
Bachelor Thesis

Approximation Algorithms for Variants of
the k-Median Problem

Benedikt Riegel

Date of Submission: 9. December 2020
Advisors: Priv.-Doz. Dr. habil. Joachim Spoerhase

Dr. Kamyar Khodamoradi.

Julius-Maximilians-Universität Würzburg
Lehrstuhl für Informatik I

Algorithmen und Komplexität

Abstract

In this work we examine two general variants of the k-Median. The exact uncapacitated
k-facility location problem finds precisely k centres in a metric space, while minimizing
not only the service cost of a point to its closest centre, but also the opening cost of the
chosen centres. For this problem, we provide a proof, based on a proof by Zhang [Zha07]
that a local search algorithm with only a single-swap operation gives an approximation of
7. Furthermore, we provide another algorithm with a 3.25-approximation in expectation,
by modifying an algorithm by Charikar and Li [CL12].
The reconciliation k-Median is another general variant of the k-Median. It also finds

precisely k centres in a metric space, which not only minimize the service cost of a
point to its closest centre, but also minimize the distances between themselves. To
approximate this problem, one could combine one of our approximation algorithms for
exact uncapacitated k-facility location with a reduction algorithm by Spoerhase and
Khodamoradi [SK], to receive a 6.5-approximation in expectation or a 14-approximation.
Finally, we prove that the reconciliation k-Median problem cannot be approximated with
a multi-swap local search algorithm.

Zusammenfassung

In dieser Arbeit betrachten wir zwei allgemeiner gefasste Varianten des k-Median. Das
exact uncapacitated k-facility location Problem sucht nach genau k vielen Zentren in
einem metrischen Raum, die nicht nur die Abstände zwischen den Punkten in dem Raum
und ihrem nächstgelegenen Zentrum minimieren, sondern auch die Kosten minimieren,
die bei der Wahl eines Zentrums entstehen. Basierend auf dem Beweis von Zhang [Zha07]
beweisen wir, dass ein local search Algorithmus mit nur einer single-swap Operation
eine Approximation von 7 liefert. Des Weiteren, modifizieren wir den Algorithmus von
Charikar und Li [CL12], sodass er seine mittlere Approximationsgüte von 3.25 weiterhin
behält, aber exakt k viele Zentren zurückgibt.
Der reconciliation k-Median ist ebenfalls eine Variante des k-Median. Auch dieses Pro-

blem sucht nach genau k vielen Zentren in einem metrischen Raum, die die Abstände
zwischen den Punkten in dem Raum und ihrem nächstgelegenen Zentrum minimieren,
mit dem Zusatz, dass die Abstände zwischen den Zentren selbst auch minimiert werden.
Um dieses Problem zu approximieren, kann man nun einen unserer exact uncapacitated
k-facility location Algorithmen mit dem von Spoerhase und Khodamoradi entwickelten

2

Algorithmus [SK] kombinieren. Diese Kombination ergibt entweder eine erwartete Ap-
proximation von 6.5 oder eine 14-Approximation. Abschließend beweisen wir, dass der
reconciliation k-Median nicht mit einem multi-swap local search Algorithmus approxi-
miert werden kann.

3

Contents

1 Introduction 5
1.1 Related Work . 6
1.2 Our Results . 6

2 Definitions 7

3 Reducing Rec.-k-Median to Exact-k-UFL 9
3.1 The k-UFL Algorithm by Charikar and Li 9
3.2 Exact-k-UFL Modification . 12

4 Reconiciliation k-Median Local Search 19
4.1 Exact-k-UFL Local Search . 19
4.2 Single-Swap Rec.-k-Median Local Search Analysis 25
4.3 Multi-Swap Rec.-k-Median Local Search Analysis 26

5 Conclusion 28

Bibliography 29

4

1 Introduction

Clustering is an important method when analysing datasets. It is used in the fields of
data mining [Ber06], pattern recognition [AIK18], unsupervised learning [CBJD18] and
others. Clustering algorithms create clusters, with more similar data points grouped
together into the same cluster.
One well studied clustering problem is the k-Median, where given a set F of facilities

and a set C of clients in a metric space, and the distances between them (with a distance
function d), it opens at most k facilities, minimizing the sum of the distances for each
client to its nearest open facility. The distance between a client and its nearest facility
(serving facility) is also called the service cost. Note that it is a classical clustering
problem, if the set of facilities equals the set of clients.
A variant of the k-Median is the reconciliation k-Median (Rec.-k-Median), minimizing

not only the sum of the service costs of each client, but also minimizing the distances
between the open facilities themselves (reconciliation cost). This allows for more complex
problems to be solved or analysed, e.g. the election of a k-member committee. The goal
in electing a k-member committee, e.g. in politics is to represent every individual, i.e.
citizen, as close as possible. But a committee, where the members represent different
extremes will most likely need a lot of time to make compromises, therefore, slowing
down the decision-making processes, e.g. the enacting of laws. Therefore, it would be
best for the committee members to not only represent the individuals as close as possible,
but also for themselves to be as close as possible. This can of course be modelled by
a Rec.-k-Median instance, with the facilities and the clients both being the set of the
individual people, and the distances between them being their agreeableness on different
topics.
Since the Rec.-k-Median is NP-hard [SK], it can only be approximated in polynomial

time. For this, the reduction to the exact uncapacitated k-facility location (Exact-k-
UFL) problem, proves to be viable. The Exact-k-UFL problem stems from the uncapac-
itated k-facility location (k-UFL) problem, which is a generalization of the uncapacitated
facility location (UFL) problem and k-Median. An UFL instance has in addition to the
two sets F and C and their distances, an opening cost for each facility. UFL then opens
facilities that minimize again the sum of the service costs, as well as the sum of opening
costs of each open facility. The k-UFL problem minimizes the same sums, with the
extra restriction that at most k facilities can be opened. The Exact-k-UFL problem also
minimizes the same sums, but opens precisely k facilities.

5

1.1 Related Work
Charikar and Guha managed to approximate the k-Median problem for the first time,
giving a 62

3 -approximation [CGvTS02]. Currently the best algorithm is a (2.611 + ε) ap-
proximation [BPR+] and Jain et al. [JMS02] give a lower bound on the approximability
of 1 + 2/e for the k-Median, unless NP ⊆ DTIME(nO(log logn)). A new approach is to
combine parameterized complexity with approximation problems, allowing them to run
in f(k)nO(1) instead of the classical polynomial time, where n is the size of the input
and f(k) is an arbitrary function, depending on one or more parameters of the problem.
Parameterized complexity has the goal to let an algorithm run in exponential time in
only a few specified parameters. With this approach Cohen-Addad et al. [CGK+19]
approximate it with a factor of (1 + 2/e + ε) (in f(k, ε)nO(1) time), but Byrka et al.
[BDM+20] improved the factor even further to (1 + ε) (in f(|F | − k, ε)nO(1) time), by
closing |F | − k many facilities, instead of opening k many.
The UFL problem has very good approximations, with the best being a

1.488-approximation by Li [Li13], which is really close to the lower approximation bound
of 1.463 given by Guha and Khuller, unless NP ⊆ DTIME(nO(log logn)).

