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Abstract

This work is about automating the process of �oor-planning using algorithmic tools.
That is, how to distribute required entities like rooms to available space while respecting
constraints and minimizing the scattering of grouped entities. We show theoretical results
about properties of the underlying algorithmic problems as well as propose, implement
and evaluate two di�erent approaches to solving them. One using algorithmic insight
into the problem and one using integer programming.

Zusammenfassung

In dieser Arbeit geht es um das automatisierte Erstellen von Gebäudeplänen mit algo-
rithmischen Methoden. Dabei werden erforderliche Einheiten wie z.B. Räume auf den
verfügbaren Platz verteilt, während Nebenbedingungen erfüllt sein müssen und die Zer-
streung zusammengehöriger Einheiten minimiert wird. Wir zeigen theoretische Resultate
zu Eigenschaften der zugrunde liegenden algorithmischen Probleme. Auÿerdem de�nie-
ren, implementieren und testen wir zwei verschiedene Ansätze, diese Probleme zu lösen.
Dabei nutzt einer algorithmische Einsichten in das Problem und der Andere ganzzahlige
Programmierung.
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1 Introduction

A common problem in architecture is the planning of o�ce buildings. After de�ning the
shape and number of �oors, there is still a long way towards a complete �oor plan. Even
though it is a creative task, we are going to automate the latter part since it is a huge
share of the actual work with fairly objective goal. The problem can be broken down
into two di�erent algorithmic problems for di�erent scales.

1.1 Large Scale

On a large scale, we want to assign each required room to a �oor. For simplicity we
do not account for the actual shape of the �oors here, but use their total area as a
capacity. Since each room has a size and needs to be placed within a �oor while no �oor
is over-packed, we are interested in solving the decision version of a bin-packing problem.
But o�ces usually belong to some sort of work groups and we may not want to scatter

these groups across the �oors. This can be incorporated into the problem de�nition with
an objective function. Therefore we do not have a decision problem anymore, but an
optimization problem.
The problem is now similar to event seating, where groups of people are to be seated

at tables while avoiding to break up parties. Modelling the rooms (people) as items,
the groups (parties) as colours and the �oors (tables) as bins, this problem has been
recently de�ned by Bergmann et al. [BCM19] as Bin Packing with Minimum Colour

Fragmentation (BPMCF).
After showing NP-completeness by reduction from number-partitioning, they also pro-

pose an exact algorithm to solve the problem using a binary decision diagram and a
mixed-integer program.
Further expanding on this idea, we are going to investigate a more general version of

this problem in Chapter 3, where the cost of splitting a colour set into multiple bins
depends on a function measuring the distance of those bins. With this generalization it
is possible to incorporate into the model that splitting a work group across two �oors is
worse, if there are other �oors in between, or if the �oors even are in di�erent buildings.

1.2 Small Scale

After assigning the rooms to �oors, we still need to create the actual �oor plans, but we
may do so independently for each �oor. Given the sizes of the rooms and the shape of
the �oor, we want to �nd an arrangement of the rooms within their �oor such that we
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do not violate any constraints we might have. Reasonable constraints might include the
following:

� the hallway has a minimum width,

� each room needs to have a common edge of minimum length with the hallway,

� speci�c room pairs need to be adjacent (sharing a common wall),

� some rooms need sunlight (have common edge with outer face, and

� aspect ratio of rooms is upper-/lower-bounded.

The goal may be to minimize the total area needed, a distance measure on the set
of rooms, or a combination of both. We call this problem Floor Planning and further
discuss it in Chapter 4 after looking at some related work in the following sections.

1.2.1 KD-Trees

Knecht [Kne11] has studied the use of kd-trees to generate �oor layouts where the cells
generated by the tree correspond to rooms. To �nd good positions for the de�ning points,
they use a genetic algorithm. While they are able to search for solutions according
to neighbour constraints, given room sizes and allow the user to manually manipulate
intermediate steps, they do not account for hallways yet and room-size requirements can
not be met exactly. This approach is also limited to slicing solutions, in which every wall
is a subdivision of a part of the �oor, which is not feasible for all instances. Hamacher
et al. [HK14] however, have later discussed non-slicing solutions in this setting.

1.2.2 Rectangle Packing

Another way to look at �oor-planning is rectangle-packing where a set of given rectangles
are to be placed within an enclosing rectangle without overlaps while minimizing the
enclosing rectangles size. This problem has a wide range of applications including cutting
raw material, placing integrated circuits on a die and packing items for shipping. The
most important di�erence to our problem is that the rectangles each have a given aspect
ratio and sometimes also a �xed orientation. In our problem the aspect ratio is an
additional variable a solver needs to set.
Due to the wide range of applications there has been a lot of work on the algorithmic

problem which Bortfeldt [Bor13] has compiled in a list. While he discusses a new heuristic
using reductions to two-dimensional knapsack and strip-packing instances, most of the
other listed work is also on heuristics.
However, Huang et al. [HYC11] showed that if an instance with given enclosing rect-

angle is solvable, a realization can be achieved by successively placing rectangles in a
bottom-left corner. This insight can be used for both heuristic and exact approaches.
Korf [Kor03] has started a series of papers investigating an exact approach; the latest

release together with Huang [HK13]. While their research is benchmark-driven and
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therefore not analysed in terms of runtime complexity, some of the algorithmic insights
might still prove useful for our purposes.
Their general idea is a linear search for the smallest enclosing rectangle accepted by

an algorithm that solves the containment version of the problem. In the latter, the
rectangles are placed iteratively from large to small and branching is done on possible
positions until a leaf of the search tree is reached, and therefore a solution is found, or
until the branch's partial problem is unsolvable.
The key contribution to reducing the runtime then is �nding ways to prune those

branches as high in the search tree as possible. One such way is slicing up the empty space
and the unplaced rectangles in order to de�ne a bin-packing problem which is unsolvable if
and only if the partial rectangle-packing problem is unsolvable. This approach calculates
a lower bound on space that cannot be �lled up anymore in order to abort when becoming
too much.
Another important insight is, that some placement positions dominate others in terms

of partial solution. For example placing a rectangle close to a corner is dominated
by placing it in that corner since the set of partial solutions is a subset and hence
the dominated placement can be pruned. This ultimately leads to the conclusion that
rectangles may only be placed in corners.
While Korf and Huang [Kor03, HK13] dedicated a decade of work into rectangle-

packing and have developed quite a complex algorithm, the largest solved instance has
merely 32 squares, which are yet a bit easier than arbitrary rectangles. The solution
to this instance can be seen in Fig. 1.1. Hence they conclude rectangle-packing to be a
rather hard problem.

Fig. 1.1: Optimal solution for packing the smallest 32 di�erent squares in a rectangle ([HK13]).
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1.2.3 Elastic Map Labeling

Another related problem is the placement of elastic labels around the perimeter of a
map. In this problem, given a number of anchor points on the perimeter of an enclosing
rectangle, each with a size, place an anchored rectangle of the given size at each point,
while no pair of rectangles overlaps.
This problem has been discussed by Iturriaga et al. [IL03] in terms of labeling point

features on the perimeter of a map with texts. Given the length of those texts and the
direction in which the label should grow from its anchor, the height and width of the
label depend on the number of line breaks. The area needed for a label, however, is
roughly constant across those realizations.
Therefore the labels are modeled as elastic rectangles, featuring the area, anchor point,

possible directions of growth and ranges for width and height. An elastic rectangle is
therefore the set of possible realizations for a label. Two elastic rectangles in a corner of
the perimeter can be seen in Fig. 1.2a. The dashed curve marks possible positions for
the second de�ning anchor points.
While the problem is NP-hard, they attempt to solve it in polynomial time. Their

algorithm tries to partition the anchor points into �ve sets in a way that all points
within a set lie on only two di�erent straight lines. Such a subdivision can be seen in
Fig. 1.2b. For the subsets it is then possible to �nd a good order of the points for a
greedy approach to restraining and �nally assigning the rectangles.
The relation to our problem is that the aspect ratio is not �xed and the idea of elastic

rectangles might prove useful for our �oor-planning problem. The main di�erence is that
we do not know in advance where a given room must be placed. Also this only features a
reduced set of instances where all rooms need sunlight and it does not account for having
a corridor.

(a) Two elastic rectangles ([IL03]). (b) Splitting of the rectangle in 5 re-
gions ([IL03]).

Fig. 1.2
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1.3 De�nitions

The problems we de�ne and solve all belong to the same family of problems. Therefore
we give a small overview of the family and the relations within it. The basic problem
the whole family is built upon is number-partitioning, which was shown to be NP-hard
by Karp [Kar72]. We use the following notation:

Problem NUMBER-PARTITIONING (DECISION)

Item: A multi-set S of integers.

Question: Is it possible to �nd S1 and S2 such that S1 ·∪ S2 = S and∑
s∈S1

s =
∑

s∈S2
s?

We use |S| to refer to the sum of numbers in S instead of their count. If we generalize
the problem de�nition to allow a number of subsets other than two, the problem is called
multi-way number-partitioning and can be written in the following form:

Problem MULTI-WAY NUMBER-PARTITIONING (DECI-

SION)

Item: A multi-set S of integers and a number k.

Question: Is it possible to �nd S1 to Sk such that
⋃
· ki=1 Si = S and∑

s∈Si
s =

∑
s∈Sj

s for any 1 ≤ i < j ≤ k?

Since the two de�nitions are identical for k = 2, multi-way number-partitioning is
obviously also NP-hard. At this point the family splits into multiple sub-families of
optimization problems.
One such sub-family contains the scheduling problems. In these problems we under-

stand the multi-set S as a set of tasks and k as the number of machines we can use to
solve the tasks. Hence each of the subsets corresponds to the schedule of one machine.
Algorithmically these problems exchange the requirement of all the subsets sums to be
equal for an optimization expression. Such an expression can for example minimize the
di�erence between the largest and the smallest subsets or directly the size of the largest
subset as seen in the following example:

Problem MULTI-WAY NUMBER-PARTITIONING (OPTI-

MIZATION)

Item: A multi-set S of integers and number k.

Question: How to �nd S1 to Sk such that
⋃
· ki=1 Si = S, while minimizing

max1<i≤k
∑

s∈Si
?

Another branch of optimization problems are the packing problems. Instead of mini-
mizing the sum of the subsets, the number thereof is minimized here. This however, �rst
needs a small change in the underlying decision version of the problem leading to the
following de�nition of the basic packing problem:
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Problem BIN-PACKING (DECISION)

Item: A multi-set S of integers and a set of bins B, each with an integer
capacity m.

Question: Is it possible to assign each element s ∈ S to a bin b ∈ B
such that

∑
s∈b s ≤ m for every b ∈ B?

