
Bachelor Thesis

Rainbow Matchings
in Color-Spanned Graphs

Aaron Neugebauer

Date of Submission: July 4, 2022
Advisor: Prof. Dr. Alexander Wolff

Julius-Maximilians-Universität Würzburg
Lehrstuhl für Informatik I

Algorithmen und Komplexität

Abstract

Recent progressions in quantum physics provide new questions about perfect matchings
and graph coloring. One such problem is about monochromatic weighted graphs and
for which number of vertices in a graph how many monochromatic vertex colorings ex-
ist. In this work, we adapt this problem to provide an upper bound of the number of
monochromatic vertex colorings. The adaptation is concerned with for which graph,
every edge coloring provides a perfect rainbow matching. After introducing the prob-
lem, we propose multiple procedures including a brute-force approach, an integer linear
program and SAT formulations to investigate the amount of monochromatic vertex col-
oring. Also, we present some statements to simplify the search for graphs containing
rainbow matchings through isomorphic classes and case analysis’s.

Zusammenfassung

Durch neue Fortschritte in der Quantenphysik wurden neue Fragen aufgeworfen bezüg-
lich perfekten rainbow matchings und Graphenfärbungen. Eines dieser Probleme befasst
sich mit monochromatisch gewichteten Graphen und für welche Anzahl an Knoten wie
viele monochromatischen Knotenfärbungen es gibt. In dieser Arbeit formen wir dieses
Problem um, um eine obere Grenze für die Anzahl der monochromatischen Knotenfär-
bungen anzugeben. Die Umformung beschäftigt sich damit, für welche Graphen jede
spannende Färbung ein perfektes rainbow matching enthält. Nachdem wir das Problem
eingeführt haben, präsentieren wir verschiedene Vorgehensweisen, um dieses Problem zu
berechnen für verschiedene Graphen. Zu diesen Vorgehensweisen gehören ein Brut-Force
Algorithmus, ein Integer lineares Programm und SAT Formulierungen. Auch präsentie-
ren wir Aussagen zum Vereinfachen der Suche nach Graphen, welche perfekte rainbow
matchings besitzen.

2

Contents

1 Introduction 4
1.1 Connection to Quantum Physics . 5
1.2 Own Contribution . 6

2 Improving the Upper Bound 8
2.1 First Bound of C(n) . 9
2.2 Second Limitation of the Upper Bound . 11
2.3 Theoretical Achievements . 13

3 A Brute-Force Approach 15

4 An Integer Linear Program 17
4.1 Mathematical Program Formulation . 17
4.2 Linearization of the Mathematical Program 18
4.3 ILP Results . 19

5 A SAT Formulation 21
5.1 SAT Formulation for Single Graphs . 21
5.2 General SAT Formulation . 24
5.3 Case Analysis for Ten Vertices . 26
5.4 SAT Results . 27
5.5 SAT Program Performance . 28

6 Conclusion 31

Bibliography 32

3

1 Introduction

Due to the progress in quantum physics, new questions concerning graph theory arose
[KGZ17, GEZK19, GCZK19]. Trying to predict photons in a quantum experiment,
Krenn et al. [KGS19] formulated a problem about perfect matchings and graph color-
ing. This conjecture allows not only to anticipate an outcome of a photonic quantum
experiment through graph theory, but such experiments could also predict properties of
certain graphs.
In particular, the problem is about monochromatic weighted graphs and how many

vertex colorings they admit. Consider a edge colored, weighted graph G = (V,E). A
perfect matching m of G consists of edges of G such that every vertex is incident to
exactly one edge. A perfect matching m admits a vertex coloring τ , where we color
each vertex depending on the color of its only incident edge in the perfect matching
m. Such a vertex coloring is monochromatic if all vertices have the same color. The
weight ω(τ) of a vertex coloring τ is defined as the sum over the weight of all perfect
matchings with the vertex coloring τ . Here, the weight of a single matching with the
vertex coloring τ is the product of the edge weights. A colored, weighted graph is
monochromatic weighted if the weight of a monochromatic vertex coloring is one and
the weight of non-monochromatic vertex coloring is zero. For example, the graph G
shown in Figure 1.1a has three different monochromatic vertex colorings as seen in
Figure 1.1b. Since each vertex coloring is induced by exactly one matching, whose edges
have all weight unit weight, the weight of each vertex coloring is one. Therefore, the
graph G is monochromatic weighted. Currently, physicist are interested in graphs with
an even number of vertices and complex weights.

a

d c

b

III

III

V

V I

IV

(a) This graph G with unit edge weight is
monochromatic weighted.

(b) Matchings of the graph G in Figure 1.1a with
vertex coloring.

Fig. 1.1: Example for a monochromatic weighted graph G in Figure a with its vertex colorings
admitted from the perfect matchings as seen in Figure b.

Until now, the graph in Figure 1.1a is the only known graph with three different vertex
colorings. Bogdanov [Bog17] showed that for real edge weights greater than zero, there
are no more than three different vertex colorings in a graph with four vertices and, for

4

graphs with an even number of vertices greater than four, there are no more than two
different vertex colorings. This result not only provides a lower bound for the number
of vertex colorings, but also inspired Krenn to postulate the following conjecture.

Conjecture 1 ([KGZ17]). Let G be a graph, and let n be the number of vertices of G.
If n = 4 then there are at most three different monochromatic vertex colorings. If n > 4
and n is even, then the maximum number of different monochromatic vertex colorings is
two.

Theoretical approaches to solve the problem were made by Bogdanov [Bog17] and
recently by Chandran and Gajjala [CG22], who proved for graphs without parallel edges,
with an even number n of vertices greater equal than six and uniquely colored edges
that the graph can’t have n − 3 or more monochromatic vertex colorings. Even with
advanced SAT formulations supported by artificial intelligence, Cervera-Lierta et al.
[CKA21] could only show that monochromatic weighted graphs for six vertices colored
in more than two colors do not exist. Similar, monochromatic weighted graphs with
eight vertices colored in more than three colors do not exist.

1.1 Connection to Quantum Physics
The implications for the world of quantum physics are connected to the following ex-
perimental setup in Figure 1.2. The boxes I and II either produce two or no photons,
which will travel on the black paths through crystals indicated by the boxes III, . . . ,
VI. These crystals manipulate the photons in certain ways. At the end of each path,
the photons can collide with the detectors a to d, which detect whether a photon hits it
and read some intrinsic properties of the photon. Due to the effects of quantum inter-
ference, photons can cancel out each other. Physicist are interested in the case where
each detector recognizes a photon. It is also important which proton which detector hits.
Since it is not possible to read the mode number of a photon, which reveals information
about the source of the photon, we only obtain a superposition of various possibilities.
This possibility distribution contains information from which source the photons prob-
ably originate by assigning each superposition of possible photon sources a probability.
Phase shifters and modified crystals can be used to change the mode number of a photon
and therefore the probability distribution of the superposition.
An experimental setup can be expressed in terms of graph theory, using the analogies

from the Table 1.1. Applying these analogies to the setup in Figure 1.2 results in the
graph G in Figure 1.1a. When the resulting graph is monochromatic weighted, the
photons are in a special state named Greenberg–Horne–Zeilinger (GHZ) state, which
Krenn et al. are interested in. At foremost, the interest lies in how to generate such GHZ
states [DMZ89] and their high-dimensional generalizations [MMMA18]. The dimension
of entangled photons describes how much information can be stored. For example, 2-
dimensional photons can either be in state 0 or in state 1 and therefore can hold one bit
of information.

5

I II

III IV

V VI

a b c d

Fig. 1.2: Optical setup to generate 3-dimensional 4-photon GHZ states with the method of
entanglement by path identity [KHLZ17, KGZ17]. Each box represents a crystal and
the black lines depicts the path of photons. Box I and II will produce two entangled
photons. All four photons are in a special entangled state when they hit the detectors
a to d.

By answering this problem, Krenn et al. hope to gain new insights into the potential
of the quantum interference since the examined phenomena has applications in spec-
troscopy [KPKK16], quantum imaging [LBC+14], the investigating of complementar-
ity [HMM15], in superconducting cavities [LPHH16] and examining quantum correla-
tion [HLL+17].
This problem leads to a new question in the field of graph theory. Krenn et al. [KGS19]

published many additional questions regarding this field with implications for quantum
physics.

1.2 Own Contribution
First, we formalize the problem about finding monochromatic vertex colorings; see Chap-
ter 2. Then we show how to rephrase the problem into one concerning rainbow matchings
in color spanning graphs to give an upper bound on k such that Conjecture 1 holds; see
Chapter 2. In addition, we will recall results concerning rainbow matchings in color
spanning graphs.
To calculate for which k rainbow matching always exists for a specific given graph

with a spanning (n− k)-coloring, we will implement a simple brute-force algorithm and
analyze its runtime and effectiveness; see Chapter 3.

6

Tab. 1.1: Analogies between the experimental setup and graph theory.

