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Abstract

Labels are key to understanding not only geographical maps, but also technical drawings
or diagrams. They can be placed directly on the image or on a boundary box around it.
In that case the map features are connected with the labels by so-called leaders which
can be straight lines, curves or polylines. In this thesis we label the edges of a polygon.
This polygon is an obstacle, i.e., the leaders may not cross it. We introduce a new
drawing style for leaders and with it the problem TRIANGULATED BOUNDARY LABELING.
This drawing style guarantees crossing-free drawings even for polygons that have large
nonconvexities. We show how to efficiently solve two-sided, three-sided, restricted three-
sided, restricted four-sided and four-sided TRIANGULATED BOUNDARY LABELING. Using
a fast Matrix Multiplication algorithm and the Min-Plus-Algebra, we can solve FOUR-
SIDED TRIANGULATED BOUNDARY LABELING in O(n%) time, where w is the matriz
multiplication exponent. We give some example results of our algorithm and analyse the
runtime of an implementation on big instances.

Zusammenfassung

Beschriftungen sind wichtig, um geographische Karten, technische Zeichnungen oder
Diagramme zu verstehen. Man kann die Beschriftungen direkt auf dem Bild oder auf
einer begrenzenden Linie um das Bild herum plazieren. In diesem Fall werden die wichti-
gen Elemente der Karte mit sogenannten leaders mit der Beschriftung verbunden. Diese
koénnen gerade Linien, Kurven oder Polylinien sein. In dieser Arbeit werden die Kanten
eines Polygons beschriftet. Das Polygon ist ein Hindernis, das heif3t, leaders diirfen das
Polygon nicht durchqueren. Wir fithren einen neuen Zeichenstil fiir leaders ein und mit
ihm das Problem TRIANGULATED BOUNDARY LABELING. Dieser Zeichenstil garantiert
kreuzungsfreie Zeichnungen auch fiir Polygone, die viele nicht-konvexe Anteile haben.
Wir zeigen, wie man effizient zweiseitiges, dreiseitiges, eingeschrinktes dreiseitiges, ein-
geschrianktes vierseitiges und vierseitiges TRIANGULATED BOUNDARY LABELING l6st.
Mittels schneller Matrix-Multiplikation und der Min-Plus-Algebra kénnen wir FOUR-
SIDED TRIANGULATED BOUNDARY LABELING in O(n*) lésen, wobei w der sogenannte
Matriz-Multiplikations- Fxponent ist. Wir zeigen beispielhafte Ergebnisse unseres Algo-
rithmus’ und analysieren die Laufzeit einer Implementierung auf groflen Instanzen.
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1 Introduction

Labels are short descriptions of things that we see on geographical maps or drawings.
That can be the name of a street of mountain, some additional information as the address
or a rating, or the names of parts in a technical drawing. They are a key part to the
understanding geographical maps, pictures or technical drawings. It is important to
place them in a way that they are easily readable: The reader should be able to see
which part of the map a certain label belongs to. There are some choices that have to
be made when labeling a map.

Label position Labels can be placed in different ways. For maps, it is most common
to place them directly near the map feature. Figure shows a map of the city of
Wiirzburg and the environment. All labels are placed near to or on the corresponding
map feature or site, for example the names of the city or city parts, street names and
the names of mountains or the river. Labels should never overlap.

In Figure we see labels that are placed around the figure, in this case a cross-
section of the human forearm. The labels are not far away from the features and have
about the same shape as the picture. There are lines to connect the labels to the features.
These lines are called leaders.

In this thesis, we study boundary labeling. Here, the labels are not placed directly
on the map but on a bounding box around it. Figures and give examples for
how to use boundary labeling. Figure [1.1c]is an example of a building footprint whose
outer walls are labeled. This could be used for example to determine how useful every
one of the walls is for solar cells, as for certain angles the effectiveness is much higher.
Figures is an example for a museum that displays different art styles. The labels
show which art style is displayed on which wall.

If the labels are only placed on two (three) edges of the bounding box, we call it
two-sided (three-sided) boundary labeling. Leaders can be placed on adjacent or opposite
boundaries.

Obstacles Obstacles are part of the drawing area that should not be crossed by leaders.
On a geographical map, this could be a important building or some other label that
should be well readable and therefore not crossed by leaders or labels. In this thesis we
consider the obstacle to be the polygon that we want to label. It must not be crossed
by leaders.

Leader style Another choice is the style of the leaders. They can be straight lines (as
in Figure , curves or polylines. In the case of polylines, it is common constrain
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(a) A map of Wiirzburg and the environment. We can see labels for the whole city, parts of the town,
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Fig. 1.2: This polygon can not be labeled with type-opo leaders withouth them crossing the
polygon. Labeling it with leaders that may only be horizontal or vertical makes the
leaders have many bends which is neither aesthetically pleasing nor readable.

them to fixed directions. A typical style is the opo style. The character o stands for
orthogonal and p stands for parallel. This means that the first and last parts of the
leader is orthogonal to some reference line (typically the side of the image where the
labels are placed) whereas the middle part is parallel to the reference. The leaders in
Figure are drawn in opo style. They are orthogonal resp. vertical to the right and
left boundaries. In general type-opo leaders are very readable and the picture looks good.
But we can see in Figure[I.1d]that it looks strange when leaders touch the polygon in very
acute or very obtuse angles. Also, there are non-convex polygons that can not be labeled
by type-opo leaders without crossing the boundary of the polygon. An example can be
seen in Figure It is impossible to label some of the inner sites of the polygon using
only type-opo leaders, because we would need more than two bends. In this example we
can also see that restricting the directions of the leaders (in this case to only horizontal
and vertical) can lead to confusing drawings.
In our approach, we will use polylines with arbitrary directions

Fixed or sliding labels In some cases, labels are only placed at fixed points, for example
if they should be evenly spreaded around the boundary and on each edge. In this case,
the positions of the labels are part of the input. But it can also be part of the problem
to find the best position for the labels. Best can for example mean that the leaders are
as short as possible. It is still important that the labels be readable and do not overlap.
In some cases the number of labeled edges of the bounding box is restricted. This means
that only one, two or three edges of the bounding box may have labels. Four two-sided
labeling, those are typically two opposing edges. If the labels are long, it can be possible
to have linebreaks. In our case, the position of the labels is not part of the input. We
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Fig. 1.3: A map of kindergartens in Karlsruhe. The information about them is placed around
the maps and there are leaders that connect the information with the kindergartens
on the map. This is the first example of boundary labeling [BKSW07].

do not deal with linebreaks, all labels are just written around the bounding box.

