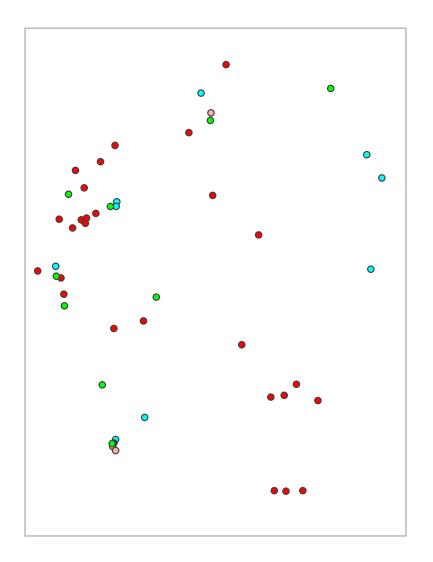




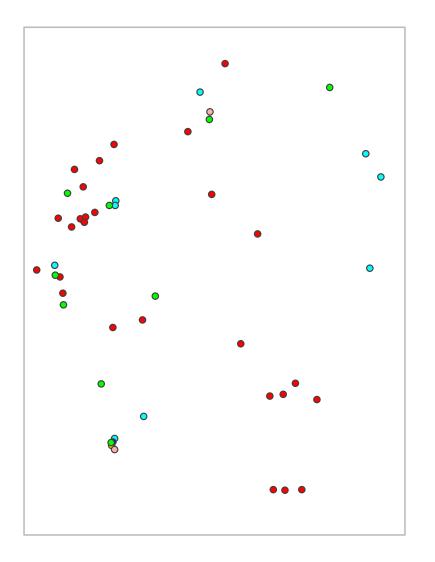
# Cluster Minimization in Geometric Graphs

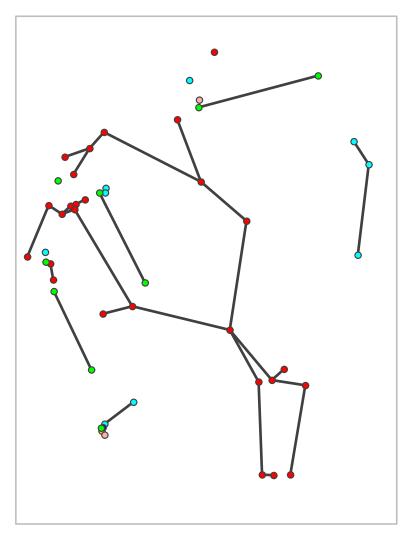
Jakob Geiger

# Motivation



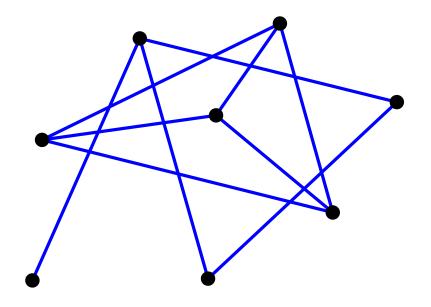
# Motivation





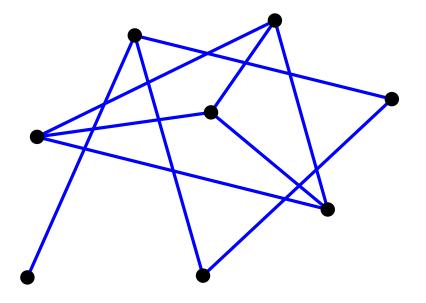
#### **Cluster Minimization**

#### Given: Geometric graph G = (V, E)



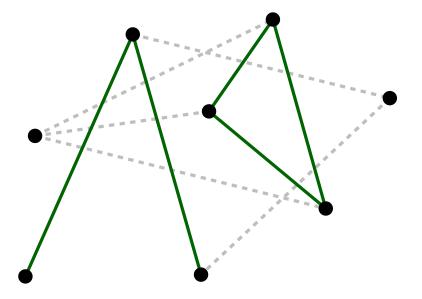
### **Cluster Minimization**

- Given: Geometric graph G = (V, E)
- Goal: Find a subgraph H = (V, E') of G such that no two edges in E' cross and the number of connected components in H is minimized.



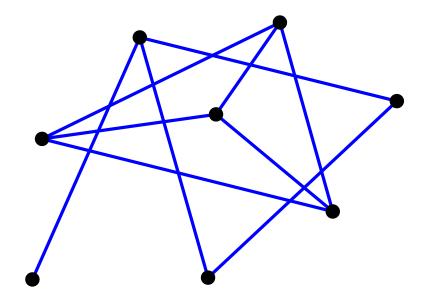
### **Cluster Minimization**

- Given: Geometric graph G = (V, E)
- Goal: Find a subgraph H = (V, E') of G such that no two edges in E' cross and the number of connected components in H is minimized.