The k-UFL problem was first approximated by Jain and Vazirani [JV01] with a factor
of 6 and later improved to a factor of 2 +

√
3 + ε by Zhang [Zha07].

Since we could not find anything on the Exact-k-UFL problem, it could be possible
that this work is the first to examine the Exact-k-UFL problem.

The first and up until now only work on the Rec.-k-Median was by Ordozgoiti and
Gionis [OG19]. They introduced a local search algorithm for the problem and prove
that if each facility in the solution provided by the algorithm serves at least d2λek many
clients, then the solution is only a factor of 114λ away from the optimum.

1.2 Our Results
Firstly, we examine a Rec.-k-Median 2α-approximation algorithm developed by Spoer-
hase and Khodamoradi [SK], which reduces Rec.-k-Median to an Exact-k-UFL, where α
is the approximation factor of the algorithm used, to solve the Exact-k-UFL instances.
Since Spoerhase and Khodamoradi do not provide an algorithm for Exact-k-UFL, we
contribute an Exact-k-UFL algorithm that has a 3.25-approximation in expectation,
by modifying the k-UFL algorithm of Charikar and Li [CL12] that also has a 3.25-
approximation in expectation, to return exactly k facilities.
Secondly, we prove that a single-swap local search algorithm for Exact-k-UFL has an

approximation guarantee of 7, by following the proof provided by P. Zhang [Zha07] for
a k-UFL local search algorithm.

Finally, we investigate a p-swap local search algorithm for Rec.-k-Median, allowing at
most p facilities to be swapped at once. We prove, that the cost of a local optimum of this
local search algorithm has no upper bound, therefore disproving Theorem 2 in [OG19],
where the authors claim that a local optimum S is bounded by (λk + 5) multiplied by
the costs of the global optimum.

6

2 Definitions
In the following we define the problems examined in this thesis, as well as some notations.
For every problem, we consider a metric space (F ∪ C, d), where the set of facilities F
and the set of clients C are not necessarily disjunct and d : (F ∪ C)2 → R is a distance
function. Furthermore, φS(j) denotes the facility i ∈ S, closest to the client j ∈ C.
Using the notations from above, we can define Rec.-k-Median, k-UFL and Exact-k-UFL
as follows.
Definition 1 (The Reconciliation k-Median). Let (F,C, d, k, λ) be a Rec.-k-Median in-
stance, with (F ∪C, d) being a metric space as described above, k ∈ N and λ ∈ R+. Find
an optimal set O, minimizing the following cost function:

cost(O) = min
S⊆F
|S|=k

∑
j∈C

d(j, φS(j)) + 1
2λ

∑
i,i′∈S

d(i, i′)


Definition 2 (Uncapacitated k-Facility Location). Let (F,C, d, k, f) be a k-UFL in-
stance, with (F ∪ C, d) being a metric space as described above, k ∈ N and f assigning
the opening costs fi to every facility i ∈ F . Find an optimal set O, minimizing the
following cost function:

cost(O) = min
S⊆F
|S|≤k

∑
j∈C

d(j, φS(j)) +
∑
i∈S

fi


Definition 3 (Exact Uncapacitated k-Facility Location). Let (F,C, d, k, f) be an Exact-
k-UFL instance, with (F ∪ C, d) being a metric space as described above, k ∈ N and f
assigning the opening costs fi to every facility i ∈ F . Find an optimal set O, minimizing
the following cost function:

cost(O) = min
S⊆F
|S|=k

∑
j∈C

d(j, φS(j)) +
∑
i∈S

fi


Additionally, we define the reconciliation cost costRC(S), the facility cost costf (S) and

the service cost costs(S) to be:

costs(S) =
∑
j∈C

d(j, φS(j))

costRC(S) = 1
2λ

∑
i,i′∈S

d(i, i′)

costf (S) =
∑
i∈S

fi

7

Also we denote:
[t] = {1, 2, 3, . . . , t}

To increase readability, we omit the notations necessary for the local search analysis
from this Chapter 2, but instead introduce them at the beginning of Chapter 4.

8

3 Reducing Rec.-k-Median to Exact-k-UFL

Since Rec.-k-Median is a NP-hard [OG19] minimization problem, an approximation
algorithm is needed, to compute a solution in polynomial time. In order to approximate
this problem Spoerhase and Khodamoradi introduced a novel algorithm. The algorithm
transforms for every facility m ∈ F the Rec.-k-Median instance (F,C, d, k, λ) into an
Exact-k-UFL instance (F,C, d, k, fm), with fm(i) = λ(k − 1)d(i,m). Afterwards, it
solves the |F | different Exact-k-UFL instances and returns the best solution, as the
solution for the Rec.-k-Median instance. This gives a 2α-approximation, with α being
the approximation factor of the Exact-k-UFL algorithm. Even though an Exact-k-UFL
instance is the same as a k-UFL instance, the need for precisely k facilities to be in the
solution, does not allow us to simply use existing k-UFL algorithms.

3.1 The k-UFL Algorithm by Charikar and Li
First, we have to understand the algorithm by Charikar and Li [CL12], before modifying
it to return exactly k facilities. It gives a 3.25-approximation for k-UFL in expectation
and is subdivided into the following steps:

1. Linear programme(LP): First, the following LP for k-UFL is solved. A facility
i is open, if it is in the solution, therefore yi represents how much i is opened. xi,j
denotes, how much client j is served by i.

min
∑

i∈F,j∈C
d(i, j)xj,i +

∑
i∈F

fiyi

s.t.
∑
i∈F

xi,j = 1, ∀j ∈ C,

∑
i∈F

yi = k,

xi,j ≤ yi, ∀i ∈ F, j ∈ C,
xi,j , yi ∈ [0, 1],∀i ∈ F, j ∈ C

2. Splitting phase: In this phase we split every facility i ∈ F , if needed, such that
xi,j = yi for every client j ∈ C. If i ∈ F got split, it is called a split facility
and the t ∈ N many facilities {i.1, i.2, . . . , i.t} that were created through this split,
are called fractional facilities. After the split, yi = yi.1 + yi.2 + · · · + yi.t, which
means that the sum of all y’s still equals k. From now on we call the original set
of facilities Fold and the new set of facilities Fnew.

9

3. Filtering phase: In this phase a subset C ′ ⊆ C is determined, where j, j′ ∈ C ′
are far enough apart from each other.

4. Bundling phase: Here ever j ∈ C ′ is assigned a set of facilities Uj ⊆ Fnew, where
i ∈ Uj is close enough to j and i serves j. This leads to 1

2 ≤ vol(Uj) ≤ 1, with
vol(Uj) =

∑
i∈Uj

yi. In this procedure facilities can stay unbundled.

5. Matching phase: Now the closest j, j′ ∈ C ′ are matched together and added to
the set M . Here one b ∈ C ′ can stay unmatched.

6. Sampling phase: Finally, some facilities are opened, depending on a procedure
described next.

The description of the steps above are limited to the necessary information, to under-
stand the sampling phase and the modifications it undergoes, to first open less or equal
to k facilities and then in Section 3.2 to open exactly k facilities. However, we first have
to thoroughly define what "opening" and "closing" a facility, bundle or matched pair
means:

1. Opening/Closing a facility i: Opening a facility i means to add the facility i
to the solution. Closing a facility i means to not add it to the solution.