1.1 Related Work

An overview about different map labeling problems can be found in the PhD thesis of
Claudia C. Iturriaga-Veldzquez of 1999 [IV99].

Boundary Labeling was introduced by Bekos et. al. in 2007 [BKSW07]. In their paper,
they label a map of kindergartens in the city of Karlsruhe. The information about and
adresses of the kindergartens are to be placed around the map and every kindergarten
should be connected with its label by a leader. The leaders should not cross, but there
are no other obstacles. An example for their output can be found in Figure[I.3] For fixed
labels and opo-leaders, their algorithm takes O(nlogn) time to find labeling of minimum
total leader length. For straight leaders, they give a time-O(n?"¢)-time algorithm for
fixed labels (¢ can be arbitrarily small) and a O(n3)-time algorithm for sliding labels.
Bekos et al. also give a recent overview over different labeling techniques [BNN19].

Kindermann et al. show an interesting application for boundary labels [KLW14]: they
programmed a IATEX package that allows to place todo-notes or comments in KTEX
documents. In this case, the labels are the annotations and the sites are the word or
paragraphs that should be annotated. They have implemented different leader styles,
such as opo or curved leaders.

Bose et al. use dynamic programming for boundary labeling with polygonal obstacles
m. In their model, the input consists of n points that have to be labeled and
polygon obstacles that must not be crossed by the leaders. There are n fixed positions



for the labels on the outer rectangle. They give an algorithm for two-sided labeling
with leaders that have at most 1 bend if it exists. The algorithm takes O(n3logn) time
(where n is the number of sites) to find a labeling that minimizes the total leader length
if such a labeling exists.

Recently, Bose et al. [BMM21] give algorithms for four three-sided and four-sided
labeling with polygonal obstacles. The leaders must have at most one bend. The runtime
of these algorithms is O(n3logn).

The following definition for a constrained Delaunay Triangulation has been taken from
a paper by Paul Chew:

Definition 1 (Constrained Delaunay Triangulation [PC89]). Let G be a straight-line
planar graph. A triangulation T is a constrained Delaunay triangulation (CDT) of G if
each edge of G is an edge of T' and for each remaining edge e of T there exists a circle
c with the following properties:

1. The endpoints of edge e are on the boundary of c.

2. If any vertex v of G is in the interior of c then it cannot be “seen” from at least one
of the endpoints of e (i.e., if you draw the line segments from v to each endpoint
of e then at least one of the line segments crosses an edge of G).

In our case, the planar graph G consists of the vertices and edges of the input polygon
and boundary rectangle.

1.2 Our contribution

We define a drawing style that is based on a constrained Delaunay Triangulation of the
polygon and bounding box.

Leaders may only have bends on the edges of the triangulation and these bends must
be evenly distributed on the edges.

We define the following version of the Map Labeling Problem:

Definition 2 (TRIANGULATED BOUNDARY LABELING).

Input: A simple polygon P = [p1,...pn| with p; € R of n vertices and a bounding box
B = [b1,ba,bs,ba] that is a rectangle containing P.

Output: A list L of paths that are leaders between the centers of the polygon edges and
the edges of B. All corner points of the leaders lie on edges of the constrained Delaunay
Triangulation of the input and are evenly distributed on these edges. No leaders cross
one another or edges of the polygon. The total length of the leaders is to be minimized.

In this thesis, we give an algorithm to solve TRIANGULATED BOUNDARY LABELING
efficiently. We give several problems that can be solved in O(n?) time using our algorithm
and show that FOUR-SIDED TRIANGULATED BOUNDARY LABELING can be solved in
O(n¥) time, where O(n®) is the time it takes to multiply two matrices of size n x n
in the min-sum-algebra (tropical algebra). As opposed to Bose et al. [BCK™18§]|, this
algorithm finds a legal labeling for all instances.
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Fig. 1.4: An example for a labeling with our drawing style. The bends of the leaders are only

on edges of the triangles. The corner points of the leaders on the triangle edges are
evenly distributed.



2 Algorithm for Boundary Labeling using
Triangulation

2.1 The ldea

All of the following algorithms use the same dynamic programming idea.

The input (a polygon and a boundary rectangle) is triangulated using a Constrained
Delaunay Triangulation. This means that the edges of the polygon and rectangle must
be edges in the triangulation. The other edges are elected so that the triangulation
is “as much Delauny as possible”. A formal definition of the constrained Delaunay
Triangualtion can be found in Definition Such a triangulation can be computed in
O(nlogn) time. [PC89].

After having computed the triangulation, we can omit all triangles that lie inside the
polygon, as the leaders are only placed outside of the polygon (see Figure and
the outer face. Let 7 be the triangulation without triangles inside the polygon and the
outer face. We will see that the dual graph Gp of T (the graph where the vertices are
the triangles and two vertices are adjacent if the triangles are neighbours) consists of a
cycle and some trees (see Figure , Theorem .

