
Practical Course Report

A Local Search Algorithm for
Coordinated Motion Planning

Leon Füger

Date of Submission: 25. Februar 2021
Advisors: Prof. Dr. Alexander Wolff

Dr. Jonathan Klawitter

Julius-Maximilians-Universität Würzburg
Lehrstuhl für Informatik I

Algorithmen und Komplexität

Zusammenfassung

In diesem Praktikumsbericht geht es um die koordinierte Bewegungsplannung einer Men-
ge Roboter. Dabei wird ein Polynomialzeitalgorithmus vorgestellt, welcher Bewegungs-
pläne für Instanzen findet, welche aus einem Gitter und einer Menge Startfeldern und
Zielfeldern bestehen. Der vom Algorithmus erzeugte Plan liefert einen Bewegungsblauf,
welcher Roboter von den Startfeldern zu den Zielfeldern befördert, dabei dürfen sich
in jeder Runde mehrere Roboter um jeweils ein Feld bewegen, solange diese sich dabei
nicht in die Quere kommen. Der Algorithmus versucht die makespan, d.h. die Anzahl der
Runden bis alle Roboter auf ihren Zielfeldern sind, zu minimieren und verwendet dazu
Zwischenziele für Roboter, um Blockierungen zu vermeiden, sowie eine lokale Suche, um
Wege für die Roboter zu diesen Zwischenzielen zu finden. Unser Algorithmus besitzt eine
Laufzeit von O(n2 + m · k · n), mit n der Anzahl der Roboter, m die makespan und k
die Anzahl von Instanzen, welche die lokale Suche in jeder Runde durchsucht.

2

Contents

1 Introduction 4

2 Problem Description 5

3 Algorithm 6
3.1 Local Search . 6
3.2 Matching . 8
3.3 Combined Algorithm . 9

4 Benchmarks 11
4.1 Tests of the algorithm . 11
4.2 Calculating solutions for CG:Shop Contest 12

5 Conclusion 13

Bibliography 14

3

1 Introduction

In this practical course we considered the research question of coordinated motion plan-
ning of a set of robots. This means finding for a set of robots with start and target
locations a schedule, which moves the robots from their start to their target positions.
Robots can move in parallel but need to be disjoint from each other at all times. Com-
puting an optimal schedule which minimizes the makespan, i.e. the total time needed
for all robots to reach their goal, is strongly NP-complete as shown by Demaine et
al. [DFK+19]. Our algorithm was developed specifically for the CG:SHOP 21 contest
[cgs].
As with many problems of this nature there exist approximation algorithms that run

in polynomial time. Masehian et al. [MS13] used a model that splits the computing
of the schedule into a global heuristic for computing rough paths for each robot to its
target and a local algorithm running on each robot, which provides local path planning
and obstacle avoidance. Wurman et al. [WDM08] developed a system for coordinating
robots in warehouses by representing the grid the robots move on as a two-dimensional
weighted graph and using a standard implementation of the A* algorithm to plan paths
to storage locations and inventory stations.
Our approach uses intermediate target fields, which are spread out, to prevent robots

from blocking each other, and local search through possible steps that the robots can
take. The algorithm runs in O(n2 + m · k · n) time, with n being the number of robots
an instance has, m the makespan and k the number of configurations each CPU-Core
searches through in every iteration of the local search as our algorithm allows for parallel
processing. The right selection of k is critical for a good compromise between makespan
and running time, see Chapter 4.

4

2 Problem Description

In this section we formally define the problem. We have a 2-dimensional grid consisting
of quadratic squares. We also have a set of n axis-aligned unit-square robots in this
grid, a set S = {s1, . . . , sn} of n distinct start pixels (unit squares) of our grid, and a
set T = {t1, . . . , tn} of n distinct target pixels of the grid. Each robot completely fills
out exactly one square of the grid. During each unit of time, each robot can move at
most one field in a direction (north, south, east or west) to an adjacent pixel, provided
the robot remains disjoint from all other robots during the motions.
This condition has to be satisfied at all times, not just when robots are at pixel

positions. For example, if there are robots at each of the two adjacent pixels (x, y) and
(x + 1, y), then the robot at (x, y) can move east into position (x + 1, y) only if the robot
at (x + 1, y) moves east at the same time, so that the two robots remain in contact,
during the movement, but never overlap.
The grid is not limited in any direction and we also, apart from the robots themselves,

do not have obstacles. The contest [cgs] for with this algorithm was developed had
instances with obstacles and instances without, we only consider obstacle free instances.
Our goal is finding a schedule that moves all robots from their starting positions S to

their target positions T .
Figure 2.1 shows such an instance with the start positions in green and the target

positions in red.