We renamed the subsets to bins and changed the equality requirement for an upper
bound. This de�nition is still able to solve the decision version of multi-way number-
partitioning by simply computing m accordingly. Therefore Garey and Johnson [GJ79]
already noted that bin-packing is NP-hard. However, we are able to choose m di�erently
making bin-packing a generalization. Based on this decision version, we can de�ne the
optimization version which now minimizes the number of bins needed for a �xed capacity:

Problem BIN-PACKING (OPTIMIZATION)

Item: A multi-set S of integers and an integer capacity m.

Question: How to assign each element s ∈ S to a bin b ∈ B such that∑
s∈b s ≤ m for every b ∈ B while |B| is minimized?

The problems we de�ne and solve generalize the multi-set of integers S to a set of
items which can have additional properties. Since we optimize in such a property while
�xing both the number and the size of the subsets/bins, our problems belong to neither
scheduling nor packing directly. However, we still consider them to be packing problems
since they share the decision version with bin-packing.
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2 Area Distribution

Before we are able to place rooms in certain positions within a �oor we �rst need to
know which �oor each room should be placed in. Since this is a complex question we
�rst study a simpli�ed version where all rooms have the same size. In Chapter 3 we will
then use the results and insights we �nd here in order to generalize the instances we can
solve.
For the reduced set of instances we want to solve in this chapter we may assume without

loss of generality that all rooms have size 1 and instead of having a size for each room
we can collapse the problem such that each colour has a size. We de�ne this problem in
the following way:

Problem AREA-DISTRIBUTION

Item: A set C of colours, a size function s : C → N and a set F of �oors,
each with an integer capacity m.

Question: How to �nd a distribution of the colours items to �oors
a : (C,F ) → N that is a valid bin-packing solution while optimizing an
objective function cost : a→ R?

Note that a colour can be distributed to multiple �oors, while a room can not. The
size of a colour can be interpreted as the number of equal sized rooms of that colour
or as the total area required for the rooms of that colour. The objective function we
use here minimizes the number of �oors a colour is present in summed over all colours,
which is the same objective as in BPMCF. The purpose of the auxiliary variables xc,f is
to determine whether a colour c is present in �oor f .

minimize cost(a, γ) =
∑
c∈C

∑
f∈F

xc,f (2.1)

xc,f =

{
1 a(c, f) ≥ 1

0 otherwise
(2.2)

Theorem 2.1. Solving area-distribution is NP-hard.

Proof. We show this by reducing instances of number-partition to area-distribution in-
stances in polynomial time. For each number from the multi-set S, we create a colour
and the size of that colour is the number. We use two bins of size |S|/2 each to represent
S1 and S2. The resulting instance of area-distribution is always solvable but the objec-
tive function can have two di�erent values. If it is |C| none of the colours got split into
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both bins and hence we have a partition. For instances that do not have a partition, the
solution will be |C|+ 1 since one colour needs to be present in both bins.

While this proof only shows that we are able to solve number-partitioning using area-
distribution, we may also observe that the problem de�nition is similar to that of multi-
way number-partitioning which we de�ned in Section 1.3. The decision version of area-
distribution is a relaxed version of the decision version of multi-way number-partitioning,
where we are allowed to split items among di�erent sets. However, both problems opti-
mize into di�erent dimensions.

2.1 Properties

A solution to area-distribution is a mapping of rooms to �oors that satis�es the size-
constraints of all �oors. Neither the �oors nor the rooms within them are ordered in
a solution. To support the observations in the following sections, we are �rst going to
de�ne a few properties.

2.1.1 Sequence Model

In the sequence model there is a total order on the bins as well as on the items within each
bin. Hence it is possible to view a solution as a single sequence of items with delimiters
between the bins. Note that there are multiple sequences representing the same solution
as shown in Fig. 2.1. Each sequence however, maps to exactly one solution. The space
left empty within the bins may be ignored in this model.

Fig. 2.1: Two sequences representing the same solution.

Furthermore we call a sequence to be nice if the items of every colour form an interval.
Neither of the sequences in Fig. 2.1 is nice, since there are items of other colours between
the red items in the left and right bin. A nice sequence for the same instance, but a
di�erent solution, can be seen in Fig. 2.2.

Fig. 2.2: A nice sequence.
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2.1.2 Fragmentation

We de�ne a colour's fragmentation to be the number of multi-coloured bins it is present
in and call it fragmented if this number is at least two. In Fig. 2.1 red and green are frag-
mented colours, while blue and yellow are unfragmented. Note that this is independent
of the sequence used and hence a feature of the solution. In the solution represented by
the nice sequence in Fig. 2.2 for instance only green is fragmented.

2.1.3 Flips

We de�ne a �ip to exchange two equal-sized blocks of items with each other. The blocks
can have any length but may not stretch across the boundaries of bins. There are two
di�erent basic types of �ips. Fig. 2.3a shows a type 1 �ip altering the sequence only
within a bin and hence preserving the solution and Fig. 2.3b shows a type 2 �ip across
the boundary of two bins and therefore also altering the solution. While we may use type
1 �ips at any time we need to be careful when using type 2 �ips since the two solutions
may not be equally good. In our example the value of the solution according to the
colour fragmentation changes from 5 to 3.

(a) Type 1 �ip.
(b) Type 2 �ip.

Fig. 2.3: Two major types of �ips.

2.2 Nice Sequences

While we may have the intuition that nice sequences might represent good solutions, this
section is about proving the following theorem:

Theorem 2.2. For any instance of �oor-distribution there is an optimal solution admit-

ting a nice sequence.

Proof. We start with any optimal solution, use �ips to transform it into another optimal
solution with good properties and �nally construct a nice sequence for it. The properties
we seek are that no colour has a fragmentation of more than two and no bin has more
than two fragmented colours in it.
First we remove all single-coloured bins and every bin without any fragmented colour

from the solution we start with. They will remain unchanged in the following operations
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and will therefore be reinserted later. Within the remaining bins we use �ips of type 1
exhaustively to make each colour a block locally. This operation is visualized in Fig. 2.4.
We also keep up this property in other operations by using type 1 �ips.

Fig. 2.4: Sorting by colour within a bin.

At this point colours may still have a high fragmentation. For any colour being present
in at least three bins, we apply the following steps recursively until it is present in at
most two di�erent bins. Suppose there are two blocks of the same colour that would
actually �t into one bin. In this case we can �ip one of them into the bin of the other by
exchanging it with a block of other colours in that bin. Note that this �ip must fragment
an unfragmented colour, since otherwise the solution used is not optimal. Fig. 2.5a
shows an example where the fragmentation of the red items is reduced by paying with
the fragmentation of the green items.
If no two red blocks �t into a single bin, we can simply �ll up one of the bins with

red items from another bin as seen in Fig. 2.5b. This does not change the fragmentation
of either colour directly, but we are then able to remove one bin and the fragmentation
of the red items is reduced by one. Once again, this �ip cannot reduce the value of
the solution since the second bin may not already have a green item unless the solution
already was not optimal.

(a) case 1. (b) case 2.

Fig. 2.5: Reducing the fragmentation of the red items.

After applying these two cases exhaustively, every colour is present in either one or two
(multicoloured) bins. Therefore we can now de�ne a graph where the bins are vertices
and the fragmented colours are edges. Such graphs can be seen in Figs. 2.6 to 2.8. Since
every edge corresponds to a colour being present in two bins, the contribution to the
objective function of those bins still present now equals |C|+ |E|. Hence the number of
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edges may not change throughout the following operations.
The graph may not contain a cycle since it would be possible to shift the items around

the cycle until at least one colour becomes unfragmented. This operation can be seen
in Fig. 2.6 and since it removes an edge the used solution was not optimal. The same
argument also applies to multi-edges and therefore the graph is a forest.

Fig. 2.6: Shifting items in a graph with cycle.

The graph may still have high degree vertices which we need to remove in order to
construct a nice sequence from the graph. To accomplish this we introduce an operation
that can move edges one-sidedly, meaning that one endpoint remains the same while the
other end is reconnected to another vertex. Internally this is done by a �ip that can be
seen in Fig. 2.7. The high degree vertex in the example has three adjacent edges, so we
need to move one of them. We choose to move the green edge and can then choose a new
endpoint among the other neighbouring vertices. Since we choose the neighbour along
the blue edge, we perform a �ip along that edge. The green block from the �rst bin is
�ipped with a blue block of equal size from the second bin.

Fig. 2.7: Moving an edge by �ipping item blocks case 1.

Since the second bin may not have enough blue items as seen in Fig. 2.8, the �ipped
block can be �lled up with other items of unfragmented colours. If there are not enough
of such items, the solution used is not optimal. In this case the �ip changes the colour
of the edge we �ip along, but can neither remove it nor make it a multi-edge. Note that
the solution used for showing this case is not optimal.

Fig. 2.8: Moving an edge by �ipping item blocks case 2.
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Since we are able to choose which edge to move and where to move it, we can use this
operation to move an edge along a path until it reaches a leaf. When it reaches a leaf
there is one vertex of high degree less. After applying this technique to all such vertices,
each component of our graph is a path. Now we can reinsert the single-coloured bins
at the edge corresponding to their colour and bins without fragmented colours as degree
0 vertices. Reinserting a single-coloured bin of an unfragmented colour can be done by
splitting the bin that colour is present in as seen in Fig. 2.9.

Fig. 2.9: Reinserting a green bin.

A sequence can now be given by putting the components of the graph together in any
order and orientation. The resulting sequence for the graph from Fig. 2.7 can be seen in
Fig. 2.10. Starting with any optimal solution, we computed a nice sequence and hence
Theorem 2.2 holds.

Fig. 2.10: A nice sequence for the graph from Fig. 2.7.

2.3 Approximation

In this section we use nice sequences for a 2-approximation of area-distribution.

Theorem 2.3. For any instance of area-distribution we can compute a nice sequence in

O(|C|+ |F |) time.

Proof. Pick any permutation of the colours. Starting with an empty bin and the �rst
colour, check whether the bin has enough space for all items of the colour. If that is the
case put all items of that colour into the bin and continue with the next colour. Otherwise
�ll the bin completely with the colour and continue with the next bin. For such a step
we only need a constant amount of time for comparing the remaining number of items
the colour has and the remaining capacity of the bin. In each such step we either reduce
the number of un�nished colours, or the number of empty �oors by 1. Hence there may
only be |C|+ |F | steps until all colours got assigned.

Theorem 2.4. For any instance of area-distribution the solution represented by any nice

sequence is a 2-approximation.