Quantum experiment Graph theory

optical setup with crystals undirected graph G = (V,E)
crystals edges set E
optical path vertices set V
mode number of photon edge color
n photons entangled perfect matching
number of possible n entangled photons number of perfect matchings
largest dimension of photons vertex degree
n-photon d-dimensional GHZ state n-vertex graph

with d disjoint perfect matchings

Next, we examine how to encode the problem as a mathematical program (MP). As
we will show in Chapter 4.2, this MP formulation can be linearized, which allows us to
use an ILP solver to test if a graph has a spanning (n− k)-coloring without a rainbow
matching for a given graph. In particular, we examined with IBM’s ILOG CPLEX
Optimizer the viability of this approach to solve the ILP formulation.
Finally, we introduce a SAT formulation to search for spanning colorings for graphs

without rainbow matchings; see Chapter 5.1. By allowing edges to remain uncolored,
it is possible to generalize the SAT formulation to examine all subgraphs of a complete
graph of a given size; see Chapter 5.2. Sometimes, it is possible to recursively simplify
the examined graph. In this case, it remains to check multiple smaller problem instances;
see Chapter 5.3.
We present some experimental results. For graphs with eight vertices, we compare

Cervera-Lierta et al. [CKA21] results to ours and try to give a new upper bound for
graphs with ten vertices. In addition, we compare the runtimes of different variants of
our SAT formulation.

7

2 Improving the Upper Bound

Recall that Cervera-Lierta et al. [CKA21] have tried to find possible configurations for
monochromatic weighted graphs. This shows that even for graphs with few vertices, the
problem is computationally difficult. Due to this reason, we introduce an approach to
compare an upper bound for the number of different vertex colorings in a monochro-
matic weighted graph. First, however, we formalize the definitions for vertex coloring,
monochromatic weighted graphs and spanning coloring given in Chapter 1.

Definition 2 (Vertex Coloring). Consider a graph G = (V,E) with a perfect matching
m and an edge coloring α : E → F , where F = {1, 2, . . . , f}. Then τ : V → F is a
vertex coloring with respect to the perfect matching m if τ(v) = α(e), where e ∈ m is the
unique edge incident to v. If all vertices are colored the same, then τ is monochromatic.

Definition 3 (Induced Vertex Coloring). Any coloring α of a perfect matching m of a
graph induces a (unique) coloring α̂ of the vertices of the graph such that α̂(v) = α̂(u) =
α(vu) for each edge vu of m.

Definition 4 (Monochromatic Weighted Graph). Consider a graph G = (V,E) that
admits a perfect matching, with complex edge weights ω : E → C and edge coloring
α : E → F . Let M be the set of all perfect matchings of G, and, for a given vertex
coloring τ : V → F , let M(τ) = {m ∈ M : τ is a vertex coloring with respect to m} be
the set of all perfect matchings that induce τ . Let

ω(τ) =
∑

m∈M(τ)

∏
e∈m

ωe

be the weight of τ . If, for every monochromatic vertex coloring τ , ω(τ) = 1 and, for every
non-monochromatic vertex coloring τ̄ , ω(τ̄) = 0, then G is a monochromatic weighted
graph.

Note, that the definition of monochromatic weighted graphs given by Krenn [KGS19]
does not prohibit edges, which have the same end vertices. Such edges are called par-
allel. Since we are only interested in graphs without parallel edges, we assume, that all
monochromatic weighted graphs do not contain parallel edges.

Definition 5 (Spanning Coloring). Let G = (V,E) be a graph and α : E → F be a
coloring of the graph. Here F is the set of colors. A coloring α is spanning for a graph
G if, for every vertex v ∈ V and for every color f ∈ F , there exists an edge incident to
v with color f .

8

In Conjecture 1 Krenn [KGZ17] made a statement about how many monochromatic
vertex colorings a monochromatic weighted graph has. Let Gn be the family of graphs
with n vertices that are monochromatic weighted. For G ∈ Gn, let C(G) be the number
of monochromatic vertex colorings of G. For any even positive integer n, let

C(n) = max
G∈Gn

C(G)

be the maximum of C(G) over all graphs G in Gn. As previously mentioned, Bog-
danov [Bog17] showed that C(4) = 3 and that, for every even number n ≥ 6 and graphs
with positive real edge weights, C(n) = 2. It follows that C(n) ≥ 2 for arbitrary edge
weights.
This leaves the question of an upper bound for C(n) for arbitrary edge weights, which

we investigate with the help of two claims proposed by Ravsky [Rav21a, Rav21b]. First,
we introduce each claim and show how it bounds C(n) for a given n. Secondly, we show
which upper bounds can be verified through theoretical approaches.

2.1 First Bound of C(n)
Ravksy’s [Rav21b] first claim asks for a colored perfect matching in partially colored
complete graph with an even number n of vertices and n − k colors, whose coloring is
spanning. Furthermore, the perfect matching must not only have one color and, for each
color f ∈ {1, 2, . . . , n − k}, the graph, containing all vertices, which are incident to the
matching and the color class of f , and all edges, which are uncolored or have color f ,
between the vertices, needs to contain a unique perfect matching. We want to know
which number of vertices n and number of colors n − k satisfy this claim. Mainly, we
want to know the largest k for which Claim 6 holds. We define k′(n) as the largest k for
which Claim 6 holds.

Claim 6 ([Rav21b]). Consider the graph G = (V,E) = Kn. Let α : E \ R → F =
{1, 2, . . . , n − k} be a (n − k)-spanning coloring of (V,E \ R), where R ⊂ E is a set of
uncolored edges of G. For any f ∈ F , let Ef = {e ∈ E : α(e) = f} be the edges of G with
color f . Then there exists a colored perfect matching m ⊆ E \ R of G and only colored
edges such that for each f ∈ F with Vf 6= ∅, the graph (Vf , E′f) has a unique perfect
matching. Here Vf is the set of vertices of G incident to edges in m ∩Ef and E′f is the
set of edges of Ef ∪R with both end vertices in Vf .

For example, consider the graph G in Figure 2.1a with n = 6 and k = 2. Here, the
four color classes are the sets E1, . . . E4. Let m be the perfect matching in Figure 2.1b.
Then, for every color f ∈ F , m * Ef and therefore all edges do not have the same color.
Claim 6 holds for k = 2, because every graph (Vf , E′f) admits a unique perfect matching
as in Figure 2.1c. Note that V = ∅, because m ∩ E = ∅, and therefore (V ,E′) is an
empty graph, whose perfect matching is also unique. So, in this case, k′(6) ≥ 2.

To get a better understanding of the graphs (Vf , E′f), consider the graph G in Fig-
ure 2.2a. For the perfect matching m in Figure 2.2b the graph (V ,E′) in Figure 2.2c has

9

(V�, E
′

�
)

(V�, E
′

�
)

(V�, E
′

�
)

(a) Graph G with a spanning
4-coloring in colors , , ,
and uncolored edges .

(b) Perfect matching m of
graph G in Figure a satis-
fying Claim 6.

(c) Resulting graphs (Vf , E′
f)

of perfect matching m in
Figure b.

Fig. 2.1: Example of a graph with unique perfect matchings in graphs (Vf , E
′
f), for f ∈

{1, . . . , n− k}.

(V�, E
′

�
)

(V�, E
′

�
)

(a) Graph G with a spanning 3-
coloring in colors , , and
uncolored edges in .

(b) Example perfect matching
m of graph G in Figure a.

(c) Resulting graphs (Vf , E′
f)

of perfect matching m in
Figure b.

Fig. 2.2: Example for a graph with multiple perfect matchings in (Vf , E
′
f).

two perfect matchings. This means that m is not a candidate for the perfect matching,
whose existence Claim 6 guarantees.
We now want to show the connection between Claim 6 and Conjecture 1 from Capter 1.

Recall that Conjecture 1 stats a graph with four vertices has at most three different
monochromatic vertex collorings and every graph with a even number of vertices greater
than four has at most two different monochromatic vertex collorings. To connect Claim 6
and Conjecture 1, we need to introduce the definition of contributing edges for a color
of a graph. Ravsky [Rav22] shows that an edge can only be contributing to one color,
which helps to prove the connection.

Definition 7 (Contributing Edge). Let n ≥ 4 be an even number, and let G be a
monochromatic weighted graph with n vertices and colors F . For an edge e = (u, v) of
G and color c ∈ F , let Mc

e be the set of all c-monochromatic perfect matchings of the
induced graph G \ {u, v}. Let

W c
e =

∑
m∈Mc

e

∏
e∈m

ωce

be the weight of Mc
e, where ωce is the weight of an edge e of G, when considering that e

has color c. An edge e of G is contributing for a color c if both ωce and W c
e are non-zero.

Lemma 8 ([Rav22]). Any edge e of a monochromatic graph is contributing for at most
one color.

10

Proof. Suppose for a contradiction that an edge e of a monochromatic weighted graph
is contributing for distinct colors c and d. Let τ be a vertex coloring of the graph such
that the end vertices of e are colored in c and the remaining vertices are colored in d.
The definition of the contributing edge implies that both ωce and W d

e are non-zero, so
ω(τ) = ωceW

d
e 6= 0, a contradiction.

