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State of the art

Problem Quality | Runtime
Cluster Minimization | exact ?
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My contribution

Problem Quality Complexity
Cluster Min. exact NP-hard
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NP-Hardness

Independent Set <, Cluster Minimization

Given an instance of Independent Set,

Construct an equivalent L-shape intersection graph...
... then construct an equivalent segment intersection graph.
Use the segments as edges in a geometric graph and place
vertices at each endpoint.

In the resulting geometric graph, a solution with 2n — k
clusters represents an independent set of size k.
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Greedy: lteratively select the least crossed edge
Reverse Greedy: lteratively delete the most crossed edge

Preprocessing: compute all edge crossings

= O(k + mlog m)
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Iteratively select the least crossed edge
Use Union-Find to manage clusters = O(n + ma(m))
Use Priority Queue to manage current crossing numbers

= Fibonacci-Heap!

REMOVE O(log n)*
EXTRACTMIN | O(logn)*
DECREASEKEY O(1)*

*amortized
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Greedy

Iteratively select the least crossed edge

Use Union-Find to manage clusters = O(n + ma(m))
Use Priority Queue to manage current crossing numbers
= Fibonacci-Heap! = O(k + mlog m)

Overall Runtime: O(n + k + mlog m)

1-plane graphs: m, k € O(n)

= Overall runtime reduces to O(nlog n)!
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lteratively delete the most crossed edge
Use Union-Find to manage clusters = O(n + ma(m))
Use Priority Queue to manage current crossing numbers

= Binary Search Tree = O(klog k + mlog m)
Overall Runtime: O(n + klog k + mlog m)
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Performance Analysis — Theoretical

A A nred, n+ 1 blue vertices

®

00000
Greedy/Reverse Greedy: n + 2 clusters

Optimal solution: 4 clusters

= no constant approximation factor for both heuristics!
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Greedy 7 clusters vs. Reverse Greedy k—+7!
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Sketch:

Model Cluster Minimization as a flow network.
Each node is either a source or a sink.

Each edge is either selected or not selected,
crossed edges are mutually exclusive.

Selected edges may transport flow,
unselected edges may not.

Each sink represents the "center” of a cluster,
connected nodes send the generated flow there.

ILP minimizes the number of sinks.
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Experiment setup

e Use map of places of interest in a city.
e Divide the map in quadrants of varying sizes.
e Connect the vertices with (3-skeletons.

e Run both heuristics, ILP where feasible.




Experiment setup
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Experiment Summary
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Experiment Summary

Biggest difference: Greedy 37 clusters vs. ILP 34 clusters!

Reverse Greedy tends to perform better than Greedy, but
differences are marginal
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Summary and Future Work

Problem Quality Complexity
Cluster Min. exact NP-hard

— Greedy no const. factor n+ k+ mlogm

— Rev. Greedy no const. factor | n+ klog k + mlog m
— 1-plane graphs exact nlog n

Edge Max. exact NP-hard

e There is a graph family on which the Greedy algorithm is

arbitrarily better than the Reverse Greedy algorithm.

e Is there a graph family where the opposite is true?

e |s there a constant factor approximation for Cluster
Minimization?

e How does the problem change if we allow some crossings?



Summary and Future Work

e Can we enhance the Greedy algorithm somehow?
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