Proof. The number of bins each colour uses in a nice sequence is at most one higher than
the minimum required, because we may only shift the coloured block but cannot scatter
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it. Since each colour uses at least one bin in any optimal solution, the number of used
bins per colour can at most double. These observations can be formalized as follows:

OPT+ |C|
OPT

≤ 2|C|
|C|

= 2 (2.3)

Theorem 2.5. The approximation factor of 2 is asymptotically sharp for using any nice

sequence to approximate area-distribution.

Proof. We �rst show the existence of an example with m = 2 and then generalize it. For
this example we need two colours with one item each, |C| − 2 colours with two items
each and |F | = |C| − 1. As we can see in Fig. 2.11 the approximation can have a value
of at most 2|C| − 2.

Fig. 2.11: Constructing a sharp instance for the approximation.

An optimal solution, however, would put the two single items into the same bin,
resulting in a value of |C|. Hence we can show, that our analysis is sharp:

lim
|C|→∞

2|C| − 2

|C|
= 2 (2.4)

We can further construct a family of instances by giving the |C| − 2 colours m items
each, for any m ≥ 2.

For a �ner analysis we need to �nd a better lower bound for OPT. While every colour
needs to be in at least one bin, we may also observe that every bin has items of at least
one colour. Therefore we know, that OPT ≥ max(|C|, |F |). We can further observe that
every colour uses exactly one transition between two bins for each bin it is present in
apart from the �rst. In other words, all bins have two fragmented colours at most:

|C|+ |F |
OPT

≤ |C|+ |F |
max(|C|, |F |)

= 1 +min

(
|F |
|C|

,
|C|
|F |

)
(2.5)

Therefore the approximation performs better than with a factor of 2 if |F | 6= |C|. Nice
sequences are hence a very good approximation for instances with either |F | � |C| or
|C| � |F |.
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2.4 Exact

However, we might be interested in solving area-distribution exactly:

Theorem 2.6. Area-distribution can be solved exactly using nice sequences in O(|C|! ·
2min(|C|,|F |)) time.

Proof. Among all nice sequences an instance admits, there must be at least one rep-
resenting an optimal solution. To enumerate them we try all |C|! permutations of the
colours. Additionally at each of the |C| − 1 transitions between two colours there may
be a gap of empty space. Since each gap may only stretch till the end of its bin, there
are only two possibilities per transition. There also may not be more than |F | gaps in
total and therefore the overall runtime is O(|C|! · 2min(|C|,|F |)). Here |C| is the size of the
input because the items do not have properties of their own and can be represented by
a single number per colour.

2.5 Distance Measures

As already mentioned, we want to additionally include a function δ : (F, F )→ R measur-
ing the distance of �oors. For BPMCF this function would simply be δ(f1, f2) = 1
since all bins are equal. Within a building, a reasonable distance measure may be
δ(f1, f2) = |`(f1) − `(f2)| where `(f) denotes the level of f in the building. In a multi-
building setting, a graph may be used to de�ne distances with δ(f1, f2) then being the
length of a shortest f1-f2-path.
The introduction of a distance measure also requires di�erent objective functions. The

goal may then be to minimize the maximum distance of two bins having items of the same
colour (Eq. 2.6). If we want to take this distance into account for each colour, we can sum
the distances up (Eq. 2.7) making it equally important to lower the maximum distances
for all colours. Alternatively we can de�ne a |C|-dimensional vector with the values for
each colour in descending order. Two vectors can then be compared lexicographically to
�rst minimize the highest distance and subsequently the lower distances. If we do not
only want to consider greatest distances, we can also minimize over all �oors a colour is
present in by summing all those distances up (Eq. 2.8).

max
c∈C

max
f1,f2∈F

xc,f1 · xc,f2 · δ(f1, f2) (2.6)∑
c∈C

max
f1,f2∈F

xc,f1 · xc,f2 · δ(f1, f2) (2.7)∑
c∈C

∑
f1,f2∈F

xc,f1 · xc,f2 · δ(f1, f2) (2.8)

To illustrate the di�erence these cost functions have in practice, there is an optimal
solution for each of them for the same instance in Fig. 2.12.
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a)

b)

c)

Fig. 2.12: Optimal solutions according to di�erent measures.

Solution a) is optimal for Eq. 2.6 because no colour has a maximum distance of 2 and
0 is not possible. But this comes at the price of fragmenting all colours. Using Eq. 2.7
we can for example get the optimal solution b) where only two colours are fragmented.
This, however, comes at the price of having one colour in three di�erent �oors. To avoid
this behaviour we can use Eq. 2.8 and get an optimal solution like the one seen in c).
The values for each combination of cost-function and solution can be seen in the

following table:

Eq. 2.6 Eq. 2.7 Eq. 2.8
a) 1 4 4
b) 2 3 5
c) 1 3 3

We conclude that Eq. 2.6 does not discriminate well and we may not want to use it.
The question of whether Eq. 2.7 or Eq. 2.8 is the right choice depends on how we want
to weigh collective interest against individual interest.

2.6 Buildings

In this section we introduce buildings into our model in order to properly account for the
distance between �oors. Section 2.6.1 is about the simple case with only one building.
In Section 2.6.2 we may have any number of independent buildings and in Section 2.6.3
those buildings are also allowed to be connected.
All these setups have in common, that they use a distance function δ : (F, F )→ R to

describe how far a pair of �oors f1 and f2 are apart from each other. Accordingly we
also need another objective function to incorporate the distance function. Here we want
to minimize the maximum distance of same-coloured rooms summed over all colours:
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minimize cost(a, δ) =
∑
c∈C

[
1 + max

f1,f2∈F
xc,f1 · xc,f2 · δ(f1, f2)

]
(2.9)

xc,f =

{
1 a(c, f) ≥ 1

0 otherwise
(2.10)

2.6.1 Single Building

Here we consider a single building with all its �oors stacked and equally spaced. Therefore
we can use the level `(f) of a �oor f to determine its height in the building and δ(f1, f2) =
|`(f1) − `(f2)| to measure the distance of two �oors f1 and f2. We can formalize the
problem in the following way:

Problem AREA-DISTRIBUTION IN SINGLE BUILDING

Item: A set C of colours, a size function s : C → N, a set F of �oors,
each with an integer capacity m and a distance function δ : (F, F )→ R.
Question: How to �nd a distribution of the colour's items to �oors
a : (C,F ) → N, that is a valid bin-packing solution while optimizing an
objective function cost : (a, δ)→ R?

We observe that the maximum distance for items of the same colour c is minimal when
all its rooms are placed in the least possible number of adjacent �oors. Using the level
of the �oors as a total order on our bins, this observation means we can rearrange our
colour's items within their bins to let the colour form an interval in the sequence model.
Since this can be done for all colours we can conclude:

Theorem 2.7. Any optimal solution for an instance of area-distribution in single building

can be represented by a nice sequence.

Proof. Given an optimal solution, we remove all single-coloured bins. Each colour can
then only be in two of the remaining bins and those need to be adjacent in the ordered
stack of bins as we observed before. Therefore no bin can have more than two fragmented
colours and the graph is a set of paths aligned with the order of the bins. From this we
can get a nice sequence by only rearranging the items within their bins with type 1 �ips.
Hence we can �nd a nice sequence without changing the solution.

Theorem 2.7 and Theorem 2.2 have a similar statement for their respective problem
with the only di�erence, that the latter does not hold true for any optimal solution.
Therefore Theorem 2.7 is the strictly stronger statement and we may use any results
we obtained using Theorem 2.2 for the single-building setup. This includes both the
approximation algorithm from Section 2.3 and the exact algorithm from Section 2.4.
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2.6.2 Disjoint Buildings

Here we have a set of buildings B with equally sized �oors, but possibly with di�erent
numbers thereof. We do further require that every working group is placed completely
within one building. This is particularly important if the buildings are in di�erent loca-
tions or even in di�erent cities. Therefore we set the distance of two �oors of di�erent
buildings to in�nity, but the distance of two �oors of the same building is still measured
by their levels. We can formalize the problem as follows:

Problem AREA-DISTRIBUTION IN DISJOINT BUILDINGS

Item: A set B of buildings, a set C of colours, a size function s : C → N,
a set F of �oors, each with an integer capacity m, a function b : F →
B indicating which building a �oor belongs to and a distance function
δ : (F, F )→ R.
Question: How to �nd a distribution of the colours items to �oors
a : (C,F ) → N, that is a valid bin-packing solution and does not dis-
tribute any colour's items to �oors of multiple building while optimizing
an objective function cost : (a, δ)→ R?

The distance function we use according to this de�nition is the following:

δ(f1, f2) =

{
|`(f1)− `(f2)| b(f1) = b(f2)

∞ otherwise
(2.11)

In this setting a solution can be represented by a set of disjoint sequences, where each
such sequence represents a building. The length of a sequence is hence bound from above
through the number of �oors its building has. Since we do not allow colours to be in
multiple sequences we can use the result from before to show the following:

Theorem 2.8. Any optimal solution for an instance of area-distribution in disjoint build-

ings can be represented by a set of disjoint nice sequences.

Proof. Every colour gets assigned to a single building in any solution. Therefore we can
apply Theorem 2.7 to every building independently.

Using the results concerning single buildings, however, needs some additional work.
Since we do not know which colour should belong to which building, we may try all
possible assignments. Whether an assignment is possible is determined for each building
by its number of �oors and the sum of items its colours have. This, however, results in
an additional factor of O(|B||C|) for the runtime of those algorithms. In particular this
means, the approximation algorithm from Section 2.3 does not run in polynomial time
for this setup.

Theorem 2.9. Area-distribution in disjoint buildings is NP-hard to approximate.
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Proof. Recall the decision version of bin-packing as given in Section 1.3. Model the
�xed number of bins as buildings and the items as colours. Since �oor-distribution
in disjoint buildings does not optimize on the number of buildings but on the colour
fragmentation within the buildings, it may only make imperfect decisions within the
buildings for approximation. The assignment of colours to buildings, however, needs to
stay perfect because the objective function would otherwise return in�nity as de�ned in
the distance function. Since no approximation algorithm may return an arbitrarily bad
solution for any instance, we are not allowed to weaken the requirement of no colour being
present in more than one building. This, however, results in any approximation algorithm
assigning the colours to buildings and hence solving the bin-packing instance we reduced
in the beginning. Since bin-packing is NP-hard, we can conclude that area-distribution
in disjoint buildings is NP-hard to approximate.

To solve the problem exactly, we can use an algorithm enumerating bin-packing solu-
tions for assigning the colours to building and then use the algorithm from Section 2.4
for each building in each enumerated solution. However, this results in an additional
factor exponential in |C|.

Theorem 2.10. Area-distribution in disjoint buildings can be solved exactly in O(|B|2 ·
|C|! · 2min(|C|,|F |)) time.