Lemma 9. If G = (V,E) is a monochromatic graph with at least 4 vertices then for each
vertex v and each color c of G there exists an edge of G incident to v and contributing
for c.

Proof. Let τ : V → {c} be a constant vertex coloring. It is easy to see that 0 6= ω(τ) =∑
u∈V \{v} ω

c
(v,u)W

c
(v,u). Then one of the summands ωc(v,u)W

c
(v,u) is non-zero, that is the

edge (v, u) is contributing for c.

Via the following Proposition 10, proposed by Ravsky [Rav22], we will connect the
graphs in Claim 6 and monochromatic weighted graphs. The connection is made with
the values C(n) and k′(n).

Proposition 10 ([Rav21b]). For any even n ≥ 6, holds C(n) < n− k′(n).

Proof. Suppose for a contradiction that there exists a monochromatic graph (V,E∗)
with n vertices whose edges are colored in colors from a set F such that |F | = n−k′(n).
Construct a set Ê ⊆ E∗ and an (n − k′)-spanning coloring of (V, Ê) of colors of F as
follows. Let c ∈ F be any color. For each vertex v of V , applying Lemma 9, we pick
an edge ev,c ∈ E∗ which is incident to v and contributing for c. Put Êc = {ev,c : v ∈
V, c ∈ C}. Note that the set Êc of edges is spanning. Finally put Ê =

⋃
c∈F Êc. By

Lemma 2.1, the sets Êc and Êd are disjoint for any distinct c, d ∈ F , so the edge coloring
of Ê which assigns a color c to each edge e ∈ Êc, is correctly defined.
Now let G = (V,E) be a complete graph. Put R = E \ Ê. Now, using Claim 6 and

its notation, pick a perfect matching m ⊆ Ê such that for each c ∈ F with Vc 6= ∅,
the graph (Vc, E′c) has a unique perfect matching. Let τ be the coloring of V induced
by m (and so non-monochromatic). Then ω(m) =

∏
c∈F W

Vc
c (if Vf = ∅ then we set

W Vc
c = 1). Since for each c ∈ F with Vc 6= ∅, the graph (Vc, E′c) has a unique perfect

matching (which is necessarily m ∩E′c), the graph on the vertex set Vc whose edges are
colored in c, has (the same) unique perfect matching. Thus W Vc

c =
∏
e∈m∩E′

f
ωce 6= 0,

since each edge of m ∩E′c is contributing for the color c and so ωce 6= 0. Then ω(τ) 6= 0,
a contradiction.

2.2 Second Limitation of the Upper Bound
Since calculating the value k′(n) is still complicated, we will introduce Claim 11 to give
k′(n) a lower bound, as we will show in Lemma 12. For that purpose, we introduce k(n)
as the largest k < n for which Claim 11 holds.

An edge coloring of a graph G is spanning, if each color class is spanning. A rainbow
matching is a matching where every edge has a different color.

11

Claim 11. Let k < n and G be a graph on n vertices with a spanning (n − k)-edge
coloring. Then G has a perfect rainbow matching.

Recall the graph F in Figure 2.1a. As a matter of fact, the graph has a prefect
rainbow matching as seen in Figure 2.1b. The edges, which are all colored differently,
are a perfect matching. Therefore, this graph satisfies Claim 11 for this coloring. For
an example where Claim 11 does not hold, consider the graph in Figure 2.3. There does
not exist a perfect matching where all edges are colored differently. Hence, k(6) < 6.

Fig. 2.3: Graph with six vertices with a spanning 3 edge coloring in colors , , , which does
not contain a perfect rainbow matching.

With the help of Lemma 12 we will show that k(n) of Claim 11 is a lower bound of
k′(n). Afterwards, we can show the connection between Claim 11 and the Conjecture 1
with Corollary 13.

Lemma 12 ([Rav21a]). For even n ≥ 6, k(n) ≤ k′(n).

Proof. We will show that for any given even n ≥ 6, Claim 6 holds if Claim 11 holds.
Thus, k(n) ≤ k′(n).

Consider a graph G̃ = (Ṽ , Ẽ) with n vertices and a (n−k)−coloring α, where Claim 11
holds. Let m̃ be a perfect rainbow matching of G. Due to the spanning coloring of
G̃, there exist spanning pairwise edge disjoint subgraphs (V,E1), . . . , (V,En−k) of G =
(V,E) = Kn such that for every f ∈ {1, . . . , n − k}, Ef is the set of all edges e ∈ E
with color f . Therefore, R = E \ Ẽ is the set of uncolored edges in G. Since there
exists a rainbow matching m̃ in G̃, there exists the perfect matching m in G where,
for every f ∈ {1, . . . , n − k}, there is at most one edge of m in Ef . Thus, m * Ef ,
for all f ∈ {1, . . . , n − k}, because (V,E1), . . . , (V,En−k) are edge disjoint. For every
f ∈ {1, . . . , n − k}, |Vf | ∈ {0, 2}, since m ∩ Ef contains a maximum of one edge. So,
there is a maximum of one edge in Ef ∪R with both end vertices in Vf . It follows that
every subgraph (Vf , E′f) consists of two or none vertices and one or none edges like in
Figure 2.1c, which has a unique perfect matching.

Corollary 13. For even n ≥ 6, C(n) < n− k(n).

Proof. Follows from Propositions 10 and 12 since C(n) < n− k′(n) ≤ n− k(n).

12

2.3 Theoretical Achievements
Before we start using a computer to calculate the value of k(n) in Chapter 3 and forwards,
theoretical results can limit the range of k(n). At first, we present a simple observation
regarding Claim 11, which give us an upper bound for k(n).

Lemma 14. Let n ≥ 6 be even. Then k(n) ≤ n/2.

Proof. Consider any graph G with n vertices, where there exists a spanning `-coloring
with ` < n−n/2 = n/2. Then a perfect rainbow matching consists of n/2 edges colored
in different colors. With the pigeonhole principle, it follows that there is no perfect
rainbow matching, since we have fewer colors than edges in a perfect matching.

A better bound can be achieved with the following Lemma 15 of Ravsky [Rav21a].

Lemma 15 ([Rav21a]). Let n ≥ 6 be even and n′ = n/2. Then k(n) ≤ n′ − 2, if n′ is
even, and k(n) ≤ n′ − 1, if n′ is odd.

Proof. Let G = (V,E) be a complete graph with vertices v1, . . . , vn′ , u1, . . . , un′ . Con-
sider the following edge coloring of G. For each 1 ≤ i, j ≤ n′, the edge viuj has the color
i+ j mod n′ and all other edges of G are colored in n′, see Table 2.1. It is easy to see
that the constructed coloring is spanning. For example, see Figure 2.4. For n′ = 3, this
graph’s coloring is spanning.

v1

v2

v3

u1

u2

u3

Fig. 2.4: Graph with vertices v1, v2, v3, u1, u2, u3, where, for 1 ≤ i, j ≤ 3 edge vi, uj has color
i+ j mod 3 and every other edge has color 4. Here the color is 0, is 1, is 3 and
is 4.

To obtain a perfect rainbow matching, we need to choose n′ entries such that each
column and row is only chosen once.
Let G′ be the bipartite subgraph of G with the parts {v1, . . . , vn′} and {u1, . . . , un′}.

If n′ is even, Aharoni et al. [ABKZ17] showed that G′ as in Figure 2.2 with the induced
edge-coloring has no rainbow perfect matching. If n′ is odd then to assure absence of
such matching we remove from G all edges of color 0.
Suppose for a contradiction that G has a rainbow perfect matching m. By the above,

m has at most n′−1 edges of G′. But this bound is never tight, because if m has exactly
n′− 1 edges of G′ then the remaining edge of m also belongs to G′. Thus m has at most
n′ − 2 edges of G′. But then the remaining two edges of m has to be colored in n′, a
contradiction.

13

Tab. 2.1: For r, s ∈ {v1, . . . , vn′ , u1, . . . , un′}, the entry (r, s) in the table contains the color of
the edge rs in the graph G.

v1 v2 · · · vn′−1 vn′ u1 u2 · · · un′−1 un′

v1 n′ · · · n′ 2 3 · · · 0 1
v2 n′ · · · n′ 3 4 · · · 1 2
...

...
...

...
...

...
...

vn′ n′ · · · n′ 1 2 · · · n′ − 1 0
u1 2 3 · · · 0 1 n′ · · · n′

u2 3 4 · · · 1 2 n′ · · · n′

...
...

...
...

...
...

...
un′ 1 2 · · · n′ − 1 0 n′ · · · n′

Tab. 2.2: The coloring of the sub-graph G′ with only edges between v1, . . . , vn′ and u1, . . . , un′ ,
which does not contain a rainbow matching.

u1 u2 · · · un′−1 un′

v1 2 3 · · · 0 1
v2 3 4 · · · 1 2
...