For all other triangles we compute the total leader length of all possibilities how
leaders can go through the triangle (see Figure for an example of two possibilities in
a triangle). Then we combine the triangles to find the shortest total solution using the
computations that we already did. See Figure for two combined triangles. Here,
it is important that we can only add two possibilities that match at the common edge,
i.e., if 5 leaders enter one of the triangles, 5 leaders have to leave the other one.

After computing all possibilities for each individual triangle, we select the one with
the smallest total length. See Figure for a shortest solution.

We begin by showing that the dual of T has indeed the structure that we use later
on.

Definition 3 (Pocket). The area outside of the polygon but inside the convex hull is
called a pocket or hole of the polygon.

Theorem 4. The dual graph Dg of T is a cycle with trees on the inside.

Proof. The bounding box has four corner points. All triangles in 7 that share a corner
of the bounding box form a path in Gp. The triangles that share an edge with the
bounding box are part of two such paths. This means that all the paths are connected
and thus form a cycle. If there were two cycles, that would mean that two non-convex
parts of the polygon meet and there are thus two polygons. This is a contradiction.

O
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(a) The polygon and its constrained Delaunay tri-
angulation. The edges of the polygon have to
be in the triangulation although they may not
be part of the real Delaunay triangulation. We
consider only the part outside of the polygon.

(b) The dual graph Gp of the part of the triangu-

lation that lies outside the polygon. It consists
of a cycle and some trees.

(c) Two possibilities for the triangle. In one case,
three leaders go through this triangle, in the
other case there are only two leaders. We com-
pute the total leader length of all possibilities.

SSq=wy

(e) The shortest total solution for this polygon and
triangulation.

(d) We go through the dual one by one and add

more triangles. We have to take care that the
number of leaders on common edges is congru-
ent. These are two possibilities for two com-
bined triangles.

Fig. 2.1: An explanation of our general idea.



(a) The incoming point is closer to the polygon (b) The incoming point is further away from the
than the outgoing point of the fixed leader. polygon than the outgoing point of the fixed
leader.

Fig. 2.2: The two cases for a triangle that has incoming and outgoing leaders on the same edge.

Definition 5 (Incoming, outgoing). We fix the direction of a leader to go from the site
to the label and thus have defined the terms incoming and outgoing leaders on edges of
the T.

As already mentioned in Section[I.2] if k leaders enter the triangle in edge A, we divide
this edge in n 4 1 parts and distribute the bends of the leaders evenly on the edge. The
leaders are not allowed to cross. From this, we get our next lemma.

Lemma 6. In an optimal solution, every edge of a triangle has either only outgoing or
only incoming leaders.

Proof. All leaders that start at a site or a pocket are clearly incoming, because going
into a pocket of the polygon can not result in a shorter leader. Consider the edge where
such a leader leaves the triangle. Assume for contradiction there is also an incoming
leader at this edge. There are two cases.

Case 1: The incoming leader enters closer to the polygon than the outgoing point of the
fixed leader (See Figure [2.2a). This means that the two leader cross inside of
the triangle which may not happen.

Case 2: The incoming leader enters further away from the polygon than the outgoing
leader (See Figure . The incoming leader starts at a site, so following it
in the opposite direction leads to the polygon. This means that the outgoing
leader that started at a site can never reach the outer rectangle without crossing
the incoming leader which leads to a contradiction.

If all leaders leave only at one edge, the other edge can not be an outgoing edge,

because there are no more leaders in the triangle that can leave via this edge. O

Definition 7 (Configuration). Let ABC be a triangle. The (a,b,c) stands fore the
number of incoming leaders for edge a resp. b resp. c. It is called a configuration.
Negative numbers for a,b, c stand for outgoing leaders.

12
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Fig. 2.4: Examples how different configurations for one triangle look like.

(g) (3,—-1,—2) or (—3,1,2) (h) (3,—2,—1) or (—3,2,1)
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Fig. 2.5: To compute the total length of leaders in the triangle, we compute the length of every
single leader via trigonometry and sum them up.

See some examples for configurations in a triangle in Figure
It is easy to see that for every configuration (a, b, ¢)

a+b+c=0

holds. This is because we cannot generate or lose leaders.

Cost of a configuration We define the cost of a configuration as the total length of
leaders in a triangle for the given configuration. We will show that it is possible to
compute the cost in constant time for a given configuration.

Lemma 8. The cost of a configuration for a given triangle can be computed in constant
time.

Proof. We conceptually partition the triangle in ¢ many smaller triangles, where one
edge of those smaller triangles is the leader. Its length can now be computed using
trigonometry.

For a triangle ABC where « is the angle that lies opposite of edge a, the length of
edge a can be computed using the following formula (which is the reformulated cosine
formula):

Jal = /16l + ef2 — 28] - [¢] - cos(a) (2.1)

See Figure for reference. The total length L of t leaders between the edges b and
c of the triangle is

i|b| ile| 2 ilbl e
L= el ) g P 2.2
Z\l(tﬂ) <t+1 1 41 S (2.2)

where |b| resp. |c| denotes the length of edge b resp. ¢ and « is the angle between the
edges b and ¢. We can simplify this formula. First, rearrange some terms.