Proof. We can directly enumerate nice sequences for the whole instance as seen in Sec-
tion 2.4 and then try to subdivide them into the buildings we need. We can do this with
an unwrapping algorithm. In each step we need to cut o� a part of the sequence from
either end in the length of one of the remaining buildings. Trying a combination of one
building and one end of the sequence can be done in constant time since we only need to
check whether the two bins we cut through share a colour. However we do not know the
order in which we can cut o� the buildings. Therefore we need O(|B|2) additional time
and are able to solve this version of the problem exactly in O(|B|2 · |C|! · 2min(|C|,|F |))
time.

2.6.3 Connected Buildings

In this setup we have multiple buildings and rooms of the same colour which may be
placed within di�erent buildings. While we handle distances within a building like before,
we additionally need a distance function δ : (B,B) → R to measure the distance of
buildings. To avoid the need of further context about how the buildings are located we
require this function as input. The corresponding problem de�nition is:
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Problem AREA-DISTRIBUTION IN CONNECTED BUILD-

INGS

Item: A set B of buildings, a set C of colours, a size function s : C → N,
a set F of �oors, each with an integer capacity m, a function b : F → B
indicating which building a �oor belongs to and the distance functions
δ : (F, F )→ R and δ : (B,B)→ R
Question: How to �nd a distribution of the colour's items to �oors
a : (C,F ) → N, that is a valid bin-packing solution while optimizing an
objective function cost : (a, δ)→ R?

Assuming the buildings are all connected on ground level the distance function between
�oors can then be given in the following way:

δ(f1, f2) =

{
|`(f1)− `(f2)| b(f1) = b(f2)

δ(b(f1), b(f2)) + `(f1) + `(f2) otherwise
(2.12)

Theorem 2.11. Any optimal solution for �oor-distribution in connected buildings can

be represented by a set of possibly connected nice sequences.

Proof. First split every colour into one separate colour for each building it is present in.
Since no colour is still present in multiple buildings any more, we have a solution with
disjoint buildings and may apply Theorem 2.8 to show that every building can now be
represented by a nice sequence. Now we merge the colours we split before again, which
does not change the sequences within the buildings, but only adds connections between
buildings.

Note that a building may have multiple connections to other buildings and that a colour
may be split among more than two buildings. Using the nice sequences of each building
as nodes and the connections between them as edges, we can de�ne a graph to represent
optimal solutions for connected buildings. Such a graph of connected nice sequences can
be seen in Fig. 2.13. The �rst �oors are in the centre of the �gure and the buildings
grow towards the left or right respectively. Note that the purpose of the example is to
illustrate many possible ways a colour can be split up in this setting. The used solution
therefore may not be optimal for all possible distances between the buildings.

Theorem 2.12. Area-distribution in connected buildings is NP-hard to approximate.

Proof. Area-distribution in disjoint buildings is a special case of area-distribution in
connected buildings with δ(b1, b2) = ∞. Hence the theorem follows directly from Theo-
rem 2.9.

Theorem 2.13. Area-distribution in connected buildings can be solved exactly.

Proof. The nice sequences of connected buildings can not necessarily be concatenated
to a single nice sequence. Therefore we may not enumerate nice sequences and then
split them up here. Instead we �rst determine which building a room shall be assigned
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Fig. 2.13: A graph of (possibly) connected nice sequences.

to. This can once again be done with an algorithm enumerating bin-packing solution in
|B||C| time.
For each such distribution and within each building we enumerate nice sequences

and try all combinations. The number of nice sequences has an upper bound of |C|! ·
2min(|C|,f(b)), where f(b) is the number of �oors in building b, because there is no trivial
bound on how many colours may be present within each building.
Doing this for every building and every possible distribution of the items to buildings

results in a runtime of O(|B||C| ·
∏
b∈B|C|! · 2min(|C|,f(b))).

For the relatively small example in Fig. 2.13 this formula already evaluates to the order
1032. Hence the given algorithm is infeasible even for small instances. The problem here
clearly is |C|!|B|, which is that the order of the colours may be di�erent in every building.
Hence we may only use this approach for instances with a very low number of buildings
and colours.
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3 Room Assignment

In Chapter 2 we saw how to solve the special case of room-assignment with unit-sized
items but already introduced buildings into the model. In this chapter we generalize those
results to allow rooms of di�ering sizes. However, we mainly discuss approximations
here, because we introduce a di�erent approach in Section 4.4 which is able to solve
room-assignment as a special case.
The basic version of room-assignment without a building giving an order to the �oors

can be de�ned in the following way:

Problem ROOM-ASSIGNMENT

Item: A set R of n rooms, a size function s : R→ N, a function γ : R→
{1, . . . , |C|} assigning each room a colour (group), and a set F of �oors,
each with an integer capacity m

Question: How to �nd an assignment of rooms to �oors a : R→ F , that
is a valid bin-packing solution while optimizing an objective function
cost : (a, γ)→ R?

When using the following objective function, room-assignment minimizes the �oor's
colour fragmentation in the same way as BPMCF. The purpose of the auxiliary variables
xc,f , again, is to tell whether any room in �oor f has colour c.

minimize cost(a, γ) =
∑
c∈C

∑
f∈F

xc,f (3.1)

xc,f =

1
∨
r∈R

[(
a(r) = f

)
∧
(
γ(r) = c

)]
0 otherwise

(3.2)

Since we are also able to use di�erent objective functions, room-assignment is a gen-
eralization of BPMCF.

3.1 Nice sequences

For area-distribution we used nice sequences to model solutions and design algorithms.
While room-assignment is closely related to area-distribution we can show the following:

Theorem 3.1. There are instances of room-assignment without any optimal solution

that is representable by a nice sequence.
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Proof. The sequence shown in Fig. 3.1 belongs to the only possible solution for its instance
and hence is optimal. Since the solutions graph has a cycle, no sequence for that solution
can be nice.

Fig. 3.1: The only optimal solution for an instance not admitting any nice sequence.

We just showed that Theorem 2.2, which we used for all results about the di�erent
versions of area-distribution, does not work for room-assignment. Therefore we may not
use any of the results for area-distribution directly for room-assignment.
However, if we are able to guarantee, that at least one third of the space within the bins

will remain empty, we can always �nd a nice sequence representing an optimal solution
like in Fig. 3.2.

Fig. 3.2: A nice sequence representing an optimal solution for the instance from Fig. 3.1 with
an additional �oor available.

This however, means we are able to use only two thirds of the actual space. This might
be optimal in terms of our cost function, but certainly not in any other terms. Therefore
we will not use this approach.

3.2 Relaxation

In this section we de�ne a relaxation of room-assignment instances to area-distribution
instances.
Given an instance of room-assignment we group the rooms by their colour and for each

colour we sum the sizes of its rooms. We then use this sum as the size of the colour in
an instance of area-distribution. All other properties of the new instance are inherited
from the room-assignment instance.
The relaxation hence solves the same instance while dropping the requirement, that

a room can not be split into di�erent �oors. Therefore the set of valid solutions of
any room-assignment instance is a subset of the corresponding relaxed area-assignment
instance. Furthermore we can show:

Theorem 3.2. The cost of an optimal solution for any instance of room-assignment

cannot rise by relaxing it to an instance of area-distribution.
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Proof. Subdividing all rooms in a solution of a room-assignment instance gives a valid
solution for its relaxation with the same cost. However, it does not need to be optimal.

Therefore we can use optimal solutions for the relaxation of a room-assignment instance
as a lower bound for the unrelaxed version.

3.3 Approximability

Here we will show that there is no algorithm approximating room-assignment in polyno-
mial time with an argument similar to that we already used in Section 2.6.2.

Theorem 3.3. Room-assignment is NP-hard to approximate.

Proof. We show this with a polynomial time reduction from bin-packing. Given an
instance of the decision version of bin-packing as de�ned in Section 1.3 we create an
instance of room-assignment by giving every room the same colour. Apart from this we
let the constructed instance inherit all properties from the bin-packing instance. Any
solution for the room-assignment instance solves the underlying bin-packing instance
regardless of the cost-functions value. Therefore any algorithm solving room-assignment
with any quality also solves bin-packing and hence cannot run in polynomial time.

3.4 Bi-criteria Approximation

In this section we try to parametrize the di�culty of room-assignment instances in order
to de�ne a bi-criteria approximation algorithm. That is a generalization of approximation
algorithms, where we are allowed to violate some constraint that de�nes a proper solution.
The degree of violation must be bound by a factor β along with a solution quality bound
by a factor α as usual. Here α still refers to OPT of the version without constraint-
violation. The result then is an (α, β)-approximation running in polynomial time.
In room-assignment we require every room to be assigned to a single �oor where it

gets the area s(r) it needs. Here, however, we will violate this requirement by only
guaranteeing a room gets s(r)/β space, for β > 1. Hence β is the factor by which we
allow rooms to be smaller than their requirement.
For this purpose we add an additional constraint to the room's sizes. Instead of

s : R → N we require s : R → {1, . . . , k} for some k ∈ N. This does not actually reduce
the set of instances, but instead provides the parameter k we need here.
Starting with an instance of �oor-assignment we �rst compute its relaxation to an

instance of area-distribution. Then we apply the 2-approximation algorithm from Sec-
tion 2.3 in O(|C| + |F |) time. Due to Theorem 2.2 we can use the given solution to
�nd another equally good solution that we can represent by a nice sequence. This nice
sequence, however, still represents a solution to the area-distribution instance and needs
to be transformed back to the original room-assignment instance. Through the transfor-
mation we will keep the structure of the nice sequence. Therefore we can apply the �rst
step to each colour independently.

27



The space a colour gets assigned to forms an interval within the nice sequence. There-
fore the space is distributed among two partial �oors at most and any number of complete
�oors in between them. The task now is to subdivide these spaces into the rooms we
need. If the colour gets assigned to only a single �oor, we are always able to do the
subdivision exactly. Otherwise we can model the spaces as bins and the rooms we seek
as items of a bin-packing instance. However, this instance is unlikely to be solvable and
therefore we allow slightly over-packing the bins and use heuristics for the distribution.

