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Abstract

The segment number of a planar graph is the smallest number of line segments needed to
draw the graph plane with straight-line edges. Using a technique of Hong and Nagamochi
[HN10] about convex drawings, we prove that every 3-connected 4-regular planar graph
can be realised such that every inner vertex is placed in the interior of some line segment.
This yields that the segment number of such a graph G is at most |V (G)|+3. In contrast,
there is an infinite family of 3-connected 4-regular planar graphs with segment number
of at least |V (G)|. The class of 2-connected 4-regular planar graphs contains a family of
graphs where each graph G has segment number of at least 7|V (G)|/6.

Zusammenfassung

Die Streckenzahl eines Graphen ist die kleinste Anzahl von gerade gezeichneten Strecken,
die benötigt wird um den Graphen geradlinig und planar darzustellen. In dieser Arbeit
konzentrieren wir uns auf 3-zusammenhängende, 4-reguläre, planare Graphen und zeigen
mit Hilfe einer Beweistechnik von Hong und Nagamochi [HN10] über konvexe Graph-
zeichnungen, dass für jeden derartigen Graphen eine Zeichnung existiert, in der jeder
innere Knoten in der Zeichnung auf dem Inneren einer Strecke liegt. Mit diesem Re-
sultat folgern wir, dass die Streckenzahl solcher Graphen durch |V (G)| + 3 nach oben
beschränkt ist. Weiterhin zeigen wir, dass es unendlich viele 3-zusammenhängende, 4-
reguläre, planare Graphen gibt, die jeweils mindestens die Streckenzahl |V (G)| haben.
Darüber hinaus behandeln wir die Menge der 2-zusammenhängenden, 4-regulären, plana-
ren Graphen und geben eine Teilmenge dieser an, in der jeder Graph G eine Streckenzahl
von mindestens 7|V (G)|/6 hat.
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1 Introduction

Graphs are a widely used and beneficial method to model relations between different
entities. As in every presentation of data, it is important to keep the comprehensibility
high for the user. In terms of graphs this means to optimize the design and drawing
according to some aesthetic criteria. A frequently used layout for graph drawings, which
is also used in this thesis, is the representation of the vertices as dots and of the edges
between them as lines. Well-studied aesthetic criteria for graph drawings are that cross-
ings and bends in the drawing of edges should be minimized. As experimentally verified
by Helen Purchase, Robert Cohen and Murray James [PCJ95], increasing the number of
edge crossings or the number of edge bends decreases the understandability of the graph.
For the sake of brevity, we refer in this thesis to a straight-line, crossing-free drawing
just as a drawing.

Segments A segment in a straight-line drawing is a maximal set of edges that form
a straight line segment [DMNW13]. The visual complexity of a drawing is defined as
the total number of geometric objects (such as segments) that are used in the drawing.
An example of two drawings of the same graph with different visual complexities is
illustrated in Figure 1.1.
Kindermann, Meulemans and Schulz [KMS17] verified experimentally that users with-

out mathematical background show a preference for graphs with a lower visual complex-
ity. This motivates to study the minimum number of segments that is needed in any
drawing of a planar graph G. This number is called the segment number of G. For
example the segment number of the octahedron is 9 as shown by Kryven, Ravsky and
Wolff [KRW19]. A drawing of the octahedron with 9 segments is illustrated in Figure 1.2.

´
(a) Drawing with a high number of segments and

therefore a high visual complexity.
(b) Drawing with a lower visual complexity.

Fig. 1.1: Two drawings with different visual complexities of the same graph.
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Fig. 1.2: Drawing with nine segments of the octahedron

Bounds In order to analyse the segment number of graph families, we use three different
bounds:

• The existential lower bound e for the segment number of a graph family states that
there exists a family member G with a segment number of at least e.

• The universal lower bound s for the segment number of a graph family states that
each family member G has a segment number of at least s.

• The upper bound u for the segment number of a graph family states that every
family member has a segment number of at most u.

Related Work Durocher, Mondal, Nishat and Whitesides [DMNW13] showed that it
is NP-hard to determine whether a plane graph G with maximum degree four can be
drawn with k ≥ 3 segments even when the drawing is addionally convex. This result
indicates that it is not a trivial problem to determine the segment number of a graph
efficiently. Therefore a couple of authors already studied the segment number of special
types of graphs. An overview of the results is given in Table 1.1.

Dujmović, Eppstein, Suderman and Wood [DESW07] observed that every drawing of a
planar graph G needs at least η(G)/2 segments, where η(G) is the number of odd-degree
vertices in G. Another lower bound for the segment number is given by the so-called
slope number of G. The slope number of a drawing is the number of different slopes of
the edges that are used in the drawing. The slope number of G is the minimum of the
slope numbers of any drawing of G. Furthermore, they proved that every tree T has the
segment number η(T )/2.
Dujmović et al. [DESW07] also studied maximal outerplanar graphs and showed that

every outerplanar graph G has an outerplanar drawing with at most n segments and if
n ≥ 3, any drawing of G has at least n segments. For 2-trees Dujmović et al. [DESW07]
proved that there exists a drawing with at most 3n/2 segments and that the upper bound
for the segment number of plane 3-trees is 2n − 2, which is tight. Moreover Dujmović
et al. [DESW07] studied 3-connected plane graphs and showed that every 3-connected
plane graph has a plane drawing with at most 5n/2 − 3 segments. The results were
used by Heigl [Hei21] to prove that every 3-connected 4-regular planar graph G with
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Graph class upper bound ex. lower bound univ. lower bound
planar connected n−3m−28

3 [DM19] 2n− 2 [DESW07] η
2 [DESW07]

8
3n−

14
3 [KMSS19]

planar 2-conn. – 5
2n− 4 [DESW07] –

planar 3-conn. 5
2n− 3 [DSW04] 2n− 6 [DESW07]

√
2n [DESW07]

planar 3-conn. 4-reg. n+ 3 20 n 28 Θ(
√
n) 23¸

planar 3-conn. 3-reg. n
2 + 3 [BMNR10] – n

2 + 3 [DESW07]
[IMS17]

triangulation 7
3n−

10
3 [DM19] 2n− 2 [DESW07] Ω(

√
n) [DESW07]

trian. max-deg 6 Ω(
√
n) [DESW07] 2n− 6 [DESW07] –

trian. 4-conn. 9
4n−

9
4 [DM19] 2n− 6 [DESW07] Ω(

√
n) [DESW07]

trees η
2 [DESW07] – η

2 [DESW07]
2-trees 3

2n [DESW07] – 3
2n− 2 [DESW07]

planar 3-trees 2n− 2 [DESW07] 2n− 2 [DESW07] –
maximal outerplanar n [DESW07] n [DESW07] –

Tab. 1.1: Overview of the results regarding the segment number. n is the number of vertices,
m the number of edges and η the number of vertices of odd degree in a graph.

n vertices has a drawing with at most 5n/3 segments. Durocher and Mondal [DM19]
improved the upper bound of 3-connected plane graphs for triangulations to 7n/3−10/3
and in the case of 4-connected triangulations to 9n/4− 9/4.
Biswas, Mondal, Nishat and Rahman [BMNR10] gave an algorithm that constructs

a drawing with n/2 + 3 segments for every cubic planar 3-connected graph (except
K4). Igamberdiev, Meulemans and Schulz [IMS17] presented two new algorithms that
also generates drawings of cubic planar 3-connected graphs (except K4) with n/2 + 3
segments and compared the performance of all three algorithms.
Durocher and Mondal [DM19] proved that every planar, connected graph can be

drawn with at most (n− 3m− 28)/3 segments. Kindermann, Mchedlidze, Schneck and
Symvonis [KMSS19] expanded the argumentation and proofed an universal upper bound
for the segment number of planar, connected graphs of 8n/3− 14/3

Contribution First, we establish used notations in Chapter 2. The main result The-
orem 20 can be found in Chapter 3. In this chapter, we start with some preliminary
results, which we use in Theorem 20 to show that the every 3-connected 4-regular planar
graph has a convex drawing with at most |V (G)|+ 3 segments. This result improves the
upper bound of Dujmović et al. [DESW07] and Heigl [Hei21] of 5|V (G)|/3 to |V (G)|+3.
The given proof is based on a technique of Hong and Nagamochi [HN10], who introduced
an algorithm for constructing a convex drawing of 3-connected planar graphs and an im-
proved version of their algorithm from Klemz [Kle21]. Both papers describe a recursive
combinatorial construction of the convex drawing. Their main idea of the construction
is to split the given graph into three subgraphs that are handled recursively by using
so-called archfree paths.
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In Section 4.2, we introduce a set of 3-connected 4-regular planar graphs whose seg-
ment number is at least |V (G)|. This shows that the upper bound of |V (G)| + 3 for
the segment number of 3-connected 4-regular planar graphs is tight up to an additive
constant.
Furthermore, in Section 4.1 we give an example for a 3-connected 4-regular planar

graph set such that every graph G in this set can be drawn with at most
√

4|V (G)|
segments. In combination with results from Dujmović et al. [DESW07] this graph set can
be used to show that the universal lower bound for the segment number of 3-connected
4-regular planar graphs can not be asymptotically better than Θ(

√
|V (G)|)

In Section 4.3 we analyse the segment number of a set of 2-connected 4-regular planar
graphs and we prove that every graph G in this set has at least 7|V (G)|/6 segments in
any drawing.

