left to right. Let

now G1, . . . , Gl denote the non-singular components of G. Then for every constraint of
the form vx ≺ vy, vx a vertex in Gx and vy a vertex in Gy we know that the component
Gx must be drawn before Gy. Let ≺1,≺2 be partial orders on level 1 and level 2. If G
is level-planar ≺1 and ≺2 do not stand in conflict with each other and therefore induce
a partial order ≺′on the components G1, . . . , Gl.

Lemma 18 assures us that we can test level-planarity of restricted 2-level-graphs by
concentrating on the components. We will now see that these can be tested in polynomial
time.

Lemma 19. Let G be a connected 2-level graph with at least 2 vertices together with a
closed set of constraints C = C1∪C2. Then we can test whether there exists a level-planar
drawing G of G respecting C and compute such a drawing in O(n(G)2) time.

Proof. We know from Lemma 17 that for G in order to be level-planar it must hold that
G is a caterpillar or a single edge. Testing whether G is a caterpillar is straightforward
and can be done in O(n(G)) time. If G consists of a single edge, it is level-planar and can
be drawn in a unique way. Since there is only one vertex on each level the constraints
C1 = C2 = ∅ need to be empty and thus the drawing is consistent with C.
Now let G be a caterpillar and p be its path containing all vertices with degree at least

2. We have already seen that there are exactly two options to draw p level-planar: as a
zig-zag line from left to right ar the other way around. Since these are only two options,
we can test for both if they can be extended to a level-planar drawing of G.
Now let v be a vertex out of p and let L denotes its set of neighbours with degree 1.

As we have seen in the proof of Lemma 17 all vertices of Lv must be drawn successively
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between the path neighbours of v or – if v is an endpoint of p – at one of the sides of G.
Therefore we can choose any order of Lv compatible with C (such an order always exists
since partial orders do not contain contradictions) and draw Lv at its respective place.
This can be done in O(n2) time because |C| ∈ O(n(G)2). We can now test whether at
least one of these two drawings (one for each direction of p) is level-planar and consistent
with C by testing every constraint c ∈ C in O(n(G)2) time. If G is level-planar, one
of them needs to be and we can return it. Otherwise, G is not level-planar and we can
stop.

We can now formulate an algorithm solving 2-level CLP .

Algorithm 1: 2-level graph G, level function `, closed constraints C)
1 K1, . . . , Kl ← non-singular components of G
2 G ← empty drawing
3 if k 6= 0 then
4 CK ← Set of constraints on {K1, . . . , Kl} induced by C
5 if Ck inconsistent then
6 return no
7 for j = 1 to l do
8 if Kj not 2-level planar then
9 return no

10 Kj ← level-planar drawing of Kj

11 Add all Kj to G in an order consistent with CK

12 Add all single vertices to G
13 return G

Theorem 20. Algorithm 1 has a running time in O(n(G)3) and solves 2-level CLP. In
particular, PLP and CLP with two levels can be solved in polynomial time.

Proof. It is not obvious that all operations are well defined and we therefore give an
explanation for these at first: We can always construct an induced set of constraint Ck

as described in the proof of Lemma 18 (however, it might be inconsistent). We can
test for all the non-singular components Kj whether they are level-planar consistent
with C and construct such a drawing Kj if they are because of Lemma 19. The level-
planar drawings K, . . . ,Kl can then always be combined into a single level-planar drawing
because of Lemma 18. Lemma 15 guarantees us that we can add all single vertices to
the drawing at the end.

It is now easy to see that every drawing G′ returned by Algorithm 1 is a level-planar
drawing of G and respects C, since the combined drawing of the Kj is a level-planar
drawing drawing of all non-singular components consistent with C.
It is only left to show that if the input G is in CLP Algorithm 1 always computes a

drawing, i.e., that we never return no. With Lemma 15 it suffices to show that every
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input graph G is in CLP if there exists a partial graph G′ containing all non-singular
components of G that is level-planar respecting C. We saw in Lemma 18 that for
every level-planar drawing there exists a consistent order ≺K on the set of non-singular
components induced by C. So for G level-planar, Ck is always consistent. Further if G
is level-planar respecting C, all components must be too. This gives us that we never
return no and algorithm 1 computes a level-planar drawing G of G if G is level-planar
respecting C.
The running time of our algorithm depends on the following operations: We can

identify all components in linear time. Generating a partial order CK and testing its
consistency can be done in O(n(G)2) time because |C| ∈ O(n(G)2). Testing the level-
planarity of and drawing a component Kj requires O(n(G)2) time according to Lemma
19, so performing this step for all components requires at most O(n(G)3) time. Combin-
ing these drawings and adding the single vertices can be done in O(n2) time because of
Lemma 15. This results in a running time of O(G(n)3), thus Algorithm 1 requires only
a polynomial amount of time.

We can extend this result to Radial PLP.

Theorem 21. Radial PLP with only two levels is solvable in polynomial time.

Proof. Let G be a 2-level graph together with a level assignment ` : V (G)→ [2] and let
H be a level-planar partial drawing of G. We have to consider a few cases:

For the first case we assume that H contains at least one edge e = (v1, v2). This edge
must have endpoints on both level 1 and level 2. Therefore e cuts through all levels and
we can break H at e by duplicating e into two edges e = (v1, v2) and ed = (v1,d, v2,d) and
transforming H into a plane level-planar drawing H′ of G as was described in Chapter
2 and demonstrated in Figure 2.3. Now H′ induces a set of constraints C on G if we
consider G together with ed as a plain level-graph. For each level i ∈ [2] and every
vertex v ∈ Vi we add the constraints (vi < v) and (v < vi,d) to C. For every level-planar
drawing G′ of G′ respecting C we know that the edges e, ed are at the leftmost respectively
rightmost side of G′. So if there exists a level-planar drawing G′ of G′ respecting C we
know that we can fuse e, ed and obtain a radial level-planar drawing G of G respecting
H. The other way around, if there exists a radial level-planar drawing G of G we can
break G at e the same way we did with H, and obtain a plain level-planar drawing G′
respecting C. The constructed problem is an instance of 2-level CLP, which is solvable
in polynomial time as shown in Theorem 20.
We now consider the case that H does not contain an edge but a vertex v with a degree

of at least one in G. We assume without loss of generality that `(v) = 1. Let e = (v, v′)
be an incident edge of v. Then there are only O(n(G)) possibilities for v′ to be placed on
level 2 inside of H. This gives us at most O(n(G)) new partial drawings Hj , and if there
exists a level-planar drawing G of G respecting H then G also respects exactly one of the
Hj . So we can apply the first case to all Hj and G is radial level-planar respecting H if
and only if G is radial level-planar respecting one of the Gj , and every radial level-planar
drawing respecting one of the Hj clearly also respects H.
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Now let us assume that H contains only single vertices but G contains at least one
edge e = (v1, v2). For both v1, v2 there are only O(n(G)) possibilities to be placed inside
of H. This gives us at most O(n(G)2) new partial drawings Hj , and if there exists a
level-planar drawing G of G respecting H then G also respects exactly one of the Hj . So
we can apply the first case to all Hj and G is radial level-planar respecting H if and only
if G is radial level-planar respecting one of the Gj , and every radial level-planar drawing
respecting one of the Hj clearly also respects H.

