
Practical Course Report

Computing Tangles Using a SAT Solver

Vasil Alistarov

Date of Submission: October 3, 2022
Advisors: Prof. Dr. Alexander Wolff

Johannes Zink, M. Sc.

Julius-Maximilians-Universität Würzburg
Lehrstuhl für Informatik I

Algorithmen und Komplexität

1 Introduction

The subject of this practical course is the ListFeasibility problem. In ListFeasibility we are
given a set of n y-monotone curves called wires as well as a (multi)set of swaps between
them; one must then test whether the given swaps (and only the given swaps) can indeed
be applied (step-wise) onto the wires while swapping only adjacent wires in every step.
The order of the wires on the layers created this way is known as a tangle.

Minimising the number of steps needed to apply all swaps was first done algorithmi-
cally by Olszewski et al. [OMK+18]. However, the provided algorithm was not efficient;
in fact, in 2019, Firman et al. [FKR+19] showed that the optimisation version of the prob-
lem (designated as Tangle-Height Minimization) is NP-hard by reducing from 3-Partition.
One year later, the same research group discussed [FFK+23] the decision version of the
problem – ListFeasibility – and concluded by reducing from Positive NAE 3-SAT Diff that it
is NP-hard as well. Note that in Positive NAE 3-SAT Diff, one is given a boolean formula
with three literals per clause such that those literals all represent different variables. One
must then decide whether the formula can be satisfied while not assigning the same truth
value to all literals in a clause.

In this Practical Course, we will analyse the connection between ListFeasibility and the
standard Satisfiability problem (SAT) as well, however in the other direction: Instead of
reducing from a SAT problem, we will design a formulation of ListFeasibility as a SAT
instance. Note that our aim is indeed the classical SAT problem and not a version of
it with tighter constraints. We will examine the total size of the formulation and prove
its correctness. Furthermore, we will implement our model in the Scala programming
language and apply the Sat4j solver on a set of ListFeasibility instances as a proof-of-
concept. The reasoning behind the use of SAT is two-fold: on the one hand, it has been
established as a good problem to model instances of other problem as, and on the other
hand, we can use this for comparison with some already existing implementations based
on other approaches.

1.1 Terms and Definitions

In this subsection, we define some terminology to use across our report. A large part of
the notation is taken from [FKR+19]. As already briefly mentioned above, the problem
we are working on revolves around a set of y-monotone curves which we call wires. We
enumerate the wires 1 ≤ i ≤ n and refer to them by their number, called index. The
wires are initially in a specific configuration which is a permutation on the set {1, . . . , n}.
They start in the configuration (1, . . . , n) but later on they may be arranged in different
configurations. For this, we define the set Sn as all different permutations of the set
{1, . . . , n}. If in some configuration, wire i is to the left of wire j, we write i < j. Also,
for any positive integer k, we define [k] = {1, . . . , k}.

Additionally, we are given a symmetric n × n matrix L such that all entries lie in N0

and such that it has a zero diagonal. This matrix is known as a (swap) list of order n. We
denote the entries of the matrix as lij for i, j ∈ [n], i ̸= j. We define L(i) as the multiset
of swaps of wire i, and also L(i, j) = L(i) ∩ L(j). Furthermore, the whole matrix can

2

be translated into an equivalent (multi)set of tuples L′ =
⋃

i,j∈[n] L(i, j) where a single
tuple is equivalent to a swap. A swap (i, j) creates a new configuration of the wires where
the order of the wires i and j is changed compared to the previous configuration and
the rest of the configuration remains unchanged. Applying a swap onto two wires in a
configuration where they are not adjacent is forbidden. For instance, the swap (1, 2) is
allowed in the configuration (4, 1, 2, 3) but not in (4, 1, 3, 2). We define m as the length
of the list of swaps L as

∑
i<j lij .

We call a list of configurations (or layers) ⟨π1, π2, ...πh⟩ a tangle T of height h if for
each two adjacent configurations πi, πj we can create πj from πi by legally applying a
swap. Also, we call the application of a swap between two layers a step. A tangle T
realises a swap list L if and only if the configurations of T can be achieved by applying
all swaps of L exactly once. Also, we call a list feasible if there exists a tangle that
realises that list starting from the configuration (1, . . . , n).

The problem of minimising the number of steps needed to exhaust all swaps, when
we can apply multiple swaps at once, is known as Tangle-Height Minimization as men-
tioned above. On the other hand, the problem of testing the feasibility of a given list is
called ListFeasibility. This is the problem we are working on in this practical course. In
particular, we design a formulation of ListFeasibility as a SAT problem.

The Boolean Satisfiability Problem, or SAT, is one of the oldest problems in theoretical
computer science and also the first one that was proven to be NP-complete. In SAT, one
is given a boolean formula built from a set of n boolean variables xi, 1 ≤ i ≤ n, as well as
the logical operators AND (∧), OR (∨), NOT (¬) and some number of parentheses. A
formula F is said to be satisfiable exactly when there exists an assignment of the boolean
values true and false to the variables such that the whole formula evaluates to true.
SAT itself consists of deciding whether or not such an assignment exists. Oftentimes the
formula is given with some particular structure. A (negated) variable or a disjunction
of multiple (negated) variables is called a clause; the formula itself may for example
be presented in Conjunctive Normal Form (CNF) – either as a single clause or as a
conjunction of multiple clauses.