Remark on the Publication Parts of the results in this thesis were submitted for publi-
cation in advance. Beside results of the other authors Jonathan Klawitter, Boris Klemz,
Felix Klesen, Stephen Kobourov, Myroslav Kryven, Alexander Wolff and Johannes Zink,
rewritten versions of Chapter 3 and Section 4.2 were part of the submitted paper.
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2 Terminology
Notations Let G be a planar graph. We call the set of boundaries of each face in G the
combinatorial embedding of G. The combinatorial embedding of a 3-connected graph is
unique. A planar graph is plane if it is equipped with a combinatorial embedding and a
selected outer face.
Let G be a plane graph and let f0 denote its outer face. For each face f we denote by

∂f the counterclockwise sequence of edges on the boundary of face f . Analogously ∂G
denotes the counterclockwise sequence of edges on the boundary of G and is defined as
∂f0. Note that as long as G is 2-connected, ∂f and ∂G are simple cycles. A vertex v
is part of ∂f (resp. part of ∂G) if it is a endvertex of an edge in the sequence ∂f . We
denote this by writing v ∈ ∂f (resp. v ∈ ∂G). A vertex v in G is an outer vertex if it is
part of ∂G, otherwise v is an inner vertex. A path P is an inner path if every vertex on
P is an inner vertex. If P is a path, |P | is defined as the number of edges on the path.
Every path has a start- and an endvertex. With |f | we refer to the number of edges in
the sequence ∂f . With V (G) (resp. E(G)) we denote the set of vertices (resp. edges) in
G.

Definition of used graph properties For the purpose of this thesis we assume that
all graphs in this thesis are simple that means that they do not have parallel edges or
self-loops. Furthermore, we ignore in the argumentation whether the graph is directed.

Definition 1. Let G = (V,E) be a plane graph and let f0 denote its outer face. The
Graph G is called 3-connected (resp. k-connected) if and only if the following equivalent
statements are satisfied:

• If we remove two (resp. k− 1) arbitrary vertices with the related edges from G, the
resulting graph is always connected.

• For every vertex v in V , we can find three (resp. k) simple paths pi (i ∈ {1, 2, 3})
which pairwise intersect only in v, start in v and end on the boundary of the outer
face.

Definition 2. Let G be a plane 2-connected graph and let f0 denote its outer face. Then
G is called internally 3-connected if and only if the following equivalent statements are
satisfied:

• Inserting a new vertex v in f0 and adding edges between v and all vertices of f0
results in a 3-connected graph.

• From each internal vertex w from G there exist three paths to f0 that are pairwise
disjoint except for the common vertex w
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• Every separation pair u, v of G is external, meaning that u and v lie on ∂f0 and
every connected component of the subgraph of G induced by V (G) \ {u, v} contains
a vertex of ∂f0.

Definition 3. Let G be a planar graph such that each vertex has degree 4, then G is
called 4-regular. Let G′ be a plane graph. If every inner vertex in G′ has degree 4 and
every outer vertex has maximum degree 4, then the graph is called internally 4-regular.

Note that every 4-regular plane graph is also automatically internally 4-regular. Hence,
results for the upper bound of internally 4-regular 3-connected planar graphs are trans-
ferable to 4-regular 3-connected planar graphs by choosing an outer face.

Definition of drawing properties A drawing of a plane graph G is called a straight-line
drawing if each edge is realised as a straight line without bends. The drawing is crossing-
free if the drawn edges intersect pairwise only in their endvertices. For simplicity, we
refer to a straight-line, crossing-free drawing (in R2) just as a drawing.

Definition 4. A drawing of a polygon is called convex if every internal angle of the
polygon is at most π. A drawing Γ of a plane graph G is called convex if the boundary
of each inner face is drawn as a convex polygon.
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3 Upper Bound for the segment number of
3-connected 4-regular planar graphs

In this chapter, we derive an upper bound for the segment number of 3-connected 4-
regular planar graphs. In order to prove that an upper bound for the segment number
of this graph class is |V (G)| + 3, we show that every member of this graph class has
a drawing with the property that every vertex except three of them are drawn in the
interior of a segment (see Theorem 18, Theorem 19). In this drawing, it holds that in
each vertex (except three) maximal two segments end while in the other three vertices at
most four segments end. Altogether, we obtain that the drawing of G contains maximal
|V (G)|+ 3 segments (see Theorem 20). Later in the thesis in Theorem 28, we will give
an existential lower bound that shows that the obtained upper bound is tight up to an
additive constant.

3.1 Preliminaries
In this section, we first introduce some additional definitions and results that will be
helpful to prove Theorem 20.

Archfree paths First, we define the property ”archfree” for paths, then we present
some results how to construct such paths. Later in the proof of Theorem 18 we will use
archfree paths to ”cut” the graph into subgraphs, therefore it will be useful to have some
strategies how to construct them.
Definition 5. A path P is arched by a face f if P contains two distinct vertices a, b
such that the subpath Pab of P between a and b is not a subpath of the boundary of f
(see Figure 3.1 for an example). A path P is called archfree if it is not arched by any
internal face f .

As it can easily be observed in Figure 3.1, an arched path P cannot be realised as
a straight-line segment in a convex drawing because in this case f could not be drawn
convex. Furthermore, we observe that an archfree path is automatically simple.
Now we focus on how to construct archfree paths in internally 3-connected plane

graphs. The following Lemma presents a practical result. It states that the subpaths of
the boundary of an inner face f that do not contain at least two of the edges in ∂f are
archfree.
Lemma 6 ([HN10], Lemma 1). Let G = (V,E) be an internally 3-connected plane graph
and let f be an internal face of G. Any subpath Q of ∂f with |Q| ≤ |f |−2 is an archfree
path.
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a

b f

P

Fig. 3.1: Path P is arched by face f . The subpath Pab of P between the two vertices a and b
is not a subpath of the boundary of f .

Definition 7 ([HN08]). A path Q between s and t is extendible in a plane graph G =
(V,E), if it is a subpath of a path between two outer vertices s′ and t′. A face f arches
Q on the left side if f is on the left side of Q. Analogously another face can arch Q on
the right side.
As illustrated in Figure 3.2, we define the left-aligned path L(Q) of Q as an inner

path from s to t, obtained by replacing subpaths of Q with subpaths of the arching faces as
follows: For each arching face f , let af and bf be the first and last vertices in V (f)∩V (Q)
when we walk along path Q from s to t, and fQ be the subpath from af to bf obtained by
traversing f in the anticlockwise order. The path L(Q) is the path obtained by replacing
the subpath from af to bf along Q with fQ for all arching faces f .
The right-aligned path R(Q) of Q is defined symmetrically to the left-aligned path.

Q

f1

f2

f4

s ts′ t′

left side

right side

f5

f3
L(Q)

Fig. 3.2: The extendible path Q between s and t is marked red. The left-aligned path L(Q) of
Q is illustrated with green arrows.

Note that the definition replaces subpaths of Q with subpaths of each arching face in
order to obtain L(Q). In this process new arches that did not arch Q cannot occur, but
it could be that the path is still arched on the left side after a replacement. For example
if we start with the construction of L(Q) in Figure 3.2 by dealing with archface f2, the
replaced subpath is still arched by face f1. Therefore the definition replaces subpaths
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for ”each” arching face.
If we want to imagine how to obtain L(Q), we can deal with nested archfaces, like

f1 and f2 in Figure 3.2 by just replacing the subpath with the ”most outer” archface
(here: f1). With this strategy, we could save ourselves the need to replace the more inner
arching faces (here: f2) of the nest.

Furthermore, we observe that Q and L(Q) have their start- and endvertex in common.
We apply now our observations that the replacement process does not generate new
arches to obtain the following Lemma:

Lemma 8 ([HN08], Lemma 5). Let G = (V,E) be an internally 3-connected plane graph
and Q be an extendible path from a vertex s to a vertex t such that every vertex on Q
except s and t is an inner vertex. Then no inner face arches L(Q) on the left side.
Moreover, if no face arches Q on the right side, then L(Q) is an archfree path.

It can be observed that the left- and right-aligned path of an extendible path is still
extendible. With that observation and Lemma 8, we can obtain an approach for the
construction of archfree paths: If L(Q) of an extendible path Q can just be arched from
the right side R(L(Q)) can neither be arched from the right nor from the left side and
is therefore archfree.

Lemma 9 ([HN08], Corollary 6). For any inner extendible path Q from s to t in an
internally 3-connected plane graph G, the right-aligned path R(L(Q)) of the left-aligned
path L(Q) is an archfree path.
Analogously: the left-aligned path L(R(Q)) of the right-aligned path R(Q) is an archfree

path.

Now we have a strategy how to construct an archfree path out of an arched path. For
further argumentation we need to know some properties, the constructed archfree paths
from Lemma 9 fulfill. By definition of the left-aligned and right-aligned paths we already
observed that they have the same start- and endvertex as the base-path. The following
Lemma describes another property regarding the connection between the intersection of
two paths w1 and w2 and the intersection of w1 with L(w2).