2|p|2 2| |2 2|p) -
L= Z\/ alll Pl — 9! 51 - Icl - Ccos (2.3)

t+1)2 t+1)2 (t+1)2

14



Then, we factor out (t+ 1):

t
:Z t+1 - (a2[B)2 + 12]¢|2 — 232[b| - || - cos a) (2.4)

t
1
L= i_()m\/i2|b|2 +i2|cf2 — 2i2(b| - || - cos o (2.5)

As t is not the index of summation, we can take (¢ 4+ 1) out of the sum:

le\/mb\? i2|c|2 — 2i2[b| - |¢] - cosa (2.6)

We factor out i? and take it out of the square root:

1
I — m \/22 b2 + |c|? — 2bc cos a) (2.7)
_ H = Z /(b2 + |e2 — 2[b] - |e] cos ) (2.8)

As /(b2 + [c]2 — 2]b] - || cos @) does not contain the index of summation, we can place
it in front of the sum and use Gauf’s formula for sums:

1 t
=T (|62 + |c|? — 2]b] - || cos « ;)z (2.9)
1 t-(t+1
=1 (162 + |¢|? — 2]b] - |¢| cos ) ——= ( + ) (2.10)
t
=z V(b2 + [ef2 = 2[b| - |¢] cos ) (2.11)
This formula can be computed in constant time, hence configuration of a triangle can
be computed in constant time. O

This only considered leaders going straight through the triangle from one edge to
another. We can also use this formula for triangles where leaders go through all three
edges, see Figure [2.6] For each edge, we split the triangle in two parts. Let /., resp. ¢,
be the number of leader that enter via edge ¢, resp. edge a. Then, the corner of the new
triangle that contains edge c lies on the edge b

le+1
le+1l,+1

times the distance AC away from point A. The other corner lies

b, +1
b+ 0, +1

times the distance AC away from point B on edge c.

15
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(a) The triangle part that contains edge a. (b) The triangle part that contains edge b.

B
C
A
B
(¢) The whole configuration.

Fig. 2.6: To compute the cost of this configuration in triangle a,b, ¢, split up the triangle in
two triangle parts. Now we can compute the length of the leaders in parts a, b, dy and
b,d;,c and sum them up.
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Fig. 2.7: We partition the triangles in three types: The exit triangles (green, rising pattern),
the inner triangles (blue, falling pattern) and the fan triangles (white).
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Fig. 2.8: The triangles an corner fan parts are named according to their cardinal direction.

Combining the triangles To get a shortest total solution, we combine all triangles. We
distinguish three types of triangles after the triangulation (cf Figure

1. triangles in the pockets of the polygon, on the trees of the dual, inner triangles

2. triangles that have a common edge with the bounding rectangle, outer triangles or
exit triangles

3. all other triangles, which lie on the cycle of the dual, one endpoint is a corner point
of the rectangle, corner fan triangles. The set of corner fan triangles that share a
particular vertex of the rectangle will be called corner fan.

There are four outer triangles in the triangulation (i.e., triangles that have a common
edge with the bounding box), which we call N(orth), E(ast), S(outh) and W (est). The
corner fans are called NE, SE, SW, NW accordingly (cf. . The k fan triangles in the
NW fan are named NWy,---, NWj, numbered in counterclockwise order.

Lemma 9. In an optimal solution, there is only one possible configuration for inner
triangles. Calculating the total cost of this configurations for all inner triangles takes
O(n) time.

Proof. In an optimal solution, leaders do not enter the pockets, because that can never
result in shorter total leaders. So all leaders leave the pockets and since the dual of a
pocket is a tree, this is uniquely determined: there is only one way out. This means
that there is only one configuration that we need to calculate. We can start from the
leaves of the dual graph and one after the other compute the length of the leaders for
more triangles. This can be done in time O(n) for all inner triangles: There are at most
n polygon sites that lie inside a pocket. Therefore there are at most O(n) triangles
inside a pocket (because a triangulation of a simple polygon with n vertices has O(n)
triangles). The cost for the configuration of each triangle can be computed in constant
time (Lemma |8 so all in all, all costs for the inner triangles can be computed in O(n)
time.

O

17



All corner fan triangles have on common edge with the polygon or its convex hull. The
number of leaders that enter through this edge is therefore determined by the input. We
call these fized leaders. For the other edges there are O(n) possibilities for entering
leaders. It is easy to see that two edges determine the number of leaders on the third
edge, because as we have seen before the number of incoming leaders minus the number
of outgoing leaders is zero. For a corner fan triangle ¢, by ¢(i), we denote the length
of the configuration where ¢ leaders enter the triangle on the edge that comes first in
counterclockwise direction.

Lemma 10. Computing all possible configurations for all corner fans takes O(n?) time.

Proof. Let tc, . . (i) denote the cost in all triangles between neighbouring triangles
c1,-..,c for ¢ leaders that enter ¢; in counterclockwise direction. Let f; be the number
of fixed leaders that directly enter a triangle ¢ from a site or pocket. To sum up a corner
fan part ¢ consisting of the triangles ci, ..., ci we use the following formula:

te(i) = tey,en (1) = tey,ep—1(0) +te, (0 4+ (fr 4+ + fr-1)) (2.12)
=t (i) Ftey G+ f1) + oot te, G+ (L4 4 fr1) (2.13)

As we have seen before, the cost of a single configuration can be computed in constant
time. We compute the values for ¢ € {—n,...,n}. For all four corner fans, there are at
most O(n) summands and we have to compute O(n) values, which leads to a total time
of O(n?). O

For an outer triangle, there are O(n?) possible configurations, because up to n leaders
exit the triangle, i.e., their label is at this edge of the rectangle, and n leaders can enter
or leave the triangle in one of the other edges of the triangle. So, for an outer triangle
e, ce(i,7) denotes the length of the configuration where i leaders enter the triangle on
the edge that comes first in counterclockwise direction and j leaders leave the triangle
on the edge that comes last in counterclockwise direction. This results in ¢ — j labels
on the outer edge. There are O(n?) possible values for each exit triangle. All of them
can be computed in O(n?) time, because the computation of every configuration takes
constant time as seen in Lemma [§

Undefined values Note that some of the values are undefined. Take for example
c¢n(—1,—1). There is no possible configuration where leaders only leave an exit tri-
angle. We leave these value as undefined. Whenever we add a number and an undefined
value, the result is undefined. The undefined value is greater than any number, so it can
not be the minimum of a set.

In the following sections we will see how to use this idea for different problems.