3.4.1 Greedy Heuristic

The instance we want to solve heuristically here is actually similar to multi-way number
partitioning as de�ned in Section 1.3. The main di�erence is that we do not want our sets
to be �lled uniformly but according to the size of the bin they represent. Nevertheless,
we can design a greedy heuristic based on an algorithm Graham [Gra66] designed for
multi-way number-partitioning in the context of minimizing the longest processing time
in multiprocessor setups.
First we sort the rooms in order of decreasing size. Then we iterate greedily through

the rooms, always placing the largest room into the bin with the largest remaining space.
At this point, Graham instead chooses the set with the lowest current sum. If the largest
remaining space is too small for the room, we place it there anyway over-packing the
corresponding bin.
Since the sum of empty spaces left is always at least as large as the sum of sizes of

rooms left, we never need to place a room into an already (over)full bin. Hence after
placing all rooms we may have overpacked bins by at most one room. Since there must
have been at least one unit of space left before placing the last room, no bin can be
overpacked by more than k − 1. The same bound also holds for under-packing.
The space m a �oor provides can be split among any number of colours, but since we

started with a nice sequence, at most two of them can be fragmented. Since unfragmented
colours can be subdivided into rooms exactly, at most two colours per �oor need to use
the heuristic. Therefore we need to �t no more than two possibly overpacked bins into
one �oor and the over-/under-packing limit gets doubled. For each �oor we then scale
all rooms by the same factor β in order to �t all of them back into the �oor.
Due to the upper bound on over-packing the bins we can also give an upper bound for

the scaling factor:

β ≤ 1 +
2k − 2

m
(3.3)

The goal of the used heuristic, however, is to minimize the deviation from perfectly
�tted rooms and therefore also minimizes this scaling factor. The given upper bound is
only achieved by few constructed examples and we may expect something a lot better in
practice.
Since all the additional work for transforming the instances back and forth can be

done in linear time, sorting the rooms is the dominating contributor here. Therefore this
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approach results in an (2, 1+(2k− 2)/m)-approximation algorithm for room-assignment
running in O(|C|+ |F |+ n · log n) ∈ O(n · log n) time.

3.4.2 Improved Heuristic

We can further improve the described heuristic to get a better bi-criteria approximation:

Theorem 3.4. There is a (2, 1 + k−1
m )-approximation for room-assignment, where k is

the size of the largest room and m is the area each �oor provides.

Proof. Within a nice sequence the space a colour gets assigned to forms an interval and
hence we have a total order for the colours. For the fragmented colours we additionally
have a total order on the �oors they got assigned to. At this point we once again �rst
handle each colour independently.
For fragmented colours we �rst decide which of its rooms get assigned to the �rst �oor

it has space in. We greedily assign rooms to that �oor in order of decreasing size, but
do not allow using more space than the colour has in that �oor. Hence we will at most
leave k − 1 space unused. Then we distribute the remaining rooms among the other
�oors in the same way we used before, which was greedily while allowing to over-pack
the bins that represent the space within each �oor. The over-packing is once again upper
bounded by k − 1 space.
After we have done this for every colour, we can put the partial solutions back together

again. Since we made sure that the space each colour has in its �rst bin is not exceeded,
the transition between two colours may only feature one over-packed bin at most, instead
of two. Therefore we do not need to double the over-packing limit and hence we achieve
a better bound for β:

β ≤ 1 +
k − 1

m
(3.4)

3.4.3 Karmarkar-Karp Heuristic

As already mentioned the problem we try solve is closely related to multi-way number-
partitioning. Another popular algorithm for this problem was de�ned by Karmarkar and
Karp [KK83]. We will shortly outline the idea for the special case of two-way number
partitioning but the algorithm works for any number of subsets.
First sort the numbers in decreasing order and then iteratively replace the largest

two numbers by their absolute di�erence while keeping the list sorted. The last number
remaining corresponds to the quality of the solution we have found. To construct the
solution, place the remaining number in either set and iterate backwards through the
steps we did before. In each step replace the inserted number by the two numbers it
is the di�erence of. After all di�erences are resolved we have two sets with the original
numbers and the di�erence we computed in the �rst step.
The optimization here is minimizing the di�erence of the sets. We are instead interested

in minimizing the deviation of the set's di�erence from the di�erence in size our bins
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have. However, it remains unclear how to generalize the di�erencing heuristic to aim for
a di�erence other than zero.

3.4.4 Buidlings

Here we want to reintroduce a distance function for the �oors. We do this in the same
way we have already seen in Section 2.6.
For room-assignment in single building we can use the same relaxation approach we

used already. This is because the only requirement we had for being able to �t the rooms
back into their �oor was, that no �oor has more than two fragmented colours. This is
true for any nice sequence and the solutions for approximating area-distribution in single
buildings were nice sequences.
For room-assignment in disjoint buildings we may not �nd a bi-criteria approximation

since we showed that we can not approximate area-distribution in disjoint building with
Theorem 2.9. The same also holds true for room-assignment in connected buildings.

3.5 Heuristic

We can also use the relaxation approach to �nd solutions with exact room sizes. To
achieve this, we do not directly solve the relaxation, but instead solve an instance with
�oors of size m′ = m−k+1 that is otherwise identical. Computing the 2-approximation
for this new instance is forced to leave at least k − 1 space in every �oor. Re�tting the
over-packed bins from the improved heuristic is therefore always possible without scaling.
This is of particular interest if the given room sizes are not meant to be used as

estimates, but as minimums. Then we can just scale the rooms within a �oor up to use
all the remaining space or leave it empty for future use. However, this comes at the cost
of losing the approximation factor, since there is no way to bound the cost of such a
solution relative to an optimal solution. Therefore we just de�ned a heuristic for solving
room-assignment.

3.6 Exact

If we tolerate the β-violation of rooms sizes as seen in Section 3.4, we can also use
the same approach for an exact algorithm. Compute the relaxation and run the exact
algorithm from Section 2.4 in O(|C|! · 2min(|C|,|F |)) time. Run the heuristic for every
colour and scale the rooms in order to �t them back into their �oors.
The same approach can also be used for room-assignment in single building, disjoint

buildings and connected buildings because the algorithms for solving their relaxation use
nice sequences. For exact algorithms we can also use exact approaches instead of the
improved heuristic. However, this only minimizes the constraint violation but cannot
eliminate it.
While this approach gives us optimal solutions a constraint violation is something, we

might not tolerate in an exact algorithm. Therefore we will instead look at a di�erent
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way to solve room-assignment exactly without violating constrains. This can be achieved
through an integer linear program.

3.6.1 ILP

The ILP follows directly from our problem de�nition. The variables in Eq. 3.5 correspond
to the assignment function stating whether a room r gets assigned to the �oor f . Eq. 3.6
then makes sure that every room gets assigned exactly once and Eq. 3.7 ensures that no
�oor gets overpacked.

ar,f ∈ {0, 1} ∀r ∈ R, f ∈ F (3.5)∑
f∈F

ar,f = 1 ∀r ∈ R (3.6)

∑
r∈R

ar,f · s(r) ≤ m ∀f ∈ F (3.7)

For the optimization part we need a few additional equations. Like before xc,f in
Eq. 3.8 tells whether a �oor f has colour c. To ensure this behaviour, we use Eq. 3.9,
where γ(r, c) is 1 if γ(r) = c and 0 otherwise. Eq. 3.10 then minimizes the colour
fragmentation as usual.

xc,f ∈ {0, 1} ∀c ∈ C, f ∈ F (3.8)

xc,f ≥ ar,f · γ(r, c) ∀c ∈ C, r ∈ R, f ∈ F (3.9)

minimize
∑
c∈C

∑
f∈F

xc,f (3.10)

While modelling room-assignment as an ILP seems to be pretty straight forward we
will not generalize it with distance functions here, because we will later see a more
sophisticated approach to this problem in Section 4.4 embedded into solving the �oor-
planning problem. There, for example, we do not require all �oors to have the same size,
but instead we are even able to model them far more realistic.
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4 Floor Planning

In the preceding chapter we have seen how to assign rooms to �oors. In this chapter
we place the rooms within each �oor as non-intersecting rectangles. For this purpose a
�oor is given as a simple orthogonal polygon P together with a matching hallway H.
By matching we mean, that for each edge in P there is a corresponding parallel edge in
H and vice versa. Note that P may also have holes, each requiring the hallway to have
a cycle around it. We may assume without loss of generality that P and H are both
axis-aligned.
The area we can use to place rooms in is P \H and can be subdivided into sections

enclosed between two edges and sections between two corners. Therefore we refer to the
�rst as edges of the usable area and to the latter as vertices of it. Such a subdivision
of an example �oor can be seen in Fig. 4.1. We let w(e) denote the width of an edge
e, measured as the distance between the two parallel edges de�ning e. Accordingly l(e)
denotes the length of the corresponding area of the subdivision and s(e) its area.

v1 v2

v3v4

v5v6

e1

e2

e3

e4

e5

e6

w(e1)

l(e2)

Fig. 4.1: The subdivision of a �oor.

For simplicity we require every room to have a connection to both the hallway and the
outer face. To be able to use those connections for doors and windows we require the
length of the common edge to have at least a length of d. Since we required every room
to be placed as a rectangle, they also need to be placed axis-aligned. The rooms placed
within the area along an edge can therefore be seen as a simple linear subdivision of the
rectangle into smaller rectangles. Therefore we do not need to care for the order of the
rooms along an edge.
The rooms placed within a corner, however, need some additional attention. They

also need a common edge with both the hallway and the outer face. To accomplish this
they need to cover not only the entire area of that corner but also a small part of the
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area belonging to one of the two adjacent edges. Therefore once we decide into which
direction such a room grows, we consider the corner to belong to the adjacent edge. In
Fig. 4.2 for example any room placed in v1 needs to expand into the area of either e1 or
e2 and the minimal length of that extension is again d. Since the heights of e1 and e2
might be di�erent, the question of whether a room can be placed in v1 also depends on
the edge it will expend into. Therefore the size of the vertex s(v) only counts the area
these two realizations have in common. This approach does not discriminate between the
two directions of in�ection a corner can be of, because both can be handled identically.

v1

e1

e2

≥ d

Fig. 4.2: Corner treatment.

In the following sections we will use the term neighbourhood in the following sense:
The neighbourhood of an edge N(e) is a set containing the two corners adjacent to the
edge e. Accordingly we use N(v) to denote the set containing the two edges adjacent to
the corner v.

4.1 NP-hardness

Theorem 4.1. Floor-planning is NP-hard.

Proof. We show this by reducing instances of number-partitioning to �oor-planning in-
stances in polynomial time. That is, given a multi-set S of integers, �nd a partition
into two subsets S1 and S2. We will now construct a �oor-planning instance solving this
problem.
We use an instance of �oor-planning with the following properties: The �oor is a

rectangle with height 2 + ε, width 1.5|S| + 2 and a centred hallway of width |S|/2 + 2
and height ε. The elements of S are used as the sizes of rooms and we add another four
rooms of size |S|/2 + 1 each. This forces the corners of our �oor plan to be occupied by
the additional rooms since no other room is large enough to �ll any corner for 0 < d ≤ 1.
The remaining areas above and below the hallway are then both of size |S|/2. The

left and right edges both only have a width of ε and are therefore too small to be used
by any room if we require ε < 1/a. Since the size of the area along the upper and lower
edges together is equal to the size needed by all rooms from the partitioning instance,
that instance is solvable if and only if �oor-planning is able to �t the rooms.
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5 4

1 2 6

|S|/2 + 1

|S|/2 + 1

|S|/2 + 1

|S|/2 + 1

Fig. 4.3: Floor plan for partitioning the set S = {6, 5, 4, 2, 1}.