Lemma 10. Let G = (V,E) be a 3-connected plane graph, a ∈ V (G) a vertex in G
and b1 and b2 two different vertices on the boundary of the outer face (see Figure 3.3).
Furthermore, let w1 be a simple path between a and b1 and w2 is an extendible, simple
path in G between a and b2. Let the only common vertex of w1 and w2 be their startvertex
a. Then the left-aligned path L(w2) of w2 intersects with w1 just in a as well.
Analogously: R(w2) and w1 have just vertex a as a common vertex as well as L(R(w2))

(resp. R(L(w2))) with w1.

Proof. We prove the equality by showing ⊆ and ⊇.

L(w2)∩w1 ⊇ {a} The left-aligned path of w2 has by construction the same start- and
endvertex as w2. Therefore a is still a vertex on both w1 and L(w2).
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x

Left side

Right Side

w2

f f2

f3

f4

L(w2)

b2 = m

a

b1

n

∂G

Fig. 3.3: The faces fi are the archfaces of w2 whereby the pink-coloured faces are on the left side.
The left-aligned path L(w2) is marked with green arrows. Some possible positions of
x are marked with red dots.

L(w2) ∩ w1 ⊆ {a} For a proof by contradiction, we assume that L(w2) ∩ w1 contains
a vertex x that is not in {a}. If x ∈ L(w2) ∩ w2, it cannot be a vertex on w1 because
w2 and w1 intersect by definition just in vertex a and x 6= a. It follows that x is in
L(w2) \ w2 as illustrated in Figure 3.3. We call the archface of w2 on whose boundary
x is located f . The subpath of w2 that is replaced by the left-aligned path because of f
is called l, the startvertex of l is called n and the endvertex m.
Consider the region that is bounded by l and the subpath of ∂f between m and n.

Vertex x is by definition located inside the region and a can be on the boundary. Vertex
b1 could be part of the boundary of the region that is not part of w2. By definition
x is also a vertex on w1 between a and b1, therefore w1 has to cross the boundary of
the region in at least two vertices. Because of face f it cannot cross the subpath of ∂f
between m and n and w1 has to intersect with l in at least two vertices. This contradicts
the part of the assumption that w1 and w2 intersect just in vertex a.
Therefore it is not possible that x existed and the Lemma is proven.

We apply now Lemma 10 to prove the following Corollary:

Corollary 11. Let G = (V,E) be a 3-connected plane graph and w an extendible simple
path with the startvertex s and the outer vertex t as the endvertex. Furthermore, let w
be disjoint from ∂G except for the start- and endvertex (see Figure 3.4).
Then the left-aligned (resp. right-aligned) path of w is also disjoint from ∂G except of

the start- and endvertex.
In particular, the left-aligned (resp. right-aligned) path of a path w with at least one

outer start- or endvertex with just inner vertices inbetween, intersects with ∂G also just
in the outer start- or endvertex.
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∂Gx

∈ L(w)

sx

s′ s
t

w

Fig. 3.4: The situation in Corollary 11: The extendible simple path w is illustrated in black
colour. The green-marked path sx is defined in the corresponding proof.

Proof. We proof the Corollary by contradiction. Since w is extendible, it is the subpath
of a path Q between two outer vertices s′ and t. First, we assume that there exists a
vertex x /∈ {s, t}, which is a common vertex of L(w) and ∂G. We define the path sx
as the subpath of Q between s and s′ linked with the subpath of ∂G between s′ and x
that does not contain t′. Without loss of generality, we assume that there is no other
vertex x′ between s′ and x on sx that is on L(w). Vertex x is not on w because of the
definition of w as a path without outer vertices except s and t.
The paths sx and w intersect just in the startvertex s because the subpath of sx

between s and s′ intersects with w just in s because of Lemma 10 and the second part
of sx is disjoint from w (except s in the case that s′ = s) by definition. Furthermore,
both end on ∂G. With Lemma 10, we deduce that L(w) and sx intersect just in the
startvertex s. Therefore no such x can exist and the Corollary is proven.

We have now a sufficient repertoire of construction strategies of disjoint archfree paths.
Beside those, we will utilize some results about 3-connectivity and the existence of a
special kind of faces.

Preservation of internally 3-connectivity First, we proof the following Lemma 12. If
we have a plane internally 3-connected graph G and insert a vertex with three edges into
one of the faces, the graph is still internally 3-connected.

Lemma 12. Let G = (V,E) be a plane internally 3-connected graph and f an inner
face in G. We define G′ as the graph that is emerged from G by adding a new vertex v
in f with three new edges between v and three differerent vertices x1, x2 and x3 on the
boundary of f (See Figure 3.5). Then G′ is an internally 3-connected graph.

Proof. The property internally 3-connectivity is defined in Definition 2. For this proof
we use the third property: every separation pair u, v of G is external.

We eliminate two arbitrary internal vertices in G′. If v is one of them, the resulting
graph is connected because G was internally 3-connected. If v is not eliminated, the part
of G′ that corresponds to G is still connected. Furthermore, v is still connected with the
rest of G′ because at most two of the three neighbours of v are removed. Therefore, G′
is an internally 3-connected graph as well.

14



f v

x3

x2x1

Fig. 3.5: Illustration of the construction of G′ in Lemma 12: We insert a vertex v in face f in
graph G. Furthermore, we add three edges between v and the boundary of f .

Lemma 13. Let G be an internally 3-connected plane graph and let Γ be a simple cycle
in G. The closed interior Γ− of Γ is an internally 3-connected plane graph.

Proof. The proof of the Lemma can be directly derived with the second statement in
Definition 2 of internally 3-connectivity: let w be an inner vertex of Γ−. Vertex w
corresponds to an inner vertex in G and because of the internally 3-connectivity of G we
find three disjoint paths p1, p2 and p3 from w to the boundary of the outer face of G.
Those paths intersect with Γ in at least one vertex. We define p′i (i ∈ {1, 2, 3}) as the
subpath of pi between w and the first intersection vertex with Γ. Clearly, p′1, p′2 and p′3
are still disjoint and paths from w to Γ, which is the boundary of the outer face of Γ−.
Therefore is Γ− internally 3-connected and plane with Γ as the boundary of the outer
face.

Strictly inner faces and windmills We proceed now and define a special kind of face
called ”strictly inner face”. Intuitively this is an inner face f without common vertices
of the boundary ∂f with the boundary of the outer face. We will observe that this type
of face has to exists in 3-connected internally 4-regular plane graphs with three vertices
on the outer face.

Definition 14. Let G = (V,E) be a connected plane graph and let f0 denote its outer
face. An inner face f of G is called strictly inner face if its boundary ∂f is disjoint to
the boundary of the outer face ∂f0. An example for a strictly inner face can be found
later in the chapter in Figure 3.7a.

Not every graph contains strictly inner faces. The following Lemma assures the exis-
tence of a strictly inner face in a 3-connected internally 4-regular plane graph with three
outer vertices.

Lemma 15. Let G = (V,E) be a 3-connected internally 4-regular plane graph with at
least one inner vertex. Let f0 denote the outer face of G and let the number of vertices
on the boundary of f0 be three. Then graph G has a strictly inner face.

Proof. We prove this Lemma by contradiction. Therefore, we assume that G has no
strictly inner face.
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Let η be the number of vertices with odd degree, |f | the amount of faces and k the
number of inner vertices in G. Clearly, it holds that k ≥ 0. The Handshaking-Lemma
implies that η is even. Because of the 3-connectivity and internally 4-regularity of G,
the vertices with odd degree are outer vertices with degree 3 and η is either 0 or 2.
Because of the definition of k, the number of vertices is |V (G)| = 3 + k. The amount

of edges is dependent on η: every vertex in G is adjacent to four edges except the η
outer vertices with just 3 edges. As every edge is between two vertices, we derive:

|E(G)| = 1
2(4(k + 3)− η) = 2k + 6− 1

2η

Since we assumed that G has no strictly inner face, we observe that every inner face
has a common vertex with ∂f0. Therefore, we know that the amount of faces |f | is
limited by the upper bound 7− η.
Now we apply the Euler Characteristic for connected plane graphs:

|V (G)| − |E(G)|+ |f | = 2

With the observations from above, we derive:

3 + k − (2k + 6− 1
2η) + 7− η ≥ 2

⇔ −k ≥ −2 + 1
2η

⇒ k ≤ 2− 1
2η

As mentioned above, η can be either 0 or 2. We discuss these two cases separately.

Case 1: η = 0. We derive that k ≤ 2. If G has two inner vertices, it is isomorphic to
K5 and therefore not planar. If G has one inner vertex that vertex cannot have degree
4 because |V (G)| = 4. Altogether, this case cannot occur. /

Case 2: η = 2. We obtain that k ≤ 1. If G has just one inner vertex that inner
vertex cannot have 4 neighbours because |V (G)| = 4, therefore this case cannot appear
either. /

Altogether, we obtain that G must have had a strictly inner face.

Now we proceed with the definition of a special path set called ”windmill”. We will
apply windmills in the last case of the proof of Theorem 18 where we construct archfree
windmills. Those can be drawn as illustrated in Figure 3.18 and will come in handy to
split up the graph into useful subgraphs.
Note that it is crucial for the existence of windmills in a graph that the graph has at

least one strictly inner face.

Definition 16. Let G be a planar graph and p1, p2 and p3 three simple paths. The
startvertex of pi (i ∈ {1, 2, 3}) is called si, the corresponding endvertex ei. A set of the
three paths p1, p2, p3 is called windmill of graph G, if the three paths fulfill the following
properties:
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(W1) Each of the paths pi has only the vertex si in common with ∂G

(W2) For each i, j ∈ {1, 2, 3} with i 6= j, the two paths pi and pj have exactly one vertex
in common, which is the endvertex ei or ej of exactly one of the two paths.

