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Abstract

Storyline visualizations show the structure of a story by depicting the interactions of the
characters overtime. Each character is represented by an x-monotone curve from left to
right and an interaction is represented by having the curves of the participating characters
run close together for the duration of the interaction. To keep the visual complexity low,
rather than minimizing pairwise crossings of curves, we count block crossings, which are
intersecting bundles of curves. There have been various approaches to drawing storyline
visualizations in an automated way.
In previous work we modeled the problem as a satis�ability problem, using modern Sat

solvers to generate block crossing optimal drawings in reasonable time. As a continuation
of that, we again model the problem as a satis�ability problem. We show that our new
model is superior in runtime compared to the old approach, by evaluating our model on
the same real-world instances and random instances as in previous work.



Fig. 1: Storyline visualization for Jurassic Park [1].

1 Introduction

A storyline visualization is a visual representation of a story. It represents charac-
ters and interactions between characters as time passes in the story. Each character
is drawn as an x-monotone curve in the plane where the x-axis represents the �ow of
time within the narrative. An interaction of characters over a speci�c time span is
represented by a corresponding region in the plane where the curves representing the
characters are drawn closely together. This style of representation was introduced by
Munroe [1] who visualized several movies in this way. Figure 1 shows one of these draw-
ings.

Fig. 2: A single block
crossing.

While this concept of storyline originally comes from visualizing
the stories of movies it can be applied to more general settings
that have entities that interact with each other.
We present an algorithm to automatically create storyline vi-

sualizations. We formulate the Storyline Visualization Problem

as an optimization problem. Minimizing crossings in drawings
is often considered as a natural way to improve the aesthetics.
We will however not consider pairwise crossings of curves but
focus on block crossings instead. This type of crossing was �rst
introduced by Fink et al. [2] for visualizing metro maps. In sim-
ple terms a block crossing consists of two sets of locally parallel
curves that intersect with no other curves in the crossing area. Figure 2 shows an exam-
ple of a block crossing. The idea of these block crossings comes from the assumption that
structured crossings within a con�ned region are easier to interpret as the same number
of crossings scattered across the drawing.

Modeling Decisions. As the Storyline Visualization Problem stems from the desire to
create visually pleasing drawings, the literature does not fully agree on what aspects of
a drawing should be part of the problem. One such aspect is whether it is possible for
meetings to occur at overlapping time intervals. One could argue that storyline should
represent the order of events as they appear in the respective medium. The storyline
for a movie for instance would in this case visualize the ordered sequence of scenes. In
this case overlapping meetings are not necessary. A di�erent approach is to visualize
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the spatio-temporal structure of the story. Figure 1, showing a storyline visualization of
Jurassic Park, for example times the events of the movie as they happened in the story
and not as they appeared in the screenplay. Another common example are �ashbacks
that show things in the movie after they've actually occurred in the story. As in previous
work [3, 4], we will focus on the second approach.
Another aspect is whether characters are allowed to appear or disappear during the

time span of a storyline visualization, that is, whether all curves span the entire extent
of the x-axis. Characters that are of less importance to the story for example because
they are present in few meetings only could be omitted during their idle time or even
omitted entirely. Further some characters that have a strong relationship with each other
within the story could be summarized to one single character. Both of these techniques
are present in Figure 1. For example, the character �Nerdy� dies and is not drawn
afterwards, while the character �Kids� represents multiple characters.

Previous Work. Tanahashi and Ma [5] computed storyline visualizations automatically
and de�ned three metrics to measure the quality of visualizations. One such metric is
the minimization of wiggles, which are deviations in curves that disrupt the visual �ow.
Minimizing such wiggles was discussed by Fröschl [6].
Another metric is the minimization of intersections of curves. This problem was for-

malized for storyline visualizations by Kostitsyna et al. [7]. They did however discuss the
problem in context of minimizing pairwise crossings. They proved the problem NP-hard,
presented an Fpt algorithm and gave an upper bound on the number of crossings in a
restricted setting. Gronemann et al. [8] developed an integer linear program (Ilp) to
solve this pairwise crossing minimization problem. They were able to solve instances
form real-world movies and books which we will take a closer look at as well in Section 4.
Di Giacomo et. al. [9] allowed characters to take part in multiple meetings at the same
time.
In an earlier paper [3] we introduced the concept of minimizing block crossings for