...
...

...
vn′ 1 2 · · · n′ − 1 0

Furthermore, Kostochka and Yancy [KY12] proved that an edge-colored graph G,
where every vertex is incident to at least ` distinct colors, then G has a rainbow matching
of size d`/2e. If ` = n−1, where an even n ≥ 6 is the number of vertices of G, then there
exists a perfect rainbow matching, since d`/2e = n/2. Therefore, the next Corollary
follows.

Corollary 16. Let n ≥ 6 be even. Then k(n) ≥ 1. Hence, k′(n) ≥ 1.

Proof. The first part follows from the reasoning above. The second part follows directly
from Lemma 12.

14

3 A Brute-Force Approach

Since further theoretical progress on Conjecture 1 turns out to be rather difficult even
for small numbers n, as seen by the advanced by Chandran and Gajjala [CG22], one
can try to verify the Conjecture 1 via computers for small n. Recall that Cervera-Lierta
et al. [CKA21] already made some limitations for n = 6 and n = 8. Here they tackled
Conjecture 1 itself.
We, on the other hand, will try to improve the upper bound of C(n) with Claim 11

and Corollary 13. By searching for counterexamples for Claim 11 for a given n and k, we
try to reduce the upper bound of C(n). A counterexample is a spanning (n− k)-coloring
for a given graph G = (V,E) for which no perfect rainbow matching exists.
For now, we will introduce a brute-force algorithm to search for such counterexamples.

Let G = (V,E) be a graph with n vertices, where n ≥ 6 is even. Here F = {1, . . . , n− k}
is a set of colors and α : E → F is a coloring of the edges in G. As previously introduced,
M contains all perfect matchings of G and, for every perfect matching m ∈ M, m
contains n/2 elements. The algorithm is as follows.

Algorithm 1: Brute-Force Algorithm(G,n, k)
Input: Graph G = (V,E) with n vertices, where n ≥ 6 is even, k < n.
Output: Coloring α if counterexample exist, else NO.

1 F = {1, . . . , n− k}
2 for all α : E → F do
3 if is_spanning_coloring(G,α) and has_rainbow_matching(G,α) then
4 return α;

5 return FALSE;

We will now show that Algorithm 1 is correct. For every coloring α : E → F , we test
if it is a spanning coloring with Algorithm 2 and does not contain a perfect rainbow
matching with Algorithm 3. If the test is successful, the given graph with the coloring
α is a desired counterexample, otherwise we keep searching. When all colorings fail
the test, there does not exist a counterexample and thus Claim 11 holds for the given
graph G,n and k. This depends on the correctness of Algorithm 2 and Algorithm 3.
Algorithm 2 returns only FALSE if, for a given coloring α, there exists a vertex, where
the set of colors from the incident edges does not contain all colors in F . Therefore, the
coloring α would not be spanning, and the Algorithm 2 is correct. If in Algorithm 3
exists two edges e, e′ in the given perfect matching m with the same color, either e or
e′ would set colors[α(e)] to 1. The later edge would then break the inner loop, which
hinders the algorithm to return TRUE. Thus, Algorithm 3 returns TRUE if and only if

15

Algorithm 2: is_spanning_coloring(G,α)
Input: Graph G = (V,E), coloring α : E → F .
Output: TRUE if α is spanning coloring of the graph G, else FALSE.

1 for v ∈ V do
2 colors← ∅
3 for u ∈ N(v) do
4 colors← colors ∪ {α(uv)}
5 if colors is not F then
6 return FALSE

7 return TRUE

Algorithm 3: has_rainbow_matching(G,α)
Input: Graph G = (V,E), coloring α : E → F .
Output: TRUE if graph G with coloring α has a perfect rainbow matching, else

FALSE.
1 for m = {e1, . . . , e|E|/2} ∈ M do
2 colors is Boolean array of size |F|.
3 for e ∈ m do
4 if colors[α(e)] then
5 break
6 else
7 colors[α(e)]← 1

8 return TRUE
9 return FALSE

there exists a perfect matching, where every edge has a different coloring inherited from
α. In other words, a perfect rainbow matching. With the correctness of Algorithm 2
and Algorithm 3, the Algorithm 1 is now also correct.
To get a grasp on the runtime of Algorithm 1, we will calculate its worst-case run-

time for G = Kn and k = 1. In Algorithm 2 we iterate over V and N(v) for a
given v ∈ V . Therefore, this results in a runtime of O(|V |2). Note that M con-
tains (n− 1)!! = (n− 1)(n− 3) . . . 3 · 1 elements. Assume that the inner for-loop of
Algorithm 3 always breaks when processing the last edge and every matching has
at least two edges with same colors, then the runtime results to O((n − 1)!! |E| /2).
When Algorithm 1 needs to check each condition for every coloring, the runtime is
O(|F||E| |V |2 (n − 1)!! |E| /2) = O(|V ||E| |V |2 (n − 1)!! |E| /2) in the worst case, since
O(F) = O(n− k) = O(|V |), because of Lemma 14. If we assume a processor runs with
10Ghz, then we need about 3.7 · 1012 years for n = 8 and 6.9 · 1033 years for n = 10 in
the worst case. Such a runtime is not reasonable, and we need another approach.

16

4 An Integer Linear Program

As we have seen in Chapter 3, that a normal brute-force algorithm is not feasible. We
need a better method to search for counterexamples. An alternative is an integer linear
program (ILP). Even though, binary integer linear programming is one of 21 Karp’s NP-
complete problems, there are many good solvers available for such problems. Therefore,
we will encode the problem in Claim 11 as an ILP and see in this chapter wether we can
calculate the value of k(n) for small n. This would give new upper bounds for C(n).
At first, we will model an ILP for Claim 11, which searches for counterexamples like

in Chapter 3; see Section 4.1 and Section 4.2. In Section 4.3 we will present the results
gathered from implementing the ILP.

4.1 Mathematical Program Formulation
Before we model an ILP, we introduce a mathematical programming (MP) formulation.
Such MP are not necessarily linear, but can be linearized, which is the process of replacing
non-linear constraints by equivalent linear constraints. In Section 4.2 we will show how
to linearize the problematic expressions to turn the below program into an ILP.
As an input, we get a graph G = (V,E) with an even number n ≥ 6 of vertices and

an integer k < n. Let F = {1, . . . , n − k} be the set of all colors. Let M contain all
perfect matchings of G. Each matching m ∈ M consists of |V | /2 independent edges
{e1, . . . , e|V |/2}. For any edge e, let α(e) ∈ F be the color of e. For any edge e of G and
for any f ∈ F , the boolean variable ce,f indicates whether edge e has color f . We define
I as the set {(i, j) | i, j ∈ {1, . . . , |V | /2}, i 6= j}.

The MP is defined by the following constraints. First, we express that each edge has
a single color:∑

f∈F
ce,f = 1 for each e ∈ E.

Next, we force each color class to be spanning.∑
u∈N(v)

cuv,f ≥ 1 for each v ∈ V and for each f ∈ F .

Then we connect α(e) and ce, f for edges e ∈ E and color f ∈ F . This constraint will
be linearized in Section 4.2.

α(e) = f ⇔ ce,f = 1 for each e ∈ E and for each f ∈ F .

17

Now we define the difference of colors for each pair of edges in a perfect matching. This
will be used to test whether two edges have the same color in a matching. The absolute
value is not linear, but we provide a method to linearize this function in Section 4.2

dm,i,j := |α(ei)− α(ej)| for each m ∈M and for each (i, j) ∈ I.

Finally, we ensure that each matching contains at least two edges of the same color. In
other words, the following restriction ensures that the given matching is not a rainbow
matching.

min
(i,j)∈I

dm,i,j = 0 for each m ∈M.

The last constraint ensures that the matching is not a rainbow matching. The non-
linearity of the minimum function will be addressed in Section 4.2.

4.2 Linearization of the Mathematical Program
Although the functions minimum, equivalence, and absolute value are not linear, there
exist formulations to use them in an ILP. We now linearize the above-mentioned prob-
lematic functions. Thereby, we show that the mathematical formulation in Section 4.1
can be converted into a valid ILP.

Absolute value We want to calculate the absolute value y of the difference x1 − x2,
where x1, x2 ≥ 0. So y = |x1 − x2|. To achieve this, we need three additional variables
d1, d2, and U . We lowerbound U by both x1 and x2. The boolean values d1 and d2
indicate the following.

d1 : 1 when x1 − x2 is positive, otherwise 0.
d2 : 1 when x2 − x1 is positive, otherwise 0.

With this formulation we can calculate the absolute value y in an ILP.

0 ≤ xi ≤ U for each i ∈ {1, 2};
0 ≤ y − (x1 − x2) ≤ 2 · U · d2;
0 ≤ y − (x2 − x1) ≤ 2 · U · d1;
d1 + d2 = 1.