2.2 Two-sided labeling

Problem statement For the problem TwoO-SIDED TRIANGULATED BOUNDARY LA-
BELING, only two outer edges of the rectangle may be used to place labels. The edges
can be adjacent or opposite.
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(c) To add the last exit triangle, we need to put (d) An explanation of Equationm
the two parts together such that the sum of
the outgoing leaders sum up to n.

Fig. 2.9: The steps of the algorithm for two-sided labeling

Theorem 11. TwO-SIDED TRIANGULATED BOUNDARY LABELING can be solved in
O(n?) time.

Proof. See Figure for a graphical explanation.

Without loss of generality let the two forbidden triangles be the northern and southern
ones. We combine the fan parts as described in Lemma [10] and store the values. In this
case, as the northern and southern triangles can’t have labels, we can add them as
well. Now we have to “fan parts”, a southern and a northern one. This means that
¢n (i) denotes the total length of the triangles in the northeastern and northwestern fan
part (and neighbouring pockets) and the northern exit triangle when i leaders enter the
northeastern triangle in counterclockwise direction. By fn, we denote the number of
fixed leaders that enter the northeastern and northwestern corner fan part.

Now, we first add the cost of the eastern and the southern fan part using the following
formula.

cs,e(i, ) = cs(i) + cp(i+ fs, 7). (2.14)

Then, we add the southern fan part using the following formula.

cs,pN(1,7) = csp(i,j — fn) +en(j— fn) (2.15)
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Now, ¢s g n(i,7) denotes the cost of the configuration where i leaders enter the north-
western corner fan part in counterclockwise order and j leaders leave the southwestern
corner fan part in counterclockwise direction. See Figure

When adding the western exit triangle we compute a vector r for the results. We say
that r(k) denotes the length of the smallest configuration where k € {0,...,n} leaders
leave through the eastern exit triangle and therefore n — k leaders leave through the
western exit triangle.

T(k) = ie{innin n CS,E,N(i — fs,i —k+ fN) + Cw(i —k+ fN,i — fg) (2.16)

For an explanation of this formula see Figure The computation of this vector takes
O(n?) time, because we have to sum up O(n) numbers O(n) times. The solution is the
minimum of the entries in the resulting vector 7. O

All of this can be seen in Algorithm

Algorithm 1: Dynamic Program for two-sided labeling

1 Compute a Constrained Delaunay Triangulation for the polygon in the rectangle
2 Compute northern and southern fan part

3 Combine eastern and southern costs

4 Combine the result with northern cost

5 Combine with cost of western exit triangle

6 return the smallest entry in the resulting table

2.3 Three-sided labeling with one forbidden outer triangle

Problem Statement RESTRICTED THREE-SIDED TRIANGULATED BOUNDARY LABEL-
ING is the special case of three-sided labeling where in one of the outer triangles there
must be no leaders. This could be the case, if there is a logo in the lower part of the
drawing and there is no space for leaders there.

Theorem 12. RESTRICTED THREE-SIDED TRIANGULATED BOUNDARY LABELING can
be solved in O(n?) time.

Proof. Without loss of generality we assume that the forbidden triangle is the southern
one. By r(j, k) we denote the total cost when j labels are placed on the western and k
labels are placed on the northern boundary. This means that n — j — k labels must be
placed on the eastern boundary, as in total we have to place n labels.

Let csw,w,nw (i, j) be the cost of the northwestern and southwestern corner fan part
and all neighbouring pockets and the western exit triangle when ¢ leaders enter the south-
western fan part and j leaders leave the northwestern fan part in counterclockwise di-
rection. We can precompute and store the values csw,w nyw (0, j) for all j € {—n,...,n}
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Fig. 2.10: This figure gives an overview over the leaders that enter and leave the various trian-
gles.

in O(n?) time. Those are all the values we need for this part, as no leaders may leave
the southwestern corner fan part into southern direction.

Let csg,p,nE(1,j) be defined accordingly for the eastern part. We precompute and
store all values csp g NE(F,0) for j € {—n,...,n}.

Now,

(4, k) =csww,nw (0, fsw — 7 + faw
+en(fsw — 7+ faw, fsw — 7+ faw0 — k)
+cenepsw(fsw —J+ fnw —k+ fyg,0)

Confer Figure for a graphic explanation of the number of leaders that enter and
leave the various parts.

We can compute all values of 7(j, k) for j,k € {—n,...,n} in O(n?) time. The optimal
solution is the smallest entry in r(j, k). O

2.4 Four-sided labeling but leaders may only use outer
triangles next to their fan part

Problem Statement For RESTRICTED FOUR-SIDED TRIANGULATED BOUNDARY LA-
BELING, all four edges of the rectangle may be used, but all polygon sites have to be
labeled on one of the exit edges that are next to them. We want the smallest solution
with smallest total length.

This problem is the most general that we can solve in O(n?). A resulting drawing
can be more easy to read because the labels are not too far away from the sites they
describe.
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Theorem 13. RESTRICTED FOUR-SIDED TRIANGULATED BOUNDARY LABELING can
be solved in O(n?)time.

Proof. For every outer triangle, there are at most O(n) possibilities as the two neigh-
bouring fans have at most n edges total. We can compute the length of each possibility
in O(n) time because it consists of at most n triangles that need to be combined. Every
configuration of an outer triangle can be combined with at most one configuration of a
neighbouring outer triangle, so all in all there are only n configurations. We can sum up
the total length of every configuration and find the smallest one in O(n).

All in all this takes O(n?) time. O

2.5 Four-sided labeling without restrictions

In this scenario we have four free edges of the rectangle where labels can be placed.

As we have seen before, there are four outer triangles in the triangulation (i.e., triangles
that have a common edge with the bounding box), which we call N(orth), E(ast), S(outh)
and W (est). The corner fan parts are called NE, SE, SW, NW accordingly (cf.[2.8). The
k fan triangles in the NW fan are named NWy, - - -, NWj, numbered in counterclockwise
direction.