An example can be seen in Fig. 4.3.
In the following section we will see, that the feasibility of a solution can be checked

through a polynomial number of constraints. Hence �oor-planning ∈ NP and therefore
also NP-complete.

4.2 ILP

To solve �oor-planning we �rst de�ne a function g : (R,E) → {0, 1}. Its purpose is to
determine whether a room r can be placed along an edge e. If for example a small room
is placed along an edge with high width the result would be a very thin rectangle. To
circumvent such a placement, we are using an upper bound α for the aspect ratio of any
rooms realization. This can be achieved through the following de�nition:

g(r, e) =

{
1 α ≥ s(r)

w(e)2
≥ 1

α

0 otherwise
(4.1)

Assuming that no room is smaller than α · d this also means we do not need to check
whether rooms placed along an edge are long enough to have a door and a window. For
rooms placed in a corner, however, we need to check that. For that purpose we de�ne the
function q : (R,E, V )→ {0, 1} in a similar way to precompute whether a room r can be
placed in the corner v expanding into the area of edge e. It needs to check whether the
room is large enough to cover the whole corner and additionally enough of the adjacent
edge to allow for a door or window, depending on the corner type:

q(r, e, v) =

{
1 s(r) ≥ s(v) + w(e) · d
0 otherwise

(4.2)

Using these two function, we can now de�ne the following ILP without an objective
function to solve �oor-planning. First Eq. 4.3 de�nes a variable for every combination of
room and edge which is true if and only if the room is placed along that edge.

xr,e ∈ {0, 1} ∀r ∈ R, e ∈ E (4.3)

In a similar way Eq. 4.4 de�nes a variable for every combination of room and corner, but
also encoding which of the two adjacent edges the room will expend into.

yr,e,v ∈ {0, 1} ∀r ∈ R, e ∈ E, v ∈ N(e) (4.4)
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With Eq. 4.5 we make sure that every room is assigned to either one edge or one corner.
In the latter case this includes the edge it belongs to.

∑
e∈E

[
xr,e +

∑
v∈N(e)

yr,e,v

]
= 1 ∀r ∈ R (4.5)

With Eq. 4.6 we make sure that no room is assigned to an edge it cannot be placed at
according to the precomputed function g.

xr,e +
∑

v∈N(e)

yr,e,v ≤ g(r, e) ∀r ∈ R, e ∈ E (4.6)

Eq. 4.7 guarantees that every corner is occupied by one room at most and also encodes
which edge it belongs to. ∑

r∈R

∑
e∈N(v)

yr,e,v ≤ 1 ∀v ∈ V (4.7)

We use Eq. 4.8 to check whether the rooms placed in corners can be placed in that corner
according to the function q.

yr,e,v ≤ q(r, e, v) ∀r ∈ R, e ∈ E, v ∈ N(e) (4.8)

To ensure no edge gets overpacked, Eq. 4.9 checks for every edge whether the sum of
the sizes of the rooms assigned to it �t into the given area. For this purpose the corners
assigned to the edge need to be considered as well.

∑
r∈R

[
xr,e · s(r) +

∑
v∈N(e)

yr,e,v ·
(
s(r)− s(v)

)]
≤ s(e) ∀e ∈ E (4.9)

4.3 Optimization

The ILP will simply produce any feasible solution, but, as in Chapter 3, the rooms still
belong to work groups identi�ed by the colour function γ : R→ {1, . . . , |C|}. Hence the
goal is once again to minimize the fragmentation of the set of rooms belonging to the
same colour. We can achieve this by introducing an objective function to the ILP.
For this purpose we �rst pre-compute the values of the colour-function into a binary

table γ : (R,C)→ {0, 1} to tell whether a room r has colour c. It can simply be computed
in the following way:

γ(r, c) =

{
1 γ(r) = c

0 otherwise
(4.10)

Then we need to adjust the ILP by adding another type of variable for each combination
of edge and colour with Eq. 4.11.

35



ze,c ∈ {0, 1} ∀e ∈ E, c ∈ C (4.11)

Those variables are then constrained by Eq. 4.12 to be 1 if any of the rooms placed at
the edge e or a corner belonging to that edge has the colour c.(

xr,e +
∑

v∈N(e)

yr,e,v

)
· γ(r, c) ≤ ze,c ∀r ∈ R, e ∈ E, c ∈ C (4.12)

By using Eq. 4.13 as our objective function, we can then minimize the number of edges
a colour is present at over all colours. Note that this objective function is similar to that
of BPMCF as seen in Chapter 3.

minimize
∑
c∈C

∑
e∈E

ze,c (4.13)

This objective function does well in keeping the number of colours low within edges,
but does not discriminate at all on a larger scale. The example shown in Fig. 4.4 for
instance is optimal in terms of Eq. 4.13, but in hardly any others.

Fig. 4.4: An optimal solution with alternating colours.

To circumvent this behaviour, we need to design another measure. For this purpose
we need a distance function δ : (E,E)→ R to measure the distance of two edges. It can
either be computed or given as another input. For computing it we propose the following
algorithm.
The hallway can be reduced to a graph indicating walking-distances. Since the edges

we use can be mapped to edges of that graph, we can use it to determine a rough
distance measure through a shortest-distance algorithm. If a more sophisticated measure
is needed, we can map the endpoints of each edge onto the graph to get a range on the
graphs edge.
Using such a distance measure, we can design a new measure for how well colours are

distributed in the �oor. Eq. 4.14 sums the distances of edges with same colours, but is
not a linear function and can therefore not be used in an ILP.
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minimize
∑
c∈C

∑
e1∈E

∑
e2∈E

ze1,c · ze2,c · δ(e1, e2) (4.14)

But since the variables we multiply are both boolean we are actually interested in the
boolean and operation. To model it, we can use another type of variable for each pair
of edges and colour in Eq. 4.15. Those are then constrained by Eq. 4.16 to be 1 if the
edges e1 and e2 share the colour c.

ue1,e2,c ∈ {0, 1} ∀e1 ∈ E, e2 ∈ E, c ∈ C (4.15)

ue1,e2,c + 1 ≥ ze1,c + ze2,c ∀e1 ∈ E, e2 ∈ E, c ∈ C (4.16)

Using these variables, we can now de�ne a new objective function for the same purpose
but without multiplication in Eq. 4.17.

minimize
∑
c∈C

∑
e1∈E

∑
e2∈E

ue1,e2,c · δ(e1, e2) (4.17)

Using it, we can �nally get a solution like in Fig. 4.5 for the same input from Fig. 4.4.

Fig. 4.5: A less fragmented solution.

However, Eq. 4.17 does not distinguish between the solutions shown in Figs. 4.5 and 4.6.
In order to circumvent getting the latter solution, we need to include the corners into
our distance measure.
For this purpose we de�ne another type of variable for each combination of corner and

colour in Eq. 4.3 and split up Eq. 4.12 into Eqs. 4.19 and 4.20.

zv,c ∈ {0, 1} ∀v ∈ V, c ∈ C (4.18)

xr,e · γ(r, c) ≤ ze,c ∀r ∈ R, e ∈ E, c ∈ C (4.19)

yr,e,v · γ(r, c) ≤ zv,c ∀r ∈ R, v ∈ V, e ∈ N(v), c ∈ C (4.20)
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Fig. 4.6: A less likeable solution.

Additionally using a distance function δ(E, V ) → R, we can de�ne Eq. 4.21 as our
�nal objective function. Note that it again only uses multiplication on boolean values
and can hence be linearised automatically like demonstrated before.

minimize
∑
c∈C

∑
e1∈E

[ ∑
e2∈E

ze1,c · ze2,c · δ(e1, e2) +
∑
v∈V

ze1,c · zv,c · δ(e1, v)
]

(4.21)

4.4 Multiple Floors

While we designed the ILP to place rooms within a single �oor it is actually capable
of solving multi-�oor setups. In the given form of the ILP, the neighbourhood relation
between edges and corners already does not consider whether all of them are connected.
For example the �oor plan in Fig. 4.7 is already solvable in the current de�nition of the
ILP.
The rooms in this example are physically connected through the hallway, but the ILP

does not actually have that information. It only knows about two independent cycles of
edges it can use to place rooms in. The situation for the ILP is therefore already much
like having two independent �oor plans.
The only exemption is the distance function. In the courtyard example from Fig. 4.7

the distance of two edges can still be computed like before. For edges not sharing a
common hallway we need to use the distance of their �oors instead. Since the ILP
itself already needs the distance function as a pre-computed matrix, we can compute
the distances when creating the ILP. Since that matrix only has a quadratic number of
entries we can compute all entries independently in polynomial time. To use the distance
of �oors as the distance of edges we just need to use a proper scaling factor for the two
measures.
While we are now able to measure the distance of any two edges, the actual distance

might di�er a lot. This is due to an edge's distance to the staircase. To include it into our
model we �rst need to make sure, the ILP can handle it. Fig. 4.8 shows a �oor plan with
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e2

v3e3v4

e4
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e6

v7e7v8

e8

Fig. 4.7: Floor plan with courtyard.

the area occupied by the staircase crossed out. The corresponding edge is divided into
two partial edges. Up to this point every edge and corner always had two neighbours,
but the ILP does not actually depend on this property and hence the two half-edges do
not pose a problem. Note that we do not require the blocked area for the staircase to
be the same in every �oor, nor do we at all require the �oors to be similar. However,
what we need is the distance function between �oors to measure the distance within the
staircase. We may also use the same method to incorporate an elevator or to block areas
from usage by the ILP.
With the staircase incorporated into our model we can compute the distance of two

edges from di�erent �oors in a more sophisticated way. First we compute the distance of
both edges to the staircase in their �oor and sum them up together with the distance of
the two �oors involved. Now a colour fragmented across at least two �oors contributes
less to the objective function if the edges it is placed in are closer to the staircase of their
�oors.
The generalization of the �oor-planning ILP is also able to solve room-assignment

instances. We simply need to model the �oors with a single edge and set the distance of
that edge to the staircase to zero. For the distance of two edges we can therefore simply
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v1 v2

v3v4

v5v6
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e3

e4

e5

e6

Fig. 4.8: Floor plan with staircase.

use the di�erence in level of their �oors like before. However, we may not want to use
this insight since we are already able to solve both problems in one step as seen in this
section.
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5 People Assignment

The problems we de�ned so far are designed to help in the pre-construction phase of
buildings. However, requirements may change over time since work groups can change in
size, cease or arise. While our goals may stay the same after a change of requirements,
we are further constrained since the construction is already completed.
Therefore this chapter is about a slightly di�erent problem, where we want to place

people belonging to work groups into already existing rooms. We de�ne it in the following
way:

Problem PEOPLE-ASSIGNMENT

Item: A set P of n people, a size function s : P → N, a function γ : P →
{1, . . . , |C|} assigning each person a colour (group), a set R of rooms, a
size function s : R→ N and a distance function δ : (R,R)→ R.
Question: How to �nd an assignment of people to rooms a : P → R,
that is a valid bin-packing solution while optimizing an objective function
cost : (a, γ, δ)→ R?