For the last case assume that G does not contain an edge. In this case we can add all
vertices not already contained in H at an arbitrary place and gain a radial level-planar
drawing G of G respecting H. This can be done in linear time.
Since these were all possible cases Radial PLP with only two levels is solvable in

polynomial time.

So far the NP-hardness results have pretty similar between the Radial and the Plain
versions of Level Planarity. Thus, the following result is even more surprising, as it
provides a major gap between Radial CLP and CLP.

Theorem 22. Radial CLP is NP-hard even for one level.

Proof. Radial CLP with only one level is equivalent to the problem of finding a satu-
rated partial cyclic order Λ′ containing a given partial cyclic order Λ. This problem is
NP-hard [GM77].

In Section 3.1 we saw that 7-level PLP is NP-hard via reduction from 3-Partition.
As we can reduce PLP to Radial PLP without increasing the number of levels, this
holds for Radial PLP as well. However, if we reduce the NP-hardness of Radial PLP
directly from 3-Partition we can even decrease the number of required levels.

Theorem 23. Radial PLP is NP-hard even for six levels.

Proof. Recall the NP-hardness reduction from 3-Partition to PLP [BR22a]. Observe
that, in this reduction, the first layer was only needed to ensure that the plugs are not
drawn next to the bucket construction but inside of it. If we perform the same reduction
onto Radial PLP we can identify the leftmost and the rightmost edge chain of the
partial drawing, i.e., the left side of the leftmost bucket and the right side of rightmost
bucket with each other since the reduction ensured that nothing could be drawn outside
of it in any level-planar drawing. By combining these two sides we now have a radial
partial drawing with no outside at which the plugs can be drawn, so the first level can be
omitted. This leaves six levels. The rest follows from the correctness proof of Brückner
and Rutter [BR22a].

Using a similar approach, we could show that CLP is NP-hard already for six levels
by requiring all plugs to lie between the leftmost and rightmost socket vertices. However,
the following approach gives us an even better bound.
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(a) A mountain.

. . .

(b) A mountain chain.

Fig. 3.8: The drawings of a mountain and a mountain chain. The chain is made up of mountains
glued together by their forth-level vertices and with an edge wall from level 1 to level 4
at both ends. We can see that we have some kind of valley between adjacent mountains
in the chain and between the left- respectively rightmost mountain and the neighboured
walls. The vertices in the drawing are omitted for clarity.

Fig. 3.9: A 4-clip. The order of all clip vertices on level 3 is fixed by constraints. Therefore in
the third level there is always precisely one vertex with an adjacent vertex in level 4
between two vertices with adjacent vertices in level 2.
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. . .

Fig. 3.10: A demonstration of how we can draw a mountain chain together with a number of
clips compact as possible, i.e., in such a way that every mountain contains a clip edge
from level 3 to level 4.

Definition 24 (Mountain Chain). A mountain as shown in Figure 3.8a is a graph
consisting out of five vertices v1, v2, v3, v4, v5 with a level assignment `(v1) = `(v5) = 4,
`(v2) = `(v4) = 3 and `(v3) = 2 and edges (v3, v2), (v3, v4), (v2, v1), (v4, v5). We can
combine k mountains into a mountain k-chain as shown in Figure 3.8b by identifying in
each case a v1 of one mountain with a v5 of another one, and adding a wall consisting out
of an edge chain from level 4 to level 1 to the two unpaired vertices on the sides. We can
see that each mountain k-chain contains k + 1 valleys, one between each pair of adjacent
mountains and one between the outer mountains and the adjacent walls, respectively.

We will in the following always assume that the drawing of a mountain chain is fixed
by a saturated partial order C on it.

Definition 25 (k-Clip). A k-clip as shown in Figure 3.9 is graph consisting out of k
edges between level 3 and level 4, k + 1 edges between level 2 and level 3 and a vertex m
on level 1 which is adjacent to all the clip vertices on level 2. We fix the drawing of each
clip with constraints in such a way that on level 3, there is always precisely one vertex
adjacent to a level-4 vertex between two vertices which are adjacent to level-2 vertices.
The 4-clip in Figure 3.9 is drawn in the unique way that it respects these constraints.

We will now see how these structures interact with each other.

Lemma 26. Let P1, P2 be two clips. Then in every 4-level-planar drawing containing
both P1, P2 the do not cross, i.e., on every level either all vertices of P1 lie before all
vertices of P2 or the other way around.
Let now M be a k-mountain chain and {P1, . . . , Pl} be a set of clips with clip number

k1, . . . , kl respectively, and let G a 4-level-planar drawing of M and the P1, . . . , Pk. Then
in G, in every mountain of M there is drawn at most one edge between level 3 and level
4 out of all clips.
If we further define constraints enforcing that all clips must be drawn between the walls

of M , there exists a 4-level-planar drawing G of M and the P1, . . . , Pl respecting these
new constraints if and only the sum of all clip numbers

∑
j∈[l] kj ≤ k is at most the

number of mountains in M .
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Proof. Let at first P1, P2 two clips in a level-planar drawing G and let v1 ∈ P1, v2 ∈ P2
be their unique level-1 vertices. We assume without loss of generality that in G v1 is
drawn to the left of v2. We can then immediately see that on the levels 2, 3 all vertices
of the clip P1 must be drawn before all vertices of the clip P2. For the level 4 vertices of
a clip it holds that they must be drawn in the same order as their adjacent vertices on
level 3, therefore the statement also follows for level 4.
Now let M be a k-mountain chain, {P1, . . . , Pl} be a set of clips with clip number

k1, . . . , kl respectively, and let G a 4-level-planar drawing of M and the P1, . . . , Pk. Let
e1, e2 be two edges between level 3 and 4 out of two (not necessarily distinct) clips
P, P ′ ∈ {P1, . . . , Pl}. We notice that between e1, e2 there must lie at least one edge
leading from level 2 to level 3. This edge cannot be drawn inside of a mountain, so there
must lie a at least one valley between e1, e2. So inside of every mountain there can be
drawn at most one clip edge.
Now let again M be a k-mountain chain and {P1, . . . , Pl} be a set of clips with clip

number k1, . . . , kl respectively. If we enforce with constraints that every clip must lie
between the walls of M , every edge inside of a clip which leads from level 3 to level
4 must lie inside of a mountain, and because we already showed that there can be at
most one of these inside of a mountain and the total number of clip edges between level
3 and level 4 equals

∑
j∈[l] kj , we know that

∑
j∈[l] kj ≤ k must hold if there exists a

level-planar drawing of M and the P1, . . . , Pl respecting the new constraints.
Figure 3.10 demonstrates that and how we can draw the clips P1, . . . , Pl inside of

M in such a way that every mountain contains an edge and all constraints are fulfilled.
Therefore if

∑
j∈[l] kj ≤ k we can construct such a 4-level planar drawing of the P1, . . . , Pl

inside of M .