2. Opening/Closing a bundle j: To open a bundle j means to randomly open
exactly one facility i ∈ Uj , with the probability yi/vol(Uj). Closing a bundle j
implies that every facility in Uj is closed.

3. Opening/Closing a matched pair (j, j′): Opening a pair (j, j′) signifies to open
both bundles j and j′. Closing a pair (j, j′) is equivalent to open either bundle j
or j′. When the matched pair is closed, j is opened with probability 1 − vol(Uj′)
and j′ is opened with probability 1− vol(Uj).

If a facility, bundle or pair is not opened, then it is closed.
In the original sampling phase every (j, j′) ∈ M would be opened randomly with

probability vol(Uj) + vol(Uj′) − 1, the unmatched bundle b would be opened randomly
with probability vol(Ub) and every unbundled facility i with probability yi. Notice that
this results in:

∀j ∈ C ′ : Pr("j is open") = vol(Uj)
∀i ∈ Fnew : Pr("i is open") = yi

This results in k facilities from Fnew to be opened in expectation.
The authors now modify this procedure, to return exactly k facilities from Fnew.

In their procedure, two fractional facilities from the same split facility can be picked,
resulting in ≤ k facilities from Fold to be picked. Let Funbundled, Funmatched and A be
defined as follows:

Funbundled = {i : i is an unbundled facility}
Funmatched = {b : Ub is an unmatched bundle}
A = Funbundled ∪ Funmatched ∪M

10

(a) LP solution before the split process (b) LP solution after the split process

Fig. 3.1: An example with F = {1, 2, 3, 4}, C = {a, b, c}, k = 3 and the opening cost f for each
facility is 1. The distances that are not drawn, are the minimal paths through this
graph, e.g. d(b, a) = 3, hence the triangle inequality still holds. The x’s represent how
connected a client is to a facility in the LP solution. The y of a facility in the LP
solution is the maximum x adjacent to the facility, e.g. y1 = 0.75.

First the authors define a random variable Xa and a variable xa for every a ∈ A.

Xa =
{

1, if a is open
0, if a is not open

xa =


ya, if a is an unbundled facility

vol(Ua), if a is an unmatched bundle
vol(Uj) + vol(Uj′)− 1, if a = (j, j′) ∈M

This results in
∑
a∈A xa = k − |M | to be true and if

∑
a∈AXa = k − |M |, then there

are exactly k open facilities of Fnew. It would only open precisely k facilities of Fold, if
for each split facility, their fractional facilities are in the same bundle, since this would
result in only one fractional facility of a split facility to be opened at most. Figure 3.1
shows an example, where this is not the case, since C ′ = {a}, Ua = {1.1, 2} and the
set of unbundled facilities is {1.2, 3, 4} and therefore proving that it can open less than
k facilities of Fold. To achieve the desired sum

∑
a∈AXa = k − |M |, the tree-based

dependent rounding procedure of [Sri01] is used on the variables, since it has the following
properties:

(a) Pr[Xa = 1] = xa.

11

(b) Pr[|{a : Xa = 1}| = k − |M |] = 1

(c) the following negative correlations holds for all S ⊆ A:

Pr
[∧
a∈S

Xa = 0
]
≤
∏
a∈S

Pr[Xa = 0]

Pr
[∧
a∈S

Xa = 1
]
≤
∏
a∈S

Pr[Xa = 1]

After use, all Xa’s are rounded to either 0 or 1, with exactly k − |M | Xa’s equal to 1
and now, all a ∈ A with Xa = 1 are opened. Finally, every opened facility is returned
as the solution S for the k-UFL instance, resulting in

costs(S) ≤ 3.25costs(S)

and the expected facility cost costf (S) is the facility cost of the LP solution, hence the
algorithm approximates k-UFL with a factor of 3.25 in expectation.

3.2 Exact-k-UFL Modification
A solution of Exact-k-UFL has to have a cardinality of precisely k, so we have to modify
the algorithm described in Chapter 3. Instead of using the tree-based dependent round-
ing procedure of Srinivasan [Sri01], we use the dependent rounding in bipartite graph
presented by Gandhi et al. [GKPS02].
The algorithm in [GKPS02] receives a bipartite graph (B,C,E) and a list of values xv,u

for each edge (v, u) ∈ E as input. It rounds every xv,u to a random variable Xv,u ∈ {0, 1}
and returns the resulting set of all Xv,u.

dv =
∑

(v,u)∈E
xv,u and Dv =

∑
(v,u)∈E

Xv,u,

where dv denotes the fractional cost of the vertex v and Dv denotes the integral degree.
The algorithm provides the following properties for the rounding procedure:

(a) Pr[Xv,u = 1] = xv,u.

(b) Degree-preservation. Pr[Dv ∈ {bdvc, ddve}. Notice, if dv ∈ N, then Dv = dv

(c) the negative correlations hold for any v ∈ B∪C and for any S ⊆ {X(v,i) : (v, i) ∈ E}:

Pr
[∧
X∈S

X = 0
]
≤
∏
X∈S

Pr[X = 0]

Pr
[∧
X∈S

X = 1
]
≤
∏
X∈S

Pr[X = 1]

12

Notice that the bipartite graph procedure yields the same result as the tree-based round-
ing procedure, if the input is a star graph. This becomes apparent for B = {r} (r being
the root of the star), C = A (A from Section 3.1) and xa,r = xa (xa also from Sec-
tion 3.1). And indeed, the authors of [GKPS02] even state the fact, that the tree-based
rounding procedure [Sri01] is simply a star in the bipartite graph rounding procedure.
To get exactly k facilities from the original set Fold, we define structures to construct a
bipartite graph that gives us the desired properties, to open the facilities correctly and
to still preserve the 3.25-approximation in expectation.
First, a root r has to be added to the graph. Every unbundle facility, unmatched

bundle and matching is then connected to r with the following structures.
Unbundled facility: An unbundled facility i is simply attached to r, with xr,i = yi.