Minimum To calculate the minimum y of a set {x1, . . . , xn} we need to know the
upper and lower bounds U and L. In our case we know that dm,i,j ∈ {0, . . . , |V | /2}, so
U = |V | /2 and L = 0. Here we also need additional boolean variables d1, . . . , dn. Those
indicate the following.

di : 1 when xi is the minimum, otherwise 0 for each i ∈ {1, . . . , n}

18

Now we can calculate the minimum in the following way in an ILP.

L ≤ xi ≤ U for each i ∈ {1, . . . , n};
y ≤ xi for each i ∈ {1, . . . , n};
y ≥ xi − (U − L)(1− di) for each i ∈ {1, . . . , n};∑

i∈{1,...,n}
di = 1.

Equivalence Now we need to solve the equation (a = b)⇔ (c = d) in an ILP. At first,
we need a boolean variable x to describe if a = b. For that, we can use the absolute and
minimum function. Let x = 1−min{|a− b| , 1}. The same way, we define y in terms of
c and d. Now we can linearize the equivalency via x = y in an ILP.

4.3 ILP Results
With a valid ILP formulation, we can now investigate for which n and k Claim 11 holds.
First, we will analyze Claim 11 for n = 6 and afterwards for n = 8. Throughout this
section, we will be using the ILP solver IBM ILOG CPLEX Optimizer [IBM] version
22.1.0.0 on an AMD Ryzen 2500U CPU to gather the results. Also, IBM ILOG CPLEX
Optimizer function to convert the MP into an ILP was used with the formulation in
Section 4.1.
For n = 6 the following results were gathered. The graph in Figure 4.1 is the output for

k = 3 after a runtime of 0.05 seconds. This graph does not contain any perfect rainbow
matching and therefore is a counterexample as described in Chapter 3. Thus, Claim 11
does not hold for n = 6 and k = 3, as Lemma 15 states. With k = 2 and k = 1, after
4.81 and 0.95 seconds respectively, no counterexample was found and Claim 11 holds.
It follows, that k(6) = 2 and C(6) < 6− 2 = 4 with Corollary 13.

Fig. 4.1: Output graph of the ILP formulation for n = 6 and k = 3 with a spanning 3-coloring
consisting of colors , , .

Consider n = 8. With k = 4, the ILP solver returned the counterexample depicted
in Figure 4.2a after 2.59 seconds. For k = 3, the given counterexample can be seen in
Figure 4.2b, which was produced after 30.99 seconds. So, Claim 11 does not hold for
n = 8 and k ∈ {3, 4}. It follows that k(8) ≤ 2.

The ILP solver was not able to terminate when using n = 8 and k ∈ {1, 2} in over a
week of processing, even on stronger hardware, if a complete graph with n vertices has

19

(a) Output graph of the ILP formulation for
n = 8 and k = 4 with a spanning 4-coloring
consisting of colors , , , .

(b) Output graph of the ILP formulation for
n = 8 and k = 3 with a spanning 5-coloring
consisting of colors , , , , .

Fig. 4.2: Counterexamples to Claim 11 with eight vertices and k = 3, 4.

a spanning (n−k)-edge coloring. Namely, the hardware was an AMD Ryzen 3600. This
leads to the conclusion, that our ILP implementation is not powerful enough to calculate
k(n). In the following Chapter 5 we will therefore try to find k(n) with the help of SAT
formulations.

20

5 A SAT Formulation

Since the ILP solver does not find counterexamples in a reasonable time, we encode the
problem in Claim 11 into a conjunctive normal form (CNF) and solve it by checking its
satisfiability. A CNF is a conjunction of one or more clauses consisting of disjunctions.
Solving such SAT problems have made major advancements, as Fichte et al. [FHS20]
showed. On the Conjecture 1 Cervera-Lierta et al. [CKA21] have gathered further knowl-
edge by using SAT solvers. We hope to find counterexamples faster with a SAT solver
compared to ILPs as some problems can be solved faster in this way as Brown et al.
[BZG20] have investigated. In the following, we introduce two slightly different SAT
formulations, which either has an advantage over the other, and a pattern to simplify
certain cases.

5.1 SAT Formulation for Single Graphs
We want to search for a counterexample like in Chapter 3 for a given graph G = (V,E)
with n vertices and a given positive integer k < n. For this purpose we need to ensure
that each edge is colored in a unique color, the coloring is spanning and no rainbow
matching exists. We introduce a Boolean variable ce,f that is true if edge e has color f .
Let I = {{i, j} | i, j ∈ {1, . . . , n/2}, i 6= j}. Further variables will be introduced when
required.

Unique coloring First, we need to ensure that each edge has a distinct color. By
restricting all edges e to have at least one and at most one color f ∈ F , we ensure that
every edge is colored in exactly one color. It is rather simple to restrict every edge to
have at least one color. ∧

e∈E

∨
f∈F

ce,f

It is more difficult to restrict every edge to have at most one color. Using quantifiers,
this can be written as follows.

∀e ∈ E ∃f ∈ F ∀f ′ ∈ F \ {f} : ¬ce,f ′

We now replace the quantifiers by conjunctions and disjunctions.∧
e∈E

∨
f∈F

∧
f ′∈F\{f}

¬ce,f ′

Since the formulation is not in CNF, we need to isolate the last conjunction and solve
it separately. To this end, we introduce a new variable βe,f that describes if the edge e

21

is not colored in any color of F \ {f}. Therefore, the following must hold for all edges e
and colors f .

βe,f ↔
∧

f ′∈F\{f}
¬ce,f ′

≡

βe,f → ¬ ∨
f ′∈F\{f}

ce,f ′

 ∧
¬βe,f → ∨

f ′∈F\{f}
ce,f ′


≡

βe,f ∨ ∨
f ′∈F\{f}

ce,f ′

 ∧
¬βe,f ∨ ¬ ∨

f ′∈F\{f}
ce,f ′


≡

βe,f ∨ ∨
f ′∈F\{f}

ce,f ′

 ∧
¬βe,f ∨ ∧

f ′∈F\{f}
¬ce,f ′


≡

 ∨
f ′∈F\{f}

ce,f ′ ∨ βe,f

 ∧
 ∧
f ′∈F\{f}

¬ce,f ′ ∨ ¬βe,f


The complete expression for unique colors as a CNF is as follows.∧

e∈E

∨
f∈F

ce,f ∧
∧
e∈E

∨
f∈F

βe,f∧

∧
e∈E

∧
f∈F

 ∨
f ′∈F\{f}

ce,f ′ ∨ βe,f

 ∧ ∧
e∈E

∧
f∈F

∧
f ′∈F\{f}

¬ce,f ′ ∨ ¬βe,f

Spanning A color f ∈ F is spanning if each vertex is incident to at least one edge,
which has color f .

∀v ∈ V :
∑

u∈N(v)
cuv,f ≥ 1 ⇔ ∀v ∈ V :

∨
u∈N(v)

cuv,f ⇔
∧
v∈V

∨
u∈N(v)

cuv,f

Thus a coloring is spanning if ∧
f∈F

∧
v∈V

∨
u∈N(v)

cuv,f .

Rainbow Matching A coloring for the graph G has no rainbow matching if in each
matching there are two edges with the same color.

∀m = (e1, . . . , e|V |/2) ∈M ∃{i, j} ∈ I ∃f ∈ F : cei,f ∧ cej ,f

This can be translated into the following Boolean expression.∧
m=(e1,...,e|V |/2)∈M

∨
{i,j}∈I

∨
f∈F

cei,f ∧ cej ,f

22

Since cei,f ∧ cej ,f is problematic within a clause of a CNF formulation, we introduce a
new variable γei,ej ,f , which is equivalent to cei,f ∧ cej ,f .∧

m=(e1,...,e|V |/2)∈M

∨
{i,j}∈I

∨
f∈F

γei,ej ,f

To ensure the equivalence, we use the following formulation for all e, e′ ∈ E and f ∈ F .

γe,e′,f ↔ ce,f ∧ ce′,f

≡ (γe,e′,f → (ce,f ∧ ce′,f)) ∧ ((ce,f ∧ ce′,f)→ γe,e′,f)
≡ (¬γe,e′,f ∨ (ce,f ∧ ce′,f)) ∧ (γe,e′,f ∨ ¬(ce,f ∧ ce′,f))
≡ (¬γe,e′,f ∨ ce,f) ∧ (¬γe,e′,f ∨ ce′,f) ∧ (γe,e′,f ∨ ¬ce,f ∨ ¬ce′,f)

Therefore, the complete expression for rainbow matchings in CNF is as follows.∧
m=(e1,...,e|V |/2)∈M

∨
{i,j}∈I

∨
f∈F

γei,ej ,f

∧
∧

e,e′∈E

∧
f∈F

(¬γe,e′,f ∨ ce,f) ∧ (¬γe,e′,f ∨ ce′,f) ∧ (γe,e′,f ∨ ¬ce,f ∨ ¬ce′,f)

The number of variables for this SAT formulation equals 2 |E| |F| + |E|2 |F| and the
number of clauses is 2 |E|+ |E| |F|+ |E| |F|2 + |F| |V |+ |M|+ 3 |E|2 |F|.

