
Cluster Minimization
in Geometric Graphs

Jakob Geiger

Motivation

Motivation

Cluster Minimization

Given: Geometric graph G = (V ,E)

Cluster Minimization

Given: Geometric graph G = (V ,E)

Goal: Find a subgraph H = (V ,E ′) of G such that no two
edges in E ′ cross and the number of connected
components in H is minimized.

Cluster Minimization

Given: Geometric graph G = (V ,E)

Goal: Find a subgraph H = (V ,E ′) of G such that no two
edges in E ′ cross and the number of connected
components in H is minimized.

Edge Maximization

Given: Geometric graph G = (V ,E)

Edge Maximization

Given: Geometric graph G = (V ,E)

Goal: Find a subgraph H = (V ,E ′) of G such that no two
edges in E ′ cross and |E ′| is maximized.

Edge Maximization

Given: Geometric graph G = (V ,E)

Goal: Find a subgraph H = (V ,E ′) of G such that no two
edges in E ′ cross and |E ′| is maximized.

State of the art

Problem Quality Runtime

Cluster Minimization exact ?
– Greedy ? polynomial
– 1-plane graphs exact polynomial

Edge Maximization exact NP-hard

all results by [Akitaya et al. 2019]

My contribution

Problem Quality Complexity

Cluster Min. exact NP-hard
– Greedy no const. factor n + k + m logm
– Rev. Greedy no const. factor n + k log k + m logm
– 1-plane graphs exact n log n

Edge Max. exact NP-hard

NP-Hardness

Independent Set ≤p Cluster Minimization

NP-Hardness

Independent Set ≤p Cluster Minimization
• Given an instance of Independent Set,

NP-Hardness

Independent Set ≤p Cluster Minimization
• Given an instance of Independent Set,
• Construct an equivalent L-shape intersection graph...

[Gonçalves et al. 2018]

NP-Hardness

Independent Set ≤p Cluster Minimization
• Given an instance of Independent Set,
• Construct an equivalent L-shape intersection graph...
• ... then construct an equivalent segment intersection graph.

[Biedl 2020]

NP-Hardness

Independent Set ≤p Cluster Minimization
• Given an instance of Independent Set,
• Construct an equivalent L-shape intersection graph...
• ... then construct an equivalent segment intersection graph.
• Use the segments as edges in a geometric graph and place

vertices at each endpoint.

NP-Hardness

Independent Set ≤p Cluster Minimization
• Given an instance of Independent Set,
• Construct an equivalent L-shape intersection graph...
• ... then construct an equivalent segment intersection graph.
• Use the segments as edges in a geometric graph and place

vertices at each endpoint.
• In the resulting geometric graph, a solution with 2n − k

clusters represents an independent set of size k .

Heuristics

Greedy: Iteratively select the least crossed edge

Heuristics

Greedy: Iteratively select the least crossed edge

Reverse Greedy: Iteratively delete the most crossed edge

Heuristics

Greedy: Iteratively select the least crossed edge

Reverse Greedy: Iteratively delete the most crossed edge

Preprocessing: compute all edge crossings

Heuristics

Greedy: Iteratively select the least crossed edge

Reverse Greedy: Iteratively delete the most crossed edge

Preprocessing: compute all edge crossings

⇒ O(k + m logm) [Balaban 1995]

Greedy

Iteratively select the least crossed edge

Greedy

Iteratively select the least crossed edge

Use Union-Find to manage clusters

Greedy

Iteratively select the least crossed edge

Use Union-Find to manage clusters ⇒ O(n + mα(m))

Greedy

Iteratively select the least crossed edge

Use Union-Find to manage clusters

Use Priority Queue to manage current crossing numbers

⇒ O(n + mα(m))

Greedy

Iteratively select the least crossed edge

Use Union-Find to manage clusters

Use Priority Queue to manage current crossing numbers

⇒ Fibonacci-Heap!

⇒ O(n + mα(m))

Greedy

Iteratively select the least crossed edge

Use Union-Find to manage clusters

Use Priority Queue to manage current crossing numbers

⇒ Fibonacci-Heap!

⇒ O(n + mα(m))

Remove O(log n)∗

ExtractMin O(log n)∗

DecreaseKey O(1)∗
*amortized

Greedy

Iteratively select the least crossed edge

Use Union-Find to manage clusters

Use Priority Queue to manage current crossing numbers

⇒ Fibonacci-Heap!

⇒ O(n + mα(m))

⇒ O(k + m logm)

Greedy

Iteratively select the least crossed edge

Use Union-Find to manage clusters

Use Priority Queue to manage current crossing numbers

⇒ Fibonacci-Heap!