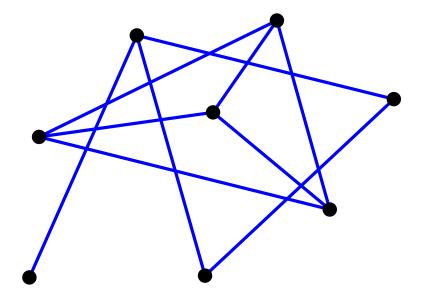
# Edge Maximization

#### Given: Geometric graph G = (V, E)



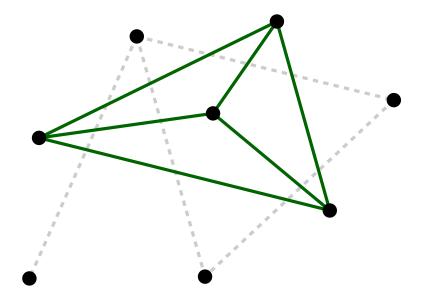
# Edge Maximization

- Given: Geometric graph G = (V, E)
- Goal: Find a subgraph H = (V, E') of G such that no two edges in E' cross and |E'| is maximized.



# Edge Maximization

- Given: Geometric graph G = (V, E)
- Goal: Find a subgraph H = (V, E') of G such that no two edges in E' cross and |E'| is maximized.



#### State of the art

| Problem              | Quality | Runtime    |
|----------------------|---------|------------|
| Cluster Minimization | exact   | ?          |
| – Greedy             | ?       | polynomial |
| – 1-plane graphs     | exact   | polynomial |
| Edge Maximization    | exact   | NP-hard    |

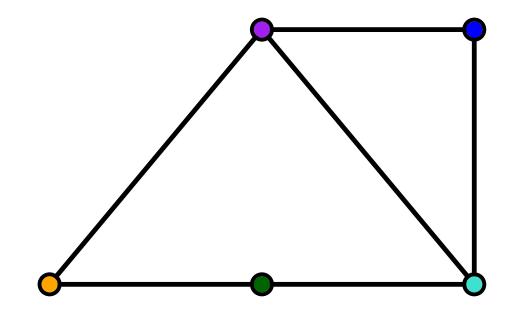
all results by [Akitaya et al. 2019]

# My contribution

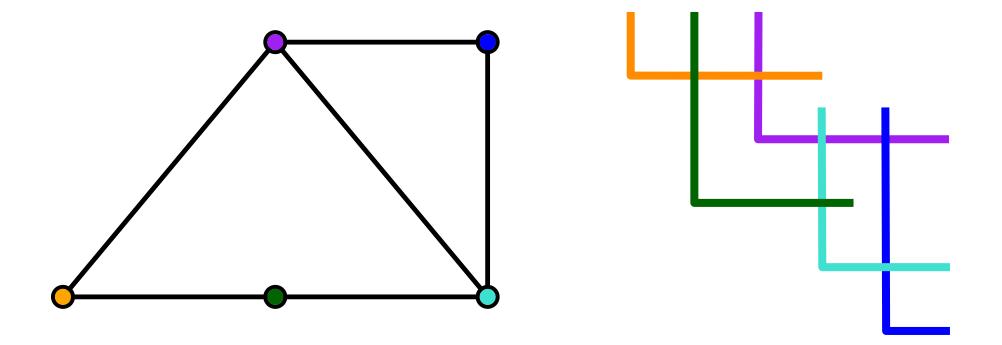
| Problem          | Quality          | Complexity          |
|------------------|------------------|---------------------|
| Cluster Min.     | exact            | NP-hard             |
| – Greedy         | no const. factor | $n+k+m\log m$       |
| – Rev. Greedy    | no const. factor | $n+k\log k+m\log m$ |
| – 1-plane graphs | exact            | n log n             |
| Edge Max.        | exact            | NP-hard             |