To verify that there exists a spanning (n− k)-coloring of a graph with n vertices , that
does not contain a rainbow matching, we need to examine every possible graph with n
vertices. With the help of the following lemma, we can reduce the number of graphs to
check. Then we only need to inspect representatives from each isomorphism class.

Lemma 17. Let G = (VG, EG), H = (VH , EH) be two isomorphic graphs. There exists
a coloring α for G, which contains a perfect rainbow matching, if and only if there exists
a coloring α′ for H, which contains a perfect rainbow matching.

Proof. Let G = (VG, EG), H = (VH , EH) be isomorphic graphs with an isomorphic
function f : VG → VH . Let F be a set of colors and α : VG → F be a coloring
of G, such that there exists a perfect rainbow matching m = {u1v1, . . . , unvn} with
n = |V | /2. Due to the fact that m is a perfect matching in G and f is bijective,
m′ = {f(u1)f(v1), . . . , f(un)f(vn)} is also a perfect matching for H. For an edge uv let
α′(uv) := α(f−1(u)f−1(v)) be a coloring of H. Then m′ is a perfect rainbow matching
in H. The inverse function f−1 of f exists, since f is bijective, and therefore the other
direction holds.

Since we are dealing with dens graphs, it is difficult to visualize such equivalence
classes. For this reason, we will introduce the next lemma.

Lemma 18. The graphs G = (VG, EG), H = (VH , EH) are isomorphic if and only if the
edge inverse graph Ḡ = (VG, ĒG) = (VG,

(VG
2
)
\EG) and H̄ = (VH , ĒH) = (VH ,

(VH
2
)
\EH)

are isomorphic.

23

Proof. Let the graphs G = (VG, EG), H = (VH , EH) be isomorphic. Then there exists a
bijective function f : VG → VH , such that, for all edges uv ∈ EG, the edge f(u)f(v) is
an element of EH . Let the edge uv ∈ ĒG be arbitrary. Therefore, uv /∈ EG. Due to the
reason that G,H are isomorphic, the edge f(u)f(v) is not an element of EH . This leads
to the conclusion that f(u)f(v) ∈ ĒH . The other direction can be shown in an analog
fashion, since the edge inverse graph of an edge inverse graph is the original graph.

For example, we want to test Claim 11 for n = 8 and k = 2. Then we can consider
the graph K8 and need to test all possible subgraphs. Since K8 has 28 edges and at
least 4 · 6 = 24 edges are needed for a coloring to be spanning with eight vertices, we
need only to examine each subgraph with at least 24 edges. Therefore, each inverse-edge
graph of K8 has a maximum of four edges. Table 5.1 shows these edge-inverse graphs
with none to four edges and up to eight edges. Here, isolated edges are neglected.

Tab. 5.1: Edge-inverse graphs with none to four edges and up to eight vertices. Here isolated
edges are neglected.

To test Claim 11, for a given k, we choose one representative of each isomorphism
class and see if the generated SAT formulation for each representative is unsatisfyable.
If each representative is unsatisfyable, Claim 11 holds for the given k due to Lemma 17
and Lemma 18.
Searching for counterexamples in such a way leads to a great overhead. The SAT

formulation in the following section tries to circumvent this problem by dynamically
excluding edges.

5.2 General SAT Formulation
As the previous formulation only checks one specific graph, we need to check every
representative of the isomorphic class with n vertices to test if there exists a spanning
(n− k)-coloring, which also contains a perfect rainbow matching. To circumvent this
problem, we can adapt the previous formulation.

Allowing edges to be excluded dynamically by the SAT formulation would fix the
problem. This can be archived by allowing uncolored edges. If an edge is uncolored, all
matchings, including this edge, would be ignored when checking for a rainbow matching.
Therefore, not coloring an edge has the same effect as excluding it from the graph.

24

Unique coloring The only difference to the previous restrictions from Section 5.1 for
unique coloring is to discard the rule, that an edge needs at least one color. Hence, we
require only to guarantee every edge has at most one color. For this case, we already
know the CNF.

∧
e∈E

∨
f∈F

βe,f ∧
∧
e∈E

∧
f∈F

 ∨
f ′∈F\{f}

ce,f ′ ∨ βe,f

 ∧ ∧
e∈E

∧
f∈F

∧
f ′∈F\{f}

¬ce,f ′ ∨ ¬βe,f

Spanning This formulation stays the same, because it behaves the same including
uncolored edges. ∧

f∈F

∧
v∈V

∨
u∈N(v)

cuv,f .

Rainbow Matching In this part, a matching m ∈ M needs to be a rainbow matching
or include an uncolored edge. With this familiar Boolean expression, we construct a
CNF.

∧
m=(e1,...,e|V |/2)∈M

 ∨
{i,j}∈I

∨
f∈F

cei,f ∧ cej ,f ∨
∨
e∈m

∧
f∈F
¬ce,f


From the previous part, we know how to handle cei,f ∧ cej ,f with γei,ej ,f . In a familiar
fashion, we will make a conjunction over all atoms ¬ce,f , which describes if an edge e
is not colored. For that purpose, let δe be true if and only if the edge e is not colored.
Therefore, the following restrictions need to hold in the SAT formulation for every edge.

δe ↔
∧
f∈F
¬ce,f ≡ δe ↔ βe,1 ∧ ¬ce,1 ≡ (¬δe ∨ ¬βe,1) ∧ (¬δe ∨ ce,1) ∧ (δe ∨ βe,1 ∨ ¬ce,1)

Recall that βe,f describes if the edge e is not colored in any color of F \ {f}. The
resulting SAT formulation is as follows.

∧
m=(e1,...,e|V |/2)∈M

 ∨
{i,j}∈I

∨
f∈F

γei,ej ,f ∨
∨
e∈m

δe


∧
∧
e∈E

(¬δe ∨ ¬βe,0) ∧ (¬δe ∨ ce,0) ∧ (δe ∨ βe,0 ∨ ¬ce,0)

∧
∧

e,e′∈E

∧
f∈F

(¬γe,e′,f ∨ ce,f) ∧ (¬γe,e′,f ∨ ce′,f) ∧ (γe,e′,f ∨ ¬ce,f ∨ ¬ce′,f)

In total, this approach would result in |E|more variables and 2 |E|more clauses for the
SAT formulation. As a trade-off, we can check if there exists a spanning (n− k)-coloring
for any graphs with n vertices, which also contains a rainbow matching, instead of only
for specific graphs. To see which method results in better runtimes, see Section 5.5.

25

5.3 Case Analysis for Ten Vertices
Consider a graph with ten vertices and a spanning 8-coloring, where each edge is colored.
Each color class needs to contain at least five edges, otherwise it would not be spanning.
Thus, we need at least 5 · 8 = 40 edges to ensure all colors are spanning. The complete
graph with ten vertices, K10 has 9 · 10/2 = 45 edges. This leaves use with at most five
edges, that we can to distribute to some color class. Hence, there are at least three color
classes with exactly five edges. When inspecting an edge induced subgraph of two of
these colors, the resulting graph is either C10 or C4 +C6, with alternating edge coloring,
as Ravsky [Rav22] has noticed. Since one of these two case must occur, we can fix the
color for these edges allowing us to focus on the remaining 35 edges which need to be
colored in six colors, which simplifies the SAT formulation. If the resulting graph has
at least two colors with only five edges, the same procedure can be applied again using
two different colors, which further reduces the complexity.
Out of the seven distributions of 35 edges on six spanning colors, only one has exactly

one color with five edges, while all other colors have six edges, which makes it impossible
to use the previous method in this case, due to the fact, that at least six edges do not
necessarily form a perfect matching.

(a) Edge distribution after applying the first
method once.

Colors 1 2 3 4 5 6

Edges 5 5 5 5 6 9
5 5 5 5 7 8
5 5 5 6 6 8
5 5 5 6 7 7
5 5 6 6 6 7
5 6 6 6 6 6

(b) Edge distribution after applying the first
method exhaustively.

Colors 1 2 3 4 5 6

Edges 0 0 0 0 6 9
0 0 0 0 7 8
0 0 5 6 6 8
0 0 5 6 7 7
0 0 6 6 6 7
5 6 6 6 6 6

Tab. 5.2: The tables show a example distribution of how many edges are colored in a certain
color in multiple stages of the case analysis.

After the first reduction, the edges can be distributed onto the arbitrarily chosen colors
1, 2, 3, 4, 5, 6 ∈ F shown in Table 5.2a. Here the first row specifies the colors while every
other row describes a distribution of the edges. Since the first five distributions also have
at least two colors with exactly five edges, we can continue to apply the method until
no two colors have five edges, which gives use the remaining distribution in Table 5.2b.
As a disadvantage, we need to check 2m cases when applying m reductions, because we
need to consider each case of removing C10 or C4 + C6 recursively.