We will store the cost of the fan triangle configurations in one-dimensional vectors
and the cost of the outer triangle configuration in two-dimensional matrices.

Algorithm 2: Dynamic Program for four-sided labeling

1 Compute a Constrained Delaunay Triangulation for the polygon in the rectangle
2 Combine the fan parts for the four exit triangles e // O(n?)
3 do

4 for i = —n to n do

5 for j = —n ton do

6 L L compute c(7,j) and store it

7 Add the northwestern fan part to the northern triangle using the formula in
Equation // O(n?)

8 Add the western exit triangle using the formula in Equation m // O(n®)
9 Add the south-western fan part

10 Add the southern exit triangle

11 Add south-eastern next fan

12 Add the eastern exit triangle

13 Add the north-eastern fan part

14 return the smallest value in the diagonal of the resulting matrix

Combining the triangles For an exit triangle e, let c.(i,7) denote the cost of the
configuration where i leaders enter the exit triangle in counterclockwise order and j
leaders leave it in counterclockwise direction.
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Jj— fnw

J faw

(a) To get the solution for 7 entering and j leaving (b) To get the solution for the additional exit tri-
leaders, we have to compute cn (4,7 — faw) + angle we have to take the minimum over all
enw (G — faw). possible values for k.

(c) When having computed the whole matrix, we
can find the solution in the diagonal, because
i leaders enter the norther exit triangle and ¢
leaders leave the northeastern fan part.

Fig. 2.11: An explanation of the steps of the algorithm for FOUR-SIDED TRIANGULATED
BOUNDARY LABELING.
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For a corner fan part t, let ¢(i) denote the cost of the configuration (i.e., the total
length of all leaders in the corner fan triangles and the neighbouring pockets) where 4
leaders enter the corner fan part in counterclockwise direction. Let f; be the number of
fixed leaders that enter the corner fan part from the pockets.

We precompute and store all values ¢,(i) for i € {—n,...,n} for the fan triangles.

To get to a solution, we have to combine the exit triangles with the corner fan parts.
We start with the northern exit triangle and combine it with the northwestern fan part.
Let ¢y nw (4, j) be the cost of the configurations in the northern exit triangle and the
northwestern fan part combined when ¢ leaders enter the northwester corner fan part
and j leader leave the northern exit triangle in counterclockwise direction.

To compute ey yw (i,7), we use the following formula.

enNw (i, §) = en (i, j — faw) +enw (i — fvw) (2.17)

We have to add the value cyw (7 — faw) because fnw additional leaders start in the fan
part which means that j — fyw + fayw = j leaders leave it. For a graphical explanation,
confer Figure

As a next step, we add the next exit triangle to get the resulting matrix cy, yw,w. Note
that ey nww (4,7) denotes the total length of the leaders in the northern and western
extit triangle, the northwestern corner fan part and all its neighbouring pockets when
leaders enter the western exit triangle and j leaders leave the northern exit triangle in
counterclockwise direction. We use the following formula

CN7w(i,j) = min CN,NW(i7 k?) + Cw(k?,j) (2.18)
—n<k<n
This formula is explained in Figure We compute all legal solutions, i.e. solutions
where the number of leaving leaders for the first part equals the number of incoming
leaders for the second part. Then we take the minimum.

We add all other parts in the same way, using formulas according to those in Equa-
tions and The result is a matrix C' where C(3, j) denotes the total length of
all leaders when i leaders enter the northern exit triangle from the north-eastern fan
part and j leaders leave the north-eastern fan part into the northern exit triangle (cf.
Figure . So it is evident that actual solutions are only found in the diagonal of the
matrix. Therefore we have to search the diagonal for the smallest solution. This gives
us the number of leaders that have to cross between the north-eastern fan part and the
northern exit triangle to get the smallest possible leader length.

Finding the actual drawing So far, we only computed the minimum sum of the leaders.
But to draw the labeling we need the exact number of leaders that go through every
edge. We can find it by going backwards through our computation and see which numbers
realize the minimum. This can be done in O(n?) time.

Runtime (simplified analysis)

Theorem 14. Four-sided labeling without restrictions can be solved in O(n3) time.
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Proof. As explained in Section [2.I] the computation for the number and length of all
leaders in the inner triangles can be done in O(n) time, computing all vectors for the
fan triangles and combining them to fans takes O(n?) time and computing the matrices
for the exit triangles takes O(n?) time.

Adding a fan triangle as it is shown in Equation can be done in O(n?) time,
because we have to do a simple addition for every of the resulting O(n?) matrix cells.

Adding an exit triangle takes more time. For every resulting matrix cell, we have to
find the minimum over O(n) sums. This can be done in O(n?) time, because we compare
O(n) number for each of the O(n?) resulting cells. Finding the value in the last matrix
can be done in O(n) time, because we only have to look at the values on the diagonal.

As shown in the preceeding paragraph, the actual values for all leaders can be found
in O(n?) time.

O

Tropical algebra In order to improve the runtime, in particular the combination of the
exit triangles, we consider the so-called tropical algebra. The following definitions are
taken from [Lit13].

Definition 15 (Semiring). Let (S,®,®) be a tuple of a set and two operations. The
tuple (S, ®,®) is a semiring if

e & and ® are associative,
o P is commutative,
e ® is distributive with respect to ®.

An example for a semiring is (R, +, -). From this example, we can see why the symbols
that are normally used to define a semi-ring are close to - and 4. But we can also define
rings with other operations.

Definition 16 (Tropical Algebra). The tropical algebra (or min-plus algebra) is the
semiring (RU {oo}, ®, ®), where

x @y =min(z,y) for x,y € RU{oo}
r@y=x+vy forx,y € RU{oo}
The tropical algebra got is name in honour of the Brazilian mathematician Imre Simon

who was one of the pioneers in this field [Pin98].