2 Formulation

When modeling a ListFeasibility instance as a SAT instance, we need to represent both
the values (wires and swaps) and the rules (e.g., when can a swap be performed legally).
We identify a ListFeasibility instance by its swap list L. At the end, we aim for a boolean
formula F for which holds:

F satisfiable↔ L feasible

In this section, we present a formulation that encodes an n×n swap list L with length
m as a SAT instance. Note that the number of wires can be determined by simply taking
the dimension size of the swap list; hence, it is irrelevant whether it is explicitly given or
not. Moreover, from a valid SAT solution, one is even able to determine the exact order
in which the swaps were applied. We present all clauses in an intuitive, comprehensible

3

way with respect to the reasoning behind them; however, we also describe them in CNF
for convenience during the implementation phase. The latter representation is given in
the Appendix, in Subsection 7. The transformation between the two representations is
straightforward and therefore omitted.

Note also that our construction assumes there is exactly one swap between two layers,
so it will not necessarily be minimal. This does not contradict our previous claims since
if a list is feasible in m steps, then it is also feasible in total. The opposite direction holds
as well: Suppose a feasible list needed more than m steps. This would imply through the
pigeonhole principle that there exist some neighbouring layers between which no swap
was applied; hence, one can skip those steps and receive a tangle in at most m+1 layers.
Finally, we assume that in the beginning, the wires are ordered corresponding to the
natural ordering of their indices.

Describing the configurations. To describe a configuration c and ultimately the solu-
tion, we create variables

xri,j ∀r ∈ [m+ 1] ∀i, j ∈ [n] : i ̸= j . (1)

Having a variable xri,j set to true is interpreted as having wire i to the left of wire j in layer
r. Since we assume that the swaps are applied one by one, there will be m + 1 layers.
To handle some edge cases and avoid illegal assignments, we implement the following
clauses to model the rules of transitivity:

xri,j ∧ xrj,k ⇒ xri,k ∀r ∈ [m+ 1] ∀i, j, k ∈ [n] : i ̸= j ̸= k (2)

and antisymmetry:

xri,j ⇔ ¬xrj,i ∀r ∈ [m+ 1] ∀i, j ∈ [n] : i ̸= j (3)

Those two rules assert that no invalid ordering within a layer can take place. Moreover,
as mentioned above, we must make sure that in layer 1 the natural ordering of the wires
(1 < 2 · · · < n) holds.

x1i,i+1 ∀i ∈ [m− 1] (4)

Setting the order of wire i and its successor i + 1 only is sufficient for this since the
transitivity rule will propagate the ordering to the rest of the wires. For instance, given
1 < 2 and 2 < 3, 1 < 3 will follow.

Describing the swaps. The second crucial part of the problem definition are the swaps.
In order to describe those, we introduce variables to indicate when they occur. Let L′

be the list of swaps L represented not as a matrix, but rather as a (multi)set of tuples

4

as described in Subsection 1.1. This way we can easily iterate over the tuples. Then, we
introduce the variables

yrs ∀s ∈ L′ ∀r ∈ [m] (5)

Setting a variable yrs with s = (i, j) to true means that wires i and j are swapped in
the step between layers r and r + 1. As per the definition of our problem, we must now
ensure by another set of clauses that (i) all swaps are taken exactly once, (ii) exactly one
swap is used between every neighbouring pair of layers and (iii) applying a swap changes
the value of the corresponding x variables after the swap has taken place. For (i), it is
sufficient to first assert that we cannot take a swap twice – one cannot use the same swap
more than once without using it twice.

¬(yrs ∧ yr
′

s) ∀s ∈ L′ ∀r, r′ ∈ [m] : r < r′ (6)

Then, we also must take each swap at least once:
m∨
r=1

yrs ∀s ∈ L′ (7)

Ensuring that each swap is taken at least once but less than twice is trivially equivalent
to saying that it is applied exactly once. For (ii) we can simply add a clause asserting
that some swap has been used in each step. Note that if each of the m swaps is taken
exactly once and after each of the m layers (i.e., excluding the final layer) there is a swap,
then per pigeonhole principle there is exactly one swap in every step.∨

s∈L′

yrs ∀r ∈ [m] (8)

Finally, to assert (iii), if in some step we swap the wires i and j, then their corresponding
x-variables must have different values: if i was to the left of j before the swap, it will be
to its right afterwards. For this, we introduce the following clauses:

yrs ⇒ (xri,j ̸= xr+1
i,j) ∀r ∈ [m] ∀i, j ∈ [n] ∀s ∈ L(i, j) : i ̸= j (9)

The opposite direction must hold as well. However, note that simply reversing the
implication will be incorrect in the case of non-simple swap lists, that is, swap lists that
contain any lij > 1. This is due to the fact that a yrs , s = (i, j) can potentially be
ambiguous if the wires i and j are swapped multiple times. Instead, in this case we must
ensure that having them swapped between layers r and r + 1 implies that any swap of
those two wires has been used in that step:

(xri,j ̸= xr+1
i,j)⇒

∨
s∈L(i,j)

yrs ∀r ∈ [m] ∀i, j ∈ [n] : i ̸= j (10)

Combining those rules together with the antisymmetry and the transitivity imposed on
the x-variables is sufficient to ensure that we only transition between valid states, and
that the transitions themselves are also performed correctly.