If p1, p2 and p3 are additionally archfree the windmill is called an archfree windmill.

Note that the properties 1 and 2 in the definition already fix that two paths Pi and
Pj cannot intersect in more than one vertex and the intersection vertex of the two
paths is an inner vertex of one of the two paths (and the endvertex of the other one).
Furthermore, the combination of both properties implies that none of the paths pi and
pj can be empty. In the following Lemma we show the existence of archfree windmills
in graphs with special properties.

Lemma 17. Let G be an internally 3-connected plane graph of maximum degree 4 that
contains a strictly inner face f . Then G contains an archfree windmill.

Proof. For the sake of readability we consider all indices in this proof modulo 3. Let f0
denote the outer face of G. We start and construct three disjoint archfree simple paths
from ∂f to ∂f0 by using the internally 3-connectivity of G: we add an auxiliary vertex
v in f with edges to every vertex xi on ∂f and call the resulting graph G′.
The graphG′ is internally 3-connected because of Lemma 12 and the fact that inserting

additional edges into an internally 3-connected graph does not harm the internally 3-
connectivity. Since G′ is internally 3-connected, we can find three simple paths w′1, w′2
and w′3 from v to the outer face that pairwise intersect just in the vertex v, which is the
startvertex of all three paths. We define the endvertices of w′i as vi. Note that the vi are
part of the boundary of the outer face and without loss of generality no other vertex on
w′i is on ∂f0.
Those simple paths w′1, w′2 and w′3 can now be used to construct three disjoint archfree

paths wi(i ∈ {1, 2, 3}) between ∂f and the three vertices v1, v2 and v3 on the boundary
of the outer face ∂f0. Clearly w′1, w′2 and w′3 are extendible paths. With Lemma 10, we
conclude that L(w′1), L(w′2) and L(w′3) intersect pairwise just in vertex v. Furthermore,
R(L(w′1)), R(L(w′2)) and R(L(w′3)) are archfree because of Lemma 9, pairwise disjoint
except for the startvertex v with Lemma 10 and contain no other outer vertex except
their startvertex because of Corollary 11. As illustrated in Figure 3.6, we define for each
i ∈ {1, 2, 3} xi as the first vertex on ∂f if we begin with vertex vi and iterate R(L(w′i)).
As it can be seen in Figure 3.6, R(L(w′i)) can have more than one intersection vertex
with ∂f , but we are just interested in ”the first one”. The subpath of R(L(w′i)) between
vi and xi is called wi. The wi are pairwise disjoint by construction and each of them is
archfree.
We process now the archfree paths wi and define three paths s1, s2 and s3 that build

a windmill together:
For each i ∈ {1, 2, 3}, let si be the simple path between vi and xi+1 that is constructed

by linking wi and the subpath of ∂f between xi and xi+1 that does not contain xi+2
(Figure 3.7a).
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v1

v2v3

v

R(L(w′
1))

R(L(w′
2))R(L(w′

3))

x1

x2
x3

w3

w1

w2

Fig. 3.6: Situation in the proof of Lemma 17: we inserted into G in face f an auxiliary vertex v
with edges to ∂f . Then, we used the internally 3-connectivity to construct the three
disjoint archfree paths w1, w2 and w3 from ∂G to ∂f .

Note that the set of the three paths si is a windmill: by construction si intersects with
∂G just in the starvertex vi. Two si and sj intersect just in one vertex, which is exactly
one of their endvertices xi or xj and the startvertex vi is the only outer vertex on si.

Clearly, the paths si may be arched. If they would be already archfree, we can define
new paths s′′i as si. The set of the s′′i is then an archfree windmill in G and we are done.
Otherwise we can assume that si are arched and we process them to receive an archfree
windmill:
By construction the subpath of si that is arched must contain the linkvertex xi as

illustrated in Figure 3.7b. Furthermore, we can easily observe that si is an extendible
simple path and can just be arched on the left side because both subpaths of si before
and after xi are by design archfree and there is a path from xi to the outer face on the
right side of si. If si is arched, we define li as the subpath of si, which is replaced in
L(si). If si is archfree, we define li as the empty path and define its start- and endvertex
both as xi. Since si is constructed by linking two archfree paths, li is unique (compare
Figure 3.7c). Note that xi has to be part of li. We define ni as the startvertex (closer to
vi) of li and mi as the endvertex of li. If si was archfree, ni and mi are both the same
vertex as xi.

Case 1: None of the mi matches with xi+1. An example for the following descriptions
can be found in Figure 3.8.
In this case, we can define s′′i as L(si) linked with the subpath of si+1 between xi+1

and mi+1. The linkvertex xi+1 is part of both parts because the left-aligned path keeps
the start- and endvertex of the original path fixed. Clearly, both parts intersect just in
the linkvertex xi+1.
The first part of s′′i is archfree because of Lemma 8 and the fact that si was not arched

from the right side. The second part of s′′i is archfree with Lemma 6: the subpath of
si+1 between xi+1 and mi+1 is at the same time a subpath of the boundary of f and
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(a) Definition of the three dif-
ferent si based on the three
disjoint archfree wi and the
boundary of the strictly inner
face f .
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v1
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a2
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(b) Example of possible arches on
the left side of si.

f

v1

v2v3

n2

m2 = x3

n3

m3 = x1

m1

n1

l1
l2
l3

(c) Definition of li as the replaced
subpath of si.

Fig. 3.7: Definition of si and preparations for the construction of the archfree windmill
{s′′

1 , s
′′
2 , s

′′
3}

at least two more edges are not part of that subpath. If s′′i is arched by a face a, the
arched subpath must contain xi+1 because both parts of s′′i are already archfree. Face a
cannot be on the right side of s′′i because of f and si+2: face a would be crossed by si+2.
Furthermore, face a cannot be on the left side of s′′i because it would be crossed by si+1.

We show now that the set of the s′′i is a windmill. Clearly, s′′i are simple paths. The
first property states that each of the s′′i has exactly one common vertex with ∂G, which
matches with the startvertex vi. We know that the paths s′′i have vi as a startvertex
on ∂G. The first subpath of s′′i , L(si) does not intersect in more than the startvertex
vi with ∂G because of Corollary 11. The second subpath of s′′i is also a subpath of the
boundary of the strictly inner face f and therefore it does not contain any outer vertices.
The second property of a windmill states that two paths pi and pj have just one vertex

in common, which is the endvertex from exactly one of them. By definition, s′′i and s′′i+1
intersect in vertex mi+1, which is the endvertex of s′′i . Without loss of generality s′′1
and s′′2 intersect in another vertex xs than m2. With Lemma 10, we can derive that
the subpath of s′′1 between v1 and x2 is disjoint of the paths s2 and w3 except x2. If s2
was not arched, we are done with the argumentation because the subpath was the entire
path s′′1 and x2 = m2. Otherwise, the subpath is linked with a subpath of ∂f , which is
by its definition disjoint with s′′2 except m2. Therefore, such a xs cannot exist.
Altogether, we constructed a set of three simple paths s′′i (i ∈ {1, 2, 3}), which fulfill

the windmill-properties. Furthermore, we observed that the s′′i are archfree. /
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(a) Example for the situation with some arches
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v1
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x1 = n1 = m1

x2

x3

m3

n3 n2

m2

s′′1

s′′3s′′3

(b) Definition of the three archfree s′′
i

Fig. 3.8: The situation in Case 1: On the left side an example for the initial situation in this
case, on the right side the definition of the s′′

i (i ∈ {1, 2, 3}), which build an archfree
windmill together.

Case 2: One or more of the mi match with xi+1 as in Figure 3.7c. In this case, we define
s′i almost like si (see Figure 3.9) just that we take the other direction of subpaths on
∂f . If it is not arched by a ”big arch” that ends in xi, we handle the case symmetrically
to the first case. If it is arched as well, we introduce a new strategy to receive three
archfree segments.
We begin with the definition of s′i as visualized in Figure 3.9b: for each i ∈ {1, 2, 3},

let s′i be the simple path between vi and xi−1 that is constructed by linking wi and the
subpath of ∂f between xi and xi−1 that does not contain xi+1. We can easily see that
for each i ∈ {1, 2, 3}, s′i is an extendible simple path.

f

v1

v2v3

s1

s2s3

x1

x2

x3

(a) Illustration of the three si as they were defined
in the beginning of the proof.

f

v1

v2v3

s′1

s′2s′3

x1

x2

x3

(b) Definition of the three different s′
i

Fig. 3.9: Comparison of the definition of si and s′
i: for the definition of s′

i, we iterate ∂f ”in
the other direction” than before for the definition of si.
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not apply Case 1
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2s′′3
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(b) Definition of the three s′′
i symmetrically to

Case 1.

Fig. 3.10: Handling of the case, that the three s′
i were not arched with big arches.

Symmetrically to the first case we define l′i (Here with the right-aligned path since
every arch is on the right side of the path), n′i and m′i. The new situation is illustrated
in Figure 3.10a.
If none of the mi match with a vertex xi−1, we can define the new s′′i symmetrically

to the first case as illustrated in Figure 3.10b. In this case, we constructed a set of three
simple paths s′′i , which fulfill the windmill property and which are additionally archfree.