storyline visualizations. We showed that block crossing minimization in storylines is NP-
hard. For special cases we provided an approximation algorithm. We designed two exact
algorithms, one of which is �xed-parameter tractable (Fpt) in the number of characters.
In a more recent paper [4] we developed a Sat-based algorithm. The current work

improves this Sat formulation to handle more general cases of the block crossing min-
imization problem better. While the previous formulation was able to model �dying�
characters and characters being �born�, this modeling decision negatively in�uences the
runtime of the algorithm. We improve on that aspect.

Problem De�nition. The de�nition of the problem closely follows the problem state-
ment from previous work [4]. We allow characters to have lifespans, that is characters
can have time spans in which they are not drawn. We further allow concurrent meetings,
that is meeting can overlap.
A storyline S is a triple (C,M,E) with C = {1, . . . , k} being a set of characters,

M = {m1, . . . ,mn} is a set of meetings and E : C → P(IN) maps a character to a set
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of intervals of natural numbers IN. This set E(i) = {[b1i , d1i ], . . . , [b
ηi
i , d

ηi
i ]} contains ηi

disjoint time intervals in which i is alive. We call E(i) the lifespan of character i and
call i alive during its lifespan, otherwise we call the character a ghost. For each interval
in E(i) we call bri and dri a birth and death of i respectively. A meeting mj is triple
(sj , ej , Cj) where sj ∈ N is the start time of the meeting, ej ∈ N is the end time of the
meeting and Cj ⊆ C the set of characters that are involved in mj with sj ≤ ej . We call
a meeting mj active at time t if t ∈ {sj , . . . , ej}.
We forbid two overlapping meetings mj ,mk to contain the same characters, that is

Cj ∩ Ck = ∅ if sj ≤ sk ≤ ej . Further a character i can only participate in a meeting mj

during its lifespan, that is ∃[bxi , dxi ] ∈ E(i) with sj ≥ bxi and ej ≤ dxi .
A solution for a storyline instance S = (C,M,E) consists of a sequence Π = [π1, . . . , πλ]

of permutations of C and a non-decreasing function A : R→ {1, . . . , λ} that maps points
in time to permutations in the solution. A solution is admissible if the following conditions
hold true:

� For any point in time t ∈ R, for any meeting mj that is active on time t, the
characters in Cj must form a contiguous block on πA(t). Ghost characters do not
disturb the connectivity of this block.

� For any p ∈ {2, . . . , λ} the permutations πp−1 and πp must either di�er in exactly
one block crossing or must be equal πp = πp−1.

A block crossing between two permutations πx and πx+1 is a transposition of two adjacent
block of characters. Consider after renumbering πx = 〈1, . . . , a, . . . , b, . . . , c, . . . , k〉. An
example for a block crossing would be switching the blocks 〈a, . . . , b〉 and 〈b+ 1, . . . , c〉,
which results in the permutation πx+1 = 〈1, . . . , a− 1, b+ 1, . . . , c, a, . . . , b, c+ 1, . . . , k〉.
These de�nitions allow us to now formalize the Storyline Block Crossing Minimization

Problem: Given a storyline S = (C,M,E) �nd an admissible solution (Π, A) that min-
imizes the number of block crossings. This implies that all subsequent permutations in
Π must di�er by exactly one block crossing.

Our results. As a continuation of our Sat formulation from previous work [4] we revise
the formulation to achieve faster running times; see Section 2. We discuss the theoretical
improvements of this new approach in Section 3 and experimentally compare the new
approach to the one from previous work in Section 4.
As a secondary goal we implemented the model for the improved Sat formulation with

easy to use interfaces. The source code of this implementation is available online under
a free license1.