This analysis holds also for graphs with more vertices or graphs with two color classes
forming a perfect matching. Also, all edges do not necessarily need to be colored.
Consider the graph K12 and its spanning 10-coloring. We have six edges which are
needed to distribute to ten colors since we need 10 · 6 = 60 edges to ensure the spanning

26

property of a coloring and K12 has 66 edges. Therefore, we have at least four color
classes, which have six edges, after assigning each left out edge a color. Here, the
induced subgraph either induces C12, C8 + C4 or C4 + C4 + C4, which can be handled
similarly has above. With these tools, we can now try to calculate the values of k(n).

5.4 SAT Results
Now that we have a few tools to investigate Claim 11 using SAT formulations, we will
show our experimental results in this chapter. The SAT solver Kissat [Bie], which is a
state-of-the-art SAT solver [HJS+], was used to solve the SAT formulations on an Intel
Xeon Skylake processor with 3.2 GHz. Note that Kissat only runs on one CPU thread
at a time.
At first, we want to check if Claim 11 holds for n = 8 and k = 2, since the ILP in

Chapter 4 could not solve this instance. The SAT solver could show with each SAT
formulation in Sections 5.1 and 5.2, that the instance is unsatisfiable and thus Claim 11
holds due to the absence of a counterexample. This leads to the conclusion that k(8) = 2
and C(8) < 8−2 = 6. Compared to Cervera-Lierta’s et al. [CKA21], our result is worse,
because they could show that C(8) < 4.

Where we made some progress, is on graphs with ten vertices. While applying the
method in Section 5.3, we found a spanning 6-coloring for the graph K10 − C10 in
Figure 5.1, which is a counterexample to Claim 11. The method from Section 5.3 now
cannot be used, since it only gives a conclusion for every spanning 8-coloring of K10 if
K10−C10 and K10−C6−C4 do contain a perfect rainbow matching. This results in an
upper bound for k(10) with k(10) < 4.
With the method in Section 5.1, we found a representative with ten vertices and

k = 3, which does not contain a rainbow matching. This representative is depicted with
its coloring in Figure 5.2. With this graph it follows that k(10) < 3 and with Corollary 16
the value of k(10) must be either one or two. Observe that the graph has three vertices
of degree seven, where each incident edge has one of the seven colors, and seven vertices
of degree nine, where three edges have the same color. Ravsky [Rav21a] recognized the
coloring pattern in means of Steiner triple systems, which allowed him to provide the
following lemma.
Lemma 19 ([Rav21a]). If n/2 ≡ ±1 (mod 6), k(n) ≤ n/2− 3.
The method could also limit the graphs, which certainly contain a rainbow matching

for every coloring. For graphs with ten vertices and k = 2, we could show, that 19 of 25
isomorphic classes do not contain a counterexample. We can describe these classes with
edge-inverse graphs. Next to the empty graph, the other five graphs consist of one to
five edges, which do not share any vertices.
The other method did not supply a result as well after a considerable amount of

computational time. To be exact, each problem instance was running over 1500 hours
without delivering an answer for ten vertices and k = 2, 3, 4. Here, all the different
options were used in Kissat to get a solution to no avail. We will go into detail about
those options and their time benefits in Section 5.5.

27

Fig. 5.1: Output graph of the SAT formulation for n = 10 and k = 4 with a spanning 6-coloring
consisting of colors , , , , , .

These results show that none of our SAT formulation is efficient enough to calculate
the value of k(10). When considering the K10 and k = 2, there are a total of 16965
variables and 51605 clauses, where 452 · 8 = 16200 variables and 48600 clauses alone are
claimed by defining γ, which indicates if the edges e, e′ both have the color f . Especially
when no edges are excluded and no simplifications can be made by the SAT solver,
the runtime can be very high, since to solve a conjunctive normal form is an NP-hard
problem. In the next section, we will see, that the runtime can differ greatly between
seemingly identical hard SAT formulations.

5.5 SAT Program Performance
Kissat has different options for solving SAT formulations, whose runtimes we will analyze
in this section. We run each of the three options on the single K8 with the methods
from Chapter 5. The runtime of each pass will be presented in this chapter. The three
options are unsat, sat and without any argument, which is the default configuration of
Kissat. Here, unsat should be used to get a faster output for instances, which are not
satisfyable. Contrary to this, sat should speed up the computational time if an instance
is satisfyable. The option with no further arguments should be the middle ground of the
two options and should give a good runtime for each type of instances.
To test these options, we run each instance a minimum of four up to ten times on

a single Intel Xeon Skylake core with 3.2 GHz with the graph K8 and k ∈ {1, 2, 3, 4}.
The accumulated runtime will be averaged for each instance. The Tables 5.3, 5.4 show
the runtime. Here the option normal refers to not using other options such as sat or

28

Fig. 5.2: Output graph of the SAT formulation for n = 10 and k = 3 with a spanning 7-coloring
consisting of colors , , , , , , .

unsat. Each entry contains the runtime in seconds. Note that we did not compute one
representative of each isomorphic class in Table 5.3.
For k = 3, 4 the runtime for each method and option are quite equal. The SAT

formulation here is satisfyable, meaning that the option sat should perform the best.
This trend can only be clearly seen in Table 5.3 for k = 3, while the other cases show
no stark differences in the runtime. One notable outlier in the table is the runtime for
normal and k = 3, which is higher than the other two options.

Contrary to the low runtimes for k = 3, 4, the completion time for k = 2 for each
method exploded. Since in this case the SAT formulations are unsatisfyable, the option
unsat should perform the best, which we cannot confirm with our formulations. Here
the runtimes increase from sat throughout normal to unsat considerable, while also the
formulation from Section 5.2 runs faster than the other, even though it contains |E|
more variables and 2 |E| more clauses.
For k = 1 the runtime drop again into the one to two minute range. While the

runtime increases in Table 5.3, the runtime decreases in Table 5.4. Since this instance
is unsatisfyable, the runtime should theoretical increase.

In most cases, the second method performed better than the first one. Even though
the sat option is not always the best option, in this analysis it performed the best on
average. For these reasons, the second method and the option sat is on average the best
configuration to inspect a single graph.

29

Tab. 5.3: Runtime of SAT formulation in Section 5.1 on K8 in seconds.

k sat normal unsat

4 0.00 0.00 0.00
3 0.15 1.26 0.84
2 13111.37 293219.64 314729.21
1 99.06 245.34 246.87

Tab. 5.4: Runtime of SAT formulation in Section 5.2 on K8 in seconds.

k sat normal unsat

4 0.01 0.02 0.02
3 0.46 0.43 0.68
2 10138.01 21929.19 568511.64
1 99.22 77.25 77.25

30

6 Conclusion

In this paper, we wanted to investigate Krenn’s Conjecture 1. Especially the upper
bound of the number C(n) of distinct monochromatic vertex colorings in monochromatic
weighted graphs. For this purpose, we introduced Ravky’s Claim 6 and Claim 11 and
showed, how they bound C(n).

Followed by this, we looked into different methods to investigate, for which even
number n ≥ 6 and k < n, Claim 11 holds. While a brute-force algorithm, as we have
discovered, has no chance of solving the problem in reasonable time, the integer linear
program show, that Claim 11 holds for all possible values of k with n = 6 and n = 8
with the exception to n = 8 and k = 2. With the help of a SAT formulation, we could
also show, that Claim 11 holds for n = 8 and k = 2. Also, the SAT formulation could
find counterexamples for Claim 11 for n = 10 and k ≥ 3. For n = 10 and k = 2, we could
only confirm, that there do not exist counterexamples, for all graphs with n vertices and
spanning coloring, except for six graphs.
This leaves the question open for the value of k(10) and a bound for C(10) through

this method. The SAT formulation could not make any further progress for n ≥ 12, due
to the computational complexity of the problem.
Even though, we improved the upper bound on k(n) for graphs with n vertices, where

n/2 ≡ ±1 (mod 6), regarding Claim 11 because of the counterexample in Figure 5.2.
We recognized the coloring pattern of this graph in means of Steiner triple systems,

which allowed us to provide Lemma 19.

Lemma 19 ([Rav21a]). If n/2 ≡ ±1 (mod 6), k(n) ≤ n/2− 3.

Since Claim 11 only gives a lower bound for Claim 6, with which we bound C(n), one
could try to directly investigate Claim 6 with a SAT formulation. This SAT formula-
tion is more complex than the one we introduced in this thesis, because the definition of
Claim 6 is more complex, especially with the uniqueness of the graphs (Vf , E′f). Further-
more, Ravsky [Rav] proposed a design, connected to rainbow matchings in color-spanned
graphs, to bound C(n) from Krenn’s Conjecture 1.
Although, we did not improve the bound for Krenn’s conjecture, we gave further

insights into the interesting field of rainbow matchings in color-spanned graphs.

31

Bibliography
[ABKZ17] Ron Aharoni, Eli Berger, Dani Kotlar, and Ran Ziv: On a conjecture of

Stein, volume 87 of Abhandlungen aus dem Mathematischen Seminar der
Universität Hamburg, pages 203–211. Springer International Publishing,
2017, 10.1007/s12188-016-0160-3.