If one or more of the m′i match with a vertex xi−1, we are in a similar situation as in
Figure 3.11: We call the special kind of arches that end in xi big arches. Since the graph
is internally 4-regular, in each xi can end at most one big arch. With this observation,
we conclude that if there are i, j ∈ {1, 2, 3} with si and s′j are arched by big arches, there
cannot be more big arches than those two in the graph. Furthermore, we can conclude
that the only possible position of the two big arches is i = j.
Without loss of generality, we assume that i = j = 1. Additionally, we assume without

loss of generality that the number of edges between n′1 and v1 are more (see Figure 3.12a)
or equal (see Figure 3.12b) to the number of edges between n1 and v1. The other case
— n′1 was closer to vi — is handled symmetrically.
The simple path s′′1 is defined as the right-aligned path R(s′1) linked with the subpath

of s′3 between x3 and m′3. The second simple path s′′2 is defined as the right-aligned path
of the path s2a which is defines as the path that is constructed by linking s′2 with the
subpath of s′1 between x1 and n′1. The third simple path s′′3 is defined as the right-aligned
path R(s′3).
Path s′′1 is archfree because its first part is archfree with Lemma 9, the second part is

archfree because it is a subpath of ∂f and there cannot be an arch at the link x3 because
of the big arch that ends in x3. Path s′2 is archfree because of the big arch that ends in
x2. The subpath of s′1 between x1 and n′1 is archfree by construction. If the path s2a
that is constructed by linking those two archfree paths is arched, the archface has to be
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f

xi+1 xi

Fig. 3.11: Situation if there was a si and s′
j that were arched by a big face. The positions of the

two big faces (sketched in blue) are restricted by the 4-regularity and the property,
that the faces cannot overlap.

on the right side of the path s2a. Therefore is s′′2 archfree as it is the right-aligned path
of s2a. Path s′′3 is archfree because s′3 can just be arched from the right side and s′′3 is
defined as the right-aligned path of s′3.
We show now that the set of the three simple paths s′′i is a windmill. The first

property states that each of the s′′i has exactly one common vertex with ∂G, which is
the startvertex of s′′i . We know that the startvertex vi of s′′i is a vertex on ∂G. The first
part of s′′1 between v1 and x3 just intersects with ∂G in v1 because of Corollary 11. The
second part of s′′1 between x3 and m′3 is a subpath of the boundary of the strictly inner
face f and therefore contains no outer vertex. Analogously, we can argument that s′′3
intersects with ∂G just in the startvertex v′′3 . Path s′′2 was constructed by constructing
the right-aligned path of the path s2a that consisted out of s′2 and the subpath of s′1
between x1 and n1. Path s′2 has v2 as the startvertex, the subpath of s′1 between x1 and
n1 does not contain any outer vertices. With Corollary 11, we can deduce that s′′2 has
no other common vertices with ∂G than the startvertex v2.

The second property states that two paths pi and pj have just one vertex in common,
which is the endvertex from exactly one of them. With a symmetric argumentation as
in Case 1, we can show that s′′1 and s′′3 intersect just in vertex m′3, which is the endvertex
of s′′1 and an inner vertex of s′′3. Furthermore, s′′3 and s′′2 intersect in x2, which is the
endvertex of s′′3 and an inner vertex of s′′2. Another intersection vertex does not exist
with an analogous argumentation as in Case 1.

The paths s′′1 and s′′2 intersect in n′1, which is the endvertex of s′′2 and an inner vertex
of s′′1. We assume that they intersect in another vertex vs than n′1. By definiton vs is
a vertex on s′′2. Consider the path s2a that is formed by linking s′2 with the subpath
between x1 and n′1 of s′1. Clearly, its only intersection vertex with s′′1 is n′1. By applying
Lemma 10 twice we obtain that s′′2, which is defined as R(s2a), intersects with s′′1 just in
vertex n′1 as well.
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Fig. 3.12: Example for how to define s′′
i whereby both s1 and s′

1 are arched by big arches (here
in blue).

Altogether, the set of the three simple paths s′′1, s′′2 and s′′3 forms an archfree windmill
and the Lemma is proven.

3.2 Drawings with segment constraints
In this section, we use the results of Section 3.1 to give a proof for Theorem 18: for
every 3-connected internally 4-regular plane graph exists a drawing such that every
inner vertex is placed in the interior of a segment.
In order to prove this idea, we apply a technique that was established by Hong and

Nagamochi [HN10] and a runtime-improved version by Klemz [Kle21]. Both of them
describe algorithms, which can be used to recursively construct a convex drawing of a
3-connected hierarchical plane st-graph G with a certain simple convex polygon as the
realisation of the outer face. The algorithms can easily be adjusted for graphs, which
are just plane. The main idea of their algorithms is to choose an inner vertex y and
to construct three archfree paths from y to the boundary of the outer face. Those
archfree paths are realised as straight line segments and used to split G into three
subgraphs, which can be drawn recursively. We construct the subgraphs in Case 1 and
Case 2 analogously to those algorithms however the last case of our proof Case 3 is quite
different to their algorithm because in their strategy it cannot easily be ensured that the
chosen inner vertex y is in the interior of a segment.

Theorem 18. Let G = (V,E) be an internally 3-connected internally 4-regular plane
graph and let Γ0 be a simple convex polygon that is compatible with G i.e. every segment
of the polygon corresponds to an archfree path on ∂G. There exists a convex drawing of
G with Γ0 as the realisation of the outer face and the following property is fulfilled: For
every inner vertex v ∈ V there exists a segment sv such that v is a vertex on sv, but
neither a start- nor an endvertex of sv (see Figure 3.13).
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+ →

Γ0

Fig. 3.13: To the left the 3-connected internally 4-regular plane graph, that will be drawn with
the compatible polygon Γ0 (middle) as the realisation of the outer face. On the
right the drawing of the graph that fulfills the property in Theorem 18 and with the
predefined realisation of the outer face Γ0.

rb

r

ra

(a) Case 1.1

r

ra

rb

(b) Case 1.2

Fig. 3.14: The situation in Case 1: vertex r has degree 2 and is eliminated in this case. In
order to do so, we remove the red marked parts in both illustrations in the proof
and determine the convex drawing of the resulting graph. Later, we insert r on the
position, which is defined by Γ0.

Proof. As mentioned above, the idea of this proof is based on the ”Hierarchical-Convex-
Draw”-algorithm by Hong and Nagamochi [HN10] and a runtime-improved version from
Klemz [Kle21].
Note that the coordinates of vertices on the outer face are fixed by the polygon Γ0. Our

goal is to determine the coordinates for each inner vertex such that the drawing fulfills
the properties in the Theorem. We reach this goal by splitting the graph into several
subgraphs. The coordinates of inner vertices of the subgraphs are computed recursively
and combined to a drawing of the original graph. The base case of this recursion is a
graph without any inner vertex. In this case, the property that every inner vertex is
located on the interior of a segment is trivially fulfilled. Furthermore, the drawing is
clearly convex. We can assume now that the graph has inner vertices and start with a
case analysis:

Case 1: There exists a vertex r on ∂G with degG(r) = 2 . We define ra and rb as the
two neighbors of r. Since r is part of ∂G, both ra and rb are on ∂G as well.

Case 1.1: The edge (ra, rb) exists in the edge set E. In this case, we set

G1 = (V \ {r}, E \ {(ra, r), (rb, r)})
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like in Figure 3.14a. We define a new realisation of the outer face Γ0
1 by replacing the

corresponding parts to (ra, r) and (rb, r) in Γ0 by a new segment (ra, rb). The polygon
Γ0

1 is still a convex polygon because none of the inner angles can be greater than 180◦.
Clearly, Γ0

1 is simple. Furthermore, Γ0
1 is compatible with G1 because (ra, rb) is archfree

with Lemma 6. Additionally, the new graph is internally 3-connected and internally
4-regular. We determine the coordinates of the internal vertices in a convex drawing
of G1 with Γ0

1 as the realisation of the outer face inductively. Afterwards we add r on
the position, which is given by Γ0. This does not add any inner vertex, therefore the
property in Theorem 18 is not harmed. Since the face that is formed by the newly
inserted vertex r is convex, the whole drawing is convex. /

Case 1.2: The edge (ra, rb) does not exist in the edge set E.. We define

G1 = (V \ {r}, E \ {(ra, r), (rb, r)} ∪ {(ra, rb)})

as visualized in Figure 3.14b. The new realisation of the outer face Γ0
1 is defined anal-

ogously to Case 1.1 and is compatible because (ra, rb) is archfree in G1 with Lemma 6.
Furthermore, Γ0

1 is a simple convex polygon and the new graph is internally 3-connected
and internally 4-regular. We inductively determine the coordinates of the internal ver-
tices of G1 with Γ0

1 as the realisation of the outer face. Afterwards we delete (ra, rb) from
the drawing and add r with both the edges (ra, r) and (rb, r) on the position, which is
given by the polygon Γ0. The inner vertices that share a face with r have been inner
vertices before and their position and neighbors did not change. Therefore, they still
fulfill the property in Theorem 18 after this adjustment. Furthermore, the inner face
that is adjacent to r is still convex because Γ0 is convex and none of the angles in the
face can be greater than 180◦ after the adjustment. /

Case 2: Every vertex on ∂G has more than two neighbors and G is not 3-connected. In
this case, we know that graph G contains a separation pair of two vertices x1 and x2.
Since G is internally 3-connected, both vertices have to be part of ∂G. Moreover, they
are both on the boundary of inner face f as illustrated in Figure 3.15. We denote the
two subpaths of ∂f between x1 and x2 by p1 and p2.