Fig. 2.1: An example of an instance with 6 robots

5

3 Algorithm

This section outlines our algorithm and the reasoning behind it. Section 3.1 talks about
the local search which forms the basis of the algorithm which in every iteration computes
sets of moves for each robot, calculates the impact each of these sets would have on the
sum of the euclidean distances for each robot to its destination and simply picks the set
which moves the robots closest to their destination. Section 3.2 solves a problem which
causes a failure to our local search by using intermediate targets for the robots and in
Section 3.3 we combine these two methods and obtain an algorithm which can solve all
instances as described in Section 2 in polynomial time.
The algorithm was implemented in Python, partly because the contest for which this

algorithm was developed already provided Python libraries for validating solutions and
partly because of the ease of programming and libraries such as NumPy and Matlab.

3.1 Local Search
A local search is a heuristic method for solving computationally hard optimization prob-
lems. It can be used on problem that can be formulated as finding a solution among a
number of candidate solutions which maximizes a certain criterion or heuristic.
The idea of our local search is the following: We have the current state of the instance,

we now check in what directions any of the robots can move. To accomplish this in O(n)
time we use a NumPy array to store the current state of the grid. For each robot a
direction can be chosen if either the specific cell is empty or occupied by a robot which
has not found its target yet. We then randomly pick one direction for each robot. We
get a set of moves for the robots. We then let the robots move sequentially and update
the grid each time. For each robot we also have to check if the field it would be moved
on was occupied by a robot at the beginning of the round. This is done by storing the
direction a robot moved in at the cell it was at. This way we can check if another robot
can move on that cell in the same round, because as explained in Section 2 an adjacent
robot can only move in the earlier robots position if it moves in the same direction as
the previous robot, to prevent overlap.
We repeat this k times and then we compare the heuristics for each of these sets of

moves and pick the best one. The heuristic we use is simply the sum of the euclidean
distances for each robot from its current location to its target. Euclidean distance is
used instead of Manhattan distance as the former heuristic gives a better makespan on
average, see Section 4.
We then execute that step and repeat the process. When a robot reaches its target, it

is no longer considered in the move generation, which makes the algorithm faster towards

6

the end. If no robot can move, the algorithm terminates. In that case we have a valid
solution. Pseudo-code 1 shows our local search.

Algorithm 1: LocalSearch(List S, List T , Int k)
Input: List of Start Fields S, List of Target Fields T , Number of Instances

searched k
Output: List of Movesets M

1 M = []
2 curr = [evaluate(S, T), [S, T], []]
3 while true do
4 if evaluateCurr == 0 then
5 break
6 evalcurr = inf
7 nodes = []
8 for core in CPU do
9 for i = 0 to k do

10 newnode = copy(Curr)
11 grid = creategrid(newnode(S, T)
12 newmoves = generatemoves(S, T ,grid) # generates moves as described

in Section 3.1
13 step = []
14 for move in newmoves do
15 if movevalid(move, grid) then
16 step.append(move)
17 moverobot(newnode[move[0] , move, grid)

18 newnode[0] = evaluate(newnode[1])
19 newnode[2] = step
20 if newnode[0] < evalcurr then
21 nodes.append(newnode)
22 evalcurr = newnode[0]

23 curr = smallestnode(nodes)
24 evalcurr = curr[0]
25 M .append(curr[2])
26 return M

The local search however starts to fail with high enough density of robots, as the test
in Section 4 shows. Especially for bigger and denser instances the algorithm often causes
a few robots to oscillate back and forth between 2 fields, effectively getting stuck in an
endless loop.
What causes the algorithm to fail is the fact that some of the target fields are not

reachable by the corresponding robot, because the way to the target is blocked by robots
which have reached their target and therefore don’t move anymore. The next sections
outline a solution to this problem.