5

2.1 Size

Next, we show that the size of our formulation is polynomial in the number of wires and
swaps. In order to do this we analyse the number of variables and clauses that are created
in the process, i.e., in the equations (1) to (9). In particular, we will do so in terms of
the number of wires n and the number of swaps m as those measures are independent
from each other. As mentioned before, SAT problems are usually given in CNF notation;
hence, we will consider the final CNF forms of those equations that is given in Appendix
7.

1. There are in total (m+ 1) · n · (n− 1) many xri,j variables. Asymptotically this is
in Θ(m · n2).

2. To assert transitivity, we need (m+1) ·n · (n− 1) · (n− 2) many clauses, so in total
Θ(m · n3) many. Each clause has constant length of three.

3. For antisymmetry, we require 2 · (m+ 1) · n · (n− 1) clauses since the equivalence
can be expressed through 2 implications. Each clause holds two variables. In total,
this leads to Θ(m · n2) clauses.

4. Setting the initial permutation of the wires can be done in m − 1 ∈ Θ(m) clauses
consisting of a single variable.

For the swaps, we work with the (multi)set L′. Since L′ is just another representation of
L, it holds that the size of L′ is also m.

5. The total number of yrs variables is m · |L′| = m2 ∈ Θ(m2).

6. Asserting that every swap has been taken at most once requires m ·
(
m
2

)
∈ Θ(m3)

many clauses with two variables each.

7. On the other hand, making sure that each swap has been used at least once takes
m clauses with m many variables per clause which corresponds to a size in Θ(m2).

8. The latter holds for Equation (8) as well.

9. We require 2·m·m ∈ Θ(m2) clauses with constant length of three to assert that each
swap has been applied. Note that the factor 2 arises from to the deconstruction of
the inequivalence, similarly to Equation (3).

10. Finally, the number of clauses asserting that wires are swapped only if an appro-
priate swap has been applied is m · n · (n− 1) ∈ Θ(mn2) clauses with each having
a length of at most m+ 2, which corresponds to a total size in Θ(m2n2).

In total, this yields m2+(m+1)·n·(n−1) ∈ Θ(m2+mn2) many variables. The number
of clauses is in Θ(m3 + mn3) with each clause containing O(m) many variables. Thus
any ListFeasibility instance can be formulated as a SAT one by using only a polynomial
number of variables and clauses and the total size is in Θ(m3 +m2n2 +mn3).

6

3 Implementation

We implement our ideas as a proof of concept in order to show their feasibility. For this,
we write a script in the Scala programming language that is able to read swap lists as
input, then converts the given swap list to a set of clauses in Conjunctive Normal Form
and runs the result by a SAT solver. If the SAT instance is satisfiable, the corresponding
tangle is created as a SVG file. The code is publicly available on GitHub.

3.1 Input Reading

Our script is able to create a swap list from a given swap matrix. In particular, it is able
to read a JSON file containing the swap matrix as an n × n array of integers. For this,
we use uJson, an efficient JSON library for Scala by Li Haoyi1. It can be downloaded as
part of the uPickle library from GitHub. From each JSON input, we create a SwapList
instance that exposes the number of wires and swaps as well as a representation of the
swap matrix as a sequence.

3.2 Conversion to DIMACS

In most modern SAT solvers, such as minisat and Sat4j, the input CNF formula is
passed in the DIMACS format. Here, we will briefly explain the details of that format
and also give a way to represent our variables in it.

Each DIMACS file begins, aside from comments (lines beginning with c), with a line
specifying that the formula is in CNF, as well as the number of variables and clauses
in it. Recall that a formula in CNF is essentially the conjunction of multiple clauses
where each clause is the disjunction of multiple (negated) variables. In DIMACS, each
variable is represented as a natural number; this number is positive in the cases where
the variable occurs non-negated, and negative otherwise. Aside from the “header”, every
following line represents one single clause. A single clause is then given as one or many
whitespace-separated (positive or negative) integers for the variables, as described above,
and ending with 0. Consider the following example:

(x1 ∨ x3 ∨ ¬x4) ∧ (x4) ∧ (x2 ∨ ¬x3)

In this case, we are given a total of 4 variables and 3 clauses. The corresponding
representation in the DIMACS format will look like this:

c
c op t i ona l comments
c
p cn f 4 3
1 3 −4 0
4 0
2 −3 0

1See Li Haoyi’s website.

7

https://github.com/alistairv/tangles-with-sat
https://github.com/com-lihaoyi/upickle
https://www.lihaoyi.com/post/uJsonfastflexibleandintuitiveJSONforScala.html

We have already counted the number of variables in our formulation in Subsection 2.1.
Now it is necessary to find an injective function mapping a variable to an integer (for the
purposes of DIMACS) and vice versa. For this, we make two crucial observations:

The x variables can be uniquely identified through their three indices – i, j, r. In
particular, recall that i ∈ [n], j ∈ [n], r ∈ [m+ 1]. Therefore the set {1, . . . , (m+ 1) · n2}
is sufficiently large for representing this type of variables. Note that this size is not
necessary as there are, for instance, no xi,i variables (a wire being to the left of itself).
However, this offset of size (m+1) ·n is negligible and can be ignored for implementation
simplicity2; the integers corresponding to those variables will simply remain unassigned.
This allows us to apply the following mapping function:

⟨i, j, r⟩ = i+ (j − 1) · n+ (r − 1) · n2 (11)

For visualisation purposes, the variables can be considered as points with specific
coordinates in a three-dimensional space with two of the axes running up to n and the
last one running up to m + 1. The given function is thus merely enumerating those
points.