We can now describe a reduction from 3-Partition to 4-level CLP
Let m ∈ N be a positive integer, A be a multiset with n = 3m elements, and B ∈ Z+

be a bound, such that both B/4 < a < B/2 for all a ∈ A and
∑

a∈A a = m ·B hold.
We can now construct a graph G in the following way: For every a ∈ A we construct

an a-clip Pa which we add to G. We then construct m mountain chains M1, . . . , Mm with
B mountains each and combine them into an extended mountain chain by identifying the
right wall of Mj with the left wall of Mj+1 for all j ∈ [m + 1], giving us m ·B mountains
in total, which we also add to G. Finally we enforce with constraints that in every
level-planar drawing of G the vertices of the left wall of M1 must be leftmost vertices
and the vertices of the right wall of Mm must be rightmost vertices in the drawing.

This leads to a reduction from 3-Partition to CLP with four levels.

Lemma 27. Let m ∈ N be a positive integer, A be a multiset with n = 3m elements, and
B ∈ Z+ be a bound, such that both B/4 < a < B/2 for all a ∈ A and

∑
a∈A a = m · B

hold. Let further G be the 4-level graph together with the set of constraints C constructed
with (m, A, B) as described above.
Then there exists a level-planar drawing G of G if and only if there exist m disjoint

sets A1, A2, . . . , Am, such that for all j ∈ [m] the equation
∑

a∈Aj
a = B holds.
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Proof. Let m ∈ N be a positive integer, A be a multiset with n = 3m elements, and
B ∈ Z+ be a bound, such that both B/4 < a < B/2 for all a ∈ A and

∑
a∈A s(a) =

m · B hold. Let further G be the 4-level graph together with the set of constraints C
constructed with (m, A, B, s) as described above.
If there exists a level-planar drawing G of G we know that all m×B mountains in G

contain exactly one clip edge between level 3 and 4, because there exist exactly
∑

a∈A a
of these, each mountain can contain at most one (see Lemma 26) and every clip must lie
entirely between the leftmost and the rightmost wall of the extended mountain chain. We
can further see that a clip must lie entirely in one mountain chain, because it can cross
one of the inner mountain walls in the extended mountain chain. We can now construct
m sets A1, A2, . . . , Am by assigning to every Aj for j ∈ [m] exactly those a ∈ A for which
the clip Pa lies entirely in the mountain chain Mj . Then for every j ∈ [m] it holds that∑

a∈Aj
a = B.

Now let A1, A2, . . . , Am be disjoint sets such that
∑

a∈Aj
a = B holds for all j ∈ [m].

We know that we can draw every mountain chain Mj level-planar if we draw exactly
the Pa into Mj for which a ∈ Aj because of Lemma 26. Since

⋃
j∈[m] Aj = A, all clips

Pa, a ∈ A can be drawn simultaneously by this method. This results in a level-planar
drawing G of G.

We can now state the following lower bound on required number of levels such that
CLP gets NP-hard.

Theorem 28. CLP is NP-hard even for four levels.

Proof. We showed in Lemma 27 that we can reduce 3-Partition to CLP with four
levels. Since 3-Partition is strongly NP -complete, this gives us that it is NP-hard to
solve CLP even for 4 levels.

We sum up what we found out about the complexity of our problems regarding their
number of levels h in the following table. The information is given in the form of x/y,
where x denotes the largest number of levels for which we know that we can solve the
problem in polynomial time and y denotes the smallest number of levels for which we
know that the problem is NP-hard. The numbers between are of open complexity status.

Level Planarity Plain Radial
Partial 2 (Thm. 20) / 7 ([BR22a]) 2 (Thm. 21) / 6 (Thm. 23)
Constrained 2 (Thm. 20) / 4 (Thm. 28) — / 1 (Thm. 22)

Of special interest seems to be the case with three levels. It seems quite possible,
that PLP is solvable in polynomial time for three levels, but CLP is not. Therefore, a
solution for the question which of these problems can be solved in polynomial time for
three levels could provide a useful insight into the differences between PLP and CLP.
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4 Vertex Cover Number

In this chapter, we take a look at the vertex cover number of the input graph G.

Definition 29 (Vertex Cover). Let G be a graph, and let C ⊆ V (G) be a set with the
property that for each edge e = {u, v} ∈ E(G) v ∈ C or u ∈ C. We then say that C is a
vertex cover of G. If, for any vertex cover C′ of G with C′ ⊆ C, it holds that |C′| ≤ |C|,
then we say that C is minimal. If there exists no vertex cover C′ of G such that |C′| < |C|
then C is a minimum vertex cover of G and G has vertex cover number |C|.

Deciding whether G has vertex cover number at most k for a given k ∈ N is NP-hard
[Kar72]. On the other hand, there exist several 2-approximation algorithms for finding
a minimum vertex cover. For example identifying a maximal Matching M of G and
assigning all vertices involved in M to a set C yields a 2-approximation. This is the case
because every edge of these edges needs to be covered by a different vertex (thus C is at
most twice as big compared to a minimum vertex cover), and every edge e gets covered
since otherwise we could grow M with e.
The aim of this chapter is to analyse CLP and PLP parameterized by the vertex

cover number of the graph G.
Now let C be a vertex cover of G. For every subset X ⊆ C, let

VX = {v ∈ V (G) \ C | N(v) = X}

be the set of vertices in V (G) \ C that are adjacent precisely to the vertices X. Note
that this means that every vertex in V (G) \ C is contained in precisely one of the VX .
We claim the following about the set VX .

Lemma 30. Let G be a planar graph, and let C be a vertex cover of G. Let further
X ⊆ C be a subset of the vertex cover with |X| ≥ 3. Then it holds that |VX | ≤ 2.

Proof. Assume that {v1, v2, v3} ⊆ VX and let {v′1, v′2, v′3} ⊆ X. Then these vertices form
the complete bipartite graph K3,3 which is hence a minor of G. But G was planar by
assumption. This is to a contradiction. Therefore, |VX | ≤ 2 must hold.