7

3.2 Matching
To solve the problem of robots not being able to access their target fields, because those
fields are boxed in by robots which are already at their target locations, we use helper
fields as intermediate targets for the robots. These helper fields are fields with even
column and row number. This creates a grid in which half of the columns and half of
the rows are free of targets and are passable by the robots. In other words we spread
the targets out evenly so that no target field is blocked by any of the other target fields.
We obtain potential helper fields by taking the bounding box of our target fields and

expanding it in x- and y- direction by doubling the side length and just taking all helper
fields in that expanded bounding box. This ensures that we get no more potential helper
fields than we have fields in the bounding box of our original start and target fields. We
then try to find a matching between each target field and one helper field. This could be
done with the starting fields as well mapping them to helper fields as the only purpose
of the helper fields is to provide intermediate targets for our robots on their way from
start to their original target.
To obtain a Matching between target and helper fields we tested 3 Methods. First,

using the Kuhn-Munkres Algorithm which runs in O(n3) time and finds an optimal
matching that minimizes the distances between the fields. This is done by filling a cost
matrix where the rows represent the original target fields, the columns represent the
helper fields and the cells of the matrix are filled with the respective distances.
Second, a simple greedy Algorithm running in O(n2) time, that assigns each target

field to the nearest not yet assigned helper field. And finally just assignment in O(1)
time.
We tested each of these algorithms on an instance with 200 robots, measuring the

sum of the (Manhattan) distances from the target fields to the helper fields. Figure 4.3
shows the results. The Kuhn-Munkres gives us a result which is about 20% better than
our greedy Algorithm while the random assignment is about 2.9-times worse than the
greedy matching.
Based on this we decided to use the greedy Matching, because in our estimation a 20%

reduction in distance between the target and helper fields does not justify the increase

8

in running time by a factor of n. Pseudo-code 2 shows our greedy matching.
Algorithm 2: Matching(List T)
Input: List of Target Fields T
Output: Sorted Sublist of Helper Fields R

1 B = ComputeBoundingBox(T)
2 doubleXandYSize(B)
3 H = EvenFields(B)
4 R = []
5 for t in T do
6 currdist = inf
7 currhelp = 0
8 for h in H do
9 dist = distance(t, h)

10 if dist < currdist then
11 currdist = dist
12 currhelp = h

13 R.append(currhelp)
14 H.remove(currhelp)
15 return R

3.3 Combined Algorithm
With our new helper targets we can now use our local search to always find a schedule
for our robots from their starting locations to the helper targets, since no target field is
blocked by any other occupied target field.
However we still need to get the robots to their original destination. To accomplish this
we use the original target fields as our starting locations and the helper fields as our
targets. We then again execute our local search and we will find a schedule that moves
robots from the original targets to the helper fields. Note that the second local search is
obviously not executed on the same instance but on a new one with new robots starting
at the target locations of the robots of the original instance.
What we can now do since in both instances the robots end up on the same helper fields,
we can reverse the order of sets of moves in the second schedule and for each moved robot
flip the Direction it was moved in (i.e. north to south , east to west etc.). We can now
add this modified second schedule to the first schedule and the result is a schedule that
moves the robots from the original starting locations to the original target locations.
Figure 3.1 shows an instance in the first local search. Robots that have found their

target (helper) field are green, those that are still moving are shown in blue and not yet
occupied target fields are shown in red. Note that the red helper fields are spread out
enough so that each is accessible.
Our algorithm always terminates with a valid solution, because all of the target fields

can be accessed by the specific robot and when a robot has found its target it is no longer

9

Fig. 3.1: An instance with 200 robots being solved

considered in the move generation. This causes the number of moving robots to decline
until all have found their target. The Pseudo-code 3 shows how our two algorithms are
combined to produce a valid solution.

Algorithm 3: CombindedAlgorithm(List S, List T , Int k)
Input: List of Start Fields S, List of Target Fields T , Number of Instances

searched k
Output: Solution R

1 H = Matching(T)
2 sol1 = LocalSearch(S, H, k)
3 sol2 = LocalSearch(T, H, k)
4 sol2.reverse()
5 for sets in sol2 do
6 for move in sets do
7 FlipDirectionOfMove(move)

8 R = sol1 + sol2
9 return R

10

4 Benchmarks

4.1 Tests of the algorithm
The benchmarks were done on a Machine with an 4-core Intel i5-6600K processor, 16
GB RAM and running Windows 10.

Euclidean or Manhattan Distance as our Heuristic. We tested two instances, one
with 50 and one with 200 robots. We ran each instance 10 times, half of these runs with
Manhattan and Euclidean distance as heuristic respectively. In each iteration the local
search searched through 20 possible move-sets. Figure 4.1 shows the average makespan
for each of these setups. Based on this we chose Euclidean Distance as the heuristic for
our local search.

n Manhattan Euclidean
50 185 161
200 787 656

Fig. 4.1: The makespan gets 15% better by using Euclidean Distance as Heuristic

Likelihood of local search failing. Here we took a grid of size 10 by 10, filled it with
an increasing number of robots with random non overlapping start and target positions
and executed our local search. We did test every configuration 10 times. Figure 4.2
shows the results. At 16 robots the algorithm starts to fail with some robots not being
able to access their target field.

n likelihood of the algorithm terminating
2 100 %
4 100 %
8 100 %
16 80 %
32 0 %

Fig. 4.2: The algorithm starts to fail with 16 robots

Test of the matching algorithms. We tested our three different matching algorithms
on an instance with 200 robots. As expected simple random assignment gives a large
total distance. We decided on the greedy method simply because of the significantly
lower running time.