Multiplying matrices The time needed to multiply two n x n-matrices is typically
denoted by O(n“). We call w the matriz multiplication exponent. Clearly, 2 < w < 3,
because the naive way of computing every entry of the resulting matrix by mutliplying
and adding the entries of the matrices takes O(n3) many steps and we need to at least
write the O(n?) entries into the resulting matrix.
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Only in 1969, Volker Strassen published an algorithm showing w < 2.8 [Str69]. This
algorithm uses a divide-and-conquer approach to reach this low runtime. Since then,
the bound has been lowered several times. In 1991, Coppersmith and Winograd lowered
to bound to w < 2.376 [CW90|. Their algorithm also partitions the matrix in several
smaller matrices and uses recursion. Since then, this algorithm as well as the runtime
analysis has been improved.

As of 2020, the matrix multiplication exponent is proven to be w < 2.373 [Will2].

All known algorithms for matrix multiplication do not specify which algebra has to
be used. So we can use the same algorithm for the tropical algebra. Let A and B be
two n X n-matrices.

Recall the formula for matrix multiplication. Normally, it is

n
Cij = ) Gis s
s=1

But multiplying those matrices in the tropical algebra results in a n x n-matrix C
where
Cij = W00 ais + by

This is the operation that we need to compute Equation [2.18]

Runtime (improved analysis)

Theorem 17. FOUR-SIDED TRIANGULATED BOUNDARY LABELING can be solved in
O(n®) time.

Proof. The inalysis in Theorem showed that all operations but the combination of
another exit triangle can be done in O(n?) time. As we have just seen, this combination
can be done in O(n%) time.

We know that O(n?) C O(n¥), so the whole runtime of the algorithm is O(n*). O
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3 Evaluation and Experiments

In the following, we will qualitatively evaluate the drawings by our algorithm using cri-
teria of Bekos et al. [BNN19]. Afterwards, we evaluate the runtime of an implementation
on big instances.

3.1 Quality

Bekos et al. [BNN19] give an overview over different labeling techniques and algorithms.
To evaluate them, they define the following criteria for a good labeling:

C1 The leaders have small length.

C2 The number of leader crossings and label overlaps is small.

C3 The labels mimic the shape of the image.

C4 The labels are distributed evenly.

C5 The directions of the leader segments comply with a set of preferred directions.
C6 The leaders have a small number of bends.

C7 There is sufficient space between leaders.

C8 Labels consist of single text lines if possible.

C9 Labels that are semantically related are grouped.

Some of the criteria like C7 are subjective, others, such as C4, can be measured.
Criteria like C1 and C5 or C1 and C3 can contradict each other. Some others, like C1
and C6, may influence each other. So in some cases, trade offs are needed.

In our context, C3, C8, and C9 are not relevant. The labels can not mimic the shape
of the image as the bounding box is part of the input. We also do not arrange the labels
nor care about their length or content.

We will have a look at the other criteria one by one to see to which extent the outputs
of our algorithm fulfil them. An example output can be found in Figure

C1 The solution has the smallest length of all possible solutions for TRIANGULATED
MAP LABELING, but we can see that it would be easy to shorten most of the
leaders by omitting superfluous bends and thus introducing shortcuts. To do this,
we have to drop our drawing style.
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(a) An example of a four-sided labeling of a polygon. We can
see that the leaders are evenly placed. There are some
unneccesary bends. The drawing area is well used.

(b) A hand drawn labeling

of the lower left part
of the same polygon and
same bounding box, la-
beled with opo-leaders.
Because there is less space
between the leaders and
they are parallel, the lead-
ers are more difficult to
distinguish.

Fig. 3.1: An example of a polygon labeled with our algorithm and a hand-drawn alternative.
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A B C D E F G H 1

(a) This is the optimal solution for the input.
There are no labels at all on the left and right
boundary. This looks unbalanced and it may
not be intuitive that the leader on the left site
of the polygon does not simply go straight to
the left.

(c¢) This is the same polygon with a slightly big-
ger bounding box. We can see that this
changes the output drastically.

B C D E F G H 1

(b) In this case the leader on the left site of the

polygon goes directly to the left boundary.
This leads to longer leader that go downwards,
because there endpoints on the lower edge
more to the left. This version has fewer bends.

(d) A hand-designed axis-parallel version with

as few bends as possible. The leaders are
not evenly positioned over the rectangle
edges and the parallel leaders can not be
distinguished easily.

Fig. 3.2: The same polygon, labeled in four different versions. We can see how the bounding

box influences the result.
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C2 This criterion is fulfilled as we do not have any crossings.

C4 The labels are distributed evenly on their edges. However, it can be that some
edges do not have any labels at all (for an example, see Figure. The algorithm
could be changed such that the maximum or minimum number of leaders on each
boundary edge is constrained. This can be done by returning undefined for exit
triangle configurations that result in too many or too few labels. This can be used
to balance the number of labels on the boundary rectangle.

C5 We do not restrict the directions of the leaders, so they can take all possible direc-
tions. While this contradicts the criterion, it makes the image far more readable,
especially in the presence of nonconvexities in the polygon. We can see this in
Figure Figure has non-parallel leaders inside the pockets. The drawing
space inside the pockets is well used, the leaders are distributed evenly. Outside
of the pockets, were the leaders are more or less parallel, they are more difficult
to distinguish. In Figure we use opo-leaders to label the same part of the
polygon by hand. Those leaders cannot be evenly distributed, because they must
not have more than two bends. The leaders are parallel and therefore not that
well distinguishable. This version is worse to read, although its leaders have less
different directions.

C6 The number of bends for a leader equals the number of triangles that it has to pass
before it reaches the boundary box. It is not restricted and we can see that there
are many “unnecessary”’ bounds. This is a downside of the problem statement.
We could do postprocessing to omit some of the bends.