Overall Runtime: O(n + k + m logm)

⇒ O(n + mα(m))

⇒ O(k + m logm)

Greedy

Iteratively select the least crossed edge

Use Union-Find to manage clusters

Use Priority Queue to manage current crossing numbers

⇒ Fibonacci-Heap!

Overall Runtime: O(n + k + m logm)

⇒ O(n + mα(m))

⇒ O(k + m logm)

1-plane graphs: m, k ∈ O(n)

Greedy

Iteratively select the least crossed edge

Use Union-Find to manage clusters

Use Priority Queue to manage current crossing numbers

⇒ Fibonacci-Heap!

Overall Runtime: O(n + k + m logm)

⇒ O(n + mα(m))

⇒ O(k + m logm)

1-plane graphs: m, k ∈ O(n)

⇒ Overall runtime reduces to O(n log n)!

Reverse Greedy

Iteratively delete the most crossed edge

Reverse Greedy

Iteratively delete the most crossed edge

Use Union-Find to manage clusters

Reverse Greedy

Iteratively delete the most crossed edge

Use Union-Find to manage clusters ⇒ O(n + mα(m))

Reverse Greedy

Iteratively delete the most crossed edge

Use Union-Find to manage clusters

Use Priority Queue to manage current crossing numbers

⇒ O(n + mα(m))

Reverse Greedy

Iteratively delete the most crossed edge

Use Union-Find to manage clusters

Use Priority Queue to manage current crossing numbers

⇒ Fibonacci-Heap!

⇒ O(n + mα(m))

Reverse Greedy

Iteratively delete the most crossed edge

Use Union-Find to manage clusters

Use Priority Queue to manage current crossing numbers

⇒ Fibonacci-Heap!

⇒ O(n + mα(m))

Reverse Greedy

Iteratively delete the most crossed edge

Use Union-Find to manage clusters

Use Priority Queue to manage current crossing numbers

⇒ O(n + mα(m))

⇒ Binary Search Tree

Reverse Greedy

Iteratively delete the most crossed edge

Use Union-Find to manage clusters

Use Priority Queue to manage current crossing numbers

⇒ O(n + mα(m))

Remove O(log n)
ExtractMin O(log n)
DecreaseKey O(log n)

⇒ Binary Search Tree

Reverse Greedy

Iteratively delete the most crossed edge

Use Union-Find to manage clusters

Use Priority Queue to manage current crossing numbers

⇒ O(n + mα(m))

⇒ O(k log k + m logm)⇒ Binary Search Tree

Reverse Greedy

Iteratively delete the most crossed edge

Use Union-Find to manage clusters

Use Priority Queue to manage current crossing numbers

Overall Runtime: O(n + k log k + m logm)

⇒ O(n + mα(m))

⇒ O(k log k + m logm)⇒ Binary Search Tree

Performance Analysis – Theoretical

u

v

n red, n + 1 blue vertices

Performance Analysis – Theoretical

u

v

n red, n + 1 blue vertices

Performance Analysis – Theoretical

u

v

n red, n + 1 blue vertices

Performance Analysis – Theoretical

u

v

Greedy/Reverse Greedy: n + 2 clusters

n red, n + 1 blue vertices

u

v

Performance Analysis – Theoretical

u

v

Greedy/Reverse Greedy: n + 2 clusters

Optimal solution:

n red, n + 1 blue vertices

u

v

Performance Analysis – Theoretical

u

v

Greedy/Reverse Greedy: n + 2 clusters

Optimal solution:

n red, n + 1 blue vertices

⇒ no constant approximation factor for both heuristics!

u

v

4 clusters

Performance – Greedy vs. Reverse Greedy

Ai

A′i

Bi

B ′i

Di

Ci

C ′i

Performance – Greedy vs. Reverse Greedy

Ai

A′i

Bi

B ′i

Di

Ci

C ′i

Performance – Greedy vs. Reverse Greedy

Ai

A′i

Bi

B ′i

Di

Ci

C ′i

Performance – Greedy vs. Reverse Greedy

Ai

A′i

Bi

B ′i

Di

Ci

C ′i

Performance – Greedy vs. Reverse Greedy

Ai

A′i

Bi

B ′i

Di

Ci

C ′i

Performance – Greedy vs. Reverse Greedy

Ai

A′i

Bi

B ′i

Di

Ci

C ′i

Performance – Greedy vs. Reverse Greedy

Ai

A′i

Bi

B ′i

Di

Ci

C ′i

Performance – Greedy vs. Reverse Greedy

Ai

A′i

Bi

B ′i

Di

Ci

C ′i

Performance – Greedy vs. Reverse Greedy

Ai

A′i

Bi

B ′i

Di

Ci

C ′i

Performance – Greedy vs. Reverse Greedy

Ai

A′i

Bi

B ′i

Di

Ci

C ′i

Performance – Greedy vs. Reverse Greedy

Greedy 7 clusters vs. Reverse Greedy k+7!