Therefore it is opened with the probability yi (see Figure 3.2c).
Unmatched bundle: The unmatched bundle b is attached to the root via a vertex µ,

with xr,µ = vol(Ub). Furthermore a vertex ϕ is connected to µ, with xµ,ϕ = 1− vol(Ub),
resulting in dµ ∈ N. Therefore

dµ = Dµ = Xr,µ +Xµ,ϕ = 1

and the edge (µ, ϕ) can be seen as a negation to (r, µ), since either Xr,µ or Xµ,ϕ is 1,
and the other is 0. Attached to ϕ are all the facilities bi ∈ Ub, with xϕ,bi

= ybi
. Thus

dϕ = Dϕ = 1

and at most only one Xϕ,bi
with bi ∈ Ub can be equal to 1. The bundle b is open, if

Xr,µ = 1 and a facility bi ∈ Ub is open, if Xϕ,bi
= 1. Hence

"bundle b is opened" =⇒ Xr,µ = 1 =⇒ Xµ,ϕ = 0
=⇒ Xϕ,bi

= 1 for exactly one bi ∈ Ub
"bundle b is closed" =⇒ Xr,µ = 0 =⇒ Xµ,ϕ = 1 =⇒ Xϕ,bi

= 0 ∀bi ∈ Ub
and therefore, the structure complies with the rules given in Section 3.1 (see Figure 3.2a).
Matched pair: The matched pair (j, j′) is attached to the root via a vertex γ and

attached to γ is the bundle j via a vertex α and the bundle j′ via a vertex β. The edges
have the following weights

xr,γ = vol(Uj) + vol(Uj′)− 1
xγ,α = 1− vol(Uj)
xγ,β = 1− vol(Uj′)

where xγ,α and xγ,β together represent the negation of xr,γ . This is very similar to
the unmatched bundle and just like with the unmatched bundle, every facility ji ∈ Uj is
attached to α with xα,ji = yji and every facility j′i ∈ Uj′ is attached to β with xβ,j′

i
= yj′

i
.

Since Dγ = 1, only one of the edges (r, γ), (γ, α) and (γ, β) will have a X = 1.

Xγ,α = 0 ⇐⇒ bundle j is open
Xγ,β = 0 ⇐⇒ bundle j′ is open

13

This results in:

The matched pair (j, j′) is open =⇒ Xr,γ = 1 =⇒ Xγ,α = Xγ,β = 0
=⇒ both bundles j and j′ are open

The matched pair (j, j′) is closed =⇒ Xr,γ = 0 =⇒ either Xγ,α = 0 or Xγ,β = 0
=⇒ either bundle j or j′ is open

and therefore, the structure complies with the rules given in Section 3.1 (see Figure 3.2b)
Buffer vertices: To avoid having more than one edge between two vertices after

introducing the split facilities, two buffer vertices ω and ψ are added for each fractional
facility i. ω is attached to i and ψ is attached to ω, with

xi,ω = 1− yi
xω,ψ = yi

Notice that now the edge (ω, ψ) also represents, if facility i is open or not.
Split facilities: If i ∈ Fold got split into {i.1, i.2, . . . , i.t}, then we fuse the vertices of

the fractional facilities ψi.1, ψi.2, . . . , ψi.t together to one super vertex i. This results in

di =
∑
h∈[t]

dψi.h
=
∑
h∈[t]

yi.h = yi ≤ 1

This ensures that at most only one fractional facility is opened, for each split facility.
(see Figure 3.2d)
All the edges at the root sum up to k−|M |, resulting in exactly k facilities being opened
and the different structures ensure the opening rules given by the algorithm in Section 3.1
to be followed. Since the vertices of the split facilities ensure that at most one of their
fractional facilities is open, the output is exactly k open facilities of the original facility
set Fold. Figure 3.3 shows the bipartite graph of the example in Figure 3.1. It is now
easy to see that the edges leading to a facility vertex represent the facilities in Fnew
and the facility vertices themselves symbolize the facilities in Fold. In order to show
that this still computes a 3.25-approximation in expectation, we have to prove the same
properties stated in Lemma 9 and 10 of [CL12].

Lemma 4. Let T ⊆ Fnew or T ⊆ Fold. We have

Pr
[∧
z∈T

z

]
≤
∏
z∈T

Pr[z], Pr
[∧
z∈T

z

]
≤
∏
z∈T

Pr[z]

where z denotes the event that facility z is open, and z is the negation of z.

Proof. We differentiate between the cases T ⊆ Fnew and T ⊆ Fold.

1. T ⊆ Fnew: First, we add two buffer vertices ω and ψ, for every none-fractional
facility i′. We also add an edge (i′, ω), with xi′,ω = 1 − yi′ and an edge (ω, ψ),
with xω,ψ = yi′ . Then, we fuse all ψ vertices of each none fractional facility and all

14

the vertices i of each split facility into one super vertex. This loosens the negative
correlation between fractional facilities, since more than one fractional facility from
one split facility can be opened now. Now every edge, adjacent to the super vertex,
represents a facility in Fnew. Let z correspond to the edge e, then we have Xe = z,
and with property (c) of the rounding procedure and the fact that every e is an
edge of the super vertex, we obtain the negative correlation above. The following
equation holds for the super vertex and all its adjacent edges e∑

e

xe =
∑
i∈
ye = k

Therefore, we still open k facilities, although for Fnew, but as mentioned, the
fractional facilities of one split facility normally have a stronger negative correlation
between each other. Hence, the facilities also have this negative correlation in the
normal graph.

2. T ⊆ Fold: In this case, we first have to add two buffer vertices ω and ψ, for every
facility i ∈ Fold. We add an edge (i, ω), with xi,ω = 1− yi and an edge (ω, ψ), with
xω,ψ = yi. This does not affect the results of the rounding procedure. Next, we
fuse every vertex ψ together into one super vertex. The edges of this super vertex
represent the facilities in Fold. Let z correspond to the edge e of the super vertex,
then we have Xe = z, and with property (c) of the rounding procedure, we obtain
the negative correlation above. The following equation holds for the super vertex
and all its adjacent edges e ∑

e

xe =
∑
i∈Fold

ye = k

Therefore, the rounding procedure gives the same results for this modified graph,
as for the original graph.

Lemma 5. The approximation ratio of the algorithm, using the bipartite graph depen-
dence rounding procedure, is at most that of the original algorithm.

Proof. For a client j we order every facility in the ascending order of distances to j. Let
z1, z2, . . . , zm be this order. Because j gets served by the first open facility in this order,
it suffice to show that for every s ∈ [m], the probability of Pexact that the first s facilities
are closed in the Exact-k-UFL algorithm, is at most the correspondent probability Pold
of the original algorithm. For every s ∈ [m] we can use Lemma 4 to show:

Pexact = Pr
[

s∧
h=1

zh

]
≤

s∏
h=1

Pr[zh] = Pold

15

Theorem 6. The algorithm, using the bipartite graph rounding procedure, has a 3.25-
approximation in expectation.

Proof. Lemma 4 and Lemma 5 prove the properties necessary, stated by Charikar and
Li [CL12], for the algorithm to have a 3.25-approximation in expectation.

16

(a) unmatched bundle b

(b) matched bundles (j, j′)

(c) unbundled facility i (d) split facility i and it’s frac-
tional facilities i.1, . . . , i.t.
There are no ψ’s, since they
fused into i.

Fig. 3.2: The different structures for the bipartite graph.

17

Fig. 3.3: Bipartite graph of the example in Figure 3.1

18

4 Reconiciliation k-Median Local Search

The reduction algorithm by Spoerhase and Khodamoradi allows us to use any Exact-k-
UFL approximation algorithm. So, if we can get an Exact-k-UFL local search algorithm
with a constant factor approximation, then this would raise the question, if we could
also get a constant factor approximation for a Rec.-k-Median local search algorithm.

A local search algorithm, first, takes a random, but valid solution S ⊆ F . If there is a
S′ ∈ N(S) with less cost than S, then replace S with S′. N(S) is the set of S′ that can
be reached from S by performing only one predefined local operation. Since the feasible
solutions for Rec.-k-Median and Exact-k-UFL always have the cardinality of k, we only
need a local p-swap operation.

