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Abstract

Infrastructure planning aims to minimize the impact of large structures such as pipes,
power lines or cables on society, environment, and investors. In the process of designing
these structures, finding a minimum-cost path via graph theory is a key aspect. We
challenge the ubiquitous usage of rasterized data in infrastructure planning for finding
such paths and propose a new approach to identify minimum-cost paths. For this pur-
pose, we accelerate the performance of an existing algorithm that approximates shortest
paths in weighted polygonal input and combine it with a method for minimizing turn
angles. Moreover, for the application on transmission line routing, we offer an algorithm
to place pylons along a given path, with respect to given constraints and costs. Finally,
we conduct an experimental analysis of our novel approach and compare it to previous
work operating on raster-based input. Our approximation matches the performance in
terms of cost for rasters at high resolution and is significantly faster.
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Zusammenfassung

In der Infrastrukturplanung geht es darum, die Kosten großer Netzwerke wie Straßen-,
Wasser- oder Stromnetze für Auftraggeber und Umwelt zu minimieren. Dabei ist das
Finden eines kostengünstigsten Pfades mithilfe der Graphentheorie ein maßgeblicher
Bestandteil der Gestaltung solcher Strukturen. Wir stellen die allgegenwärtige Verwen-
dung von gerasterten Geodaten zum Finden dieser Wege in Frage und schlagen einen
alternativen vektorbasierten Ansatz vor. Dazu beschleunigen wir einen vorhandenen Al-
gorithmus, der kürzeste Wege in einem gewichteten Polygonnetz approximiert und kom-
binieren ihn mit einer Methode zur Minimierung von Winkeln an Kurven. Darüber
hinaus entwickeln wir einen Algorithmus, der unter Berücksichtigung von Kosten und
Beschränkungen auf einem gegebenen Pfad Masten für Stromtrassen platziert. Ferner
führen wir eine experimentelle Analyse unseres neuen Ansatzes durch und vergleichen
diesen mit raster-basierten Lösungen. Die Auswertung zeigt, dass unsere Methode ähn-
liche Ergebnisse hinsichtlich der Kosten erzielt, aber signifikant weniger Zeit benötigt.

3



Contents

1 Introduction 5

2 Preliminaries 9

3 Steiner Point Method 11
3.1 Approximating Snell’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Approximation Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Time Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.4 Angle Minimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Pylon Spotting 17

5 Implementation 20
5.1 Input Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.2 Details and Augmentations to the Steiner Point Method . . . . . . . . . . 20
5.3 The Pylon Spotting Process . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Experiments 23
6.1 Analysis of the Steiner Point Method . . . . . . . . . . . . . . . . . . . . . 23
6.2 Angle Cost Trade-Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Comparison with LION . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Conclusion and Future Work 30

Bibliography 31

4



1 Introduction

Infrastructure planning is as old as civilization itself. Already in ancient Rome, intricate
networks of aqueducts and roads were necessary. Constructing this infrastructure re-
quired careful planning in which many environmental factors such as ground conditions,
slopes, rivers, and mountains had to be taken into account. Nowadays, the list of aspects
that need to be considered has grown even longer with ecological, economic, and social
constraints with cities and infrastructure in continuous flux. Climate change set the
construction of renewable power plants such as wind, hydro or solar power in motion,
making power infrastructure planning even more relevant than ever, as new power plants
have to be connected in a multi-million dollar endeavor including various investors and
stakeholders.
For example, in 2016 the German government adopted the Climate Action Plan 2050

that outlines measures to vastly cut down greenhouse gas emissions. In order to achieve
this goal, the restructuring of the energy infrastructure from coal-fired and nuclear power
plants to wind power is necessary. As a consequence, electricity produced by wind tur-
bines in windy regions of Northern Germany have to be distributed to the South via
large transmission lines. A project that tackles the construction of such new power lines
is ”SuedLink” by TenneT TSO and TransnetBW. In this project, two transmission lines
from Wilster to Bergrheinfeld/West and from Brunsbüttel to Großgartach are planned.
These long transmission lines cross highly populated parts of Germany, making it im-
portant to reduce cost and environmental impact.
Finding minimum-cost paths in geographical information is one of the core facets of

infrastructure planning and is crucial in the design of power infrastructure. On top of
identifying such paths, specific challenges arise in this field, including the minimization
of angles between pylons for transmission lines.

Previous work and related work. As there is a high demand for software to aid the
infrastructure design process, extensive work has been done. In practice, almost all path-
finding algorithms in this context operate on a raster-based discretization of geographical
data, similar to an image, where each cell, i.e., pixel, has as certain cost value assigned
to it. This grid is used for a graph-based approach, in which each cell is converted
to a vertex and an edge between two vertices constitutes a way to go from one cell
to another. This approach is applied by Seegmiller et al. [SST21] to find least-cost
corridors – paths with a constant width, useful for modeling roads. More specific to
power infrastructure design is the work of Hanssen et al. [HTMB12], which provides a
toolbox for identifying optimal routing corridors of high voltage power lines under various
criteria. Bachmann et al. [BBK+18] back the difficult decision process with a tool-chain
for a client-server based Pareto-optimization system for power line routing that utilizes
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a generalized form of Dijkstra’s algorithm to generate a set of Pareto-optimal routes.
Piveteau et al. [PSRW18] also take technical data into account, i.e., what type of pylon is
needed depending on the soil and other factors. Similarly, Santos et al. [SdLP19] propose
a multi-step approach to find shortest paths in raster-based input and an optimal pylon
placement that finds an ideal distribution of pylons along the topographical profile of
the shortest path.
Raster-based input data is considered the state of the art in this field and is being

employed by all works mentioned. This approach, however, suffers from some problems
inherent to rasters:

(1) A high resolution of the raster is indispensable for finding satisfying solutions,
making the search space extremely large such that some real world instances are
not feasible to compute. Moreover, a homogeneous cell size is fundamental to
this approach, which leads to uninteresting areas having the same resolution as
important areas, inflating the input size unnecessarily.

(2) A grid-based approach restricts the freedom of movement since a cell is only con-
nected to a small number of neighboring cells, each having a predetermined posi-
tion, which might be sub-optimal, leading to undesirable zig-zags, hindering the
minimization of turn angles or other factors. Also, the predetermined position of
the raster cells restricts the freedom of possible pylon placements since often pylons
are only placed in the center of the cells.

One might be tempted to evade the problems of disadvantage (2) by a high resolution
and dense connection between vertices. However, zig-zags can inherently not be avoided
in rasters. Nonetheless, Tomlin [Tom10] tries to mitigate this problem by introducing
virtual ”threads” that keep track of each change of direction where each change is a new
source of propagation.