Independent Set  $\leq_p$  Cluster Minimization

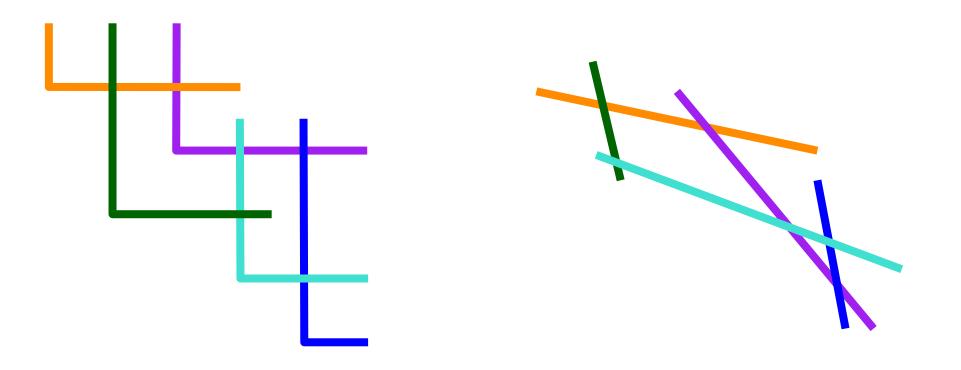
• Given an instance of Independent Set,



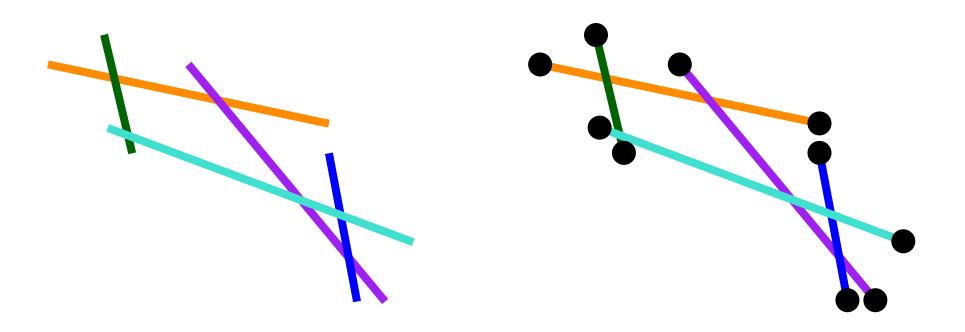
- [Gonçalves et al. 2018]
- Given an instance of Independent Set,
- Construct an equivalent L-shape intersection graph...



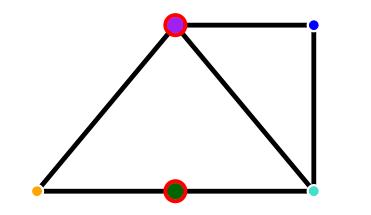
- Given an instance of Independent Set,
- Construct an equivalent L-shape intersection graph...
- ... then construct an equivalent segment intersection graph.

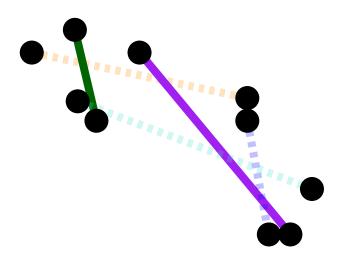


- Given an instance of Independent Set,
- Construct an equivalent L-shape intersection graph...
- ... then construct an equivalent segment intersection graph.
- Use the segments as edges in a geometric graph and place vertices at each endpoint.



- Given an instance of Independent Set,
- Construct an equivalent L-shape intersection graph...
- ... then construct an equivalent segment intersection graph.
- Use the segments as edges in a geometric graph and place vertices at each endpoint.
- In the resulting geometric graph, a solution with 2n k clusters represents an independent set of size k.





Greedy: Iteratively select the least crossed edge

Greedy: Iteratively select the least crossed edge

Reverse Greedy: Iteratively delete the most crossed edge

Greedy: Iteratively select the least crossed edge

Reverse Greedy: Iteratively delete the most crossed edge

Preprocessing: compute all edge crossings

Greedy: Iteratively select the least crossed edge

Reverse Greedy: Iteratively delete the most crossed edge

Preprocessing: compute all edge crossings

 $\Rightarrow O(k + m \log m)$  [Balaban 1995]



Iteratively select the least crossed edge

Iteratively select the least crossed edge

Use Union-Find to manage clusters

Iteratively select the least crossed edge

Use Union-Find to manage clusters  $\Rightarrow O(n + m\alpha(m))$ 

Iteratively select the least crossed edge

Use Union-Find to manage clusters  $\Rightarrow O(n + m\alpha(m))$ 

Use Priority Queue to manage current crossing numbers

Iteratively select the least crossed edge

Use Union-Find to manage clusters  $\Rightarrow O(n + m\alpha(m))$ 

Use Priority Queue to manage current crossing numbers

 $\Rightarrow$  Fibonacci-Heap!