Definition 7 (swap(A,B)). A swap(A,B) operation is only applicable, if A ⊆ S ∧B ⊆
F − S and |A| = |B| ≤ p, where p ∈ N has to be predefined and stays fixed for the
algorithm. If used on a solution S, each facility in A is removed from S and each facility
in B is added to S.

This results in N(S) = {S +A−B : A ⊆ S ∧B ⊆ F − S ∧ |A| = |B| ≤ p}. The local
search algorithm for Exact-k-UFL and Rec.-k-Median only differ in how the cost of a
solution is calculated, but a general version is depicted with Algorithm 1.

4.1 Exact-k-UFL Local Search
In this section we analyse, if local search for Exact-k-UFL gives a constant factor ap-
proximation, since this and the algorithm [SK] would lead to the question, if a local
search algorithm for Rec.-k-Median can also give a constant factor approximation.
To prove a constant factor approximation, we follow the proof of Zhang [Zha07] and

slightly modify it, and extend some Lemmas, to match the case of Exact-k-UFL. First,
the following notations have to be clarified that we omitted from Chapter 2 due to
readability. In this section O = {o1, o2, . . . , ok} is always the global optimum and

Algorithm 1: LocalSearch(F , C, k, cost)
Input: set F , set C, natural number k, function cost
Output: S, if cost(S) ≤ cost(S′) for all S′ ∈ N(S)

1 S = random subset of F with cardinality k
2 while There is a S′ ∈ N(S) and cost(S′) < cost(S) do
3 S = S′

4 return S

19

Fig. 4.1: An example for π with NO(o) = [10], where i1 captures o and NO(o) gets partitioned
by i1, i2, i3 and i4(picture from [Zha07]).

Fig. 4.2: An example for π with NO(o) = [10], where no i captures o and NO(o) gets partitioned
by i1, i2, i3 and i4 (picture from [Zha07]).

S = {i1, i2, . . . , ik} is always a local optimum. Let U be any solution, then the following
notations can be introduced:

1. Uj = d(j, φU (j)) denotes the service cost for j in U

2. NU (i) = {j ∈ C : φU (j) = i}, i.e. NU (i) is the set of clients, which are connected
to the facility i in solution U .

3. No
i = NS(i) ∩NO(o) contains all clients that are served by i and o.

4. We say i captures o, if |No
i | > 1

2 |NO(o)|. In addition, i is called good, if it does
not capture any o and bad, if it does.

5. We also use a bijective mapping π : NO(o) → NO(o). For every i ∈ {i : No
i 6= ∅}

that does not capture o, we have that every j ∈ No
i is mapped outside of No

i , i.e.
π(j) /∈ No

i . If i captures o, then for each j, π(j) ∈ No
i , we have π(j) is mapped

back onto j, i.e. π(π(j)) = j. When constructing π as described in [Zha07], it
also yields the property that if i captures o, then j = π(π(j)) for every j ∈ NO(o).
Examples of the behaviour of π is shown in Figure 4.1 and Figure 4.2.

Lemma 8. Let j ∈ NS(i) and π(j) /∈ NS(i). After a swap(i, o), the new service cost for
the client j can be bounded by Sπ(j) +Oπ(j) +Oj.

Proof. We consider the cases j ∈ No
i and j /∈ No

i separately:

20

1. j ∈ No
i : Let i′ be the nearest facility serving the client π(j). After o is swapped in

for i, each j ∈ No
i will be served by its new nearest facility i∗. Since d is a metric,

it obeys the triangle inequality, leading to the following:

d(j, i∗) ≤ d(j, i′) ≤ d(π(j), i′) + d(j, π(j)) ≤ d(π(j), i′) + d(π(j), o) + d(j, o)
= Sπ(j) +Oπ(j) +Oj

2. j /∈ No
i : Let o′ be the facility, with j ∈ No′

i and therefore π(j) ∈ No′
i . Furthermore,

let i′ be the nearest facility serving the client π(j). After o is swapped in for i,
each j /∈ No

i will be served by its new nearest facility i∗. Again, we can use triangle
inequality to obtain the following:

d(j, i∗) ≤ d(j, i′) ≤ d(π(j), i′) + d(j, π(j)) ≤ d(π(j), i′) + d(π(j), o′) + d(j, o′)
= Sπ(j) +Oπ(j) +Oj

Lemma 9. Sj ≤ Sπ(j) +Oπ(j) +Oj for each j ∈ C.

Proof. Let i′ be the nearest facility serving the client π(j) and o be the facility for which
j ∈ No

i . Because π : NO(o)→ NO(o), we know π(j) ∈ No
i

Sj = d(i, j) ≤ d(i′, j) ≤ d(π(j), i′) + d(j, π(j)) ≤ d(π(j), i′) + d(π(j), o) + d(j, o)
= Sπ(j) +Oπ(j) +Oj

Lemma 10. If o is the nearest facility that i captures and i also captures o′ 6= o, then
after a swap(i, o), the new service cost for each j ∈ No′

i with π(j) ∈ NS(i), can be
bounded by 2Sj +Oj.

Proof. Let i∗ be the new nearest facility to j. Because of triangle inequality and the fact
that o is the nearest facility that i captures, the following holds

d(j, i∗) ≤ d(j, o) ≤ d(j, i)+d(i, o) ≤ d(j, i)+d(i, o′) ≤ d(j, i)+d(j, i)+d(j, o′) = 2Sj+Oj

For sake of completeness, we also show the following:

Lemma 11. After a swap(i, o), the new service cost for a client j ∈ NO(o), with
π(j) ∈ NS(i) can be bounded by Oj.

Proof. Let i∗ be the new nearest facility to j. Since j ∈ NO(o) is served by o in the
solution O, we obtain:

d(j, i∗) ≤ d(j, o) = Oj

21

Fig. 4.3: Partition of S and O (picture from [Zha07])

Lemma 12. The facility cost costf (S) is bounded by costf (O) + 2costs(O).

Proof. First, partition S into subsets (A1, A2, . . . , Am) andO into subsets (B1, B2, . . . , Bm),
to get pairs (Ai, Bi) with |A| = |B| ∀i ∈ [m]. To do this, we pick any bad facility b ∈ S
and add it to A. Afterwards, add every facility o ∈ O that i captures to B and fill A
with arbitrary good facilities in S, until |A| = |B|. Repeat this for every bad facility in
A. Let Am be the set of good facilities left in S and Bm the set of facilities left in O.
Denote with e ∈ B the facility closest to b. This method of partitioning works, because
no two i ∈ S can capture the same o and therefore the number of bad facilities in S are
≤ |A|. An example partition for m = 4 can be found in Figure 4.3. We can now apply
Lemma 11, Lemma 10 and Lemma 8 to bound the cost after swap(b, e) by:

−fb + fe +
∑
j∈Ne

b
π(j)∈NS(b)

(Oj − Sj) +
∑

j∈NS(b)−NO(e)
π(j)∈NS(b)

(2Sj +Oj − Sj)