As mentioned earlier, we also need to be able to determine the unique variable that
has been mapped to a given integer z. Let ⌊ ⌋ denote the integer division, and mod –
the modulo division operation. Then:

• r = ⌊z/n2⌋+ 1

• j = ⌊(z mod n2) / n⌋+ 1

• i = (z mod n2) mod n.

The y variables are similar in that they also have a layer index r; however, unlike the
x variables, in general they cannot be uniquely identified through the two wire indices
in the swap s they represent. This is due to the fact that there may be multiple swaps
between those two wires. Instead, an uncomplicated solution would be to consider the
(multi)set L′ generated from L not as a (multi)set, but as a sequence of length m. In
that sequence, the swaps may for instance be ordered by the natural order of the wires
they consist of. This would result in a sequence like {(1, 2), (1, 2), (1, 4), (2, 3), . . . }. One
can now identify without much effort each swap by its unique index k ∈ [m] in that
sequence. Similarly to the x variables, this allows for a (bijective) mapping to the set
{1, . . . ,m2}. However, due to the fact that the first (m + 1) · n2 integers are already in
use by the x variables, an appropriate offset for the representation of the y variables is
necessary. This results in the following function:

⟨k, r⟩ = (m+ 1) · n2 + k + (r − 1) ·m (12)

2If we were to exclude the corresponding integers from the set, then the mapping function would be
not only injective, but surjective as well.

8

Once again, the right summand can be visualised as a function enumerating points in
a two-dimensional space, with both axes running up to m. The inverse function would
then operate as follows on an integer z:

• value = z − (m+ 1) · n2

• r = ⌊value / m⌋+ 1

• k = value mod m

Note that due to Scala, similarly to most modern programming languages, starting its
indexing at 0, an offset of (−)1 is necessary for both the given formulas and their inver-
sions. Similarly, the indices of the wires lie in the set {0, . . . , n−1} and the indices of the
layers – in {0, . . . ,m}. Those technical details do not influence the general satisfiability
of our model.

3.3 Computing Satisfiability

Once the ListFeasibility instance has been formulated as a SAT instance in a DIMACS
file, the latter must be tested for satisfiability to check the feasibility of the original swap
list. There are various pieces of software that can be used for this purpose, most notably
minisat as a standalone solution, which is however rather outdated. Our final choice is
Sat4j, an open-source Java library for solving satisfiability problems. Since it is written
in Java, it can be seamlessly integrated into our Scala program for convenient usage. As
a downside however, it is supposed to be slower than e.g. its equivalent in the C++
language, according to the authors. Nevertheless, any solver accepting DIMACS files as
input can in theory be applied. As long as the SAT instance is satisfiable and Sat4j does
not reach a timeout, it will output a list of positive or negative integers – the encoding
of our variables – from which a specific tangle can be read.

3.4 Result Visualisation

Our program is also able to visualise a tangle realising any swap list that was found to
be feasible. For this, the positive y variables are extracted from the output of Sat4j and
mapped back to the swaps they represent. For the visualisation itself, we use the Python
script svgExporter found on GitHub. The script utilises the svgwrite Python library
and was created with the purpose of visualising templates of chaotic attractors. In the
case of ListFeasibility, it can handle up to 20 wires and produces an SVG image file with
the resulting tangle.

4 Relaxing Height Constraints and Height Minimization

The model we presented so far serves the purpose of solving ListFeasibility, i.e., the prob-
lem to decide whether or not a given swap list can be realised at all. It is based on the
trivial observation that a list of length m is realisable iff there exists a tangle of height m

9

https://www.sat4j.org/index.php
https://github.com/PhKindermann/chaotic-attractors

that realises it. We modelled this by asserting that between each pair of adjacent layers,
exactly one swap is taken. It is however possible, by minor changes, to also apply our
basic idea to solve the Tangle-Height Minimization problem.

Tangle-Height Minimization is an optimisation problem regarding the number of lay-
ers. Such problems can be solved e.g. by limiting the solution space and then per-
forming binary search for the best solution with an algorithm for the decision version
of the problem. In our case, no feasible swap list can require more than m steps to
be realised. On the other hand it can also not admit a realisation within less than
mini∈[n]{mi | mi = |L(i)|} steps since a wire can only participate in at most one swap
per step. So, suppose that checking whether a list is feasible within some fixed number
of layers can be done in O(tcheck(|L|,m, n)) time. This yields the following algorithm
running in O(tcheck(|L|,m, n) · logm) time:

function minimiseTangleHeight(L, n,m)
l← mini∈[n] {mi | mi = |L(i)|}
r ← m
minHeight← −1
// -1 indicates an unfeasible tangle
repeat

k ←
⌊
l+r
2

⌋
currHeight← CheckFeasibility(L, k)
if currHeight == -1 then

l← k + 1

else
r ← k − 1
minHeight← currHeight

until l > r
return minHeight

Note that CheckFeasibility(L, k) returns -1 if L is not feasible in at most k steps;
otherwise, it returns some number of steps in which L is feasible. This number can also
be strictly less than k, i.e., the algorithm can achieve a greater reduction in a single
iteration than expected.