These problems led Gonçalves et al. [GBMS21] to the idea of using a Monte Carlo
algorithm called random rapid trees that does not discretize the input plane but picks
points randomly on the plane in a certain proximity of already sampled points and
connecting the closest points to a tree with the starting point as root. This tree is then
iteratively improved by changing edges and choosing new points. Their algorithm also
takes the maximum curvature of the path into account but it cannot guarantee any
upper bound on the quality of the output.
A further possible realization of the input map is a set of polygons, each representing a

different cost region. Many algorithms exist for the special case of robot path planning,
where polygons merely serve as obstacles. Here we observe the strong connection between
infrastructure planning and robotics: when constructing a route, certain regions must
be avoided, too. The key idea is that a shortest Euclidean path consists of straight
line segments and only bends on vertices of obstacle polygons. One way of using this
insight is to use a visibility graph whose vertices are the corners of polygons including
start and end point. Two vertices are connected by an edge if and only if a straight line
between these vertices is not intersected by any polygon. The weight of an edge is the
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Euclidean distance between those vertices. On this visibility graph a traditional shortest
path algorithm such as Dijkstra’s can be applied. In the worst case the construction
of such a graph takes O(n2) time, where n is the number of vertices of all polygons.
Following a separate idea, Mitchell and Papadimitriou [MMP87] proposed a method,
called continuous Dijkstra, that avoids building such graphs. Initially, this strategy had
a worse runtime, namely O(n2 logn), but this was later improved by Hershberger and
Suri [HS97], who gave an O(n logn) time and space algorithm, proving this method to
be more fruitful. The core concept is analogous to tossing a stone into a pond, creating
waves that collide with, for instance, water lilies or rocks, which reflect these waves
thereby becoming the source of the reflected waves. The moment a wave hits the end
point the shortest route can be deduced by tracing back the points of reflection. The
interested reader is referred to the work of Hershberger and Suri [HS97] to see how this
idea can be efficiently simulated.
However, infrastructure planning is more complex than avoiding certain areas, since

many cost factors have to be taken into consideration. A natural generalization is to as-
sign each polygon a weight that embodies certain costs when traversing it. This leads to
the Weigthed Region Problem, which asks for a shortest path in a planar polygonal sub-
division. For convenience, polygons are usually assumed to be triangulated. Solving this
problem exactly appears to be very hard. In fact, according to Carufel et al. [DGM+14],
it cannot be solved in a finite sequence of operations such as +, −, ·, /, k

√
on rational

numbers. As of now, no exact algorithm for solving the Weighted Region Problem has
been devised, and it is unknown whether this problem is NP-hard or not. As a con-
sequence, all published algorithms are approximations. By modifying the continuous
Dijkstra method, Mitchell and Papadimitriou [MP91] proposed a (1 + ε)-approximation
algorithm for any ε > 0. Unfortunately, the running time is O(n8 log(nNW/ε)), where
W is the maximum weight and N is the largest coordinate of a polygon vertex, therefore
rendering the algorithm unpractical.
Other approximation algorithms are based on discretizing the problem similar to vis-

ibility graphs by placing so-called Steiner points on polygon edges. Two Steiner points
are then connected with an edge if a straight-line segment between them is completely
contained inside the face of a triangle. A normal shortest path algorithm is subse-
quently applied on the resulting weighted graph. Algorithms that employ this technique
mostly differ in the way they place these Steiner points. Newer versions also reduce
the runtime by avoiding to build the whole graph explicitly. Cheng et al. [CNVW08]
give a (1 + ε)-approximation algorithm with O(((W logW )/ε)n3 log(Wn/ε)) runtime.
The core concept is to place Steiner points in an elliptic region whose foci are the start
and endpoint. Aleksandrov et al. [AMS05] achieve a (1 + ε)-approximation with a run-
ning time of O((n/

√
ε) log(n/ε) log(1/ε)). Unfortunately, there is a hidden constant,

O(Γ log(W/θmin)), where Γ is the average of the reciprocals of the sines of the angles of
the triangulation and θmin is the minimum angle of the triangulation. Noteworthy is that
their strategy involves the placement of Steiner points inside triangles, while the other
approaches mentioned above only place Steiner points on the edges of the triangulated
input. An alternative geometry dependent approximation is due to Cheng et al. [CJV15]
with a runtime of O((kn + k4 log(k/ε)/ε) log2(Wn/ε)), where k ∈ Θ(n) is the smallest
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integer such that the sum of the k smallest angles in the triangular faces is at least π.

Contribution. We contest the state of the art that is using raster-based input in infra-
structure design and lay the groundwork for a promising alternative to raster discretiza-
tions. Our contribution is as follows:

• We describe a fast and simple implementation of a variant of the Steiner point
approach by Lanthier et al. [LMS01] for approximating shortest paths with respect
to the Weighted Region Problem.

• We device an algorithm for optimal pylon spotting for transmission line routing
along a given, fixed path.

• We extend the algorithm of Lanthier et al. [LMS01] to a) boost performance on
large instances by employing the A? algorithm as well as the creation of the search
graph only in areas A? explores and b) minimize angles along the path in addition
to the polygon costs.

• We do an experimental analysis of the proposed algorithm on randomly generated
data and compare our algorithm with LION, a raster based approach by Wiede-
mann and Adjiashvili [WA21] on comparable data. We can show that our method
yields paths at least as cost-efficient as LION, but our method runs up to five times
faster.

Organization. We start by formalizing some terms and by introducing new definitions
and background that we will need later on in Chapter 2. Since the Steiner point method
by Lanthier et al. [LMS01] is an important basis of our work, we will describe it in more
detail; see Chapter 3. After that, we propose an algorithm to place pylons on a path
given by the Steiner point method in Chapter 4 and describe implementation specifics
in Chapter 5. Finally, we do an extensive experimental analysis of both methods in
Chapter 6 and conclude our work with next steps one could take in Chapter 7.

8



2 Preliminaries

We start with a definition of the Weighted Region Problem which we have already
mentioned before.

Definition 1 (Weighted Region Problem [MP91]). Let S be a subdivision of the plane
R2 into a finite number of polygonal regions, where each region has a positive weight
w ∈ R+

0 . Let s, t ∈ R2 be points in the plane. Find a weighted shortest path from s to
t, where the distance of a path is defined to be the weighted sum of all sub-paths within
each region crossed by the path. If a sub-path coincides with an edge of two polygons, the
minimum weight of the weights of the two adjacent regions is chosen.

For convenience, we assume without loss of generality that all our polygons are trian-
gles and that the points s and t are vertices of triangles. We call this input a triangulation.
In the following we represent a triangulation T of the plane as an undirected, planar
graph G = (V,E) whose vertices (edges) are vertices (edges) of T . We write {u, v} ∈ E
for an undirected edge and (u, v) for a directed edge. If it is clear whether an edge is
directed or undirected, we shorten the notation to simply uv to denote an edge with end
points u and v. Furthermore, we will use the terms minimum-cost path and shortest
path interchangeably since we always mean paths in weighted regions. For two points
s and t in the plane, we denote the Euclidean distance from s to t by d(s, t) and write
|L| = max{u,v}∈E d(u, v) for the length of the longest edge in our triangulation. If not
specified otherwise, s is the start or source vertex and t is the end or target vertex for
which we try to find the shortest s–t path. We denote the total cost of an optimal s–t
path by c(P ?(s, t)) and the cost of an approximated s–t path by c(P (s, t)). Since we only
speak of s–t paths, we will also shorten this notation to c(P ?) and c(P ), respectively,
unless we talk about paths with other start or end points.
We now define the concept of a line graph.