+
∑

j∈NS(b)
π(j)/∈NS(b)

(Sπ(j) +Oπ(j) +Oj − Sj) ≥ 0

=⇒ −fb + fe +
∑
j∈Ne

b
π(j)∈NS(b)

2Oj +
∑

j∈NS(b)−NO(e)
π(j)∈NS(b)

(Sj +Oj)

+
∑

j∈NS(b)
π(j)/∈NS(b)

(Sπ(j) +Oπ(j) +Oj − Sj) ≥ 0

Moreover, the cost of a solution after one swap(i, o) with i ∈ A − b and o ∈ B − e, can
be bounded with Lemma 11 and Lemma 8 by:

−fi + fo +
∑
j∈No

b
π(j)∈NS(b)

(Oj − Sj) +
∑
j∈No

i
π(j)/∈NS(i)

(Sπ(j) +Oπ(j) +Oj − Sj) ≥ 0

22

Since Oj − Sj ≤ 2Oj and

{j ∈ No
b : o ∈ B − e ∧ π(j) ∈ NS(b)} = {j ∈ NS(b)−NO(e) : π(j) ∈ NS(b)},

summing all of the different swaps between A and B up, gives the following bound:

−
∑
i∈A

fi +
∑
o∈B

fo +
∑
j∈Ne

b
π(j)∈NS(b)

2Oj +
∑

j∈NS(b)−NO(e)
π(j)∈NS(b)

(Sj +Oj)

+
∑

o∈B−e

∑
j∈No

b
π(j)∈NS(b)

(Oj − Sj) +
∑
i∈A

∑
j∈NS(b)

π(j)/∈NS(b)

(Sπ(j) +Oπ(j) +Oj − Sj) ≥ 0

=⇒ −
∑
i∈A

fi +
∑
o∈B

fo +
∑

j∈NS(b)
π(j)∈NS(b)

2Oj +
∑
i∈A

∑
j∈NS(i)

π(j)/∈NS(i)

(Sπ(j) +Oπ(j) +Oj − Sj) ≥ 0

Because every facility i ∈ Am is good, we have ∀i ∈ Am, ∀j ∈ NS(i) : π(j) /∈ NS(i).
Therefore, Am and Bm can be bounded with Lemma 8 by:

−
∑
i∈A

fi +
∑
o∈B

fo +
∑
i∈A

∑
j∈NS(i)

π(j)/∈NS(i)

(Sπ(j) +Oπ(j) +Oj − Sj) ≥ 0

Finally adding all swaps between A and B, results in the following bound:

−
∑
i∈A

fi +
∑
o∈B

fo + 2
m∑
t=1

∑
j∈NS(bt)

π(j)∈NS(bt)

Oj

+
∑
i∈A

∑
j∈NS(i)

π(j)/∈NS(i)

(Sπ(j) +Oπ(j) +Oj − Sj) ≥ 0

=⇒ −
∑
i∈A

fi +
∑
o∈B

fo + 2
m∑
t=1

∑
j∈NS(bt)

π(j)∈NS(bt)

Oj

+
∑
j∈C

π(j)/∈NS(φS(i))

(Sπ(j) +Oπ(j) +Oj − Sj)) ≥ 0

=⇒ −
∑
i∈A

fi +
∑
o∈B

fo + 2
m∑
t=1

∑
j∈NS(bt)

π(j)∈NS(bt)

Oj + 2
∑
j∈C

π(j)/∈NS(φS(i))

Oj ≥ 0

=⇒ −
∑
i∈A

fi +
∑
o∈B

fo + 2
∑
j∈C

Oj ≥ 0

=⇒ −costf (S) + costf (O) + 2costs(O) ≥ 0
=⇒ costf (S) ≤ costf (O) + 2costs(O)

23

Lemma 13. If only one swap at a time is allowed, the service cost for the local optimum
S can be bounded by costs(S) ≤ costf (O) + 5costs(O).

Proof. First, partition S into subsets (A1, A2, . . . , Am) andO into subsets (B1, B2, . . . , Bm),
with the same method presented in Lemma 12. Now, we again bound the cost after a
swap(i, o), with the key difference that i ∈ A− b, o ∈ B. To obtain a term that sums up
all Sj ’s for j ∈ C, which is the service cost costs(S), we bound the cost after a swap(i, o)
even looser, then before in Lemma 12. Since no i ∈ A − b captures an o ∈ O, we know
that π(j) /∈ NS(i) for each j ∈ NS(i). Ergo we can bound a swap(i, o) with Lemma 8
and Lemma 9 by:

−fi + fo +
∑

j∈NO(o)
(Oj − Sj) +

∑
j∈NS(i)−NO(o)

(Sπ(j) +Oπ(j) +Oj − Sj) ≥ 0

=⇒ −fi + fo +
∑

j∈NO(o)
(Oj − Sj) +

∑
j∈NS(i)

(Sπ(j) +Oπ(j) +Oj − Sj) ≥ 0

Summing up swap(i, o) for i ∈ A − b, o ∈ B − e and one swap(i′, e) for some i′ ∈ A − b
and again using Lemma 9 results in

−
∑
i∈A−b

fi +
∑
o∈B

fo +
∑
o∈B

∑
j∈NO(o)

(Oj − Sj)

+
∑
i∈A−b

∑
j∈NS(i)

(Sπ(j) +Oπ(j) +Oj − Sj) +
∑

j∈NS(i′)
(Sπ(j) +Oπ(j) +Oj − Sj) ≥ 0

=⇒ −
∑
i∈A−b

fi +
∑
o∈B

fo +
∑
o∈B

∑
j∈NO(o)

(Oj − Sj)

+2
∑
i∈A

∑
j∈NS(b)

(Sπ(j) +Oπ(j) +Oj − Sj) ≥ 0

=⇒
∑
o∈B

fo + 5
∑
j∈C

Oj −
∑
j∈C

Sj ≥ 0

=⇒
∑
j∈C

Sj ≤
∑
o∈B

fo + 5
∑
j∈C

Oj

=⇒ costs(S) ≤ costf (O) + 5costs(O)

Theorem 14. A local search algorithm for Exact-k-UFL with a single swap operation,
has a locality gap of at most 7.

Proof.

cost(S) = costf (S) + costs(S) ≤ costf (O) + 2costs(O) + costf (O) + 5costs(O)
≤ 7(costf (O) + costs(O)) = 7cost(O)

Notice that by combining the local search algorithm with the Rec.-k-Median algorithm
proposed by [SK], we obtain a 14-approximation for Rec.-k-Median.

24

4.2 Single-Swap Rec.-k-Median Local Search Analysis
After proving, that the local search algorithm for the Exact-k-UFL is at most a 7-
approximation, it can be used in combination with the reduction algorithm [SK], to
obtain a 14-approximation for Rec.-k-Median. This raises the question, if a local search
algorithm used directly on a Rec.-k-Median instance can still maintain a constant factor
approximation. As we will show in the following, it is quite the opposite, with the local
search algorithm for Rec.-k-Median having no bound at all. The local search algorithm
considered, is actually Algorithm 1, with p = 1 and

cost(S) = costs(S) + costRC(S) =
∑
j∈C

d(j, φS(j)) + 1
2λ

∑
i,i′∈S

d(i, i′)

Theorem 15. Rec.-k-Median’s local search algorithm, with only a 1-swap operation, is
unbounded.