1https://github.com/acreter/storylinesSAT
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2 Model

This section describes how to construct an instance of Sat that encodes whether for a
given storyline S and an integer λ there exists an admissible solution for S that uses
exactly λ permutations of the set of characters C. If such a solution should not exist, the
instance of Sat will not have a valid truth assignment. By searching for the minimum
satis�able λ we can then derive a solution to the Storyline Block Crossing Minimization
Problem. In our implementation in Section 4 we use linear search.
We will not always describe the clauses for the Sat instance in conjective normal form.

We will instead use other operators whenever it improves readability. The transformation
to conjective normal form is straightforward however.

Describing the Permutations. To describe the permutations of C we will use Boolean
variables xrij that describe the relative position of characters i and j on permutation πr.
If xrij is assigned true then i is above j on πr. The relative position of two characters
must the unique (Antisymmetry):

xrij ⇐⇒ ¬xrji ∀i, j ∈ C, r ∈ {1, . . . , λ}. (1)

Further the relative order of three characters must not contain a cycle (Transitivity):

xrij ∧ xrjk =⇒ xrik ∀i, j, k ∈ C, r ∈ {1, . . . , λ}. (2)

Block Crossings. By the problem de�nition, there can be at most one block crossing
between two permutations. We describe a block crossing as two sets Tr ⊂ C and Br ⊂ C.
These are the two sets of characters that cross between πr and πr+1. We express the
membership of a character i for the subsets using variables of type tri and b

r
i . A character

cannot be in the same subset on the same permutation Tr ∩ Br = ∅:

¬(tri ∧ bri ) ∀i ∈ C, r ∈ {1, . . . , λ}. (3)

If one character is a member of subset Tr and another character is a member of subset
Br on the same permutation, then the two characters must cross:

tri ∧ brj ∧ xrij =⇒ ¬xr+1
ij ∀i, j ∈ C r ∈ {1, . . . , λ− 1}. (4)

All characters of subset Tr must be above the characters of subset Br. This also guaran-
tees, that only members of Tr and Br cross:

xij ∧ ¬xr+1
ij =⇒ tri ∧ brj ∀i, j ∈ C, r ∈ {1, . . . , λ− 1}. (5)

Members of both Tr and Br must be coherent:

xrij ∧ xrjk ∧ tri ∧ trk =⇒ trj ∀i, j, k ∈ C, r ∈ {1, . . . , λ− 1}, (6)

xrij ∧ xrjk ∧ bri ∧ brk =⇒ brj ∀i, j, k ∈ C, r ∈ {1, . . . , λ− 1}, (7)
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Fig. 3: Example for meeting groups. All horizontal lines represent meetings.

and must neighbor:

xrij ∧ xrjk ∧ tri ∧ brk =⇒ brj ∨ trj ∀i, j, k ∈ C, r ∈ {1, . . . , λ− 1}. (8)

Meeting Groups. The last step to construct the Sat instance is to connect the meetings
with the permutations. To model meetings we reuse the concept of meetings groups from
previous work [4]. A meeting group G is a subset G ⊆ M , that contains meetings that
are active at the same time. We say a meeting group G �ts on a permutation πr, if the
characters of each meeting m ∈ G form a contiguous block on πr without considering
ghost characters. Note that meeting groups have a natural order by time. Whenever
a meeting starts or ends, a new meeting group begins. Let M = [G1, . . . ,Gµ] be this
sequence of meeting groups of a given storyline S.
If a meeting group Gy ∈ M �ts on a permutation πr, then all subsets of Gy will also

�t on πr. It is therefore su�cient to only consider a meeting group Gy if Gy 6⊂ Gy−1 and
Gy 6⊂ Gy+1. We call the sequence of meeting groups with this propertyM′ = [G′1, . . . ,G′ν ].
Consider a storyline as a function f : R→ N that maps points in time to the number of
meetings active at that time, thenM′ would re�ect the local maxima of that function.
Figure 3 shows an example for meeting groups.
Meeting groups are solely used to construct the Sat instance. A satisfying assignment

is later transformed back into a solution for the given storyline S. To make use of these
meeting groupsM′, we introduce variables of type qr` that map a meeting group G′` to a
permutation πr.
A meeting group G′` must be assigned to at least one permutation:

r≤λ∨
r=1

qr` ∀` ∈ {1, . . . , ν}. (9)