For our idea to be applicable to such approaches, we must modify it to allow taking
multiple swaps per step. In particular, this means removing the clauses produced by
Equation 8. Doing so still means that each swap is taken exactly once, however there
can be steps where multiple or no swaps are used. On the other hand, a new issue arises
in the form of multiple non-disjunct swaps taking place in the same step (e.g., the swaps
(5, 6) and (6, 7)). We need a new set of clauses to assert that those events cannot occur.
For instance, we could add the condition that if a swap s = (i, j) is taken right after
layer r then no other swaps containing wire i or wire j can be used. This does not apply
only to swaps in the form (i, j) but also for any (i, k), k ̸= j or (k, j), k ̸= i:

10

yrs ⇒ ¬
∨

yrs′ ∀r ∈ [m] ∀s = (i, j) ∈ L ∀s′ ∈ L(i) ∪ L(j) : s ̸= s′ (13)

Now, our SAT instance can be satisfiable and still contain some layers after which no
swap happens. Simultaneously, the given swap list may be feasible in general, but the
corresponding SAT instance will be unsatisfiable if not enough layers are provided.

The first case does in fact provide an opportunity for an alternative, iterative algorithm.
If a swap list is deemed feasible with a realisation with height h, then one can check how
many of those steps are empty and thus potentially determine a smaller height h′. Then,
another check can be performed on height h′ − 1 and so on. As soon as the list is not
feasible in height h′−1, the process terminates and outputs h′ as a result. This algorithm
runs in O(tcheck(|L|,m, n) ·m) time. While the first algorithm is asymptotically faster, it
is expected to perform logarithmically many iterations. On the other hand, depending
on the SAT solver, it is possible that the second algorithm terminates after only two
feasibility checks. This would be the case when the first check fits the swaps in a tangle
of optimal height, i.e., h′ is already minimal (even if h itself is potentially not). Then the
second iteration would conclude that the swap list is unfeasible within a smaller height,
i.e., h′ is optimal.

5 Testing and Evaluation

We perform a set of tests to assert the applicability and measure the performance of
our model. For this, we largely stick to the examples found in the GitHub repository of
Kindermann mentioned above. While some of them originate from the GitLab repository
of the tool “cate” presented in [OMK+18], the vast majority was created by Kindermann
and the research group he was part of at that time.

Our test bench consists of a virtual machine (VM) running on Julia, the JMU’s High
Perfomance Computing Cluster (HPC). The VM has the following properties: 8 virtual
CPUs (VCPUs), 64 GB of RAM and 40 GB of memory – more than enough for our
experiments. The VM is based on an Ubuntu image, in particular a v18.04 one. For the
sake of consistency, all of the experiments are run sequentially and not in parallel, so as
to not induce any conflicts in the available (virtual) computational resources.

In order to evaluate the performance of our implementation in deeper detail, we con-
duct a set of experiments:

• an instance-wise comparison of runtimes for solving Tangle-Height Minimization,

• a computation of runtime variance for solving Tangle-Height Minimization, and

• a fine-grained computation of the solution of Tangle-Height Minimization for selected
examples.

Note that the first test also serves as an assertion of the correctness of our model and
implementation. For this, we also conduct this test on Kindermann’s Python code and

11

https://gitlab.uni.lu/PCOG/cate
https://www.rz.uni-wuerzburg.de/dienste/rzserver/high-performance-computing/
https://www.rz.uni-wuerzburg.de/dienste/rzserver/high-performance-computing/

Johannes Zink’s Java code (both available in Kindermann’s repository) and compare the
final results in terms of tangle height. Note that Kindermann’s code computes tangles
using a dynamic program while Johannes Zink applies a branching algorithm for the
purpose. All resulting measurements are given in milliseconds (ms). We now present our
results from the given tests.

Special instances. In addition to the already mentioned examples, we consider a par-
ticular set of swap lists Li, i ∈ N+ defined as follows. First, we create 2i many wires
indexed from 0 until 2i − 1. Next, we specify the swaps. Wires i and j swap 2 times if
i | j ̸= j, where | represents the bitwise or-operation. Of course, having two wires swap
is a symmetric relation, so there will also be two swaps if i | j ̸= i. Otherwise, wires i
and j do not swap at all.

The instance L4 was of particular interest – while L1 to L3 were known to be feasible
as proven by the dynamic program and the branching algorithm, L4 was at the time
of this practical course still unclear. One of our tasks was to test the conjecture that
L4 is in fact unfeasible. Indeed, our model was able to confirm that. On the Julia
HPC, the computation took 518465 ms on average, or roughly 8.6 minutes, using the
iterative approach. The binary search was able to confirm the result as well, however the
computation was over four times slower: the mean computation time was 2178412 ms,
or roughly 36.3 minutes.