Definition 2 (Line Graph). Given an undirected graph G = (V,E), the line graph
L(G) = (V ′, E′) of G is a graph such that

1. V ′ = E, that is, each edge in G is a vertex in L(G)

2. two vertices e, f ∈ V ′ are adjacent in L(G) if and only if the corresponding edges
in G are incident to the same vertex

Figure 2.1 shows an example of the line graph of K4, the complete graph with four
vertices.
We also introduce a generalization of Dijkstra’s algorithm, called A?, devised by Hart

et al. [HNR68]. This algorithm can achieve a more directed search towards the target t by
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Fig. 2.1: Line graph (right) of the K4 (left). The original graph has six edges, so the line graph
has six vertices. Each vertex of L(K4) is adjacent to four other vertices since each
edge of K4 is incident to four other edges.

modifying the priority of a discovered vertex v with information of the problem domain.
This more goal-oriented search is done by adding a heuristic h(v) to the priority of vertex
v, i.e., the priority f(v) is computed by f(v) = g(v) + h(v) where g(v) are the current
costs from s to v. Note, that by setting h(v) = 0 we obtain Dijkstra’s algorithm in
which we always pick the vertex with the currently lowest cost g(v) regardless of the
”direction” we are heading. However, if the heuristic h(v) is a good estimation of the
costs from v to t, then vertices that have a low cost estimation h(v) are preferred while
exploring the graph leading to a bias ”towards” t. Hart et al. prove the following about
the heuristic h(v):

Lemma 3 ([HNR68]). If the estimation h(v) is a lower bound for the actual costs from
v to the target t, A? yields a shortest path from s to t.

We also point out that A? usually terminates, once the target t has been chosen as
vertex with lowest priority – in contrast to Dijkstra’s algorithm, where we often aim to
find a shortest path tree to all other vertices from source s.
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3 Steiner Point Method

In this chapter, we discuss an approximation algorithm with respect to the Weighted
Region Problem proposed by Lanthier et al. [LMS01] called the Steiner point method.
The name stems from computational geometry, where Steiner points are points that are
added during the solution to obtain better results.

A simple approximation. Before analyzing the Steiner point method, we consider a
straightforward estimation algorithm for finding a shortest path in a weighted region
represented by a graph G = (V,E) without altering the input. We can approximate a
shortest path by only walking along the edges of the input triangles, instead of trying
to traverse the interior. For each triangle edge {u, v} we compute the weighted distance
in O(|E|) total time. Since we demand that our source s and our target t are trian-
gle vertices, we can run a shortest path algorithm such as Dijkstra’s with no further
modifications in O(|V | log(|V |) + |E|) time given an appropriate data structure. In con-
sideration of our planar input graph we can omit the summand O(|E|) by bounding it
via Euler’s polyhedron formula |E| ≤ 3|V | − 6. Furthermore, Lanthier et al. [LMS01]
show that the algorithm described above provides an approximation of a minimum-cost
s–t path with an approximation factor of at most 2/ sin θmin, where θmin is the minimum
interior angle of an input triangle.

3.1 Approximating Snell’s Law
While this first strategy is fast, the approximation bound is not practical since real
world inputs can have an angle θmin very close to zero, rendering the bound very large.
Therefore, the need for a better approximation arises. The algorithm of Lanthier et
al. [LMS01] is based on an important property of shortest paths in weighted regions
observed by Mitchell and Papadimitriou [MP91]: An optimal path only bends at edges
of regions, where the two adjacent regions are of unequal weight, analogous to light only
bending on borders between unequal material. The latter is described by Snell’s Law of
Refraction in physics. As a consequence, this property of optimal paths is referred to as
Snell’s Law in the literature. Based on this, we characterize shortest paths in weighted
regions to be polylines with possible bends only at edges of the subdivision.
We can therefore approximate a minimum-cost path by estimating possible refraction

points at a triangle ti. We place Steiner points along each edge and create, for each
triangle ti of the given triangulation, a complete graph Gi = (Vi, Ei) that we call face
graph. The vertices of Gi are all Steiner points on the edges of ti and all vertices of ti.
An edge e = uv ∈ Ei has a weight w(e) = wi · d(u, v) equal to the weighted distance
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between its endpoints, where wi is the weight of the triangle ti. See Figure 3.1 for
an example of two adjacent triangles that contain two face graphs. To find a shortest
path estimation, we form the union of all face graphs Gi to a graph G = (V,E), where
V = ⋃

i Vi, E = ⋃
iEi and then run a shortest path algorithm on G.

Fig. 3.1: Two Steiner points (blue) are evenly distributed along each triangle edge (green).
Both triangles contain a complete graph with edges in the interior. Note that since
face graphs are complete graphs, edges between all Steiner points and triangle vertices
exist. For the sake of the clarity of this illustration, no edges that coincide with a
triangle edge have been drawn.

We consider two of several strategies to place Steiner points; a uniform fixed scheme
and its refinement, the interval scheme. In the former, a fixed number of Steiner points,
m, is distributed evenly along each triangle edge. The latter takes an interval length
l ∈ R, which is then used to place Steiner points on each edge such that there is at
most a distance of l between two consecutive points on an edge of the triangulation.
Figure 3.1 shows an example for the fixed scheme for m = 2.

3.2 Approximation Bounds
We first prove the approximation bounds for the fixed scheme. Then we will argue
that the same arguments hold for the interval scheme, showing that the interval scheme
estimates a shortest path at least as good as the fixed scheme if l and m are selected
appropriately. The proof is a more detailed version of the proof offered by Lanthier et
al. [LMS01] and utilizes an intermediate result regarding the maximum increase of cost
in one face graph, explained in the following:

Lemma 4 ([LMS01]). Given a segment si of the optimal shortest s–t path that crosses
triangle ti then there exists an edge e ∈ Ei of the face graph Gi = (Vi, Ei) built by the
fixed or the interval scheme such that |e| ≤ |si|+ |L|/(m+ 1), where L is the longest
triangle edge.

Proof. Each edge of a triangle ti is subdivided by its Steiner points into m+ 1 intervals.
The distance between two Steiner points on the same triangle edge can thus be at most
|L|/(m + 1). Let a and b be the end points of si lying on edges ea and eb of triangle
ti. Also, assume that ea 6= eb. Let vawa be the segment spanned by the Steiner points
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va and wa on which a is located and let vb and wb be the Steiner points that enclose b.
Without loss of generality, let va (vb) be the Steiner point closer to a (b). See Figure 3.2a
for an example of all definitions. Since Gi is a complete graph, Gi contains the edge
e = {va, vb}. Case I : |si ∩ e| = 1. The segments si, vaa, vbb, and e form two triangles as
illustrated by Figure 3.2b. Let x be the intersection point of e and si. We decompose e
and si into segments vax, xvb and ax, xb, respectively.

a
b

va

wa

si

vb

wb

(a) Segment si is the optimal line segment crossing
triangle ti.

a
b

va

x

si

e

vb

(b) Two triangles formed by the intersection of si

and e.