Without loss of generality, we assume that the vertices x1 and x2 are chosen such that
p1 contains no outer vertices except the start- and endvertex and p2 contains more than
one edge.
With Lemma 6 and the knowledge that p2 contains at least two edges, we conclude

that p1 is archfree. We draw p1 as a straight line and use it to split the graph into the
two subgraphs G1 and G2 as illustrated in Figure 3.16.

In order to do this, we construct two new simple convex polygons Γ1 and Γ2 by linking
the two parts of Γ0 between x1 and x2 with the straight line p1. Γ1 and Γ2 are illustrated
in Figure 3.16. Clearly, both of them are simple convex polygons. The subgraph of G
that is surrounded by Γ1 is called G1 as illustrated in Figure 3.16. It is internally 4-
regular and with the definition of internally 3-connectivity it is easy to argue that G1 is
internally 3-connected. Furthermore, we know that Γ1 is compatible with G1 since p1 is
archfree.
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x1

x2
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p1

f

Fig. 3.15: The situation in Case 2: graph G is not 3-connected and has therefore a separation
pair of the two vertices x1 and x2. Because of them, face f can be found and the
two paths p1 and p2 on ∂f defined. Without loss of generality, x1 and x2 are chosen
such that p1 contains no outer vertices except x1 and x2 and p2 contains more than
one edge.

Γ1

x2

x1

p1
Γ2

p1
f

x1

x2

G1 G2

Fig. 3.16: We can now use the archfree path p1 to split G into two subgraphs G1 and G2 with
their realisations of the outer faces Γ1 and Γ2. The drawing of those subgraphs is
determined inductively.

The subgraph G2 is defined analogously with Γ2 as the realisation of the outer face.
Both subgraphs Gi (i ∈ {1, 2}) with their realisations of the outer face Γi are drawn
inductively and the drawings are combined to a drawing of graph G. Every inner vertex
is either an inner vertex of G1 or G2 or a vertex on the straight drawn path p1. Therefore,
all inner vertices fulfill the property in Theorem 18 for inner vertices. /

Case 3: G is 3-connected.

Case 3.1: The graph has more than 3 outer vertices as illustrated in Figure 3.17a. We
can choose two vertices s and t on ∂G, which are not on the same segment of Γ0. Both
have a neighbour s′ resp. t′, which are inner vertices. Since G is 3-connected, there is
an extendible simple path Q between s and t so that every vertex on Q except s and t
is an inner vertex. The right-aligned path of the left-aligned path R(L(Q)) is archfree
according to Lemma 9 and still an inner path because of Corollary 11.
The path R(L(Q)) splits the graph G into two subgraphs G1 and G2. We define the

realisation of the outer face Γ1 as the part of Γ0 that corresponds to G1 linked with the
straight drawn segment R(L(Q)). Analogously, we define Γ2 for G2. Both Γ1 and Γ2
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(a) Illustration of the situation in Case 3.1: G is
3-connected and has at least 4 vertices on the
boundary of the outer face. We choose s and
t on ∂G such that they are not positioned on
one segment in the realisation of the outer face.
Then, we construct a path between s and t,
which contains just inner vertices except those
two.

R(L(Q))

s
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t
t

G1

G2
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Γ2

(b) Path R(L(Q)) is archfree and disjoint from the
boundary of the outer face except s and t. We
can use it as a cut through the graph and ob-
tain the subgraphs g1 and g2 and their reali-
sations of the outer faces Γ1 and Γ2.

Fig. 3.17

are simple convex polygons and compatible with G1 resp. G2 by construction. Clearly,
both G1 and G2 are planar, internally 4-regular and internally 3-connected.
We determine the drawings of the two subgraphs G1 and G2 with the realisations of

the outer faces Γ1 and Γ2 inductively and combine them afterwards. Every inner vertex
in G is now either an inner vertex in G1 or G2 and is therefore drawn in the interior
of a segment or it is a vertex on the straight drawn path R(L(Q)) and thus fulfills the
property in Theorem 18. /

Case 3.2: The graph has three outer vertices v1, v2 and v3. It holds that G has a strictly
inner face f because of Lemma 15. As described in the proof of Lemma 17, we construct
an archfree windmill {s′′1, s′′2, s′′3}.

We use the constructed paths in the archfree windmill to define the four subgraphs
for the recursive calls. We draw the constructed s′′i as straight lines into the given
triangle-polygon Γ0. The outcome of this is illustrated in Figure 3.18.
We define Γ1 as the simple polygon that is surrounded by subpaths of s′′1, s′′2 and

the straight line in Γ0 between v1 and v2. Clearly, it is a simple convex polygon. The
subgraph G1 of G corresponding to Γ1 contains all vertices and edges on Γ1 and the
subgraph in the inner of the polygon. With Definition 1, it follows that G1 is internally
3-connected. Γ1 is compatible with G1 because of the property that Γ1 was defined with
archfree paths. We inductively determine the coordinates of the internal vertices of G1
with Γ1 as the realisation of the outerface.

The second and third subgraph G2 and G3 with their realisations of the outer faces
Γ2 and Γ3 are defined analogously (see Figure 3.18). Analogous to G1 we determine the
coordinates of the internal vertices of both inductively. The fourth subgraph is in the
middle of the graph and surrounded by subpaths of s′′1, s′′2 and s′′3. The related polygon
Γ4 is fixed by those three subpaths. With the same arguments as above, the polygon
is compatible with G4, simple and convex. We determine the coordinates of the inner
vertices of G4 inductively.
Every inner vertex on the three segments s′′1, s′′2 and s′′3 is drawn in the middle of a
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v3

v2

v1

s′′3

G4

G3

G1

G2

s′′1

s′′2

s′′3

(a)

v3

v2

v1

G1

G2

G3

G4

s′′1

s′′2

s′′3

(b)

Fig. 3.18: In Case 3.2, we construct an archfree windmill {s′′
1 , s

′′
2 , s

′′
3}. We use the windmill to

split G into four subgraphs Gi(i ∈ {1, 2, 3, 4}), which are drawn recursively with a
triangle-shaped polygon as the realisation of the outer face. The windmill can have
two different orientations because of the case-analysis in the construction process in
the proof of Lemma 17.

segment. After the recursive drawing of the four subgraphs this property is fulfilled for
every inner vertex in the graph.

3.3 Proof of the Main Theorem
In this section, we apply Theorem 18 to derive an upper bound of |V (G)| + 3 for the
segment number of 3-connected 4-regular planar graphs (see Theorem 20).

Theorem 19. Let G = (V,E) be a 3-connected plane graph and let f0 denote its outer
face. Then the path ∂f0 is not arched by any inner face.

Proof. If ∂f0 is arched by an inner face, G is not 3-connected.

The combination of Theorem 19 and Theorem 18 are now used to prove our Main
Theorem about the upper bound for the segment number of 3-connected 4-regular planar
graphs.

Theorem 20. The segment number of every 3-connected internally 4-regular plane graph
G is at most |V (G)|+ 3.
Particulary: every 3-connected 4-regular planar graph G has a drawing with at most
|V (G)|+ 3 segments.

Note that the segment number is the lowest possible number of segments that is needed
to draw the graph in any drawing. Since we do not have a denoted outer face, we cannot
use ”internally 4-regular” in combination with ”planar”. Nevertheless, we can generalize
the result in Theorem 20 for 3-connected planar graphs with the the property that each
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vertex has degree 4 except the vertices on the boundary of one arbitrary face that have
at most degree 4. This property can be seen as a degenerated version of internally
4-regularity for planar graphs without a denoted outer face.

Proof. Let G be a 3-connected internally 4-regular plane graph and let f0 denote its
outer face. Theorem 19 states that f0 is not arched by any inner face. Therefore, we
can realise the boundary of the outer face as a simple triangle-shaped polygon Γ0.
The polygon Γ0 is simple, convex and compatible with G. With Theorem 18, we see

that G has a convex drawing D with Γ0 as the realisation of the outer face such that
every inner vertex is placed in the interior of a segment.
Let v1, v2 and v3 be the three vertices in the angles of Γ0. In the drawing D every

vertex except v1, v2 and v3 is in the interior of a segment and can therefore be the
endvertex of at most two segments. In the vertices v1, v2 and v3 four segments end.
Altogether, we observe that D contains at most

1
2 · (2 · (|V (G)| − 3) + 4 · 3) = |V (G)|+ 3

segments.
If G was an 3-connected 4-regular planar graph, we can choose an outer face f0. With

the same argumentation as above and the observation that every 4-regular graph is also
internally 4-regular, we can conclude that G has a drawing with at most |V (G)| + 3
segments.

In fact, the given upper bound for the segment number of 3-connected 4-regular planar
graphs in Theorem 20 is tight up to an additive constant. The corresponding existential
lower bound is shown in Section 4.2.
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4 Lower Bounds for the segment number of
4-regular planar graphs

In this chapter, we focus on the lower bounds for the segment number of 4-regular planar
graphs. First, we will study the universal lower bound s of the 4-regular planar graphs
and show with an observation from Dujmović et al. [DESW07] that the universal lower
bound of this graph set can not be asymptotically better than Θ(

√
|V (G)|).