C7 Almost all space of the image is used and the leaders are distributed rather evenly in
the whole image. Therefore the leaders have enough space between them wherever
possible.

The output for small, convex inputs or inputs where most of the vertices lie on the
convex hull tends to have an excessive number of bends. Those instances should be
labeled using opo-leaders or straight lines. We can see this in Figure [3.3] Our algorithm
gives a labeling that has more bends than needed. We can just label it using straight
lines. The opo-style labeling still has unnecessary bends, but looks nicer than our result.
The version with evenly distributed labels and straight lines looks worst.

But for images with big pockets like Figure where opo-leaders do not work, our
algorithm gives good results. It could be beneficial to combine both approaches — using
our triangulated algorithm for the pockets and opo-stye leaders (or even straight-line
leaders) for the part outside of the convex hull.

3.2 Runtime

The algorithm for four-sided labeling was implemented in Java. As input, it takes a svg
file containing two paths: a rectangle (the bounding box) and a polygon that lies inside
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(a) This polygon is labeled using our algorithm. (b) This polygon is labeled using opo-type leaders.
There are unneeded bends. There are more bends than in the first version.

(c) In this version, we use only horizontal or verti- (d) This version uses straight lines. The labels
cal leaders. They go directly from the polygon are evenly distributed on the bounding edge
site to the bounding edge. and the leaders are just straight lines from the

polygon sites to the labels.

Fig. 3.3: Four different version of a four-sided labeling for this small polygon.



the bounding box. It outputs an svg or ipe file that contains one path for the bounding
box, one for the polygon and one per leader.

We tested the runtime on five polygons that were obtained from Open Street Maps. E|
We have the municipal boundaries of Gerbrunn (279 vertices), the island Amrum (301
vertices), the city of Veitshochheim (392 vertices), the lake Brombachsee (482 vertices)
and the city of Kiirnach (350 vertices). We ran the algorithm five times and took the
average runtime. The results can be seen in Figure Most of the time is used to
combine the matrices for the exit triangles and the fans. This is not surprising, as
we did not implement fast matrix multiplication, but used a self-implemented brute-
force method which takes O(n?) time. Even by using Matrix libraries we could most
probably improve the runtime. Also, Huang et al. [HSHvd(G16] showed that the Strassen
Algorithm is efficient in practice even on small matrices. Since it is the bottleneck, using
a faster way to compute Matrix Multiplication on the min-sum-algebra (tropical algebra)
could greatly reduce the runtime.

Looking at the pictures of the polygons with leaders we can see that a picture with
this many leaders is actually no longer readable. This means that such big instances are
not a realistic use case and therefore the long runtime is not a problem. For instances
of realistic size, our algorithm takes less then 10 seconds.

1WWW.openstreetmaps.org

32






name number of vertices total time

Gerbrunn 279 14.86s
Amrum 301 25.61s
Kiirnach 350 36.39s

Veitshéchheim 392 53.93s
Brombachsee 482 103.99s

Fig. 3.5: The runtime for instances of different size.
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Fig. 3.6: The runtime of our algorithm on instances with many vertices.
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4 Conclusion and Future Work

There are many approaches to labeling maps. In this thesis, we introduce TRIANGU-
LATED BOUNDARY LABELING. In Chapter we explained the idea of a dynamic
program to find a length-minimal solution. Then we gave different problem statements
and showed how to solve them using our approach. We have shown that FOUR-SIDED
TRIANGULATED BOUNDARY LABELING can be solved in O(n*) time, i.e., the time for
matrix multiplication on the min-sum-algebra (tropical algebra). We showed that 2-
SIDED TRIANGULATED BOUNDARY LABELING, RESTRICTED 3-SIDED TRIANGULATED
BOUNDARY LABELING and RESTRICTED 4-SIDED TRIANGULATED BOUNDARY LABEL-
ING can be solved in O(n?) time.

In Chapter |3] we gave some example results for polygons of different sizes and shapes
and evaluated the actual runtime for bigger inputs. We have seen that our algorithm
has some advantages, especially for labeling non-convex polygons with large pockets.

Of course, our idea and algorithm can also be used for maps that are not bounded by
a rectangle, but by other shapes. As we need the dual graph of the triangulation to be
a cycle with trees, it only works for shapes that guarantee this structure. As long as the
bounding polygon has constant size, this does not change the runtime.

In some cases, not all of the polygon sites should get labels. If only k polygon sites are
labeled, we get the following runtimes with our approach: O(nlogn) for the constrained
Delaunay triangulation, O(n) for the pockets, O(k) for the computing of all configura-
tions of the corner fan triangles, O(n - k) for combining all corner fan parts. O(k?) for
computing the configurations of the exit triangles, O(k?) for adding the corner fans and
O(k¥) for combining the exit triangles. This means that if the triangulation is already
part of the input, we get a total runtime of O(n + k“), for a constant k the algorithm
has linear runtime in n. If the triangulation is not part of the input, the total runtime
is O(nlogn + k), for a constant k it is O(nlogn).

As we have seen in Section [3] there are many bends in the leaders. Some of them
are not needed to prevent crossings with other leaders or the polygon but arise only
from our drawing style. One could get rid of superfluous bends, for example using curve
simplification by Dyken et al. [DDS09]. They give an algorithm that simplifies curves
while preserving the topology, so without introducing new crossings.

Another idea to minimize the bends is to use the triangulated approach only inside
the polygon pockets, where we can not garantuee to find a solution for opo-leaders. The
convex hull can then be labeled using opo-leaders. In total this results in fewer bends
than our algorithm and in legal labelings for all instances.

As described earlier, we could easily change the algorithm such that we limit the
number of labels that can be placed on each edge of the rectangle respectively. This
leads to a more balanced placement of the labels.
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