Fig. 3.2: Edge e of the face graph of ti approximates the segment si of an optimal path.

By the triangle inequality, we have

|vix| ≤ |via|+ |ax| (3.1)
|xvk| ≤ |vkb|+ |xb| (3.2)

by adding Equations (3.1) and (3.2), we get:

|vax|+ |xva| ≤ |vaa|+ |ax|+ |vbb|+ |xb|
|e| ≤ |si|+ |vaa|+ |vbb| (3.3)

Case II : si ∩ e = ∅. Equation (3.3) immediately follows by the triangle inequality.
Since we have chosen va and vb to be the Steiner points closer to a and b, respectively,

we know that |via| ≤ |L|/2(m+ 1) and |vkb| ≤ |L|/2(m+ 1). In the case of the interval
scheme, we can do this proof in a similar way using a maximum length l between adjacent
Steiner points. We obtain that |vaa| ≤ l/2 and |vbb| ≤ l/2. By setting l to |L|/(m+ 1),
the claim follows for both schemes.

With this lemma we can prove an approximation guarantee for the paths found by
the Steiner point method.

Theorem 5 ([LMS01]). Let G = (V,E) be the representation of a triangulation. By
utilizing the fixed scheme, the Steiner point method yields a shortest s–t path approxi-
mation for the Weighted Region Problem that is not longer than c(P ?) +wmax|L|, where
wmax is the maximum weight of all triangles of the triangulation and L is the longest
edge of the triangulation.
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Proof. The idea of this proof is to join Lemma 4 with a property of shortest paths
that solve the Weighted Region Problem. This property, observed by Mitchell and
Papadimitriou [MP91], tells us that such a path consists of O(|V |2) segments.
Let the optimal path consist of 〈s1, . . . , sk〉 segments. Lemma 4 grants us a bounded

approximation for each segment sj of the optimal path by an edge of the corresponding
face graph Gi for a triangle ti, in which sj is situated. We choose the edges closest to
the end points of sj such that each edge ej approximating sj shares a Steiner point with
its predecessor. We obtain a path of edges 〈e1, . . . ek〉.

We apply Lemma 4 multiplied by wfi
, where fi is the triangle, in which sj and e are

contained, to each segment of our approximated path:
k∑

i=1
wfi
|ei| ≤

k∑
i=1

wfi

(
|si|+

|L|
m+ 1

)

⇔ c(P ) ≤ c(P ?) + |L|
m+ 1 ·

k∑
i=1

wfi

In the worst case, we only traverse triangles of maximum weight. We therefore estimate
the cost of our path by

c(P ) ≤ c(P ?) + k · |L|
m+ 1 · wmax

With the property of Mitchell and Papadimitriou [MP91], we can bound k by O(|V |2).
Using m ∈ Θ(|V |2), the claim follows and we indeed obtain an upper bound of c(P ?) +
|L| ·wmax for the cost of the path approximation found by the Steiner point method.

3.3 Time Complexity
Lanthier et al. [LMS01] provide a succinct runtime analysis from the perspective of
Theorem 5 by assuming that m ∈ Θ(|V |2). They obtain a runtime of O(|V |5). Here we
provide a more fine grained analysis applicable for any m which will help us understand
the runtime behavior studied later in Chapter 6. From here on we set n = |V | for a
graph G = (V,E).

Theorem 6. Let a triangulation be represented by a graph G = (V,E) and let m ∈ N
be the number of Steiner point per triangle edge. The Steiner point method runs in
O(nm log(nm) + nm2) time using the fixed scheme.

Proof. Since we assume our input to be a planar triangulation, Euler’s polyhedron for-
mula implies that we do not have more than 2n− 4 triangles. Therefore, we can bound
the number of face graphs by O(n). Each of the face graphs has at most O(m) vertices
and so at most O(m2) edges. Our search graph of the triangulation is the union of all
face graphs, so it has at most O(nm) vertices and O(nm2) edges, which means that the
construction of this graph takes O(nm2) time. We find a minimum cost s–t path in
this graph with Dijkstra’s algorithm using a Fibonacci heap in O(nm log(nm) + nm2)
time.
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3.4 Angle Minimization
In many infrastructures the turn angle of path bends is of importance. Not all algo-
rithms for infrastructure planning support the multi-objective of finding an approximate
minimum-cost path with few of turn angles. We aim to fill this gap and expand the
Steiner point method with such a feature.
In the literature the examination of edge pairs for shortest paths has been coined as the

Quadratic Shortest Path Problem (QSPP) by Rostami et al. [RMFB15]. Unfortunately,
in the same publication, in which Rostami et al. proposed the QSPP, they also showed
strong NP-hardness for this problem. For our purposes, we do not have to consider
arbitrary edge combinations but only adjacent edge pairs. This problem formulation
is called the Adjacent Quadratic Shortest Path Problem and has been found to be NP-
hard as well by Rostami et al. [RCH+18]. Hu and Sotirov [HS18] showed that in the
special case of directed acyclic graphs (DAG) the AQSPP is solvable in polynomial
time. Nevertheless, since the search graph of the Steiner point method is not acyclic,
we cannot employ the work of Hu and Sotirov and have to resort to a relaxed version
proposed by Wiedemann and Adjiashvili [WA21], in which we only ask for a least-angle
minimum-cost walk instead of a path. This means that we can avoid sharp turns by
cycles. This loosening allows for an efficient computation of minimized turn angles with
the help of a line graph (see Definition 2) that does not have to be built explicitly.
Although the approach by Wiedemann and Adjiashvili [WA21] has been implemented
using the Bellman–Ford algorithm, we can easily adapt their method to other shortest
path algorithms such as A?. In the following, we describe how to implicitly use a line
graph to obtain such a minimal-angle walk.
We define an edge angle cost function α : E → R to be a function that maps two

incident edges e1 and e2 to a cost value subject to the angle ](e1, e2) ∈ [0, 180]. We
assign to each edge e of G an accumulated cost D[e], similar to the distance from the
source to a vertex v in a ordinary shortest path algorithm. Initially, we set D[e] = ∞
for all edges of G except for outgoing edges of the source s. Each such edge es gets
D[es] = w(es). At each step, the algorithm updates D[e] for an edge e = (v, w) as
follows:

D[e] = w(e) + min
ein

{
D[e′] + α(e, e′)