Afterwards, we will prove an existential lower bound of the 4-regular 3-connected
planar graphs of |V (G)| by analysing a suitable subset of this graph class. Finally, we
will present a subset of the 4-regular 2-connected planar graphs that gives an existential
lower bound of 7|V (G)|/6 for the segment number of this graph set.

4.1 Universal Lower Bound
In this section, we study the universal lower bound for the segment number of 4-regular
planar graphs. We will show with an observation from Dujmović et al. [DESW07] that
this bound can not be asymptotically better than Θ(

√
|V (G)|).

Theorem 21 ([DESW07], p. 207). Let G = (V,E) be a graph without degree-1- and
degree-2-vertices. Then any drawing of G contains at least

√
2|V (G)| segments.

Particulary,
√

2|V (G)| is an universal lower bound for the segment number of 4-regular
planar graphs.

Proof. Let s be the segment number of G and n the number of vertices in G. Since G
has no degree-2-vertices, every vertex is located on at least two segments. Clearly, two
segments can only cross once.
Therefore, a drawing with s segments can contain at most

(s
2
)
vertices and we get

n ≤
(
s

2

)
= s!

2! · (s− 2)! = s · (s− 1)
2 = s2

2 −
s

2 .

We transform this with the quadratic formula and with the additional observation that
s and n are positive integer values, we obtain

s ≥
1
2 +

√
(1

2)2 − 4 · 1
2 · (−n)

2 · 1
2

= 1
2 +

√
1
4 + 2n >

√
2n.
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In order to show that this universal lower bound is tight up to a small constant factor,
we now present a set of graphs such that every member can be drawn with at most
−1 +

√
5 + 4|V (G)| segments.

Theorem 22. There is an infinite subset S of the 4-regular planar graphs that fulfills
the following property: for each graph G in S, the segment number is at most −1 +√

5 + 4|V (G)|

Proof. First, we define a graph gadget Gg that is used later to construct the graphs in
S. For illustrations refer to Figure 4.1. The gadget contains two vanishing vertices v1
and v2, which are the startvertices for four segments si1, si2, si3, si4 (i ∈ {1, 2}) each.
The segments are drawn as straight lines as illustrated in Figure 4.1 and the endvertices
of s1k and s2k (k ∈ {1, 2, 3, 4}) match. Every intersection of two segments represents a
vertex. Gg is drawn with eight segments and contains twelve vertices.

v1

v2

Fig. 4.1: Gadget Gg that is used to construct Gk. Gg consists out of eight segments and contains
twelve vertice.

We define S as the set of graphs Gk (k ∈ {1, 2, 3, ...}) as illustrated in Figure 4.2.
Graph Gk is constructed by arranging 2k gadgets as illustrated in the Figure. The
vertices of Gk are exactly the intersection vertices of two or more segments. Clearly,
graph Gk is planar and 4-regular. Let nk denote the number of vertices in Gk and sk
the number of segments in the given drawing.
Graph Gk is drawn with sk := 2 · k · 8 = 16k segments. Every gadget in the graph

consists of twelve vertices and none of those vertices except one belongs to two different
gadgets. Additional vertices are generated by the intersections of segments of different
gadgets. In total those are (8k − 1)2 − 1 vertices. This leads to the number of vertices

nk = 12 · 2k − 1 + (8k − 1)2 − 1
= 64k2 + 8k − 1

A transformation with the quadratic formula and the additional observation that k is
positive, results in

k = −8 +
√

82 − 4 · 64 · (−n− 1)
2 · 64

= −1 +
√

5 + 4n
16
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k times

k times

︸ ︷︷ ︸

︸
︷︷

︸
Fig. 4.2: Generic member Gk of the graph set S, which consists of 2k gadgets Gg. For reasons

of clarity, the vertices in the graph are not specially marked. The vertices in the
graph are exactly the intersections of two or more segments. The drawing contains
−1 +

√
1 + 4|V (Gk)| segments.

This leads to the equation

s = 16k

= 16 · −1 +
√

5 + 4n
16

= −1 +
√

5 + 4n

Altogether, we showed that there is a drawing of Gk with −1 +
√

5 + 4|V (Gk)| seg-
ments. We did not prove that the graph cannot be drawn with less segments, but this
result suffices in combination with Theorem 21 for the following conclusion:

Corollary 23. The asymptotically best universal lower bound for the segment number
of 4-regular graphs is in Θ(

√
|V (G)|).
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Proof. The Corollary follows directly from the results from the Theorems above: Theo-
rem 21 states that the asymptotically best universal lower bound is in Ω(

√
|V (G)|) and

Theorem 22 implies that it is in O(
√
|V (G)|).

4.2 Existential Lower Bound of 3-connected 4-regular planar
graphs

In this section, we proof an existential lower bound of the graph set of 3-connected 4-
regular planar graphs. In Theorem 28, we present a subset of the 3-connected 4-regular
planar graphs with the property that every graph G in this subset cannot be drawn
with less than |V (G)| segments. This shows that the given upper bound for segments in
3-connected 4-regular planar graphs in Theorem 18 is tight up to an additive constant.
In order to prepare the proof of Theorem 28, we start with some definitions and

preliminary results.

Definition 24. A planar graph G is outerplanar if G has a drawing D such that all
vertices are on the boundary of the outer face. An outerplanar graph G = (V,E) is
maximal if the graph (V,E ∪ {(v, w)}) is not outerplanar for any pair of non-adjacent
vertices v, w ∈ V .
Drawing D is called outerplanar if all vertices are on the boundary of the outer face.

Definition 25. Let G be a plane graph and let f0 denote its outer face. The dual graph
GD of G is the graph that is constructed by inserting a vertex vf for every face f in G
into an empty graph and adding an edge between two vertices vf and vg if and only if
the corresponding faces f and g have at least one common edge on their boundary (see
Figure 4.3b).
The weak dual graph GWD of G is the graph that arises if we remove vertex vf0, that

corresponds to the outer face f0 in G, from GW .

(a) The basic graph G

vf0

(b) The dual graph GD of G (c) The weak dual GW D of G

Fig. 4.3

The definitions above can now be used to describe a graph set of graphs Gn that have
a segment number of at least |V (G)| as shown by Dujmović et al. in [DESW07].
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Fig. 4.4: The graph G14. It is an example out of the set of graphs that is defined in Lemma 26
and has the segment number 14

Lemma 26 ([DESW07], Proof of Theorem 7). Let Gn be the maximal outerplanar graph
on n ≥ 3 vertices whose weak dual is a path and the maximum degree of Gn is at most
four, as illustrated in Figure 4.4. Then Gn has at least n segments in any drawing.

The described graph Gn has an encouraging high segment number of at least |V (Gn)|,
but it is not yet 4-regular and 3-connected. We will solve this by extending the graph
to a ring. In order to describe the new graph set, we will use the well-known definition
of the k-th power of a graph G.

Definition 27. Let G be a graph. The k-th power of G, Gk, is the graph with the same
set of vertices V (G) as G and an edge between two vertices v1 and v2 in V (G) if and
only if the distance of v1 and v2 in G is at most k.

Finally, we can describe the graph set, that proofs the existential lower bound of
|V (G)| for the segment number of 3-connected 4-regular planar graphs.

Theorem 28. For all k ≥ 3, there is an 2k-vertex 3-connected 4-regular planar graph
that has at least 2k segments in every drawing, regardless of the choice of the outerface.

Proof. For each k ≥ 3, define Zk as the second power of C2k. An example drawing of
Z8 is illustrated in Figure 4.5. For the further argumentation we enumerate the vertices
canonically with vi for i ∈ {1, 2, ..., 2k} as they occur in C2k. All indices of vertices are
considered modulo 2k.
The smallest member of the graph set Z3, which is an oktahedron, was already illus-

trated in Figure 1.2 and shortly mentioned in Chapter 1: Z3 has six vertices and its
segment number is nine as shown by Kryven, Ravsky and Wolff [KRW19].
Clearly, every Zk is 3-connected 4-regular planar and contains 2k vertices. We assume

that we found a drawing Dk of Zk with less than 2k segments and prove the Theorem
with a contradiction.
First, we categorise the vertices in Dk regarding the amount of segments, that end in

the vertex. A vertex v in which i segments in Dk end is called Ti-vertex. As Zk is a
4-regular graph, this leads to the three categories T0, T2 and T4. A vertex vx is between
two vertices vi and vj if vx ∈ {vi, vi+1, vi+2, . . . , vj}.
Since there are less than 2k segments in Dk, the drawing contains more T0-vertices

than T4-vertices. Clearly, the realisation of the boundary of the outer face in Dk has to
contain at least three T4 vertices. Therefore, we can find two T0-vertices vi and vj such
that there is no T4-vertex between them. Without loss of generality, we assume that
there is no other T0-vertex between them except vi and vj .
We define the graph S as the subgraph of G that contains every vertex between vi−2

and vj+2 (see Figure 4.6a). Furthermore, S does not contain edges between the two
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v1

v2

v3

v4
v5

v6

v7

v8v10

v12

v14

v16

v9

v11

v13

v15

Fig. 4.5: The graph Z8. This graph is part of the graph set in the proof of Theorem 28 and is
a 3-connected 4-regular planar graph with a segment number of |V (Z8)| = 16.

sets {vi−2, vi−1} and {vj+2, vj+1} as long as the two groups are disjoint as illustrated in
Figure 4.6b. Let n be the number of vertices in S.