We use the following cost-function here:

minimize cost(a, γ, δ) =
∑
c∈C

∑
r1∈R

∑
r2∈R

xc,r1 · xc,r2 · δ(r1, r2) (5.1)

xc,r =

1
∨
p∈P

[(
a(p) = r

)
∧
(
γ(p) = c

)]
0 otherwise

(5.2)

The distance of two rooms can be precomputed in the same way as we did for edges
in Section 4.4.

Theorem 5.1. People-assignment is NP-hard.

Proof. We can reduce bin-packing to people-assignment by modelling all the items as
people of the same group and the bins as equidistant rooms. Solving such an instance
also solves the decision version of bin-packing.

Theorem 5.2. People-assignment is NP-hard to approximate.

Proof. An approximate solution of any quality is still a valid bin-packing solution.

Theorem 5.3. People-assignment can be solved trough �oor-planning.
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Proof. Model each of the rooms in an instance of people-assignment as a �oor that
consists of only one edge. The area of that edge is determined by the size of the room
we used to create it and we do not introduce aspect-ratio bounds. The people are then
modelled as rooms in the �oor-planning instance, including their colour-function.

5.1 ILP

Instead of using �oor-planning to solve people-assignment we can de�ne a dedicated ILP.
However, it works in a similar fashion. First we model valid assignments:

ap,r ∈ {0, 1} ∀p ∈ P, r ∈ R (5.3)∑
r∈R

ap,r = 1 ∀p ∈ P (5.4)∑
p∈P

ap,r · s(p) ≤ s(r) ∀r ∈ R (5.5)

For the optimization part we again need auxiliary variables to circumvent the multi-
plication within our objective function:

xc,r ∈ {0, 1} ∀c ∈ C, r ∈ R (5.6)

ap,r · γ(p, c) ≤ xc,r ∀p ∈ P, c ∈ C, r ∈ R (5.7)

uc,r1,r2 ∈ {0, 1} ∀c ∈ C, r1 ∈ R, r2 ∈ R (5.8)

uc,r1,r2 + 1 ≥ xc,r1 + xc,r2 ∀c ∈ C, r1 ∈ R, r2 ∈ R (5.9)

minimize
∑
c∈C

∑
r1∈R

∑
r2∈R

uc,r1,r2 · δ(r1, r2) (5.10)

Furthermore some people might necessarily get a room of their own, while others might
not. This information is required as an input function t : R→ {0, 1}. To let the ILP plan
accordingly we adjust the constraints counting the space within a room from Eq. 5.5 in
the following way:∑

p∈P
ap,r · s(p) · (1− t(r)) + s(r) · t(r) ≤ s(r) ∀r ∈ R (5.11)
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6 Benchmark

To evaluate how well the proposed algorithms work we use real data from the Institute
of Mathematics at the University of Würzburg. They are currently structured into 10
chairs, which we will use as colours, along with another colour for rooms associated with
the institute itself. The rooms they use are currently distributed among 9 �oors in 3
di�erent buildings. Assigning each room the colour corresponding to the people working
in it results in the schematic seen in Fig. 6.1. Note that short-term personnel was omitted
due to being assigned to shared rooms on an institute basis.

(a) 30.03 (b) 40.03

(c) 30.02 (d) 40.02

(e) 30.01 (f) 40.01

(g) 30.00 (h) 40.00

(i) 31.00

Fig. 6.1: Current �oor plan

The �oors are identi�ed by two digits for the building and two digits for the level in
that building, separated by a dot. While the �oors are all slightly di�erent, they follow
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the same general structure. The blocked areas in the lower part are stairs and those in
the upper part are service and rest rooms.
All ILPs tested in this chapter have been built using OPL and solved with CPLEX

version 12.10 in the following environment:

� Windows 10 1903,

� Intel i7-9700 @4.4GHz and

� 32GB DDR4 RAM @2133MHz

6.1 People Assignment

Here we use the ILP de�ned in Section 5.1 to �nd a distribution of the people working
at the institute to the same �oors they already use and compare it with the actual
distribution. Note that most of the unassigned rooms are used as seminar or meeting
rooms and therefore occupied but not associated with a chair. Those rooms are exempt
from the test run described in the this section.
Since the structure of the �oors is already given, we can compute distances between

rooms in the following way. First we model the hallway within each �oor as a simple line
and project each rooms door onto that line. Distances of rooms within a �oor can then
be computed as the distance along that line. For rooms in di�erent �oors, distances from
and to a staircase in addition to a penalty for the distance of the �oors are used. Since
there are two staircases, we compute the distance for using either and use the better
result. For rooms within di�erent buildings we use the distances of both rooms to the
main door of their building (within the left staircase for building 30 and 40, and within
the right staircase for building 31) along with an extra penalty for the distance of the
buildings.
After modelling the rooms and distances between them, we still need to model the

people we want to assign. According to the current plan we identi�ed 3 major groups of
people working in the institute. Their requirements are also formulated in regard to the
current plan:

� Secretaries and other administrative personnel get their own room of at least 15m2,

� long-term personnel get their own room of at least 18m2 and

� other personnel may be assigned to a shared room which has at least 8m2 per
person assigned.

Using these groups of personnel we can formalize the requirement for each chair by
classifying all current personnel and vacancies. The result can be seen in Table 6.1, where
chair 0 is the institute.
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chair 0 1 2 3 4 5 6 7 8 9 10

15m2 3 1 1 1 1 1 1 1 1 1 1
18m2 2 3 3 1 2 5 3 3 3 4 3
8m2 3 4 8 5 9 11 16 8 4 7 5

Tab. 6.1: Demand of di�erent sized spaces per chair.

Solving the ILP, however, turned out to be very computationally challenging. The
given example could only be solved within 12 hours after weeks optimizing CPLEX-
parameters. The optimal solution obtained has a cost of 6290.04 and can be seen in
Fig. 6.2.
While the solution obtained still has a few �aws, its quality is already comparable to

that of the plan currently in use. Avoiding the clustering in �oor 40.01 for instance,
might be solvable by using a higher penalty for the distance of �oors.
Compared to �nding an optimal solution it turned out to be relatively easy to �nd very

(a) 30.03 (b) 40.03

(c) 30.02 (d) 40.02

(e) 30.01 (f) 40.01

(g) 30.00 (h) 40.00

(i) 31.00

Fig. 6.2: Optimal new assignment to current �oor plan
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good solutions fast. Therefore Fig. 6.3 additionally shows the best solution obtainable
within a more reasonable time-limit of one hour, while not using knowledge about the
instance from previous attempts. The solution has a cost of 7194.96 and is hence already
relatively close to OPT, while using only a fraction of the time.

(a) 30.03 (b) 40.03

(c) 30.02 (d) 40.02

(e) 30.01 (f) 40.01

(g) 30.00 (h) 40.00

(i) 31.00

Fig. 6.3: New assignment to current �oor plan with 1h time-limit

6.2 Floor Planning

To test our �oor-planning algorithms, we �rst need to generate un�nished �oor plans.
We could do so by simply removing the walls separating the rooms in Fig. 6.1, but
this approach results in �oors consisting only of edges but no corners. To properly test
the capabilities of �oor-planning, we therefore use the plan given in Fig. 6.4 for every
�oor. For simplicity we also leave out all additional rooms that were not part of testing
people-assignment either.
In order to be able to compare the performance of the ILP de�ned in Sections 4.2

and 4.3 for the whole instance and separately for each �oor after using the bi-criteria
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Fig. 6.4: Floor plan of test data.

approximation from Section 3.4, we may not use a multi-building setup. Therefore we use
one building with 9 identical �oors according to Fig. 6.4. Distances between edges and
vertices are measured along the hallway much like in Section 6.1 but with less precision
due to the fact, that doors are not yet placed.
For the rooms required for each chair, we still use the actual demand like formulated

in Section 6.1. Since we already forced secretary and long-term personnel into rooms of
their own there, we can simply translate their demand to a demand of a rooms of the
same size. For other personnel we may do the same, but have the option to aggregate
multiple such rooms when placed along the same edge. Instead it would also be possible
to prede�ne into how many rooms of how many people each they should be separated.
With this testing-approach of using the actual demand, but a hypothetical building,

we simulate the use-case of testing a design for a new building where an existing institute
shall be moved to.

6.2.1 ILP

Solving the ILP de�ned in Sections 4.2 and 4.3 with the described example proved im-
practical. While the tested instance is smaller than the one solved for people-assignment,
it might be computationally harder due to having a higher density of constraints.
Since solving the problem to optimality not being completed within a week with opti-

mized parameters, Fig. 6.5 instead shows the best solution computed within a time-limit
of one hour and without using knowledge about the instance from previous attempts.
This solution of value 4738, however, still looks quite far from optimal and therefore
another solution obtained with a time-limit of 12 hours is displayed for comparison. The
latter has a value of 2313 and is hence reasonably closer to the optimal solution.
While it is easy to see, that the 12-hour solution is less fragmented than the 1-hour

solution, it still does not look like a plan good enough to actually be used in practice.
Whether this is due to not being optimal or due to the model remains an open question.
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�oor 1h ILP 12h ILP

8

7

6

5

4

3
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0

Fig. 6.5: New �oor plans: �rst column 1h ILP, second column 12h ILP
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6.2.2 Approximation

In this section we �rst solve an instance of room-assignment with the bi-criteria approx-
imation from Section 3.4 and then use the �oor-planning ILP separately for each �oor.
While this approach is only a heuristic when viewing the solved problem as a whole, it
might still prove useful due to faster solving.
For the bi-criteria approximation we �rst need to reduce the �oors to one-dimensional

bins. The capacity of a �oor according to Fig. 6.4 is 171m2. Then we need to relax
the room-assignment instance to an instance of area-distribution by summing up the
area-requirements for every chair. The result can be seen in Table 6.2

chair 0 1 2 3 4 5 6 7 8 9 10

area 105 101 133 73 123 193 197 133 101 143 109

Tab. 6.2: Total area required per chair.