This gives us a bound on the size of most of the VX . The following two lemmas give
us a similar result for the case |X| = 2:

Lemma 31. Let G be a planar graph with a proper level assignment ` : V (G) → [h],
and let C be a vertex cover of G. Let further X ⊆ C be a subset of the vertex cover
with |X| = {x, y}. If G is level-planar and the two vertices x, y lie on the same level
(`(x) = `(y)) then it holds that |VX | ≤ 2.
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ℓx

ℓx + 1

x y

v1 v2

Fig. 4.1: A crossing generated by more than one vertex with level `x + 1 if |X| = 2. We can
see that the crossing generated by this constellation remains even if we swap v1, v2 or
x, y.

. . .

x

y

VX

Fig. 4.2: An example of a level-planar structure with a subset X = {x, y} ⊆ C of the vertex
cover C and with VX arbitrarily large.

Proof. Let `x = `(x) denote the level of both vertices in X. Because G is proper, for
every vertex v ∈ VX , either `(v) = `x + 1 or `(v) = `x − 1 must hold.
Now let v1, v2 ∈ VX be two neighbours of X such that `(v1) = `(v2) = `x + 1. We

can see that in every level drawing of G this enforces a crossing because in every level
drawing the vertices v1, v2, x, y have to form a constellation as can be seen in Figure 4.1.
Hence, there can be at most one vertex v ∈ VX with `(v) = `x + 1.

With the same argument we can show that there exists at most one vertex v ∈ VX

with `(v) = `x − 1. Since these were the only two options, it holds that |VX | ≤ 2.

Unfortunately if |X| = 2 and the two vertices x, y ∈ X do not lie on the same level,
then VX can be arbitrarily large as can be seen in Figure 4.2. The following lemma
shows us how we can deal with this problem.

Lemma 32. Let G be a planar graph with a proper level assignment ` : V (G) → [h],
let C be a closed set of constraints on V (G), and let C be a minimal but not necessarily
minimum vertex cover of G. Further let X ⊆ C be a subset of the vertex cover with
|X| = x, y, |VX | ≥ 1 and with `(x) 6= `(y).
Then there exists a graph G′ ⊆ G with the same vertex cover C and a new (and without

loss of generality closed) set of constraints on V (G′) with the following properties:

1. For every set of vertices X ′ ⊆ C and for the associated set of vertices V ′X′ ⊆ V (G′)\
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x

y

vl vr

Fig. 4.3: A visualisation of the situation in Lemma 4.2. We have a set of vertex cover vertices
X = {x, y} and a drawing of the whole graph. The vertices vl, vr are the left- and the
rightmost vertex of VX in the drawing, respectively. Note that each vertex v /∈ VX

(grey) drawn between vl, vr must be in Vx or Vy, since no vertex of degree 0 is contained
in the graph and every edge (e.g. the dashed edge) between v and a vertex not in X
creates a crossing with an edge incident to vl or vr.

C consisting of precisely the vertices connected to X ′, it holds that |V ′X′ | ≤ |VX′ |.

2. For the set of vertices V ′X it holds that |V ′X | = 1.

3. G is level-planar respecting C if and only if G′ is level-planar respecting C ′.

Given G we can compute a new graph G′ with the above properties in polynomial time.

Proof. Let G be a planar graph with a proper level assignment ` : V (G)→ [h], let C be
a closed set of constraints on V (G) and let C be a minimal, but not necessarily minimum
vertex cover of G. Let further X ⊆ C be a subset of the vertex cover with X = {x, y},
|VX | ≥ 1 and with the two vertices x, y ∈ X lying on different levels, i.e., `(x) 6= `(y).
We assume without loss of generality that G contains no singletons. (Otherwise we

know that, because of Lemma 15, G is level-planar if and only if G without all its sin-
gletons is level-planar, and since C is a minimal vertex cover we know that no singletons
are contained in C. Therefore the VX stay the same for all X ⊆ C, except for V∅. Since
then V∅ = ∅ , this is no problem for our following result.

Since |VX | ≥ 1, there exists at least one vertex v ∈ VX that is connected to both x
and y by definition of VX . Since `(x) 6= `(y) and our level-assignment is proper, one of
the x, y must lie one level above v and the other one must lie one level below v. We
therefore know that `(x) = `(y) + 2 or `(x) = `(y) − 2 must hold. We assume without
loss of generality that `(x) = `(y) − 2. Then for all vertices v′ ∈ VX , it holds that
`(v′) = `(x) + 1, i.e., all vertices in VX lie on the same level between x, y.

Assume that G is level-planar, let G be a level-planar drawing of G, and let vl, vr ∈ VX

be the leftmost respectively rightmost vertex out of VX in G. Let further v /∈ VX be a
vertex drawn somewhere between vl, vr in G. We know from assumption that v s not
singleton, and therefore hast at least one neighbour. This neighbour needs to be either x
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or y (every other neighbour would necessarily generate a crossing with one of the edges
from vl or vr to x or y, and it cannot be both since then v ∈ VX would hold). Since C
is minimal it holds that v /∈ C. A visualization of this situation can be seen in in Figure
4.3. Therefore either v ∈ V{x} or v ∈ V{y} holds.

We can observe now that we can reorder all vertices between vl, vr arbitrarily without
changing the level-planarity of the drawing. If there exist constraints v1 ≺C v and
v ≺C v2 for some v1, v2 ∈ VX , then v must lie somewhere between the VX in every level-
planar drawing of G respecting C. Since C is closed we can now reorder the vertices
between vl, vr in such a way that the vertices v /∈ VX , v1 ≺C v and v ≺C v2 for some
v1, v2 ∈ VX are the only ones lying inside of X.

This shows that if G is level-planar there exists a level-planar drawing G of G such
that between the VX lie only vertices which have constraints of both forms v1 ≺C v and
v ≺C v2 for some v1, v2 ∈ VX (and we will further denote this set by V ∗X).
Contracting V ∗X into a single vertex vnew yields a new graph G′ with the claimed

properties (1) and (2). We further define the new set of constraints C ′ in such a way
that it is consistent with C on V (G) \ V ∗X and that for each v ∈ V (G) \ V ∗X there exists
a constraint of the form v ≺C′ vnew (respectively vnew ≺C′ v) if there exists a constraint
of the form v ≺C v′ (respectively v′ ≺C v) for a v′ ∈ V ∗X .
We can immediately see that G′ is level-planar if G is level-planar because every level-

planar drawing G of G respecting C can be transformed into a level-planar drawing G′
of G′ respecting C ′ by the above method.
If on the other hand there exists a level-planar drawing G′ for G′ respecting C ′, we

can replace vnew and its incident edges with the vertices in V ∗X ordered in some way
respecting C and because of the way we defined C ′ no vertex in V ∗X has a constraint
conflict of a vertex outside of V ∗X . This therefore gives us a level-planar drawing G of G.