Further a meeting group G′` can only be assigned to a permutation πr, if G′`−1 is assigned
to a permutation πp with p ∈ {1, . . . , r}:

j≤p∨
j=1

(
qj`−1

)
∨ ¬qp` ∀` ∈ {2, . . . , ν},∀p ∈ {1, . . . , λ}. (10)
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To guarantee that meetings form a contiguous block, we �rst need to know which
characters are alive during the time span of a meeting group. To achieve this we model
each character as a meeting with one member, that is the character itself. We call
these meetings single-member meetings. Note that this changes the sequence of meet-
ing groups M′. We can now de�ne the set of ghosts O` for a meeting group G′` as
O` = {x ∈ C | @mj ∈ G′` with x ∈ Cj} and subsequently the type of clauses that
guarantee that meetings form a contiguous block when they are active:

qr` =⇒ xrkj ∨ xrji ∀i, j, k ∈ C, r ∈ {1, . . . , λ}, G` ∈M′, (11)

∃mx ∈ G` with i, k ∈ Cx and j /∈ Cx,
j /∈ O`.

Inter Groups. Clauses 11 only force coherent meetings if the corresponding variable q
is assigned true. This however introduces a problem whenever there are two subsequent
meeting groups G′` and G′`+1 that require multiple block crossings in an optimal solution,
and therefore multiple permutations, between them. Let πr be a permutation with qr`
true and πp a permutation with qp`+1 true and r+2 = p. If neither G′` nor G′`+1 �t on π

r+1

then it might occur that no meeting group can �t on πr+1. If however no meeting group
is active on πr+1, that is qr+1

j is assigned false ∀j ∈ {1, . . . , ν}, then meeting coherency
is not guaranteed. If however G′` and G′`+1 share meetings, that is G′` ∩G′`+1 6= ∅, then all
meetings m ∈ G′` ∩ G′`+1 should be coherent on πr+1.
To address this problem we introduce inter groups which are special meeting groups

de�ned as follows: For each pair of meeting groups G′`,G′`+1 ∈ M′ let I` = G′` ∩ G′`+1

be the inter group between G′` and G′`+1. Let I = {I1, . . . , Iν−1} be the set of inter
groups. We use variables of type zr` to map inter group I` to permutation πr and force
the variables to be assigned true on all permutations between πr and πp with q

r
` and q

p
`+1

true:

(qr` ∧ q
p
`+1) =⇒

a≤p∧
a=r

za` ∀` ∈ {1, . . . , ν − 1} (12)

r, p ∈ {1, . . . , λ} with r ≤ p.

To force all meeting to form a contiguous block we de�ne the set of ghost characters O′`
for an inter group I` analogical to the meeting groups as
O′` = {x ∈ C | @mj ∈ I` with x ∈ Cj}. We can then apply Clauses 11 analogical
to the variables zr` :

zr` =⇒ xrkj ∨ xrji ∀i, j, k ∈ C, r ∈ {1, . . . , λ}, I` ∈ I, (13)

∃mx ∈ I` with i, k ∈ Cx and j /∈ Cx,
j /∈ O′`.
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π1 π2 π3

Fig. 4: Read the �gure from right to left. The dotted lines represent a character that �rst
appears on permutation π3. All positions on π3 can be reached by using the existing
block crossing structure and inserting the character on the right position on π1

Characters with multiple alive intervals. Whenever a character is born, it is possible to
insert it on any position on the y-axis of the drawing. This might however be complicated
for characters with multiple alive intervals. Consider a character i ∈ Cj for some meeting
mj and mj ∈ G′` with qr` assigned true. Further let i ∈ Ck for some other meeting mk

and mk ∈ G′`+1 with qr+1
`+1 assigned true. If i dies at time ej and gets born again at time

sk, then i can only use the block crossing between πr and πr+1 to be assigned a position
in πr+1, which does not correspond to an arbitrary position.
We therefore model characters with multiple alive intervals as multiple characters. To