Proof. Let F = A∪B, A = {a1, a2}, B = {b1, b2}, C = {1, 2}, k = 2 and z ∈ R. Let the
distance function d be as follows:

1. ∀i, j, h ∈ [2], i 6= h : d(ai, ai) = d(bi, bi) = 0, d(ai, ah) = d(bi, bh) = 1
and d(ai, bj) = z

2. ∀i ∈ [2] ∧ j ∈ C : d(ai, j) = 1 and d(bi, j) = z

The first item defines the distances between facilities, where facilities in the same set
(A or B) have a distance of 1 and facilities in different sets, have a distance of z. The
second item denotes the distances between facilities and clients, where every facility in
A has a distance of 1 to every client and every facility in B has a distance of z to every
client. This renders all the facilities in A symmetrical to each other. This holds up for
the facilities in B as well. Then the global optimum O = A and the goal is for B to be
a local optimum S.

cost(O) = λ+ 2 < λ+ 2z = cost(S)

So z > 1. Now the neighbourhood of S has to have a higher cost, than S. Because of
the symmetry in A and in B, every neighbour of S has the same cost.

∀i, j, x, y ∈ [2] : cost(S − bi + aj) = cost(S − bx + ay) = λz + 2

Hence, the following has to be true for all i, j ∈ [2]:

cost(S + ai − bj) > cost(S)
λz + 2 > λ+ 2z

z(λ− 2) > λ− 2
z > 1, for λ > 2

Therefore as z approaches infinity, so does the gap between O and S.

Theorem 14 also disproves Ordozgoiti’s and Gionis’s theorem 3 in [OG19].

25

4.3 Multi-Swap Rec.-k-Median Local Search Analysis
We have seen that the single-swap local search algorithm does not provide an upper
bound for a solution of a Rec.-k-Median instance. In the following we will show that
even a multi-swap local search algorithm cannot provide a bound either. Multi-swap
local search works exactly like the single-swap algorithm in Section 4.2, with the key
difference, that we have a p-swap operation, where p is the number of facilities that can
be swapped at once. p is fixed for the algorithm and p ∈ N.

Theorem 16. Rec.-k-Median’s multi-swap local search algorithm, using a p-swap oper-
ation is unbounded.

Proof. Let F = A ∪B, A = {a1, a2, . . . , ak}, B = {b1, b2, . . . , bk}, C = {1, 2}, k > p and
z ∈ R. Let the distance function d be as follows:

1. ∀i, j, h ∈ [k], i 6= h : d(ai, ai) = d(bi, bi) = 0, d(ai, ah) = d(bi, bh) = 1
and d(ai, bj) = z

2. ∀i ∈ [k] ∧ j ∈ C : d(ai, j) = 1 and d(bi, j) = z

Again, having distance 1 between facilities in the same set (A or B) and the distance
z between facilities in different sets. Clients and facilities in A have a distance of 1
and Clients and facilities in B have a distance of z (see Figure 4.4). Then, the global
optimum O = A and the goal is for B to be a local optimum S.

cost(O) = λ
k2 − k

2 + 2 < λ
k2 − k

2 + 2z = cost(S)

Let Ai ⊆ A and Bi ⊆ B, with |Ai| = |Bi| = i. Due to the symmetry of the facilities in A
and in B, it does not matter which a ∈ A is included in Ai and which b ∈ B is included
in Bi. For q ∈ N and q ≤ p, we consider the neighbourhood of S, consisting of the
neighbours that are one swap(Aq, Bq) away. Due to the symmetry between a’s and the
symmetry between b’s, all neighbours obtained by a swap(Aq, Bq) have the same cost.
Since S +Aq −Bq has exactly q many a’s and k − q many b’s, the edges are as follows:

(k2 − k)
2 many edges in total.

q(k − q) = qk − q2 many edges between a ∈ Aq and b ∈ S −Bq.
(k2 − k − 2qk + 2q2)

2 many edges between facilities in the same set.

Thus, we obtain:

cost(S +Aq −Bq) = λ

(
z(qk − q2) + k2 − k − 2qk + 2q2

2

)
+ 2

26

Fig. 4.4: This figure depicts, the distances between the clients C and the facilities F . A red line
indicates a distance of z and a green line indicates a distance of 1

To ensure S being a local optimum, the following has to hold for all q ∈ [p]:

cost(S +Aq −Bq) > cost(S)

λz(qk − q2) + λ
k2 − k − 2qk + 2q2

2 + 2 > λ
k2 − k

2 + 2z

z(λ(qk − q2)− 2) > λ(2qk − 2q2

2)− 2

z(λ(qk − q2)− 2) > λ(qk − q2)− 2

z > 1, for λ > 2
qk − q2

The function fk(q) = qk − q2 is a parabola, with fk(q) = 0 for q = 0 and q = k, and
fk(q) > 0 for 0 < q < k. The parabola’s only turning point, which is a maximum, is at
k/2, therefore maximizing 2/(qk − q2) for q = 1. Hence, λ has to be greater than 2

k−1 .
Notice, that for k = 2 we get the same λ > 2 as in Section 4.2. However, as k → ∞,
λ→ 0, enabling the gap between S and O to approach infinity, even for small λ’s.

27

5 Conclusion

In this work, we presented two algorithms for Exact-k-UFL, one local search algorithm
with a 7-approximation and a modified version of the algorithm by Charikar and Li
[CL12] with a 3.25-approximation in expectation. We showed that the Rec.-k-Median
can be approximated with a factor of at least 14 and in expectation with a factor of
6.5, by combining the reduction algorithm of Spoerhase and Khodamoradi [SK] and the
Exact-k-UFL algorithms. Moreover, we have shown that the Rec.-k-Median cannot be
approximated by using a multi-swap local search algorithm.
Interesting for future work would be, to prove that a multi-swap local search algo-

rithm for Exact-k-UFL has a bound of 3 + 2/p, where p is the maximum number of
facilities allowed to be swapped with one operation. Furthermore, an evaluation for the
combination between the reduction algorithm for Rec.-k-Median [SK] and the algorithm
in Section 3.2 would also be interesting1, to analyse if it proves useful in practice, since
it is an expected 6.5-approximation.

1We provide a full implementation of both Exact-k-UFL algorithms, in combination with the reduction
algorithm, here https://gitlab2.informatik.uni-wuerzburg.de/s362326/bachelor-thesis-benedikt.

28

https://gitlab2.informatik.uni-wuerzburg.de/s362326/bachelor-thesis-benedikt

Bibliography

[AIK18] M. Ahmed, M. T. Imtiaz, and R. Khan: Movie recommendation system
using clustering and pattern recognition network. In 2018 IEEE 8th Annual
Computing and Communication Workshop and Conference (CCWC), pages
143–147, 2018, 10.1109/CCWC.2018.8301695.