[Bie] Armin Biere: Kissat SAT solver. https://github.com/arminbiere/
kissat, accessed: June 24, 2022.

[Bog17] Ilya Bogdanov: Graphs with only disjoint perfect matchings. MathOverflow,
2017. https://mathoverflow.net/q/267013, accessed: April 25, 2022.

[BZG20] Hannah Brown, Lei Zuo, and Dan Gusfield: Comparing integer linear pro-
gramming to SAT-solving for hard problems in computational and systems
biology. In Carlos Martín-Vide, Miguel A. Vega-Rodríguez, and Travis
Wheeler (editors): Algorithms for Computational Biology, volume 12099
of Lecture Notes in Computer Science, pages 63–76. Springer International
Publishing, 2020, 10.1007/978-3-030-42266-0_6.

[CG22] L. Sunil Chandran and Rishikesh Gajjala: Perfect matchings and
quantum physics: Progress on Krenn’s conjecture. arXiv, 2022.
10.48550/ARXIV.2202.05562.

[CKA21] Alba Cervera-Lierta, Mario Krenn, and Alán Aspuru-Guzik: Design of
quantum optical experiments with logic artificial intelligence. arXiv, 2021.
10.48550/ARXIV.2109.13273.

[DMZ89] Greenberger Daniel M., Horne Michael A., and Anton Zeilinger: Going be-
yond Bell’s theorem. In Menas Kafatos (editor): Bell’s Theorem, Quantum
Theory and Conceptions of the Universe, volume 37 of Fundamental Theo-
ries of Physics, pages 69–72. Springer Netherlands, 1989, 10.1007/978-94-
017-0849-4_10.

[FHS20] Johannes K. Fichte, Markus Hecher, and Stefan Szeider: A time leap
challenge for SAT-Solving. In Helmut Simonis (editor): Principles and
Practice of Constraint Programming, volume 12333 of Lecture Notes in
Computer Science, pages 267–285. Springer International Publishing, 2020,
10.1007/978-3-030-58475-7_16.

[GCZK19] Xuemei Gu, Lijun Chen, Anton Zeilinger, and Mario Krenn: Quantum ex-
periments and graphs. III. High-dimensional and multiparticle entangle-
ment. Physical Review A, 99(3), 2019, 10.1103/physreva.99.032338.

32

http://dx.doi.org/10.1007/s12188-016-0160-3
https://github.com/arminbiere/kissat
https://github.com/arminbiere/kissat
https://mathoverflow.net/q/267013
http://dx.doi.org/10.1007/978-3-030-42266-0_6
http://dx.doi.org/10.48550/ARXIV.2202.05562
http://dx.doi.org/10.48550/ARXIV.2109.13273
http://dx.doi.org/10.1007/978-94-017-0849-4_10
http://dx.doi.org/10.1007/978-94-017-0849-4_10
http://dx.doi.org/10.1007/978-3-030-58475-7_16
http://dx.doi.org/10.1103/physreva.99.032338

[GEZK19] Xuemei Gu, Manuel Erhard, Anton Zeilinger, and Mario Krenn: Quantum
experiments and graphs II: Quantum interference, computation, and state
generation. Proceedings of the National Academy of Sciences, 116(10):4147–
4155, 2019, 10.1073/pnas.1815884116.

[HJS+] Marijn Heule, Matti Jarvisalo, Martin Suda, Markus Iser, Tomáš Balyo, and
Nils Froleyks: SAT competition 2021 results. https://satcompetition.
github.io/2021/results.html, accessed: Mai 30, 2022.

[HLL+17] Armin Hochrainer, Mayukh Lahiri, Radek Lapkiewicz, Gabriela Barreto
Lemos, and Anton Zeilinger: Quantifying the momentum correlation be-
tween two light beams by detecting one. Proceedings of the National
Academy of Sciences, 114(7):1508–1511, 2017, 10.1073/pnas.1620979114.

[HMM15] Axel Heuer, Ralf Menzel, and Peter W. Milonni: Induced coherence, vac-
uum fields, and complementarity in biphoton generation. Physical Review
Letters, 114(5), 2015, 10.1103/physrevlett.114.053601.

[IBM] IBM: IBM ILOG CPLEX Optimizer. https://www.ibm.com/analytics/
cplex-optimizer, accessed: Jun 24, 2022.

[KGS19] Mario Krenn, Xuemei Gu, and Daniel Soltész: Questions on the
structure of perfect matchings inspired by quantum physics, 2019.
10.48550/ARXIV.1902.06023.

[KGZ17] Mario Krenn, Xuemei Gu, and Anton Zeilinger: Quantum experiments and
graphs: Multiparty states as coherent superpositions of perfect matchings.
Phys. Rev. Lett., 119:240403, 2017, 10.1103/PhysRevLett.119.240403.

[KHLZ17] Mario Krenn, Armin Hochrainer, Mayukh Lahiri, and Anton Zeilinger:
Entanglement by path identity. Phys. Rev. Lett., 118:080401, 2017,
10.1103/PhysRevLett.118.080401.

[KPKK16] Dmitry A. Kalashnikov, Anna V. Paterova, Sergei P. Kulik, and Leonid
A. Krivitsky: Infrared spectroscopy with visible light. Nature Photonics,
10(2):98–101, 2016, 10.1038/nphoton.2015.252.

[KY12] Alexandr V. Kostochka and Matthew P. Yancey: Large rainbow matchings
in edge-cloured graphs. Combinatorics, Probability and Computing, 21:255–
263, 2012, 10.1017/S0963548311000605.

[LBC+14] Gabriela Barreto Lemos, Victoria Borish, Garrett Cole, Sven Ramelow,
Radek Lapkiewicz, and Anton Zeilinger: Quantum imaging with undetected
photons. Nature, 512:409–412, 2014, 10.1038/nature13586.

[LPHH16] Pasi Lähteenmäki, Gheorghe Sorin Paraoanu, Juha Hassel, and Pertti J.
Hakonen: Coherence and multimode correlations from vacuum fluctuations
in a microwave superconducting cavity. Nature Communications, 7(12548),
2016, 10.1038/ncomms12548.

33

http://dx.doi.org/10.1073/pnas.1815884116
https://satcompetition.github.io/2021/results.html
https://satcompetition.github.io/2021/results.html
http://dx.doi.org/10.1073/pnas.1620979114
http://dx.doi.org/10.1103/physrevlett.114.053601
https://www.ibm.com/analytics/cplex-optimizer
https://www.ibm.com/analytics/cplex-optimizer
http://dx.doi.org/10.48550/ARXIV.1902.06023
http://dx.doi.org/10.1103/PhysRevLett.119.240403
http://dx.doi.org/10.1103/PhysRevLett.118.080401
http://dx.doi.org/10.1038/nphoton.2015.252
http://dx.doi.org/10.1017/S0963548311000605
http://dx.doi.org/10.1038/nature13586
http://dx.doi.org/10.1038/ncomms12548

[MMMA18] Erhard Manuel, Malik Mehul, Krenn Mario, and Zeilinger Anton: Experi-
mental Greenberger–Horne–Zeilinger entanglement beyond qubits. Nature
Photonics, 12:759–764, 2018, 10.1038/s41566-018-0257-6.

[Rav] Alex Ravsky: The existence of special designs. Math-
Overflow. https://mathoverflow.net/questions/423223/
the-existence-of-special-designs.

[Rav21a] Alex Ravsky: A perfect rainbow matching in an edge-colored graph with
spanning color classes. MathOverflow, 2021. https://mathoverflow.net/
q/396913, accessed: June 24, 2022.

[Rav21b] Alex Ravsky: A special perfect matching in a complete edge-colored graph.
MathOverflow, 2021. https://mathoverflow.net/q/396653, accessed:
June 24, 2022.

[Rav22] Alex Ravsky: Private communication. Chatroom of University of Würzburg,
2022. written up until: April 29, 2022.

34

http://dx.doi.org/10.1038/s41566-018-0257-6
https://mathoverflow.net/questions/423223/the-existence-of-special-designs
https://mathoverflow.net/questions/423223/the-existence-of-special-designs
https://mathoverflow.net/q/396913
https://mathoverflow.net/q/396913
https://mathoverflow.net/q/396653

	Title Page
	Abstract
	Contents
	1 Introduction
	1.1 Connection to Quantum Physics
	1.2 Own Contribution

	2 Improving the Upper Bound
	2.1 First Bound of C(n)
	2.2 Second Limitation of the Upper Bound
	2.3 Theoretical Achievements

	3 A Brute-Force Approach
	4 An Integer Linear Program
	4.1 Mathematical Program Formulation
	4.2 Linearization of the Mathematical Program
	4.3 ILP Results

	5 A SAT Formulation
	5.1 SAT Formulation for Single Graphs
	5.2 General SAT Formulation
	5.3 Case Analysis for Ten Vertices
	5.4 SAT Results
	5.5 SAT Program Performance

	6 Conclusion
	Bibliography