insert a character at an arbitrary position on the permutation on which it �rst occurs, we
now just have to place the character at the appropriate position on the �rst permutation
and �ride along� the existing block crossing structure. Remember that Clauses 11 and
13 do not consider ghost characters. A character that uses the existing block crossing
structure will therefore never disturb any meetings. Figure 4 shows an example.
This concludes the Sat formulation. By searching for the minimal number of permu-

tations λ for which the resulting formula has a satisfying assignment we �nd a solution to
the storyline block crossing minimization problem. The permutations can be extracted
using the relative ordering variables xrij . The function A that maps time to these per-
mutations can be found by remembering which meeting groups maps to which point in
time by using the meetings in the meeting groups. The same can be done with all inter
groups.
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3 Comparison of the Models

We will refer to the model from Section 2 as Satnew and to the model from previous
work [4] as Satold. Before experimentally evaluating Satnew we will take a closer look at
the theoretical improvements we get over Satold. One very simple metric to evaluate an
instance of Sat is to count the number of variables the solver has to decide and count
the number clauses that restrict the solver. The model Satnew was mainly constructed
by removing redundant information Satnew. This section will therefore primarily focus
on what is missing in Satnew.

ABC-Blocks Satnew categorized the lines into blocks Ar, Br and Cr to ensure that
only a valid block crossing can occur between permutations πr and πr+1. Speci�cally
the characters in Br and Cr and only those must cross. These correspond to the blocks
Tr and Br in Satnew. The Ar block contained all characters that are not part of the
block crossing. This behavior can be modeled as not being part of either Br or Cr and is
therefore redundant.

Ghost variables Satold used special variables dri that denoted whether a character i is a
ghost on permutation πr. It was needed to release all clauses should one of the characters
in that clause be a ghost. In Satnew we saw that this information is already encoded in
the meeting groups. Speci�cally we constructed the set of ghost characters O` for each
meeting group G′`.
Since those ghost variables dri are de�ned per permutation and multiple meeting groups

could be assigned the same permutation, it could happen that meeting groups tried to
force di�erent dead/alive states onto the characters of a permutation. Satold therefore
did not allow two meeting groups containing di�erent sets of ghost characters to be as-
signed on the same permutation. This however made it necessary to introduce special
permutations for the birth and death of characters which increases the number of per-
mutations required. In Satnew on the other hand the number of permutations directly
corresponds to the number of block crossings.

Fewer meeting groups We have seen that it is unnecessary for meeting groups G` which
are subsets of either G`+1 or G`−1 to be considered by the model, since a permutation
πr which can �t G`+1 can also �t G` if G` ⊂ G`+1. We called the sequence of these
meeting groups which are no subsetM′. Satold however used all meeting groups, which
we denoted asM in Section 2.

4 Experiments

In this section we will describe a series of experiments to evaluate the model from
Section 2 which we refer to as Satnew. The approach in previous work [4] will be denoted
as Satold. Besides the usual analysis of time and memory consumption, we will addition-
ally use our SAT-based algorithm to experimentally investigate the properties of certain
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Fig. 5: Left: runtime of Sat on uniform random instances. Right: memory usage of Sat on
uniform random instances. Both plots show results for di�erent numbers of characters
k.

classes of random instances. Further a brief comparison of two di�erent Sat-Solvers is
given.

Implementation Details. The implementation of Satnew is written in C. The code for
all Sat-Solvers used in this section is in C++. The implementation of Satold used Python
code that writes Cnf Sat instance �les in Dimacs format which created an overhead by
using the �lesystem. Hence their measured time included the solver reading and parsing
the input �le, but not the time needed to build the instance. Our implementation of
Satnew bypasses that overhead by interfacing directly with the solver and linking it to
one single binary. To conduct a fair comparison we will therefore measure the running
time of the entire program and not just the �solving� part. In contrast to Satold however
we use linear search to �nd the minimum number of layers , since we can expect to solve
Satnew with fewer layers. This is due to Satnew not needing to insert layers to model the
births and deaths of characters as described in Section 3. The number of layers directly
corresponds to the number of block crossings. The solver used for all experiments is
minisat [10] version 2.2.0 unless stated otherwise.
All experiments have been performed on an Intel® CoreTM i5-4670K CPU running at