[BDM+20] Jarosław Byrka, Szymon Dudycz, Pasin Manurangsi, Jan Marcinkowski,
and Michał Włodarczyk: To close is easier than to open: Dual parameteri-
zation to k-median, 2020.

[Ber06] P. Berkhin: A Survey of Clustering Data Mining Techniques,
pages 25–71. Springer Berlin Heidelberg, Berlin, Heidelberg,
2006, ISBN 978-3-540-28349-2, 10.1007/3-540-28349-8_2. https:
//doi.org/10.1007/3-540-28349-8_2.

[BPR+] Jarosław Byrka, Thomas Pensyl, Bartosz Rybicki, Aravind Srini-
vasan, and Khoa Trinh: An Improved Approximation for k-median,
and Positive Correlation in Budgeted Optimization, pages 737–756.
10.1137/1.9781611973730.50. https://epubs.siam.org/doi/abs/10.
1137/1.9781611973730.50.

[CBJD18] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze:
Deep clustering for unsupervised learning of visual features. In Proceedings
of the European Conference on Computer Vision (ECCV), September 2018.

[CGK+19] Vincent Cohen-Addad, Anupam Gupta, Amit Kumar, Euiwoong Lee, and
Jason Li: Tight FPT approximations for k-median and k-means. CoRR,
abs/1904.12334, 2019. http://arxiv.org/abs/1904.12334.

[CGvTS02] Moses Charikar, Sudipto Guha, Éva Tardos, and David B. Shmoys:
A constant-factor approximation algorithm for the k-median problem.
Journal of Computer and System Sciences, 65(1):129 – 149, 2002,
https://doi.org/10.1006/jcss.2002.1882, ISSN 0022-0000. http://www.
sciencedirect.com/science/article/pii/S0022000002918829.

[CL12] Moses Charikar and Shi Li: A dependent lp-rounding approach for
the k-median problem. In Automata, Languages, and Programming,
pages 194–205, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg,
ISBN 978-3-642-31594-7.

29

http://dx.doi.org/10.1109/CCWC.2018.8301695
http://dx.doi.org/{10.1007/3-540-28349-8_2}
https://doi.org/10.1007/3-540-28349-8_2
https://doi.org/10.1007/3-540-28349-8_2
http://dx.doi.org/10.1137/1.9781611973730.50
https://epubs.siam.org/doi/abs/10.1137/1.9781611973730.50
https://epubs.siam.org/doi/abs/10.1137/1.9781611973730.50
http://arxiv.org/abs/1904.12334
http://dx.doi.org/https://doi.org/10.1006/jcss.2002.1882
http://www.sciencedirect.com/science/article/pii/S0022000002918829
http://www.sciencedirect.com/science/article/pii/S0022000002918829

[GKPS02] R. Gandhi, S. Khuller, S. Parthasarathy, and A. Srinivasan: Dependent
rounding in bipartite graphs. In The 43rd Annual IEEE Symposium on
Foundations of Computer Science, 2002. Proceedings., pages 323–332, 2002,
10.1109/SFCS.2002.1181955.

[JMS02] Kamal Jain, Mohammad Mahdian, and Amin Saberi: A new greedy ap-
proach for facility location problems. In Proceedings of the Thiry-Fourth
Annual ACM Symposium on Theory of Computing, STOC ’02, page
731–740, New York, NY, USA, 2002. Association for Computing Ma-
chinery, ISBN 1581134959, 10.1145/509907.510012. https://doi.org/10.
1145/509907.510012.

[JV01] Kamal Jain and Vijay V. Vazirani: Approximation algorithms for
metric facility location and k-median problems using the primal-dual
schema and lagrangian relaxation. J. ACM, 48(2):274–296, March
2001, 10.1145/375827.375845, ISSN 0004-5411. https://doi.org/10.
1145/375827.375845.

[Li13] Shi Li: A 1.488 approximation algorithm for the uncapacitated facility
location problem. Information and Computation, 222:45 – 58, 2013,
https://doi.org/10.1016/j.ic.2012.01.007, ISSN 0890-5401. http://www.
sciencedirect.com/science/article/pii/S0890540112001459, 38th In-
ternational Colloquium on Automata, Languages and Programming (ICALP
2011).

[OG19] Bruno Ordozgoiti and Aristides Gionis: Reconciliation k-median: Cluster-
ing with non-polarized representatives. In The World Wide Web Confer-
ence, WWW ’19, page 1387–1397, New York, NY, USA, 2019. Association
for Computing Machinery, ISBN 9781450366748, 10.1145/3308558.3313475.
https://doi.org/10.1145/3308558.3313475.

[SK] Joachim Spoerhase and Kamyar Khordamoradi: A reduction from reconcil-
iation k-median to uncapacitated k-facility location.

[Sri01] A. Srinivasan: Distributions on level-sets with applications to approxima-
tion algorithms. In Proceedings 42nd IEEE Symposium on Foundations of
Computer Science, pages 588–597, 2001, 10.1109/SFCS.2001.959935.

[Zha07] Peng Zhang: A new approximation algorithm for the k-facility loca-
tion problem. Theoretical Computer Science, 384(1):126 – 135, 2007,
https://doi.org/10.1016/j.tcs.2007.05.024, ISSN 0304-3975. http://www.
sciencedirect.com/science/article/pii/S0304397507004665, Theory
and Applications of Models of Computation.

30

http://dx.doi.org/10.1109/SFCS.2002.1181955
http://dx.doi.org/10.1145/509907.510012
https://doi.org/10.1145/509907.510012
https://doi.org/10.1145/509907.510012
http://dx.doi.org/10.1145/375827.375845
https://doi.org/10.1145/375827.375845
https://doi.org/10.1145/375827.375845
http://dx.doi.org/https://doi.org/10.1016/j.ic.2012.01.007
http://www.sciencedirect.com/science/article/pii/S0890540112001459
http://www.sciencedirect.com/science/article/pii/S0890540112001459
http://dx.doi.org/10.1145/3308558.3313475
https://doi.org/10.1145/3308558.3313475
http://dx.doi.org/10.1109/SFCS.2001.959935
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2007.05.024
http://www.sciencedirect.com/science/article/pii/S0304397507004665
http://www.sciencedirect.com/science/article/pii/S0304397507004665

Erklärung

Hiermit versichere ich die vorliegende Abschlussarbeit selbstständig verfasst zu haben,
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt zu haben, und die
Arbeit bisher oder gleichzeitig keiner anderen Prüfungsbehörde unter Erlangung eines
akademischen Grades vorgelegt zu haben.

Würzburg, den 9. December 2020

· ·
Benedikt Riegel

31

	Title Page
	Abstract
	Contents
	1 Introduction
	1.1 Related Work
	1.2 Our Results

	2 Definitions
	3 Reducing Rec.-k-Median to Exact-k-UFL
	3.1 The k-UFL Algorithm by Charikar and Li
	3.2 Exact-k-UFL Modification

	4 Reconiciliation k-Median Local Search
	4.1 Exact-k-UFL Local Search
	4.2 Single-Swap Rec.-k-Median Local Search Analysis
	4.3 Multi-Swap Rec.-k-Median Local Search Analysis

	5 Conclusion
	Bibliography
	Erklärung