}
, (3.4)

see Figure 3.3.
In the update step for a vertex v, we have to update all accumulated costs for all

its outgoing edges. A straightforward way of doing this for an out-going edge eout
from v is to iterate over all in-going edges ein to v and to search the minimum by
Equation (3.4). This results in a time complexity of O(outdeg(v) · indeg(v)) for each
update step. While the implicit line graph has a space advantage, the asymptotic
runtime is the same with this update approach. A remarkable improvement can be
achieved, however, with Wiedemann’s and Adjiashvili’s [WA21] accelerated update al-
gorithm for convex edge angle cost functions that reduces the required runtime per
update to O((outdeg(v) + indeg(v)) · log(outdeg(v) · indeg(v))).
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α(u1v, vw)

D[u1v]

D[udv]

D[vw]

Fig. 3.3: The accumulated cost for an edge vw is updated via accumulated costs of all incoming
edges u1v, . . . , udv of v.
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4 Pylon Spotting
A path with optional minimized total cost of bends does no suffice while designing
infrastructure. While the Steiner point method is generic for infrastructure planning
that requires shortest paths, in specific applications different challenges arise. In this
work, we evaluate the approach on projects of power infrastructure planning as a use
case. In transmission line planning not only the route must be optimized, but also the
location of the pylons along the route which is referred to as pylon spotting. Power
lines consist of two main components we can optimize: the cost of placing pylons and
the cable costs between two pylons. These costs vary depending on which area pylons
are placed or which regions cables cross. There are several choices that can be made
regarding the setting of the cost optimization. Distinguishing cable and pylon costs, for
example, is crucial in places that can easily be traversed with a cable but are not suitable
for building a pylon, e.g. a river. In other places such as housing, both pylons and cables
have to abide to the forbidden area. Typically, an additional constraint of a minimum
and a maximum distance between pylons is posed as there are technical limits to pylons
and cables. Such distance restrictions can force the cables to leave the original path of
the Steiner point method. So in the case of forbidden areas that must not be crossed by
cables or a consideration of cable costs, an evaluation of the cables or ”shortcuts” are
required.
Based on the previously obtained Steiner point path, we subsequently model the pylon

spotting problem in a graph. We construct a connected pylon graph Gp = (Vp, Ep), in
which a vertex v ∈ Vp represents a place of a possible pylon with a given cost c(v) and
an edge {u, v} ∈ Ep corresponds to a cable between pylons placed at u and v with costs
w({u, v}). If cable costs are not considered, these weights are ignored. Since we have
a direction from source to target and going back can never be cheaper, we can assume
a directed graph. The desired power line configuration will be the shortest path in the
graph Gp, each path vertex being a pylon of the transmission line and each edge (straight
line) between two vertices being a cable.

The vital part is the construction of the graph Gp. From there on, we employ a suitable
shortest path algorithm such as Dijkstra’s or a DAG shortest path algorithm with a
minimum-angle modification. To consider pylon costs with a shortest path algorithm,
we also have to make a small modification when updating the cost of vertex v. In
addition to changing the current cost of a shortest path from s to v with the total costs
of the predecessor on the shortest s–v path and the costs of the edge between them, we
also add the pylon cost c(v) to this sum.
So, let PS = 〈s, v2, . . . , vk−1, t〉 be the provided Steiner path. The graph Gp will be

generated in the following three steps:
(1) clean the path,
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(2) discretize the search space by utilizing a technique similar to the interval scheme,

(3) create all viable cable shortcuts.

Path Cleaning. In order to station eventual pylons along the path, we first need to
delete path vertices of PS that might interfere with the even arrangement of pylons
later on; that is, end points of line segments which are collinear to adjacent lines of the
polyline PS and do not have two triangle vertices as end points. Compare Figures 4.1a
and 4.1b for an example. It is worth mentioning that we can obtain a cleaned path
automatically by the Steiner point method, if we add an additional cost to each distance
of a vertex – a ”vertex cost” – in the path finding process similar to the consideration
of pylon costs. As a consequence, the path-finding algorithm chooses the path with as
few vertices as possible among possible paths with the same overall cost.

Placement of possible pylons. Given a new interval length lp we uniformly put pylon
places vp along the cleaned path, analogous to the interval scheme. Note that we also
position pylon vertices inside triangles in contrast to the original interval scheme, in
which Steiner points are only placed on edges, as Figure 4.1c illustrates. Since we have
vastly reduced the search space of possible pylon positions by restricting ourselves to
only considering locations on the path PS , we can have small interval lengths lp.

Creation of feasible shortcuts. After we have created potential pylon positions, the
edge generation remains. For this purpose, we do a linear search through the augmented
path and find for each vp all up in the ring R(vp) = {up | dmin ≤ d(up, vp) ≤ dmax}
spanned by the minimum and maximum distance. Out of these up ∈ R(vp) only those
that are successors of vp are of interest for a directed graph approach. If we only consider
pylon costs we can safely connect each vp and up with an edge. Otherwise, we have to
verify that the direct connection between vp and up does not cross a forbidden area
and if necessary, evaluate the total cost of this shortcut. Since this edge might traverse
several triangles as it is the case in Figure 4.1d (green edges), a more careful approach of
assessing the cost and feasibility of this possible cable is necessary. This can be done by
exploiting topological information of our triangulation. Since a cable is always a straight
line we start from vp and walk from intersection to intersection between triangle edges
and the possible cable. By measuring the distance between two intersection points in
one triangle, we can accumulate the total cost of our potential cable. For details, see
Section 5.3.
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(a) Original path con-
taining unnecessary
points.

(b) Cleaned path. No in-
termediary points ex-
ist.

(c) All possible places
for pylons are dis-
tributed along the
path.

(d) Possible short cuts
for an exemplary
possible pylon.

Fig. 4.1: All steps of the pylon placement process: We clean the path and place points along the
path, that represent possible pylon positions. Each point vp is connected with other
points up on the path within the distance of dmin ≤ d(vp, up) ≤ dmax.
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5 Implementation

This chapter describes implementation details and modifications of the Steiner point
method we made and the intricacies of the pylon spotting process. As a general design
choice of the implementation, we made heavy use of the strategy pattern and inheritance,
to grant a maximum amount flexibility. Everything has been written in C++17 and was
compiled with the MSVC compiler with level 2 optimization.

5.1 Input Format
We store the triangulation with the corresponding weights in a simple text file and focus
on simple rules how to read the input, to assure that input files are compressed since real
world triangulations can be large. Along with the triangle vertices, edges and weights,
we also have to store some topological information about the triangulation, namely
the neighboring triangles for each triangle vertex. This data is important for the cost
evaluation of the shortcuts in the pylon spotting process, described in Chapter 4 and
our modification of the Steiner point method. We also require that every edge knows to
which of at most two triangles it belongs.
We encode this information the following way. Given a triangulation with N vertices,

M edges and T triangles, we assign each triangle, vertex, and edge an index. The first
line of our file consists of N , M , T , the index of the source s and the index of the target
t. The subsequent N lines list the coordinates of each vertex. After that, the next M
consecutive lines contain the edge information. Each edge is represented by the index
of the two vertices the edge connects. T lines follow, each holding a triangle that is
composed of the indices of the triangle edges and a weight. The weight can also have a
flag, indicating that this triangle is forbidden to traverse by the Steiner point method.
We use the sign of the weight as a flag, where values smaller than zero imply a forbidden
triangle. The remaining topological data is expressed by N lines. The first number in
each line declares the number of triangles a vertex is part of, followed by the indices of
these triangles.