An ILP for Cluster Minimization

Sketch:

An ILP for Cluster Minimization

Sketch:

• Model Cluster Minimization as a flow network.

An ILP for Cluster Minimization

Sketch:

• Model Cluster Minimization as a flow network.

• Each node is either a source or a sink.

An ILP for Cluster Minimization

Sketch:

• Model Cluster Minimization as a flow network.

• Each node is either a source or a sink.

• Each edge is either selected or not selected,
crossed edges are mutually exclusive.

An ILP for Cluster Minimization

Sketch:

• Model Cluster Minimization as a flow network.

• Each node is either a source or a sink.

• Each edge is either selected or not selected,
crossed edges are mutually exclusive.

• Selected edges may transport flow,
unselected edges may not.

An ILP for Cluster Minimization

Sketch:

• Model Cluster Minimization as a flow network.

• Each node is either a source or a sink.

• Each edge is either selected or not selected,
crossed edges are mutually exclusive.

• Selected edges may transport flow,
unselected edges may not.

• Each sink represents the ”center” of a cluster,
connected nodes send the generated flow there.

An ILP for Cluster Minimization

Sketch:

• Model Cluster Minimization as a flow network.

• Each node is either a source or a sink.

• Each edge is either selected or not selected,
crossed edges are mutually exclusive.

• Selected edges may transport flow,
unselected edges may not.

• Each sink represents the ”center” of a cluster,
connected nodes send the generated flow there.

• ILP minimizes the number of sinks.

Experiment setup

• Use map of places of interest in a city.

Experiment setup

• Use map of places of interest in a city.

• Divide the map in quadrants of varying sizes.

Experiment setup

• Use map of places of interest in a city.

• Divide the map in quadrants of varying sizes.

• Connect the vertices with β-skeletons.

Experiment setup

• Use map of places of interest in a city.

• Divide the map in quadrants of varying sizes.

• Connect the vertices with β-skeletons.

β = 0.5 β = 0.9

Experiment setup

• Use map of places of interest in a city.

• Divide the map in quadrants of varying sizes.

• Connect the vertices with β-skeletons.

• Run both heuristics, ILP where feasible.

β = 0.5 β = 0.9

Experiment setup

β = 0.5 50 points, 15 clusters

Performance Analysis - Experiments

β = 0.5

Performance Analysis - Experiments

β = 0.9

Experiment Summary

Biggest difference: Greedy 37 clusters vs. ILP 34 clusters!

Experiment Summary

Biggest difference: Greedy 37 clusters vs. ILP 34 clusters!

Reverse Greedy tends to perform better than Greedy, but
differences are marginal

Summary and Future Work

Problem Quality Complexity

Cluster Min. exact NP-hard
– Greedy no const. factor n + k + m logm
– Rev. Greedy no const. factor n + k log k + m logm
– 1-plane graphs exact n log n

Edge Max. exact NP-hard

Summary and Future Work

Problem Quality Complexity

Cluster Min. exact NP-hard
– Greedy no const. factor n + k + m logm
– Rev. Greedy no const. factor n + k log k + m logm
– 1-plane graphs exact n log n

Edge Max. exact NP-hard

• There is a graph family on which the Greedy algorithm is
arbitrarily better than the Reverse Greedy algorithm.

• Is there a graph family where the opposite is true?

Summary and Future Work

Problem Quality Complexity

Cluster Min. exact NP-hard
– Greedy no const. factor n + k + m logm
– Rev. Greedy no const. factor n + k log k + m logm
– 1-plane graphs exact n log n

Edge Max. exact NP-hard

• There is a graph family on which the Greedy algorithm is
arbitrarily better than the Reverse Greedy algorithm.

• Is there a graph family where the opposite is true?

• Is there a constant factor approximation for Cluster
Minimization?

Summary and Future Work

Problem Quality Complexity

Cluster Min. exact NP-hard
– Greedy no const. factor n + k + m logm
– Rev. Greedy no const. factor n + k log k + m logm
– 1-plane graphs exact n log n

Edge Max. exact NP-hard

• There is a graph family on which the Greedy algorithm is
arbitrarily better than the Reverse Greedy algorithm.

• Is there a graph family where the opposite is true?

• Is there a constant factor approximation for Cluster
Minimization?

• How does the problem change if we allow some crossings?

Summary and Future Work

• Can we enhance the Greedy algorithm somehow?

	Motivation
	State of the art
	My contribution
	NP-Hardness
	Performance -- Greedy vs. Reverse Greedy
	Experiment setup
	Experiment Summary
	Summary and Future Work