5.1 Variance

It is clear that measuring the time needed to compute a tangle once does not provide
a precise statement about the performance of our model. To get an idea about the
possible deviation in the computations for our code, we compute the variance over a set
of measurements on the same example. We select two examples: one that is not feasible
within height m (and thus not feasible at all), and a feasible one where the model must
first seek the minimal height of the tangle. We apply the binary search and the iterative
approach on both examples and conduct k = 100 such runs to acquire a measurement
sample. We use the corrected sample variance, given by the formula

σ2 =

∑
(xi − x)2

k − 1

where x is the mean of the sample set.
We select L3 as the feasible example. Figures 1 and 2 display the data from the

repetitions of the binary search and the iterative methods, respectively. Note that in
both cases we have sorted the data entries in ascending order. The resulting variance for
the binary search approach is 142.4084 while the iterative method yields a variance of
107.5144.

12

0 10 20 30 40 50 60 70 80 90 100
Repetitions

0

20

40

60

80

100

Co
m

pu
ta

tio
n

tim
e

(m
s)

mean time
median time

Fig. 1: Minimising the height of L3 with the binary search method. Data is sorted in ascending
order.

0 10 20 30 40 50 60 70 80 90 100
Repetitions

0

20

40

60

80

100

Co
m

pu
ta

tio
n

tim
e

(m
s)

mean time
median time

Fig. 3: Minimising the height of instance 28-1 with the binary search method. Data is sorted
in ascending order.

13

0 10 20 30 40 50 60 70 80 90 100
Repetitions

0

20

40

60

80

100

Co
m

pu
ta

tio
n

tim
e

(m
s)

mean time
median time

Fig. 2: Minimising the height of L3 with the iterative method. Data is sorted in ascending order.

0 10 20 30 40 50 60 70 80 90 100
Repetitions

0

20

40

60

80

100

Co
m

pu
ta

tio
n

tim
e

(m
s)

mean time
median time

Fig. 4: Minimising the height of instance 28-1 with the iterative method. Data is sorted in
ascending order.

As an unfeasible example we choose extra_5x5_28-1 from Kindermann’s repository.
Similarly to L3, the results are displayed on Figures 3 and 4. The variances here are
73.6595 and 199.9184 for the binary search and the iterative method, respectively.

In both cases, the binary search approach needs slightly longer than the iterative ap-
proach. This confirms our original assumption that while the binary search is asymptoti-

14

0 5 10
Examples

0

5

10

15

20

25

Co
m

pu
ta

tio
n

tim
e

(m
s)

SAT (iterative)
SAT (binary search)
Branching Algorithm
Dynamic Program
mean times

Fig. 5: Computation times of the 5× 5 examples for each program.

cally faster, the iterative approach potentially needs less runs. A potential explanation is
that our SAT solver of choice, Sat4j, is as an implementation of minisat very effective.
We assume that the computation time spikes are due to the SAT solver taking subopti-
mal paths. Indeed, since SAT solvers are usually non-deterministic, it is less likely that
the multiple repeating values are a product of e.g. branch prediction, but have emerged
naturally. As for the larger variance values, those are also clearly results of the singular
spikes in the computation time in some of the runs.

5.2 Runtime comparison

Next, we took all examples from the repository of Olszewski et al. and applied the four
approaches (by us: two SAT-based methods, the dynamic program by Kindermann and
a branching algorithm by Zink) available to us in order to make a comparison of the
actual runtimes. The results are presented in Figures 5, 6 and 7. Note that the data sets
are sorted in ascending order by the average of the four runtimes. Additionally in each
set, the mean time for each approach is displayed by a dashed line. Due to the large
difference in computation times between the instances, Fig. 6 and 7 use a logarithmic
y-scale for the computation time.

A clear trend is that in the vast majority of the examples, our two approaches per-
formed similarly well compared to each other – presumably due to efficient decisions by
the SAT solver leading to swift height minimisation. Even more notably, both of our
approaches exhibit a significantly slower growth in comparison to the branching algo-
rithm and the dynamic program. We now add some of the extra_5x5 examples, namely
from 10-0 to 30-0. Unlike the previous examples however, not all of the extra-s have a

15

0 10 20 30
Examples

0

100

101

102

Co
m

pu
ta

tio
n

tim
e

(m
s)

SAT (iterative)
SAT (binary search)
Branching Algorithm
Dynamic Program
mean times

Fig. 6: Computation times of the 6× 6 examples for each program.

0 20 40 60 80 100
Examples

0

100

101

102

103

Co
m

pu
ta

tio
n

tim
e

(m
s)

SAT (iterative)
SAT (binary search)
Branching Algorithm
Dynamic Program
mean times

Fig. 7: Computation times of the 7× 7 examples for each program.

16

10 15 20 25 30
Groups

0

2

4

6

8

10

Ex
am

pl
e

co
un

t

Unfeasible
Feasible

Fig. 8: Distribution of feasible and unfeasible examples in the extra_5× 5 set.

corresponding tangle. For this reason we separate the data in two subgroups: feasible
and unfeasible, the distribution of the two groups can be seen in Figure 8. Those groups’
times are visualised using a logarithmic y-scale in the Figures 9 and 10. Note that the
number of swaps per instance for each group is encoded in the group name. This means
that e.g. group 30 contains examples with exactly 30 swaps.