Therefore, G is level-planar if and only if G′ is level-planar and property (3) holds.
The possibility to construct a such a graph G′ for a given G in polynomial time follows

directly from the definition of G′.

We know have a way to handle the size of all VX with |X| ≥ 2. What is left to do is
to deal with the leaves.

Lemma 33. Let G be a planar graph with a proper level assignment ` : V (G)→ [h], let
C be a closed set of constraints on V (G) and let C be a minimum but not necessarily
minimal vertex cover of G. Let further V ∗ =

⋃
V{v}, v ∈ C be the set of vertices in

V (G)\C neighboured to exactly one vertex in C, let H ⊆ G be the subgraph of G containing
all but the vertices V ∗ and their incident edges and let H be a level-planar drawing of H
respecting C.
Then it is possible to test whether there exists a level-planar drawing G of G which

coincides with H on H in O∗(2|C|2) time.

Proof. The idea of this proof is to show that we can define new constraints with the
property that for every level j we can insert the leaves lying on this level if and only if
there exists an order of level j consistent with all new constraints.
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xvl vr

v′ v′′v

Fig. 4.4: A visualization of the situation in the proof of Lemma 33 where we want to ensure
that the newly inserted edge (x, v) does not generate a crossing with an edge already
drawn. The vertex vl is the rightmost vertex to the left of x with an edge (vl, v′) to
some vertex v′ on level j + 1, and vr is the leftmost vertex to the right of x with an
edge (vr, v′′) to some vertex v′ on level j + 1. The vertex v′ is the rightmost neighbour
of vl on level j + 1 and v′′ is the leftmost neighbour of vr on level j + 1. We can see
that e crosses an already existing edge if and only if e crosses either (vl, v′) or (vr, v′′).

x

x′

Fig. 4.5: A visualization of the situation in the proof of Lemma 33 where we want to ensure
that leafs of vertex cover vertices x, x′ on adjacent levels do not generate a crossing.
The set Vx′ must lie either entirely to the left or entirely to the right of x (and in the
same way the set Vx must lie either entirely to the right or entirely to the left of x′,
depending on the choice of side made before).
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We therefore take a look at all sorts of crossings which can occur while inserting the
leaves. Let x ∈ C be a vertex out of the vertex cover on level j and let v ∈ Vx be a
leaf adjacent to x. Assume without loss of generality that e = (x, v) ∈ E(G) (otherwise,
(v, x) ∈ E(G) and the proof is analogue).
The first kind of crossing that can occur while inserting (x, v) is a crossing between

e and an edge already present in the drawing. To prevent that, let vl be the rightmost
vertex to the left of x with an edge (vl, v′) to some vertex v′ on level j + 1, and let
vr be the leftmost vertex to the right of x with an edge (vr, v′′) to some vertex v′ on
level j + 1. Let further v′ be the rightmost neighbour of vl on level j + 1 and v′′ be
the leftmost neighbour of vr on level j + 1. This situation is visualized in Figure 4.4.
We can see that e crosses an already existing edge if and only if e crosses either (vl, v′)
or (vr, v′′). Therefore, in every level-planar drawing the constraints v′ ≺ v and v ≺ v′′

must be fulfilled, and enforcing them by adding them to C guarantees that e generates
no crossing with an already existing edge.
All other possible crossings we need to prevent can only occur between two newly

added edges. We can observe that for v, v′ ∈ Vx the edges (x, v) and (x, v′) never cross.
It therefore suffices to consider edges of the form (x′, v′) or (v′, x′), x′ ∈ C, v′ ∈ Vx′ ,
x 6= x′.
We will at first show how to prevent crossings with edges of the form (x′, v′), where

x, x′ both lie on level j. Let assume without loss of generality that x lies to the left of x′.
We can now see that in order to generate a level-planar drawing all vertices of Vx must
lie entirely to the left of all vertices out of Vx′ , and if this is fulfilled no crossing between
the edge e and an edge (x′, v′) occurs. Therefore it is necessary and sufficient to add the
constraints v ≺ v′ for all v ∈ Vx, v′ ∈ Vx′ to C in order to prevent these crossings.

So far, all additional constraints could be generated and added simultaneously in
polynomial time. This changes in the last case we need to consider. Let x′ ∈ C be a
vertex cover vertex on level j + 1 with an non-empty set of neighboured leaves Vx′ 6= ∅.
This situation is visualized in Figure 4.5. We can see now that the set Vx′ must lie either
entirely to the left or entirely to the right of x (and in the same way the set Vx must lie
either entirely to the right or entirely to the left of x′, depending on the choice of side
made before). This is ensured by enforcing either the additional constraints v ≺ x′ for
all v ∈ Vx and x ≺ v′ for all v′ ∈ Vx′ , or the constraints x′ ≺ v for all v ∈ Vx and v′ ≺ x
for all v′ ∈ Vx′ , and one of these situations must hold in every level-planar drawing of G.
There at most |C|2 pairs x, x′ ∈ C for which this situation can occur, there are at most
O(2|C|2) combinations of constraints of this kind. It is now easy to see that there exists
a level-planar drawing of G if and only if there exists an order for the levels respecting
at least one of the generated set of constraints.
All of this can be tested in O∗(2|C|2) time.

We can now state the main result of this chapter:

Theorem 34. Proper CLP and Proper PLP are in FPT parameterized by Vertex
Cover Number.

Proof. Let G be a graph with Vertex Cover Number k together with a proper level
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assignment ` : V (G) → [h] and a closed set of constraints C. We will show that there
exists an FPT algorithm with which we can test whether G is level-planar parameterized
by Vertex Cover Number.
We can assume without loss of generality that G is planar (otherwise we immediately

know that G cannot be level-planar) and that G has no singular vertices (because of
Lemma 15 we know G is level-planar if and only if G without all its singular vertices is
level-planar).
We can now find a Vertex Cover C for G with size at most 2 · k in polynomial time,

and we can assume without loss of generality that C is minimal (otherwise we could just
delete vertices out of C until the resulting set cannot be reduced any further).
From the Lemmata 30, 31 and 32 we know that we can assume that |VX | ≤ 2 holds

for every |X| ≥ 2. (This is already guaranteed for most cases according to the Lemmata
30 and 31. If another case occurs, Lemma 32 guarantees us that we can reduce G to a
new graph G′ with the desired property in polynomial time.)
Define the set of leaves V ∗ = {v ∈ V (G) \ C | deg(v) = 1} ⊂ V (G) \ C as all vertices

not contained in C but neighboured to precisely vertex out of C. We now consider
the subgraph H ⊆ G containing all of G except V ∗ and its incident edges. From the
observations made above it follows that H contains at most |C|+ 2 · 2|C| ≤ 2 · k + 22·k+1

vertices, and we could generate H in polynomial time. Therefore, the size of H depends
only on k and there exists a function f : N→ N such that we can construct all possible
level-planar drawings of H by brute force in O(f(k)) time.