5.2 Details and Augmentations to the Steiner Point Method
We briefly describe our graph representation and expand on how the graph building and
path finding step of the Steiner point method can be merged.
The input format already suggests the storage of the triangulation in arrays. Since

Steiner points inherently belong to triangle edges, each edge will claim ownership of the
Steiner points that are placed on it and will store them in a list. The search graph
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will consist of Steiner points and triangle vertices, so each vertex has a list containing
pointers to its neighbors in the search graph. This representation can also be used to
later find the cheapest pylon placement configuration.
Our implementation will use the interval scheme, as it has important advantages over

the inflexible fixed scheme. It should be noted that the interval l is an upper bound for
the interval between two adjacent Steiner points. This is due to our requirement to place
the Steiner points evenly along the edge. For an edge {u, v}, we calculate the location
of its Steiner points as follows: First we calculate the number of Steiner points, p, we
have to place by dividing the length of the edge |uv| by the interval length l. If s is
smaller than 1, we return and place no points along the edge. However, if s is bigger or
equal than 1, we compute the length of the distance between each vertex by |uv|/dpe ≤ l
which may result in a smaller distance between two adjacent Steiner points as we round
p. The placement is straightforward.
The original Steiner point method is a two step approach that first builds the search

graph by creating a face graph for each triangle and then constructs the union of all face
graphs. Since each triangle edge is unique, i.e., one edge is shared by up to two triangles
and each edge has ownership of its Steiner points, the union is implicitly formed by the
adjacency lists of all vertices. In the second step, we apply a suitable shortest path
algorithm on it. To improve the performance of the Steiner point method, we merge
these two steps together to avoid creating face graphs which are not necessary for finding
a shortest path with the A? algorithm. This can result in a significant runtime decrease
if source s and target t are close together relative to the input domain. Algorithm 1
outlines the merged Steiner point method:

Algorithm 1: Modified Steiner point method
1 FibonacciHeap heap
2 s.d = 0
3 heap.insert(s)
4
5 while heap 6= ∅ do
6 u = heap.extractMin()
7 if u == t then
8 return
9 buildCompleteFaceGraph(u)

10 foreach v ∈ u.Adj do
11 relax(v)

The function buildCompleteFaceGraph(u) uses the topological information of the
input to build the graph in the neighborhood of vertex u. Concretely, if u is a Steiner
point, we build the face graph of each adjacent triangle of the corresponding edge,
provided the face graph of the triangle has not been build yet. Otherwise, u is a triangle
vertex. In this case, we build the face graphs of each triangle the vertex u is part of.
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The subroutine relax(v) is the standard update function of the A? algorithm. We use
the heuristic h(v) = wmin · d(v, t). Since this heuristic cannot overestimate the costs
and is at best the actual cost, the A? algorithm yields the correct solution according to
Lemma 3.

5.3 The Pylon Spotting Process
We omit the details of cleaning a path since the Steiner point method is able to provide a
cleaned path as described in Chapter 4. We focus on how the cable costs can be computed
efficiently by ”walking” along the cable with the help of topological information of the
neighborhood of triangles.
So far, we had two possible types of vertices: triangles vertices and Steiner points,

both being aware of their neighborhood of triangles. With the placement of possible
pylons inside triangles, we obtain a new type of vertex with respect to the triangulation
that we call interior vertex. In order to efficiently walk along a cable that connects an
interior vertex with another vertex, we need to know in which triangle it is contained.
We compute this information during the possible pylon placement phase while placing
vertices between two consecutive path vertices ui and ui+1. If vertices ui and ui+1 are
not both triangle vertices, interior vertices are placed as described in Chapter 4. With
the information of the neighboring triangles of vertices ui and ui+1 we can compute the
index, in which the interior vertices are contained, by finding the common neighboring
triangle.
The topological information of all vertex types and triangle edges is sufficient to walk

along a potential cable as a means to calculate the total costs. We first locate the
triangle that is intersected by the cable in at least two points. Since the edges that are
cut by the cable know their neighboring triangles, we can reach the next triangle that
is intersected by the possible cable. Note, that a cable might cross a triangle parallel to
one of its edges. In that case, the next triangle has to be determined by iterating over
all neighboring triangles of the end point of that edge. We have computed the total cost
if one intersection point is either the end point of the possible cable or we cannot find
the next triangle since the end point is an interior vertex.
After we have calculated the costs of all possible cables, we employ Dijkstra, modified

to also minimize the angles between two edges, since the total runtime of this algorithm
is negligible compared to the runtime of the Steiner point method.
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6 Experiments
In this chapter, we experimentally analyze several aspects of our proposed two-step
algorithm for finding transmission lines. We examine the performance of the Steiner
point method in both runtime and in cost convergence behavior in Section 6.1. Then we
explore the trade-off between angle penalization and total resistance cost in Section 6.2.
Finally, we compare our algorithm with a novel algorithm by Wiedemann et al. [WA21]
called LION, that is based on rasterized input data; see Section 6.3. All tests have been
conducted on a machine with an Intel Core i5-7600K 3.8GHz 4 core CPU and 16GB
DDR4 RAM.

6.1 Analysis of the Steiner Point Method
In the following, we use the interval scheme in our analysis. According to the time
complexity analysis in Section 3.3 and the approximation bound in Section 3.2, the
number of input points, n, and the number of Steiner points per edge, m, impact the
performance.

Test data. Since the interval scheme places Steiner points such that their number is
proportional to the length of each edge, we have to ensure that the average length of
the triangle edges in each instance for testing the runtime is the same. Furthermore, in
order to provide comparable instances, the ratio of triangles that have been explored by
the A? algorithm to the total number of triangles needs to be constant.