3.40 GHz with 8 GB RAM. This is somewhat comparable to the Intel® CoreTM i5-2400
at 3.10 GHz with 8 GB RAM setup of van Dijk et al. [4]. The implementations of both
Satnew and Satold are single-threaded.
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Gronemann et al. [8] Satnew Satold [4]
cr Time [s] bc Time [s] Time [s]

Inception 35 2.02 12 0.29 1.54
Star Wars 39 0.99 10 0.32 3.77
The Matrix 12 0.77 4 0.05 2.86

Tab. 1: Comparison of minimal number of pairwise crossings (cr), minimal number of block
crossings (bc) and running times. Note the running time improvement of Satnew over
Satold.

Real-World Instances. We test the implementation of Satnew on the real-world in-
stances used by Gronemann et al. [8] and van Dijk et al. [4]. These consist of three
movies and three books. Some of the books are split into individual chapters.
While it was already possible to solve the movie instances in reasonable time using

Satold, Table 1 shows an improvement in running time by using Satold. The book
instances however were not solvable in two minutes or less with Satold. This was mainly
due to the high number of characters that either �died� or were �born� during the instance.
Section 3 already showed that these �births� and �deaths� are handled better in Satnew.
Table 2 con�rms that: This can especially be seen by looking at the single chapter
instances anna1 to anna8 and jean1 to jean5, which are solvable with few block crossings.
The implementation of Satnew solves these in an expectantly small amount of time
whereas the implementation of Satold could not solve them in two minutes or less. It
is however also apparent that due to the large amount of characters some instances are
still not solvable.

Random Instances. We will use random instances of two kinds as in previous work
[3, 4]. The �rst are uniform instances that are generated as follows: Pick the number of
characters k, the number of meetings n and a probability p. Then create a meeting by
deciding independently at random with probability p whether each character is in the
meeting. Repeat this process until the number of desired meetings n is reached while
discarding meetings with fewer than two participants. We use probability p = 0.5 for all
instances unless stated otherwise. Note that in the instances van Dijk et al. [3] used for
their tests, all characters are alive at all times. This decision was made to be able to run
all of their algorithms on the same instances. We can therefore expect to have only a
small improvement over their results since the main advantage of Satnew, as seen with
the real-world instances, does not have any e�ect in this case.
Figure 5 shows the runtime of Satnew for various number of characters. For every

number of meetings we generate ten instances and therefore get ten data points. It is
apparent that the runtime for k = 7 and k = 9 explodes at 100 meetings and 30 meetings
respectively. For k = 5 a slight nudge upwards at 160 meetings can be observed. For
memory consumption something similar can be seen, with the exception of k = 7 which
seems to grow at a slightly lower rate.
Before moving on we will now conduct a general analysis on uniform random instances.

Figure 6 shows the optimal number of block crossings for multiple numbers of characters.
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Gronemann et al. [8] Satnew

cr Time [s] bc Time minisat [s] Time CaDiCal [s]

anna1 20 13.03 9 2.86 6.11
anna2 12 0.88 5 0.69 1.52
anna3 0 0.01 0 0.06 0.13
anna4 20 4.86 8 0.87 1.96
anna5 17 2.60 7 3.45 7.41
anna6 31 3.89 12 3.78 8.06
anna7 9 7.88 5 1.56 3.82
anna8 6 0.15 3 0.03 0.10
anna3-4 34 12.66 13 22.41
anna7-8 32 19.16 10 12.87 42.51

huck 42 111.31 14 45.59

jean1 10 0.90 6 1.22 2.56
jean2 6 0.08 5 0.03 0.11
jean3 13 6.31 7 1.07 2.60
jean4 42 22.22 10 6.46 11.57
jean5 17 1.52 9 0.33 0.73
jean1-2 20 3.93 13 7.83 18.28
jean2-3 33 48.90 16 10.01 24.49

Tab. 2: Comparison of minimal number of pairwise crossings (cr), minimal number of block
crossings (bc) and running time on the book instances. Individual chapters are denoted
by their corresponding chapter number. The runtime cuto� is 90 seconds.