For every level-planar drawing H of H we can further test in O∗(2|C|2) time whether
we can add the remaining leaves V ∗ because of Lemma 33.
If there exists at least one level-planar drawing H of H which can be expanded to a

level-planar drawing G of G respecting C, then G is level-planar. The other way around
it is easy to see that if G is level-planar, there must exist at least one level-planar drawing
H of H which can be expanded to a level-planar drawing G of G respecting C.

We can therefore test whether G is level-planar respecting the constraints C with an
FPT-algorithm parameterized by Vertex Cover Number.

Since Proper PLP can be reduced to Proper CLP while maintaining the same
Vertex Cover Number, this result holds for Proper PLP as well.

Unfortunately, it is not clear if and how one can expand this result to the non-proper
cases. We can see that we heavily relied on a proper level assignment in the Lemmata 31,
32 and 33. The statement out of Lemma 31 becomes wrong if we omit the assumption
that the level-assignment is proper, and it is unclear whether Lemmata 32 and 33 can
be generalized to this case. The general question whether CLP and PLP are in FPT
parameterized by Vertex Cover Number therefore remains open.
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5 Maximal Number of Vertices per Level

In this chapter we investigate another parameter intrinsic to Level Planarity: the max-
imal number of vertices per level. However, it turns out that in the general case CLP
and PLP are not in FPT parameterized by this number. We will see that this changes
if we require our input instance to be proper.

To show that general CLP is not in FPT, we will prove that we can reduce the
problem whether a given instance of CLP or PLP is drawable to the problem with at
most two vertices per level. Brückner and Rutter [BR22b] provided a technique with
which we can reduce every h-level graph to a (non-proper) O(n)-level graph with exactly
one vertex per level. We now describe a simplified version of this reduction technique,
which is demonstrated in Figure 5.1:

Theorem 35 ([BR22b]). Let G be an h-level graph together with a level assignment
` : V (G) → [h], and j ∈ [h] be an arbitrary level with y vertices on it. We can expand
level j by replacing it with y new levels j1, j2, . . . , jy and distributing the y vertices to
these new levels. Let G′j be the instance obtained in this way, and let G′ be the instance
in which every level is expanded with this method. Let further G′′ be the (proper) instance
obtained from G′ in which every edge crossing k layers is subdivided k times.
Then the sizes of G′j, G′ and G′′ are polynomial in the size of G, and G, G′j , G′, G′′

are all level-planar if and only if one of them is level-planar. Note further that in G′

each level contains at most one vertex. Having a level-planar drawing G of G, we can
perform all these expansion steps on G without changing the embedding.

It is not obvious for our constrained setting how to transfer the additional set of
constraints or the partial drawing. As only proper PLP reduces to a special case of
CLP, we have to consider these problems separately. For PLP we can expand the
partial drawing as we did with the input graph.

Theorem 36. Let G be an h-level graph together with a level assignment ` : V (G)→ [h]
and a partial drawing H of a subgraph H ⊆ G. Let G′ be a new graph with only one
vertex per level, obtained by expansion of all levels as described in Theorem 35. Let
further H′ be a drawing of H respecting the new level assignment of G′ but with the
same embedding as H. Then G has a level-planar drawing respecting H if and only if G′

has a level-planar drawing respecting H′.
Furthermore there exists no FPT-algorithm solving PLP parameterized by the maxi-

mum number of vertices per level under the assumption that P 6= NP.

Proof. Assume that there exists a level-planar drawing G of G respecting H. If we per-
form the expansion steps described in Theorem 35 on every level, we gain a level-planar
drawing G′ of G′. Let H′ be the part of G′ that corresponds to H. Clearly G′ respects
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(a) A level-graph with at most four vertices per
level.
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(b) The same level-graph in which line 2 has
been expanded.
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(c) A fully expanded graph. Every level con-
tains at most one vertex.
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(d) A proper expanded graph. Every edge that
spans several levels got subdivided.

Fig. 5.1: The simplified version of the expansion technique described by Brückner and Rutter
[BR22b].

38



v1 < v4

v3 < v4

v2 < v3

v1 v2 v3 v4

Fig. 5.2: A level after constraint expansion.

H′. Since the expansion steps can be performed without changing the embedding of
either drawing G,H or H′ is equivalent to H. Thus G′ is a level-planar drawing of G′

respecting H′.
Now assume that there exists a level-planar drawing G′′ of G′′ respecting H′. By

Theorem 35, we know that there exists a level-planar drawing G of G with the same
embedding as G′′. Since the expansion steps can be performed without changing the
embedding of either drawing, G constructed in this way coincides with H on H. Thus G
is a level-planar drawing of G respecting H.
Since we can reduce the question whether there exists a level planar drawing for a given

PLP-instance to the class of level-graphs with at most one vertex per level, and PLP is
NP-hard [BR17], there cannot exist an FPT-algorithm solving PLP parameterized by
the number of vertices per level under the assumption that P 6= NP.

For CLP we have to deal with our constraints first. Let G be an h-level graph together
with a level assignment ` : V (G)→ [h], let C =

⋃
j∈[h] Cj be a set of constraints and let

j ∈ [h] be an arbitrary level with the constraints Cj . We can now expand level j in the
following way:
At first generate a duplicate level jd of level j and all vertices on it, and place this new

level jd directly under level j. For every vertex v on level j, we denote the duplicate of
v with vd.
Then for every vertex v on level j we leave all incoming edges of the former v intact as

they are, add an edge (v, vd) and reoriginate all former outgoing edges of v from vd. For
every constraint c = (v < v′) in Cj , we then insert a new level jc in between the levels
j, jd, subdivide the edge between the vertices v, v′ and their respective duplicates vd, v′d
with the two vertices vc, v′c, remove c from Cj and add a new constraint cd = (vc < v′c) to
the constraint set Cj,c of level jc. We call such an expansion step a constraint expansion of
level j, and denote the resulting graph by G∗j . Figure 5.2 shows a level after constraint
expansion. The level and all corresponding vertices have been duplicated, and every
constraint is realized on a new distinct level in between. Let further G∗ be the graph
obtained from G in which every level got constraint expanded, and G∗

′ be the graph
obtained from G∗ by expanding all the levels without constraints as described in Theorem
35. Note that this means that we expand precisely all levels except those of the form jc
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for a constraint c ∈ Cj .
Having defined this constraint expansion, we can now formulate the following Theo-

rem:

Theorem 37. Let G be an h-level graph together with a level assignment ` : V (G)→ [h]
and let C =

⋃
j∈[h] Cj be a set of constraints for G. Let further j ∈ [h] be an arbitrary

level of G.
Then in every level-planar drawing of the graph G∗j (obtained from G by constraint

expansion of level j) respecting the new constraints, the vertices lie in the same order on
both level j and its duplicate level jd, and they respect all constraints originally present
in Cj. Further, the size of the graph G∗

′ is polynomial in the size of G, every level of
G∗

′ contains at most two vertices, and there exist level-planar drawings for all of the
G∗j , G∗, G∗

′ their respective set of constraints if and only if there exists a level-planar
drawing G of G respecting C.
Furthermore there exists no FPT-algorithm solving CLP parameterized by the maxi-

mum number of vertices per level under the assumption that P 6= NP.