The next step is �nding a nice sequence which we can use as a 2-approximation for
the area-distribution instance as shown in Theorem 2.7. We use the nice sequence shown
in Fig. 6.6 which is arguably not a very good choice, but nonetheless a 2-approximative
solution. The area each chair got assigned to in which �oor can be seen in Table 6.3.

0

1

2

3

4

5

6

7

8

Fig. 6.6: Nice sequence distributing the area requirement of the chairs to the �oors.

Nonetheless, we use the given nice sequence as input for the improved heuristic de-
scribed in Section 3.4.2. Since no chair got their space scattered into more than two
�oors, assigning the rooms to the �oors is straight forward. First �ll the lower �oor
greedily with rooms in descending order of size and then put all remaining rooms into
the other �oor. This results in the assignment of rooms to �oors shown in Table 6.4.
Most notably the provided area is exceeded by at most 2m2, giving us a scaling factor

of β = 173/171, while the upper bound was only β ≤ 1+(k−1)/m = 208/171. Using the
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chair/�oor 0 1 2 3 4 5 6 7 8 9 10

8 0 0 0 0 0 0 0 0 0 0 43
7 0 0 0 0 0 0 0 0 0 105 66
6 0 0 0 0 0 0 0 32 101 38 0
5 0 0 0 0 0 0 70 101 0 0 0
4 0 0 0 0 0 44 127 0 0 0 0
3 0 0 0 0 22 149 0 0 0 0 0
2 0 0 0 70 101 0 0 0 0 0 0
1 0 35 133 3 0 0 0 0 0 0 0
0 105 66 0 0 0 0 0 0 0 0 0

Tab. 6.3: Area-distribution per chair.

�oor chair 0 1 2 3 4 5 6 7 8 9 10 sum

15m2 1
8 18m2 0 47m2

8m2 4

15m2 1 0
7 18m2 2 3 169m2

8m2 7 1

15m2 0 1 0
6 18m2 0 3 2 169m2

8m2 4 4 0

15m2 0 1
5 18m2 0 3 173m2

8m2 9 4

15m2 0 1
4 18m2 0 3 173m2

8m2 6 7

15m2 0 1
3 18m2 0 5 169m2

8m2 3 5

15m2 1 1
2 18m2 1 2 172m2

8m2 5 6

15m2 1 1 0
1 18m2 0 3 0 172m2

8m2 3 8 0

15m2 3 0
0 18m2 2 3 167m2

8m2 3 1

Tab. 6.4: Distribution of rooms to �oors per chair.
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given distribution of rooms to �oors, we now solve a separate instance of �oor-planning
for each �oor using the ILP de�ned in Sections 4.2 and 4.3. The result can be seen left
in Fig. 6.7.

�oor Approx 1: Approx. 2:

8

7

6

5

4

3

2

1

0

Fig. 6.7: New �oor plans: �rst column with arbitrary nice sequence, second column with chosen
nice sequence.
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While every �oor was solved in less than a second, it was not always possible to directly
use the scaling factor from the bi-criteria approximation within the room-assignment ILP.
As can be seen in the resulting �oor plan, most �oors do not use the edge between the
two right corners. This is due to the constraints resulting in a required room of either
8 to 12m2 if using a corner, or of at most 4m2 otherwise. When using a scaling factor
slightly above 1, no such room exists and hence most �oors cannot use the space. Along
with similar, but more complicated constraints this results in the necessity of a higher
scaling factor for most �oors. Floors 0 and 8 did not need to scale their rooms, but the
other �oors needed up to β = 190/171 for a feasible solution, which is, however, still less
than the theoretical bound for room-assignment alone.
Another feature of the solution is that some parts might look non-optimal like in

�oor 2. While there are several reasons for such behaviour, in this case it is due to the
ILP running with only slightly more available space than required space which leads to
feasibility being the major task instead of optimizing the cost-function. Another reason
is how we modelled the third (smallest) type of room. While we used them separately,
in reality most of them are grouped into double or triple rooms. In the tested way the
ILP loses the ability to put such rooms into corner areas since any single room is too
small, but with pre-grouped rooms the ILP loses �exibility in distributing those rooms.
Since the model cannot decide this question on its own it is too simpli�ed to capture this
use-case properly.
In �oor 4 and 5 we can also see another problem concerning the greedy approach of

assigning the rooms of a colour to the �oors. It leads to most of the larger rooms of
any colour to be within the same �oor, while most of the smaller rooms get assigned to
another �oor. Therefore the large rooms within a �oor may have all the same colour,
while the �oor is not single-coloured. Since small rooms may not be placed in corners,
this leads to suboptimal behaviour.
This approach already works quite well compared to the ILP if considering, that it

runs at least 5 orders of magnitude faster on the used example. However, putting some
more work into carefully selecting the used nice sequence might result in far better �oor
plans without needing a lot more runtime. Also using a nice sequence where the empty
space is distributed among the �oors might not need to scale rooms down.
To test whether this claim holds, we use the same approach and simply use a chosen

nice sequence instead of an arbitrary one. Fig. 6.8 shows the used nice sequence, which
has less fragmented colours as well as a better distribution of the empty space compared
to Fig. 6.6. The corresponding area-distribution is displayed in Table 6.5 and the results
of the improved heuristic for the distribution can be seen in Table 6.6.
Using this assignment of rooms to �oors again to solve an ILP-instance for each �oor

independently, results in the �oor-plan displayed on the right in Fig. 6.7. Floor 4 and 5
still needed a scaling factor of β = 179/171 due to their large number of small rooms. All
other �oors were solvable without scaling which already shows how much of a di�erence
an informed choice of the nice sequence makes. The resulting �oors also appear less
fragmented since the ILP has more empty space it can use for optimizing the cost-
function.
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Fig. 6.8: A better nice sequence distributing the area requirement of the chairs to the �oors.

chair/�oor 0 1 2 3 4 5 6 7 8 9 10

8 0 0 0 0 0 0 0 0 0 143 0
7 0 0 0 0 123 32 0 0 0 0 0
6 0 0 0 0 0 161 0 0 0 0 0
5 0 0 133 0 0 0 32 0 0 0 0
4 0 0 0 0 0 0 165 0 0 0 0
3 0 101 0 0 0 0 0 0 55 0 0
2 0 0 0 0 0 0 0 0 46 0 109
1 0 0 0 23 0 0 0 133 0 0 0
0 105 0 0 50 0 0 0 0 0 0 0

Tab. 6.5: Area-distribution per chair of new nice sequence.
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�oor chair 0 1 2 3 4 5 6 7 8 9 10 sum

15m2 1
8 18m2 4 143m2

8m2 7

15m2 1 0
7 18m2 2 0 155m2

8m2 9 4

15m2 1
6 18m2 5 161m2

8m2 7

15m2 1 0
5 18m2 3 0 165m2

8m2 8 4

15m2 1
4 18m2 3 165m2

8m2 12

15m2 1 1
3 18m2 3 1 158m2

8m2 4 3

15m2 0 1
2 18m2 2 3 153m2

8m2 1 5

15m2 0 1
1 18m2 0 3 157m2

8m2 3 8

15m2 3 1
0 18m2 2 1 154m2

8m2 3 2

Tab. 6.6: Distribution of rooms to �oors per chair for new nice sequence.
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6.3 CPLEX-Remarks

The two ILPs for people-assignment and �oor-planning implemented and tested in this
chapter behaved pretty similar. Since their formulations have similarities, this does not
surprise much, although people-assignment is less constrained and tested on a larger
instance. In this section we want to give some brief remarks on how CPLEX works with
them.

� CPLEX handles both ILPs in their simpler IQP formulations and automatically
linearises the multiplication of boolean variables.

� The branch & bound algorithm used in CPLEX generates a huge search tree with a
similarly huge amount of memory consumption if not run with proper parameters.

� Using an estimate for OPT as an upper bound within the search, can dramati-
cally reduce memory and time consumption through pruning, but since it requires
additional knowledge about the instance, we did not use it for benchmark.

� Finding good solutions and working towards a proof of optimality are both done
in parallel, but optimizing them requires mostly contrary parameter settings.

� Finding OPT can therefore be done by two separate runs, where the �rst is op-
timized to �nd good solutions in order to provide a good upper bound on OPT
for the second run, optimized in proving optimality. If running the second without
the �rst, the search-algorithm cannot prune much of the search-tree and therefore
requires several hundred GB of memory.

� The test-data does involve a few rooms/people with identical constraints which
results in symmetries within the generated ILPs. This could be exploited with a
di�erent formulation of the ILPs where identical entities are grouped and assigned
with integer instead of boolean decision variables. While this most likely results in
a model that can be solved much faster, it does only work if such groups exist in
the instance to solve.
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7 Conclusion

In this work we de�ned, implemented and tested two di�erent approaches to automating
the process of �oor-planning. One approach formulates the whole problem as an ILP,
while the other �rst splits the problem into sub-problems for each �oor and then solves
them individually with the same ILP. While both approaches work in principle, there is
still additional work required to use them in practice.
For the ILP, further work into optimizing the runtime is necessary. However, with

the current formulation and parameters it may already be used for instances with only
a few �oors. Depending on the instance and goals, di�erent objective functions may be
necessary. To avoid even stronger implications on the runtime, only convex functions
should be considered. Due to the tested instance not being solved optimally, it also
remains unclear whether choosing a higher penalty for the distance of �oors might be
able to improve results.
The algorithmic approach looks promising, but also needs some further adjustments

to produce usable �oor-plans. For example, it might prove useful not to �ll the �rst bin
in the heuristic greedily, but with an approach that distributes large and small rooms
more balanced among the �oors. This would also re�ect the nature of subgroups within
the chairs better, which we did not consider at all yet. Furthermore we already tested
using nice sequences with additional desirable properties which proved very successful.
However, good selection criteria still need to be identi�ed and formalized along with an
algorithm for automatically �nding them, while avoiding to brute-force all possibilities.
In general the level of abstraction used to formulate the given problem de�nition was

higher than anticipated but necessary for a �rst proof of concept. Further adjustments to
the model might therefore still be necessary for solving instances in a more sophisticated
way. For instance, we modelled the chairs as a simple assignment of people or room
requirements to colours. However, the real structure does include multiple layers, for
example with di�erent professorships within the same chair. There are also more con-
straints like a secretary's and the associated professor's rooms might have to be placed
with a common wall to allow for a door in between. Some people might also work for
multiple groups which can not be represented in the current model. While we may adjust
the models level of detail to better cope with such cases, it will not likely be able to fully
represent all details of real instances. A lower level of abstraction than the one we used
here, might, however, still be desirable and achievable.
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