11

Algorithm Sum of the distances Running time
Kuhn-Munkres 1242 O(n3)

Greedy 1538 O(n2)
Random Assignment 4440 O(1)

Fig. 4.3: Testing the different Matching algorithms on an instance with 200 robots.

Benchmark of final algorithm. We tested an instance with 50 robots. This instance
was tested with four different values for k, i.e. the amount of moves we search through in
each iteration of the local search. We test for k = 1, and for 10, 100 and 1000 and since
we had 4 CPU Cores this meant searching through four times that many instances in
each test. Each of these configurations were run 5 times and the average of the running
time and the makespan were taken. A lower bound for the makespan can be computed
simply by taking the biggest Manhattan distance between all start and target fields. For
this instance we get OPT ≥ 15. Figure 4.4 shows the results. Generally, keeping the
number of instances searched through between 10 and 100 seemed to us to be a good
compromise and we applied this to our calculations for the CG:SHOP contest.

k makespan running time in seconds makespan * running time
1 317 2.80 888
10 130 3.62 471
100 103 17.08 1833
1000 89 81.39 7244

Fig. 4.4: Test for different values of k on an instance with 50 robots

4.2 Calculating solutions for CG:Shop Contest
To compute schedules for the CG:SHOP 21 [cgs] contest we used the High Performance
Computing Cluster of the University of Würzburg. Taking the 16-Core Server CPU
into account the algorithm searched through 48 instances in each iteration and, over the
span of two weeks, computed solutions for all instances without obstacles and up to and
excluding 5000 robots. It also computed a solution for the biggest instance provided by
the contest with 9000 robots in 32 hours.

12

5 Conclusion

The algorithm described in this report finds schedules for coordinated motion planning of
a set of robots. It can solve all instances that fit the definition in Section 2 in polynomial
time by splitting the problem into two instances with spaced out target fields and solving
them by using a local search algorithm. The local search part of the algorithm could
probably be further improved by using more elaborate move generation and heuristics for
finding the best move set. However, generalizing the algorithm to also work on instances
that have obstacles would likely require major modifications to both matching and local
search. Furthermore we have to consider the running time of O(n2 + m · k ·n) where the
first part (n2) corresponds to the matching algorithm. This part is responsible for only
a minuscule fraction of the total running time, which means that the total running time
of the algorithm significantly exceeds quadratic time even for very low k. As such the
algorithm works best with instances which have a discrete number of robots.

13

Bibliography

[cgs] https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2021/
#problem-description.

[DFK+19] Erik D Demaine, Sándor P Fekete, Phillip Keldenich, Henk Meijer, and Chris-
tian Scheffer: Coordinated motion planning: Reconfiguring a swarm of la-
beled robots with bounded stretch. SIAM Journal on Computing, 48(6):1727–
1762, 2019.

[MS13] Ellips Masehian and Davoud Sedighizadeh: An improved particle swarm op-
timization method for motion planning of multiple robots. In Distributed
autonomous robotic systems, pages 175–188. Springer, 2013.

[WDM08] Peter R Wurman, Raffaello D’Andrea, and Mick Mountz: Coordinating hun-
dreds of cooperative, autonomous vehicles in warehouses. AI magazine,
29(1):9–9, 2008.

14

https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2021/#problem-description
https://cgshop.ibr.cs.tu-bs.de/competition/cg-shop-2021/#problem-description

Erklärung

Hiermit versichere ich die vorliegende Abschlussarbeit selbstständig verfasst zu haben,
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt zu haben, und die
Arbeit bisher oder gleichzeitig keiner anderen Prüfungsbehörde unter Erlangung eines
akademischen Grades vorgelegt zu haben.

Würzburg, den 25. Februar 2021

· ·
Leon Füger

15

Stamp

	Title Page
	Zusammenfassung
	Contents
	1 Introduction
	2 Problem Description
	3 Algorithm
	3.1 Local Search
	3.2 Matching
	3.3 Combined Algorithm

	4 Benchmarks
	4.1 Tests of the algorithm
	4.2 Calculating solutions for CG:Shop Contest

	5 Conclusion
	Bibliography
	Erklärung