Proof. Let G∗j be a graph obtained from G by constraint expansion of level j. We will
show at first that in every level-planar drawing G∗j of G∗j , the vertices formerly on level j
lie in the same order on both the original level j and the duplicate level jd, and respect
all constraints originally present in Cj .
If we take a look at the (possibly subdivided) lines between the vertices and their

duplicates, we can observe that they can not cross at any point, so they form a number
of parallel lines, with the same line order at any horizontal cut in this interval. This
immediately implies that the original vertices and their duplicates have the same vertex
order. Furthermore, every level with a constraint in between the levels j, jd enforces its
order on the vertices with which we subdivided these lines, and with that on the overall
line order. We can therefore contract the levels j, jd and all levels in between into a
single level fulfilling Cj in every drawing of G∗j .
On the other side, given a level-planar drawing of G we can directly expand level j in

the drawing in accordance with the constraint expansion rules and gain a level-planar
drawing of G∗j .
This directly results in G having a level-planar drawing respecting C if and only if G∗j

has a level-planar drawing respecting its new set of constraints, and – through iteration
of this argument – if and only if G∗ has a level-planar drawing respecting its new set of
constraints. Theorem 35 finally gives us that G∗ has a level-planar drawing respecting
its set of constraints if and only if G∗

′ has a level-planar drawing respecting its set of
constraints.
Since every constraint expansion generates only O(|C|) many new levels, the size of C

is at most quadratic in the number of vertices n and we perform this constraint expansion
step at most n times, the size of G∗

′ is polynomial in the size of G, and Theorem 35
guarantees that the size of G∗

′ is polynomial in the size of G∗, and thus also polynomial
in the size of G.
Furthermore, every level in G∗

′ with constraints contains only two vertices after the
constraint expansion, and every other level contains only one vertex after the expansion
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u1 u2

v2 v1

Fig. 5.3: Two edges (u1, v1), (u2, v2) which lie between the same levels cross if and only if u1
lies before u2 and v1 after v2; or if u1 lies after u2 and v1 before v2.

method from Theorem 35, therefore every level contains at most two vertices.
The last thing we need to show is that there cannot exist an FPT-algorithm for CLP

parameterized by the number of vertices per level. Since we can reduce the question
whether there exists a level planar drawing for a given CLP-instance to the class of
level-graphs with at most two vertices per level, and CLP is NP-hard [BR17], there can
not exist an FPT-algorithm solving CLP parameterized by the number of vertices per
level under the assumption that P 6= NP.

As a side effect this gives us the following corollary:

Corollary 38. Assuming P 6= NP, there exists no FPT-algorithm for CLP parameter-
ized by the maximum number of constraints per level. This does not change if we require
our input instance to be proper.

Proof. Theorem 37 shows that we can reduce the question whether an instance of CLP is
level-planar on the instances with at most one constraint per level. Such an instance can
be made proper by subdividing every edge spanning several levels, without increasing the
number of constraints, therefore there cannot exist an FPT-algorithm solving (proper)
CLP parameterized by the maximum number of constraints per level.

It is noteworthy that in order to prove theorems 36 and 37, we required a lot of edges
to pass over several levels. We can prohibit this phenomenon by requiring the input
graph to be proper. It turns out that this restricted case lies in FPT.
We first need a way to test planarity of certain embeddings.

Lemma 39. Let G = (V, E) be an h-level graph together with a level function ` and
constraints C, with at most k vertices per level. Let further j ∈ [h− 1] and Pj, Pj+1 be
a linear order for the vertices Vj respectively Vj+1 of level j, j + 1. respecting C.
Then we can test in O(k2) time whether the drawing of G restricted to Vj ∪ Vj+1 and

the edges between defined by Pj, Pj+1 is planar.

Proof. To test planarity it suffices to check if there are any crossing edges. Two edges
(u1, v1), (u2, v2) which lie between the same levels have to cross if and only if u1 lies
before u2 and v1 after v2; or if u1 lies after u2 and v1 before v2, as shown in Figure 5.3.
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Given two edges this property can be tested in O(1) time. As we can have at most a
linear number of edges in a planar graph, we can test all edge pairs in O(k2) time.

Algorithm 2: (h-level graph G, level function `, constraints C)
1 if h = 0 then
2 return yes
3 M1 ← ∅
4 foreach permutation P of L1 consistent with C do
5 M1 ←M1 ∪ {P}
6 for i = 2 to h do
7 Mi ← ∅
8 foreach permutation P of Li consistent with C do
9 for P ′ ∈Mi−1 do

10 if P ′ and P together with edges between layers i− 1 and i planar
then

11 Mi ←Mi ∪ P ′

12 if Mh = ∅ then
13 return no
14 return yes

Using this consistency test, we can formulate Algorithm 2.
The idea behind this algorithm is the following: For each level, we compute all possible

permutations, and test afterwards which of them are compatible with each other. If there
exists a selection of permutations compatible with each other covering all levels those
form a level-planar drawing of the graph.
Figure 5.4 shows a level graph (5.4a) and a level-planar drawing (5.4b) of it according

to the computation of Algorithm 2 visualized by the tree in Figure 5.5. In this tree, all
considered permutations (exactly those compatible with the constraints) are considered.
All permutations in the first level are considered reachable. Those in the following
levels are considered reachable if they are compatible with a reachable permutation
in the previous level (and are otherwise pictured grey). The existence of a reachable
permutation on the last level is equivalent to the existence of a level-planar drawing.
Theorem 40. Let G be a graph together with a level function ` : V (G) → [h] and a
set of constraints C be a proper instance of CLP with at most k vertices per level.
Then Algorithm 2 decides whether there exists a drawing G of G compatible with C in
O(n · (k!)2 · k4) time.
In particular there exists an FPT-algorithm for Proper CLP (and thus Proper

PLP) parameterized by k.
Proof. We will show at first that the algorithm returns yes if and only if the input is
level-planar.
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v1,1 v1,2

v2,1 v2,2 v2,3

v3,1 v3,2 v3,3

v4,1 v4,2 v4,3

v2,1 < v2,2
v2,1 < v2,3

v4,2 < v4,3

(a) A representation of a level graph G. Some
constraints are given at the side.

v1,1 v1,2

v2,1 v2,2v2,3

v3,1v3,2 v3,3

v4,1v4,2 v4,3

v2,1 < v2,2
v2,1 < v2,3

v4,2 < v4,3

(b) A level-planar drawing of G compatible
with the given constraints.