In the case of the feasible examples, we see a continuation of many trends from the
previous instances: the computation times of the two SAT-based approaches are very
similar and growing with a gradual slope, unlike the more steep one of the branching
algorithm. However, unlike e.g. the 7× 7 instances, the growth of the dynamic program
is also gradual and the average computation time is the lowest of the four. We are
presented with a different situation in the case of the 32 unfeasible examples. There is a
clear difference between the iterative SAT approach and the binary search. This is due
to the fact that while the former only needs to test one maximal height (m), the binary
search still has to go through O(log n) many steps. A rather remarkable case is presented
by the branching algorithm which performs best on almost all examples. The dynamic
program, however, exhibits a steeper growth than the other two approaches, similarly to
its performance on the 7× 7 examples.

For better comparison, we also present the average runtimes of the four approaches in
dedicated overviews. Figures 11 and 12, which use a logarithmic y-scale for the times
as well, give better insights in the height minimisation of the extra instances. In the
repository of Kindermann, those are named depending on the number of swaps they have
– for instance, extra_5x5_28-1 refers to the second example (since indexing begins at 0)
in a group of 10, every one of which has 28 swaps. We apply this grouping to the data we

17

0 20 40 60 80 100 120 140 160
Examples

0
100

101

102

103

104

105

106

Co
m

pu
ta

tio
n

tim
e

(m
s)

SAT (iterative)
SAT (binary search)
Branching Algorithm
Dynamic Program
mean times

Fig. 9: Computation times of the feasible extra_5× 5 examples for each program.

0 10 20 30
Examples

0

100

101

102

Co
m

pu
ta

tio
n

tim
e

(m
s)

SAT (iterative)
SAT (binary search)
Branching Algorithm
Dynamic Program
mean times

Fig. 10: Computation times of the unfeasible extra_5× 5 examples for each program.

18

10 15 20 25 30
Groups

101

102

103

104

105

106

Av
er

ag
e

co
m

pu
ta

tio
n

tim
e

(m
s)

SAT (iterative)
SAT (bin. search)
Branching Algorithm
Dynamic Program

Fig. 11: Computation times of the feasible extra_5×5 examples, grouped by number of swaps.

10 15 20 25 30
Groups

0

100

101

102

Av
er

ag
e

co
m

pu
ta

tio
n

tim
e

(m
s)

SAT (iterative)
SAT (bin. search)
Branching Algorithm
Dynamic Program

0

2

4

6

8

10

Gr
ou

p
siz

e
(Y

)

Fig. 12: Computation times of the unfeasible extra_5 × 5 examples, grouped by number of
swaps.

19

5x5 6x6 7x7 extra_5x5
(fsb)

extra_5x5
(unfsb)

0

100

101

102

103

104

105

Av
er

ag
e

co
m

pu
ta

tio
n

tim
e

(m
s)

SAT (iterative)
SAT (binary search)
Branching Algorithm
Dynamic Program

Fig. 13: Average times of the four approaches on all example groups.

collected and take the average3 of each group, resulting in the above-mentioned Figures.
Note that the curves on Figure 12 are not connected since there are groups without
unfeasible examples. The number of unfeasible instances for each group is displayed
with gray dashed lines and an Y-marker, relating to the right y-axis. As expected, all
four methods’ runtimes, seen on the logarithmic y-axis to the left, are proportional to
the number of swaps and while they do not exhibit monotonic growth, in general larger
instances need longer to be solved. In the case of the unfeasible examples, it is noteworthy
that the dynamic program and the branching algorithm exhibit a very inconsistent and
random-looking behaviour; however, it is difficult to speculate on why this could be the
case.

We present our final overview in Figure 13 – it displays the average times of the four
approaches, as already seen on Figures 5, 6, 7, 9 and 10, next to each other for the
purpose of comparison. While all four methods handle unfeasible instances surprisingly
fast, it is clear how making the instances generally more difficult to solve by adding more
swaps does result in increased average computation times.

5.3 Detailed height minimisation

Our experiments are concluded by a step-by-step height minimisation run using our
iterative and our binary search approach. For this, we selected two extra instances: 30-3
and 31-5. In particular, we recorded what height the method was attempting to achieve

3Note that for the average, we divide by the number of feasible or unfeasible examples from that group
respectively, and not simply by the total number of examples in the group.

20

in each step, what height it actually achieved, and how much time it needed to compute
the result. Table 1 presents this data for the iterative and the binary search method,
respectively, applied on 30-3. Note how the SAT solver easily deduces when the target
height is sufficient if presented with enough “operating space”: it makes jumps of size 5
and 3 in the beginning of the iterative approach for ca. 100 milliseconds. However, the
tighter the bound gets, the more the computation time increases: The actual minimal
height (which can not be reduced further) of 17 takes almost 2000 milliseconds for both
approaches, and attempting to create a tangle with sub-minimal size results in a huge
computation time spike of ca. 8 minutes. A similar behaviour is observed for example 31-
5, presented on Table 2. However, here the spikes when trying to create a non-existent
tangle are even larger.

Target height
(iter.)

Achieved height
(iter.)

Time
(iter.) (ms)

Target height
(bin.)

Achieved height
(bin.)

Time
(bin.) (ms.)

30 25 112 22 21 58
24 21 122 18 18 72
20 19 50 16 - 498315
18 18 83 17 17 1811
17 17 1960
16 - 470050

Tab. 1: Height minimisation times for instance 30-3 with optimal height of 17.

Target height
(iter.)

Achieved height
(iter.)

Time
(iter.) (ms)

Target height
(bin.)

Achieved height
(bin.)