Case 1: S matches with Gn (defined in Lemma 26). We have a look at the part of the
drawing of G that contains S and obtain the segments that are used to draw S: graph
S contains two T0-vertices. Maximal two segments can end in the vertices vi−2 and vj+2
because both of them have degree 2 in S. With the same argument, maximal three
segments can end in vi−1 and vj+1. The rest of the vertices in S are T2-vertices because
of the definiton of S. The sum of the number of segmentends over all vertices in S is
2n − 2, therefore the drawing contains n − 1 segments. That contradicts Lemma 26:
graph S matches with Gn and has therefore at least n segments in any drawing. /

Case 2: S does not match with Gn. In this case S is the same graph as G and the two
sets {vi−2, vi−1} and {vj+2, vj+1} are not disjoint and the union of both sets contains at
least 3 vertices.
The drawing Dk contains at least three T4-vertices on the boundary of the outer face.

All of those are in {vi−2, vi−1} ∪ {vj+2, vj+1}, which cannot contain more than those
three T4-vertices. Furthermore, we have the two T0-vertices vi and vj . The remaining
vertices are T2 vertices. Altogether, we have 2k + 1 segments in the drawing, which
contradicts the assumption that the drawing was made with less than 2k segments. /

Therefore, such a drawing Dk of Gk with less than 2k segments could not exist.

In fact, the segment number of Zk with k ≥ 6 is 2k. An example of a drawing of Z10
with 20 segments can be found in Figure 4.7. It can be easily adjusted for drawings of
Zi with i ≥ 6. With Theorem 28, we know that there does not exist a drawing of Zk
(k ≥ 6) with less segments.
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vi

vj

vj+2

vi−2

(a) Subgraph S of Zk with the two T0-vertices vi

and vj .

vi

vj

(b) Subgraph of Zk with the two T0-vertices vi and
vj and the feature that S does not contain ev-
ery edge from G that is between two vertices
of S

Fig. 4.6: Two examples how S is chosen depending on vi and vj

Fig. 4.7: A segment-optimal drawing of Z10 with 20 segments.

4.3 Existential Lower Bound of 2-connected 4-regular planar
graphs

In this section, we discuss a 2-connected 4-regular planar graph set such that every
graph G in this set has at least 7|V (G)|/6 segments in any drawing. This graph set
gives an example for the observation that Theorem 20 cannot directly be generalized for
2-connected 4-regular planar graphs.
Theorem 29. There is an infinite subset S of the 2-connected 4-regular planar graphs
that fulfills the following property: every graph G in S has at least 7|V (G)|/6 segements
in any drawing.
Proof. Consider the graph gadget Gg in Figure 4.8a. It consists of the six vertices
{x1, x2, y1, y2, y3, y4} and the set of edges

E(Gg) = {(xi, yj) | i ∈ {1, 2}, j ∈ {1, 2, 3, 4}} ∪ {(y1, y2), (y2, y3), (y3, y4)}
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(a) Gadget Gg for the construction of the graph
set S.

k︷ ︸︸ ︷

(b) Member Dk of the graph set S with k gadgets
Gg

Fig. 4.8: Definition of the graph set S with the property that each graph G in S has at least
7|V (G)|/6 segments in any drawing.

We define Dk (k ≥ 2) as the graph that contains k gadgets, which are arranged in
one simple cycle with connection edges between the gadgets as illustrated in Figure 4.8b.
Clearly, every member in this graph set is 4-regular, 2-connected and planar. Since every
gadget contains 6 vertices and 11 edges, the whole graph contains 6k vertices and 12k
edges. The set S is defined as {Dk | k ≥ 2}.
First, we have a look at the gadget Gg in Figure 4.8a and analyse its segment num-

ber. We show, that Gg cannot be drawn with less than eight segments. The derived
information can be used later to derive the segment number of Dk.
We define a link as a set {(u, v), (x, y)} of two adjacent edges (u, v), (x, y) ∈ E. Two

links are adjacent if and only if the sets intersect in one edge. In the following paragraph,
we describe a segment as a set of links. A drawing contains a link if there exists a segment
in the drawing, which contains the link.
There are four different types of links in the gadget that can be part of a segment. All

of them are visualized in Figure 4.9. With the naming of the vertices as in Figure 4.9,
they can be formally describe:

(Type 1) {(x1, yi), (yi, x2)} with i ∈ {1, 2, 3, 4}

(Type 2) {(y1, x1), (x1, y3)}, {(y2, x1), (x1, y4)}, {(y1, x2), (x2, y3)}, {(y2, x2), (x2, y4)}

(Type 3) {(y1, y2), (y2, y3)}, {(y2, y3), (y3, y4)}

(Type 4) {(y1, x1), (x1, y4)}, {(y1, x2), (x2, y4)}.

We observe that any drawing of the gadget can contain maximal one type-1-link, two
type-2-links, two type-3-links and one type-4-link.

Case 1: The drawing contains two type-2-links. Then, it cannot contain any type-4- or
type-3-link, otherwise two different segments would intersect in two vertices. Addition-
ally, it can contain one type-1-link. /

Case 2: The drawing contains one type-2-link. In this case, it can contain additionally
one type-1-link. It can contain maximal one type-3-link, otherwise two segments would
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Type 1 Type 2 Type 3 Type 4

x1 x1 x1 x1

x2 x2 x2 x2

y1 y2 y3 y4 y1 y2 y3 y4 y1 y2 y3 y4 y1 y2 y3 y4

Fig. 4.9: The four types of links in the gadget.

intersect in two vertices. It cannot contain a type-4-link: without loss of generality, we
assume that type-4-link {(y1, x1), (x1, y4)} is contained, then x2 has to be located on the
type-2-link. The 180◦ from the type-4-link causes, that the angle ]y4x2y1 is smaller than
180◦. This contradicts the fact, that the type-2-link is located there and the embedding
of Gg is unique because of its 3-connectivity. /

Case 3: The drawing contains no type-2-link. Then, it can contain one type-1-link and
maximal two more links out of type-3- and type-4-links because if the drawing contains
two type-3-links it cannot contain any type-4-link because of a similar argumentation as
above that two segments cannot intersect in more than just one vertex. /

Altogether a drawing contains maximal three links. Since there are eleven edges in
the gadget and every link connects exactly two edges in a segment, the gadget cannot
be drawn with less than 8 = 11− 3 segments.

We use this information to analyse the segment number of the whole graph Dk. Two
different drawings of adjacent gadgets in the graph can share maximal one segment and
every gadget has exactly two adjacent gadgets, therefore the segment number of Dk has
to be at least k · (8− 1) = 7k.
Graph Dk contains k gadgets and |V (G)| = 6k vertices. Therefore, the segment

number s in dependency of |V (G)| is at least s = 7k = 7|V (G)|/6 and the Theorem is
shown.
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5 Conclusion and Outlook

Summary In this thesis, we studied the upper bound, existential- and univeral lower
bound for the segment number of 3-connected 4-regular planar graphs.

We showed that an upper bound for the segment number for those graphs is given by
|V (G)| + 3. The proof was constructive and the constructed drawing was additionally
a convex drawing. This improved the upper bound of Dujmović et al. [DESW07] and
Heigl [Hei21] of 5|V (G)|/3 to |V (G)|+3. In order to prove that our upper bound is tight
up to an additive constant, we gave an example of a subset of the 3-connected 4-regular
planar graphs that have at least |V (G)| segments in any drawing.
Furthermore, we studied the universal lower bound for the segment number of the

3-connected, 4-regular planar graphs and showed that the universal lower bound, that
was pointed out by Dujmović et al. [DESW07] was tight up to a small constant factor.
Finally, we gave a set of 2-connected 4-regular planar graphs such that every graph G

in the set has a segment number of at least 7|V (G)|/6.

Transferability of the upper bound The proven upper bound of |V (G)| + 3 for 3-
connected 4-regular planar graphs (see Theorem 20) is not generalisable for 3-connected
planar graphs because of the existential lower bound 2n − 6 that was pointed out by
Dujmović et al. [DESW07]. Furthermore, it is not transferable for 2-connected 4-regular
planar graphs since we gave an example of a set of 2-connected 4-regular planar graphs
with the property that each graph G in this set has the segment number 7|V (G)|/6.

Even if the established technique to construct a drawing such that every (inner) vertex
is drawn on the interior of a segment is not directly transferable it could be worth to
apply the idea to other graph classes for example triangulated graphs with the property
that every vertex has at least degree 4. While the first two cases of our proof will be
easy to adjust to this graph class, the second part of case 3 will be challenging. In those
graphs, the archfaces can be placed in unfavorable positions and make the construction
of archfree windmills more difficult.

Future Work In this thesis, we made restrictive assumptions on the graphs, for which
our results hold. Clearly, many problems concerning the segment number are still not
solved.
Moreover, segments are just one example of a geometric object. As the visual com-

plexity of a drawing is defined as the number of geometric objects in the drawing, it is
interesting to study the number of other geometric objects, for example the number of
circular arches as introduced by Schulz [Sch15].
As it is important to keep the visual complexity low for the user, further studies on

the number of geometric objects will be beneficial.
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