Fig. 5.4: An instance of Proper CLP, on which we demonstrate Algorithm 2.

v1,1, v1,2 v1,2, v1,1

v2,1, v2,2, v2,3 v2,1, v2,3, v2,2

v3,1, v3,2, v3,3 v3,1, v3,3, v3,2 v3,2, v3,1, v3,3 v3,2, v3,3, v3,1 v3,3, v3,1, v3,2 v3,3, v3,2, v3,1

v4,1, v4,2, v4,3 v4,2, v4,1, v4,3 v4,2, v4,3, v4,1

Fig. 5.5: A computation tree demonstrating how Algorithm 2 works on the graph G shown in
Figure 5.4. On each level we consider all permutations compatible with C. Every
permutation contained in a set Mi is drawn black, all others are drawn gray. An edge
consists from permutation P to permutation P ′, if they can be drawn level-planar
together and P is contained in a set Mi. We see that G can be drawn level-planar
since there exists a permutation in M4, and the (in this case) only possible level-planar
drawing of G can be seen in Figure 5.4b.
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If h = 0, G must be the empty graph which is trivially level-planar. This case is
checked in the beginning. We will therefore assume in the rest of this correctness proof
that h ≥ 1, and write Gj for the graph consisting exactly of the first j levels out of G
and the edges between them.
We will show that the following invariant is true at the beginning of each iteration of

the second for loop:
For the set Mi−1 the equation Mi−1 6= ∅ holds if and only if there exists at least one

level-planar drawing of Gi−1, and there exists a level-planar drawing of Gi−1 respecting
C in which level i− 1 has the total order P if and only if P ∈Mi−1.

Since we can draw every 1-level graph with exactly those permutations which are
compatible with C, and these are exactly those we add to M1 in the first for loop, the
invariant is fulfilled at the beginning of the first iteration of the second for loop.

Now let the invariant be true at the start of an iteration process and let 2 ≤ i ≤ h.
Since Gi is proper, every level planar drawing of Gi consists of a level-planar drawing of
Gi−1 and a level-planar drawing of the graph consisting of levels i− 1, i and the edges
between those two levels, while these two drawings must coincide at level i− 1 and both
must be compatible with C. We know that according to the invariant the permutations
of level i − 1 for which a level-planar drawing exists are precisely those in Mi−1, so it
suffices to check for every permutation P of level i if it is consistent with C and if there
exists a permutation P ′ ∈ Mi−1 such that the level drawing of levels i− 1, i and the
edges between those two levels is planar if the levels are ordered as in P respectively P ′.
We add precisely those permutations for which this condition is fulfilled. Therefore at
the end of the iteration step Mi contains permutation P ′ of level i if and only if there
exists a level-planar drawing of Gi in which level i is ordered as in P ′, and the invariant
holds.
The iteration process of the second for loop ends if i = h + 1, so according to the

invariant Gh = G has a level-planar drawing compatible with C if and only if Mh 6= ∅.
This proves that Algorithm 2 correctly decides whether there exists a level-planar

drawing of G.
It remains to show that it also has the claimed running time. Since there are at most

k vertices per level, we can generate all level permutations in O(k!) time, and for each
permutation P we require at most O(k2) time to check if P is consistent with C (since
there are at most O(k2) constraints per level). Given two permutations P, P ′ consistent
with C for two successive levels we can test in O(k2) time if the respective levels can
be drawn level-planar together if we order their vertices according to P, P ′ as shown in
Lemma 39.
Overall this gives us a running time of O(k! · k2 + h · k! · k2 · k! · k2), which is in

O(n · (k!)2 · k4) as h ∈ O(n), thus Algorithm 2 has the claimed running time and is an
FPT-algorithm for proper CLP parameterized by k.

Note that although Algorithm 2 decides only whether the input has a level-planar
drawing and does not compute a drawing itself, we could easily gain a drawing from
the Mj , if for every permutation we also save a predecessor. Starting from a reachable
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permutation P in Mh and choosing the line of predecessors then leads to a level-planar
drawing.
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6 Conclusion

In this thesis we investigated Constrained and Partial Level Planarity param-
eterized by several interesting parameters. The problem turned out to not be in FPT
parameterized by the number of levels, pathwidth or treewidth. Since these problems
are solvable in polynomial time for one level, this lead to the question how many lev-
els are necessary to make these problems (and their radial analogues) NP-hard. While
Radial CLP proved to be NP-hard even for one level, we showed that it is possible to
solve CLP and (Radial) PLP with at most two levels in polynomial time. Brückner
and Rutter [BR22a] showed that PLP is NP hard with seven levels, which we improve
to four levels for CLP and six levels for Radial PLP. The remaining levels between
these bounds remain of unclear complexity status. Improving these bounds, or even
solving the question at which levels these problems become NP-hard and if this number
is different for CLP and (Radial) PLP is an interesting subject for future work.
The next parameter we considered was Vertex Cover Number. We proved that

Proper CLP (and thus Proper PLP) is in FPT parameterized by Vertex Cover
Number. However, it is not clear if and how this approach can be generalized to CLP
without requiring that the input graph is proper. Therefore, the question whether there
exists an FPT algorithm for this parameter remains open.

Another parameter we considered was the maximal number of vertices per level. By
expanding the given graphs, we demonstrated that PLP can be reduced to PLP with
at most one vertex per level and CLP can be reduced to CLP with at most two vertices
per level, and that therefore there does not exist a general FPT algorithm for PLP or
PLP parameterized by the maximal number of vertices per level. However we presented
an FPT algorithm for Proper CLP (and thus Proper PLP).
There are a few more parameters we did not investigate in this thesis but which would

be an intriguing subject for future work.
A promising parameter seems to be the number of sources (i.e., the number of ver-

tices with no incoming edge). Current algorithms for Level Planarity are based on
algorithms for Level Planarity with only one source present [BR21]. Further, there
exists an algorithm solving CLP in polynomial time if there is only one source present
[BR17], which has a very similar structure to the one source Level Planarity algo-
rithm. Trying to combine these approaches seems promising in order to obtain an FPT
algorithm for CLP parameterized by the number sources.

Other interesting parameters we did not research are the treedepth of an input instance
or the number of constraints respectively the size of a partial drawing.
Finally, whether these results (especially those for vertex cover number and the max-

imal number of levels) can be generalized to Radial CLP and Radial PLP is a com-
pelling question.
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