For this purpose we randomly generate instances with the same average triangle edge
length by keeping the global point density ρ(I) = n/A constant, where the variable A
denotes the area of the domain from which we sample the random points. We choose a
disk as sampling domain to avoid long, unrealistic edges at the border. To generate a
sequence of test cases with increasing input size, while keeping the global point density
the same in each, we start with an initial instance I0 with input size n0 and radius
r0 of the disk. For a test case Ii+1 with ni+1 points, we have to set the radius ri+1
to r0 ·

√
ni+1/n0 to keep the point densities ρ(I0) and ρ(Ii+1) the same. By picking

a suitable interval of weights per triangle, we manipulate the search space of the A?

algorithm because this interval influences the heuristic we use which was described in
Section 5.2. If not specified otherwise, we assign each triangle a uniform random weight
in the interval [100, 500] and choose source and target to be vertices at points (−ri, 0)
and (ri, 0), respectively.
In order to test the impact of m on the performance, we use randomly generated

instances of fixed size and gradually decrease the interval length to obtain an increasing
average number of Steiner points per edge.
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Runtime. A runtime measurement depending on input size by fixed average number of
Steiner points per edge is conducted in Section 6.3 in conjunction with the comparison of
LION and in the runtime breakdown into different factors. The effect on the performance
by varying interval length is also included in the detailed runtime analysis, therefore we
will omit a high-level analysis of the runtime in that regard and immediately study the
impact of the main components of the augmented Steiner point method, namely the
graph building and the path-finding step. For the tests with a fixed average number
of Steiner points per edge, we ran test cases with input sizes n = 1000 to n = 20000
and for tests of varying m and fixed input size we picked a test instance of input size
n = 10000 and altered the interval length such that the average number of Steiner points
per edge ranges from 2.5 to 13. Figure 6.1 reveals all results in stack plots, where the
time of finding a path is placed on top of the time we need to build the graph, so the
total execution time can be read from the top curve.

(a) Almost linear growth of the runtime without
angle minimization for fixed m. The graph
building step dominates the overall runtime.

(b) Runtime with angle minimization for fixed m.
Growth is still almost linear but now minimiz-
ing angles is the more expensive factor.

(c) Quadratic runtime increase without angle min-
imization for fixed n and varying m. Most of
the time is spent on building the graph.

(d) Runtime with angle minimization for fixed n
and increasing m. Now, finding minimum-angle
paths prevails the runtime.

Fig. 6.1: A runtime breakdown by the main factors graph building and path finding. The total
time spent on path finding (green) is on top of the time we need for building the graph
(blue).

Figure 6.1a confirms the time complexity analysis in Section 3.3 as we see an almost
linear growth with increasing input size. In Figure 6.1b we observe that the angle
minimization of our method contributes a factor of about 2 for fixed m. A quadratic
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increase in runtime by declining interval length for the original Steiner point method
can be identified, while the runtime curve of the angle minimization modification with
the naive update function is characterized by a sharper growth, as by increasing m the
number of in-coming and out-going edges increases by a factor of O(m), culminating into
an additional quadratic change in runtime. We can make two distinct conclusions about
the main factor that shapes the runtime depending whether we use the original Steiner
point method or also search for an angle minimal least cost path. Figures 6.1a and 6.1c
pinpoint the building time of the face graphs as main factors for the runtime regarding the
non-augmented Steiner point method, whereas Figures 6.1b and 6.1d determine the angle
minimization to be the more expensive element. The latter strongly suggest the usage
of a convex and monotonically increasing angle cost function, so the accelerated angle
update function of Wiedemann and Adjiashvili [WA21] can be used instead of the naive
approach, as mentioned in Section 3.4. This significant influence on the performance
of the algorithm is concerning from the perspective of large input data as common in
infrastructure planning and, more importantly, a large number of Steiner points.
These considerations lead us to the study of cost convergence. Such a study will allow

us to reduce the number of Steiner points. We want to show that even a small value of
m yields paths of near optimal cost.

Cost convergence. We empirically inspect the cost convergence behavior in different
instances. Since no algorithm is known to solve the Weighted Region Problem exactly,
we cannot do a definitive comparison. On all instances we vary the average number of
Steiner points per edge by changing the interval length. We include the result for the
simplest approximation, where the input graph is used as search graph and no Steiner
points are used (m = 0), as outlined in Chapter 3. Furthermore, we ran an extreme case,
in which we set the interval length l to 1 meter in all test instances, which corresponded
to 65 Steiner points on average on each edge.
Figure 6.2 shows the resulting cost convergence in six different randomly generated

instances. These inputs have been generated in a similar manner to those in Section 6.1.
The dashed line is the cost obtained by setting the interval length extremely low. We
can confirm the observation of Lanthier et al. [LMS01], that a small number of Steiner
points per edge seem to suffice to achieve good approximations, as all our instances seem
to converge rapidly to a certain cost. Figures 6.2b and 6.2d show particularly benevolent
input configurations, in which only two Steiner points per edge seem to be enough to be
very close to the optimal path cost.
It should be pointed out that we indeed do not get a strictly decreasing path cost for

increasing m as Figures 6.2a and 6.2f illustrate. This is due to the fact that the even
distribution of Steiner points on each edge can lead to a worse approximation of the
optimal bending point of the path by varying m. To see this, consider an edge that is
crossed by the optimal path at point s?. Let m? be the number of Steiner points, such
that the even distribution of them along this edge exactly coincides with s? and for the
sake of simplicity, we say that the length of this edge is divisible by m?. Now, if we
choose a new m′ > m?, that does not divide the corresponding edge length evenly, the
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(a) (b) (c)

(d) (e) (f)

Fig. 6.2: The cost convergence behavior of the Steiner point method on different test instances.
Each instance has n = 10000 triangle vertices and an average edge length of 65.
The dashed line represents the costs returned by setting the interval length to l = 1
resulting in an m = 65. This data indicates that a small number of Steiner points
yields a good approximation. Figures 6.2a to 6.2f show that a small value of m suffices
to produce near optimal paths.

even distribution will be slightly shifted compared to the positions of Steiner points in
the case of m?. This results in a worse approximation of s? with a higher number of
Steiner points. See Figure 6.3 for an illustration.

s?

Fig. 6.3: Three Steiner points evenly distributed along the triangle edges achieve the optimal
path segment. By increasing m to 4, all Steiner points shift on all edges and the
optimal segment cannot be found anymore. This results in worse approximation with
a bigger value for m.

26



6.2 Angle Cost Trade-Off
Finding a good power line poses a multi-objective optimization problem, as several
factors, such as financial, geometric (bending angles), environmental and other aspects
have to be considered. In this section, we consider the trade-off between the financial
costs of placing pylons and the geometric form of transmission lines by minimization of
angles discussed in Section 3.4. It is expected that a stronger focus on the minimization
of angles results in higher financial costs, because straighter paths are more favored at
the expense of sub-optimal pylon positions.
We analyze a positive linear edge angle cost function α(e1, e2) = c · (180◦−](e1, e2)),

where ](e1, e2) is the smaller angle between e1 and e2 with varying c > 0 in a Pareto
chart, shown in Figure 6.4. We measure the sum of the angles to characterize the the
straightness of the path.

Fig. 6.4: Pareto chart showing the trade-off between minimizing the turn angles and the total
path cost for a linear function α(e1, e2) = c · ](e1, e2) ≥ 0. With a higher value for c,
the angle between two incident edges is weighted more, resulting in a straighter path
(smaller sum of angles) but in higher costs.