Time
(bin.) (ms.)

31 25 60 24 21 373
24 21 354 20 20 199
20 20 194 18 - 2955719
19 - 5681968 19 - 5621725

Tab. 2: Height minimisation times for instance 31-5 with optimal height of 20.

6 Conclusion and Future Work.

In this practical course, we developed a SAT-based approach for solving the problems
ListFeasibility and TangleHeightMinimisation. In particular, both the number of variables
and clauses they create are polynomial in the number of wires and swaps of the given
ListFeasibility instance. We implemented our approaches in the Scala programming lan-
guage using the SAT solver Sat4j, which is based on minisat but is implemented in
Java. Finally, we used the Julia HPC to conduct various experiments on a large example
database using not only our approaches, but also a dynamic program created by Philipp

21

Kindermann and a branching algorithm created by Johannes Zink. We showed that in
general, both the iterative and the binary search approach of our SAT formulation exhibit
a gradual slope regarding the increase of the computation time in relation to the size of
the instance that is being tested. We also showed that our approaches can in some cases
outperform the other two.

All of this establishes a good base for further research. For instance, it would be
interesting to check how other SAT solvers perform in comparison to Sat4j as a good
SAT solver is crucial for our models’ performance. It would also be interesting to see how
the four height minimisation methods perform compared to each other when implemented
in the same programming language – while a Scala implementation can be expected to
be marginally slower than its Java counterpart (since Scala must load its own libraries in
addition to those of Java, resulting in a larger windup time), it is also possible to optimise
it using Scala’s functional features. Similarly, the use of an optimised SAT solver written
natively in Scala would be interesting to see. Finally, one could also investigate how well
the approaches scale explicitly in regard of the number of swaps of the test instance, or
the number of wires.

22

7 Appendix

Transformation of the given rules to CNF.

Here, we give the equations that were presented in Section 2 in Conjunctive Normal Form
(CNF) for the sake of completeness.

Equation 2:
xri,j ∧ xrj,k ⇒ xri,k

↔

(¬xri,j ∨ ¬xrj,k ∨ xri,k)

Equation 3:
xri,j ⇔ ¬xrj,i

↔

(xri,j ∨ xrj,i) ∧ (¬xri,j ∨ ¬xrj,i)

Equation 6:
¬(yrs ∧ yr

′
s)

↔

(¬yrs ∨ ¬yr
′

s)

Equation 9:
yrs ⇒ (xri,j ̸= xr+1

i,j)

↔

(¬yrs ∨ ¬xri,j ∨ ¬xr+1
i,j) ∧ (¬yrs ∨ xri,j ∨ xr+1

i,j)

Equation 10:
(xri,j ̸= xr+1

i,j)⇒
∨
s

yrs

23

↔(
xri,j ∨ ¬xr+1

i,j ∨
∨
s

yrs

)
∧

(
¬xri,j ∨ xr+1

i,j ∨
∨
s

yrs

)

Equation 13:
yrs ⇒ ¬

∨
s′

yrs′

↔∧
s′

(¬yrs ∨ ¬yrs′)

24

References

[FFK+23] Oksana Firman, Stefan Felsner, Philipp Kindermann, Alexander Ravsky,
Alexander Wolff, and Johannes Zink: The complexity of finding tangles. In
Leszek Gąsieniec and Peter Gurský (editors): Proc. 49th Int. Conf. Current
Trends Theory & Practice Comput. Sci. (SOFSEM’23), Lecture Notes in
Computer Science. Springer, 2023. https://arxiv.org/abs/2002.12251,
to appear.

[FKR+19] Oksana Firman, Philipp Kindermann, Alexander Ravsky, Alexander Wolff,
and Johannes Zink: Computing height-optimal tangles faster. In Daniel
Archambault and Csaba D. Tóth (editors): Proc. 27th Int. Symp. Graph
Drawing & Network Vis. (GD’19), volume 11904 of Lecture Notes in Com-
puter Science, pages 203–215. Springer, 2019. https://doi.org/10.1007/
978-3-030-35802-0_16.

[OMK+18] Maya Olszewski, Jeff Meder, Emmanuel Kieffer, Raphaël Bleuse, Martin
Rosalie, Grégoire Danoy, and Pascal Bouvry: Visualizing the template of
a chaotic attractor. In Therese C. Biedl and Andreas Kerren (editors):
Proc. 26th Int. Symp. Graph Drawing & Network Vis. (GD’18), volume
11282 of Lecture Notes in Computer Science, pages 106–119. Springer, 2018.
https://doi.org/10.1007/978-3-030-04414-5_8.

25

https://arxiv.org/abs/2002.12251
https://doi.org/10.1007/978-3-030-35802-0_16
https://doi.org/10.1007/978-3-030-35802-0_16
https://doi.org/10.1007/978-3-030-04414-5_8

	Title Page
	1 Introduction
	1.1 Terms and Definitions

	2 Formulation
	2.1 Size

	3 Implementation
	3.1 Input Reading
	3.2 Conversion to DIMACS
	3.3 Computing Satisfiability
	3.4 Result Visualisation

	4 Relaxing Height Constraints and Height Minimization
	5 Testing and Evaluation
	5.1 Variance
	5.2 Runtime comparison
	5.3 Detailed height minimisation

	6 Conclusion and Future Work.
	7 Appendix