With increasing number of meetings, these plots seem to have linear growth, with the
number of characters in�uencing the rate of growth. The probability p, which in�uences
the expected size of all meetings is also an interesting factor. It seems that the instances
generally require the most block crossings at p = 0.5 and fewer for p ≤ 0.4 and p ≥ 0.6.
This can be seen in Figure 6 left.
The second kind of random instances require few block crossings. They are generated as

follows: Let OPTmax be the maximum number of block crossings, C the set of characters,
n the number of meetings and p a probability. Starting from an arbitrary order of C
sample OPTmax uniformly-random block crossings to generate a sequence of OPTmax+1
permutations. To create a meeting, choose one permutation at random and then c
adjacent characters from this permutation at random, where c is binomially distributed
with probability p so as to match the uniform model. Repeat this process n times. Now
put the meetings in order of the permutation they appear on. This generates the sequence
of meetings. These instances are guaranteed to have a solution with at most OPTmax
block crossings.
Since for Satnew we search for the minimum number of block crossings linearly, a

small number of required block crossings should bene�t the runtime of the implementa-
tion. Figure 7 shows that this is indeed the case. Even for k = 13 no runtime explosion
can be observed within the �rst 200 numbers of meetings. Note that Satnew experi-
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Fig. 6: Left: optimal number of block crossings for uniform random instances. Right: optimal
number of block crossings for uniform random instances with varying probability p as
described in the text.

ences di�culty for instances with few meetings. These instances can be solved with few
block crossings as seen in Figure 7 right. For a small number of meetings the random
instances that require few block crossings closely resemble uniform random instances,
which explains the runtime spike.
Before we conclude the experiments we will compare two Cdcl Sat solvers. Our

implementation of Satnew was designed to be solver agnostic and can be used with most
modern Sat solvers with little modi�cation. The �rst solver is minisat [10] version
2.2.0 which was used for all experiments in this section. The second one is CaDiCaL

[11] version 1.3.0. Figure 8 shows that minisat has an edge over CaDiCaL on uniform
random instances and practically dominates CaDiCaL. Table 2 shows that this is equally
true for the tested real world instances.

Concluding Remarks In this section we have seen that Satnew has a clear edge over
Satold regarding the tested real world instances. This was due to the improvements of
Satnew described in Section 3. For the random instances no clear improvement can be
observed. This was however expected since the random instances generated do not make
use of dying characters and characters being born within an instance. However Satnew
does not perform worse than Satold on these instances either. It is therefore advisable
that Satnew should be used over Satold for all instances.
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Fig. 7: Left: runtime of Sat with opt ≤ 15 and number of characters k = 13. Right: optimal
number of block crossings of the same instances as seen in the left plot.
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Fig. 8: Runtime of CaDiCaL (stars) and minisat (crosses) for number of characters k = 7.
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5 Conclusion

We have presented a Sat-based algorithm to produce block crossing optimal drawings
of storylines. This algorithm achieved a generally faster runtime than the Sat-based
approach from previous work [4], especially for real-world instances. We also described
a set of experiments on uniform random instances and random instances with a small
amount of block crossings required. We've seen the optimal number of block crossings
for uniform random instances seems to grow linearly with the number of meetings. The
number of characters in�uence the rate of growth. Further uniform random instances
with meetings larger than half the number of characters require less block crossings.
This is equally true for meetings smaller than half the number of characters. Random
instances with a small number of required block crossings are generally easier to solve
than uniform random instances.
We are unaware of any heuristic techniques that produce non-optimal drawings of

storylines using block crossings. This might be good direction for future work. One
could also combine the concept of block crossings with di�erent approaches to produces
visually pleasing drawings of storylines, such as minimizing wiggles, pairwise crossings
or white space gaps.
While it is intuitive from a graphic design perspective to use block crossings, we are

unaware of research that investigate whether block crossings are a good metric for creating
nice drawings, or if there are any trade-o�s.
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