Each point in Figure 6.4 corresponds to one path computed with a specific factor
c, the higher the factor, the brighter the color of that point. Each path is scattered
with respect to the achieved angle sum and path costs, shaping the trade-off surface.
Note, that the points are not even distributed regularly even though the factor c changes
by regular steps. This happens because the minimum cost paths constitute a discrete
family. So, if much more intermediate points were plotted, they would cluster at certain
angle sums, since the factor c needs to exceed a threshold in order to result in a new
path with a smaller costs.
We observe a clear trade-off between the minimization of angles and the corresponding

path costs, resulting in no factor c that provides low path costs and low turn angles.
For a distribution of angles for three different values of c, see Figure 6.5. We notice the
expected shift towards smaller angles, up to the point where the mean angle is below
ten degrees.
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Fig. 6.5: Three angle distributions for different values of c. Each bar represents the number
of angles steps of five degrees. We see a significant increase in smaller angles with
increasing c.

6.3 Comparison with LION
LInear Optimization Networks (LION) is an open-source package containing the algo-
rithms of Wiedemann [WA21], which aims to find optimal transmission lines by taking
rasterized geographic data as input. It applies the same angle minimization approach
we use but other than our algorithm, it minimizes the total cost of pylons for a power
transmission line globally. Instead of using Dijkstra’s or A?, LION relies on the Bellman–
Ford algorithm which runs in O(|V | · |E|) compared to Dijkstra’s algorithm which runs
in O(|V | log |V |+ |E|) if a Fibonacci heap is used as priority queue, where |V | (|E|) is the
number of vertices (edges) of the search graph. Furthermore, an iterative procedure to
decrease time and space by scaling the raster is implemented. This procedure first down
samples the input to a more coarse raster, in which it computes a path. It then builds
a corridor of a certain width around the path and iteratively improves the resolution
and the width of the corridor until the initial resolution is reached. While a considerable
improvement in time and space can be achieved with this scaling approach, only a locally
optimal path can be guaranteed. For comparable results we set the memory limit and
the input to manageable magnitudes, such that the scaling approach will not be applied.
Additionally, LION handles angle weights differently, so for a fair comparison, we do not
consider the angle minimization and set all angle weights to zero.

Test data. We focus on a runtime and cost comparison on randomly generated data
and employ the same input types of Section 6.1 for the triangulated data with an average
edge length of 120m. To obtain the corresponding rasterized input, we lay a square grid
of 10m by 10m for each cell on top of the triangulation and assign each cell the associated
weight of the triangle, in which the center of the cell is contained. For a comparable
results we set the interval length to l = 10m.

Results. Figure 6.6 shows the runtime and cost comparison. For the experiments,
buckets of input sizes n = 1000 to n = 10000 were created; each bucket having five
test instances. Figure 6.6a shows the average runtime per input size, together with the
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standard deviation and Figure 6.6b reveals the average cost per input size. Note, that
raster size grows by a factor of O(

√
n) with increasing n, since the radius of the sample

domain grows by a factor of O(
√
n), as discussed in Section 6.1.

(a) (b)

Fig. 6.6: Runtime and cost comparison of our method with LION on randomly generated data.
For more comparable runtime results, the Steiner point method has been ran with and
without the augmentations to minimize angles.

In this uniform setting, we can also infer that our algorithm runs approximately five
times faster. However, this conclusion cannot be easily generalized to other input data,
as the number of input points and thus the number of triangles do not have to strictly
correlate with the raster size but mainly depend on the triangle layout.
Figure 6.6b juxtaposes the total costs of pylons according to each algorithm. We

notice slightly better results by using our method. Small differences in triangulated and
rasterized inputs have to be taken into account, while judging which algorithm achieves
lower costs, as source and target costs might differ, due to inaccuracies with the cost
assignment of the grid-based input. Since start and end point are triangle vertices, our
method chooses the minimum weight of all adjacent triangle for the cost of the start
and end point, respectively; whereas LION cannot make that distinction and has to
use the cost of the cell of the starting point, whose center might be contained in a
triangle with higher costs. Nonetheless, test cases displayed in Figure 6.6b with input
size n = 4000, 6000, 8000 suggest that due to the monolithic discretization intrinsic to the
grid-based approach, sub-optimal paths with pylons centered in the raster cells are found.
Our results demonstrate that the Steiner point method can achieve superior performance
through the dynamic placement of points along triangle edges that is not restricted to
a homogeneous distribution of cells. We can expect that raster-based approaches can
mitigate this disadvantage by increasing the resolution of the grid. However, as shown
in Figure 6.6a and in more detail in Wiedemann [WA21], this results in a quadratic
increase in runtime.

In consequence, we conjecture that our method can yield paths at least as cost efficient
as paths produced by LION in a significantly shorter time, showing the superiority of
polygon based data compared to rasterized data. This is surprising, considering the fact
that we do not claim to optimize the pylon spotting problem globally, as LION, but do
only make an estimation by an approximation of the Weighted Region Problem.
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7 Conclusion and Future Work

We have introduced a new approach to infrastructure planning based on polygonal data
and used the Weighted Region Problem to formulate the problem of finding a minimal
cost path in this setting. Unfortunately, there is no exact algorithm known to find a
shortest path in weighted regions. Therefore, we made use of the Steiner point method
that finds a theoretically provable approximation of a shortest path. Since infrastructure
planning often requires angle minimized shortest paths, we combined the Steiner point
method with an angle minimization procedure by Wiedemann and Adjiashvili [WA21].
We tested that generic approach with an algorithm for finding transmission lines. For
that, we used an angle minimized shortest path obtained by the augmented Steiner point
method as a baseline for placing pylons and cables as cheap as possible.

Our experiments show promising evidence that our polygonal based approximation
can achieve results on-par with globally optimal raster based methods or even better
results due to the constraints of the raster layout, dependent on the raster resolution.
Raster based algorithms have a clear trade-off between resolution and runtime and we
were able to show that the runtime of our approach scales much better in project size
and can be up to 5 times faster while returning similar results. However, more tests on
real world data have to be conducted to make definitive statements about the accuracy
in comparison with both approaches.

Nonetheless, our method can be improved. It should be pointed out that a per-
formance increase in runtime can be expected with an improved memory allocation
technique in the graph building step of the Steiner point method and employment of
adequate strategies for parallelizing runtime intensive subroutines. If an angle mini-
mization is not required, it is also possible to not store the edges of the graph and
calculate the costs when needed which can result in a considerable improvement in stor-
age. If, however, an angle minimized path is of importance, we strongly recommend to
implement the accelerated update function by Wiedemann and Adjiashvili [WA21] as
the execution time dramatically increases with the naive update approach that we have
employed. For extremely large data or to obtain more accurate results a similar corridor
approach common in raster data can also be easily implemented within the Steiner point
method. Further improvements in regards of finding transmission lines can be made by
considering slopes in the input data with anisotropic regions (see [CNVW08] for details).

Our new approach can support experts in infrastructure design. It makes planning
faster and potentially more accurate. This helps stakeholders, planning agencies, and
residents by eventually providing better infrastructures.
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