Iteratively select the least crossed edge

Use Union-Find to manage clusters  $\Rightarrow O(n + m\alpha(m))$ 

Use Priority Queue to manage current crossing numbers

 $\Rightarrow$  Fibonacci-Heap!

| Remove      | $O(\log n)^*$ |            |
|-------------|---------------|------------|
| EXTRACTMIN  | $O(\log n)^*$ |            |
| DECREASEKEY | $O(1)^{*}$    | *amortized |

Iteratively select the least crossed edge

Use Union-Find to manage clusters  $\Rightarrow O(n + m\alpha(m))$ 

Use Priority Queue to manage current crossing numbers

 $\Rightarrow$  Fibonacci-Heap!  $\Rightarrow O(k + m \log m)$ 

Iteratively select the least crossed edge

Use Union-Find to manage clusters  $\Rightarrow O(n + m\alpha(m))$ 

Use Priority Queue to manage current crossing numbers

 $\Rightarrow$  Fibonacci-Heap!  $\Rightarrow O(k + m \log m)$ 

Overall Runtime:  $O(n + k + m \log m)$ 

Iteratively select the least crossed edge

Use Union-Find to manage clusters  $\Rightarrow O(n + m\alpha(m))$ 

Use Priority Queue to manage current crossing numbers

- $\Rightarrow \mathsf{Fibonacci-Heap!} \quad \Rightarrow O(k + m \log m)$
- Overall Runtime:  $O(n + k + m \log m)$
- 1-plane graphs:  $m, k \in O(n)$

Iteratively select the least crossed edge

Use Union-Find to manage clusters  $\Rightarrow O(n + m\alpha(m))$ 

Use Priority Queue to manage current crossing numbers

- $\Rightarrow$  Fibonacci-Heap!  $\Rightarrow O(k + m \log m)$
- Overall Runtime:  $O(n + k + m \log m)$
- 1-plane graphs:  $m, k \in O(n)$
- $\Rightarrow$  Overall runtime reduces to  $O(n \log n)!$

Iteratively delete the most crossed edge

Iteratively delete the most crossed edge

Use Union-Find to manage clusters

Iteratively delete the most crossed edge

Use Union-Find to manage clusters  $\Rightarrow O(n + m\alpha(m))$ 

Iteratively delete the most crossed edge

Use Union-Find to manage clusters  $\Rightarrow O(n + m\alpha(m))$ 

Use Priority Queue to manage current crossing numbers

Iteratively delete the most crossed edge

Use Union-Find to manage clusters  $\Rightarrow O(n + m\alpha(m))$ 

Use Priority Queue to manage current crossing numbers

 $\Rightarrow$  Fibonacci-Heap!

Iteratively delete the most crossed edge

Use Union-Find to manage clusters  $\Rightarrow O(n + m\alpha(m))$ 

Use Priority Queue to manage current crossing numbers



Iteratively delete the most crossed edge

Use Union-Find to manage clusters  $\Rightarrow O(n + m\alpha(m))$ 

Use Priority Queue to manage current crossing numbers

 $\Rightarrow$  Binary Search Tree

Iteratively delete the most crossed edge

Use Union-Find to manage clusters  $\Rightarrow O(n + m\alpha(m))$ 

Use Priority Queue to manage current crossing numbers

 $\Rightarrow$  Binary Search Tree

| Remove      | $O(\log n)$ |
|-------------|-------------|
| EXTRACTMIN  | $O(\log n)$ |
| DecreaseKey | $O(\log n)$ |

Iteratively delete the most crossed edge

Use Union-Find to manage clusters  $\Rightarrow O(n + m\alpha(m))$ 

Use Priority Queue to manage current crossing numbers

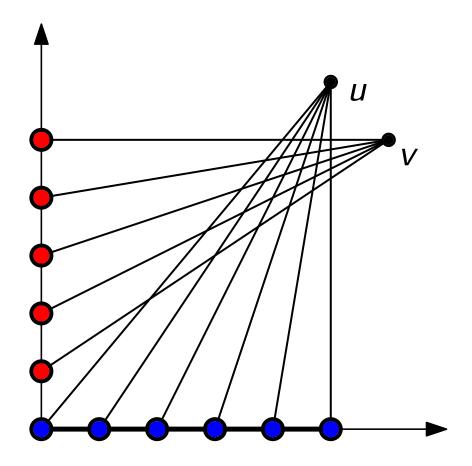
 $\Rightarrow$  Binary Search Tree  $\Rightarrow O(k \log k + m \log m)$ 

Iteratively delete the most crossed edge

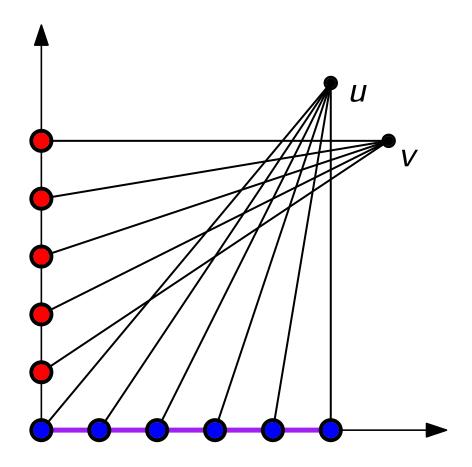
Use Union-Find to manage clusters  $\Rightarrow O(n + m\alpha(m))$ 

Use Priority Queue to manage current crossing numbers

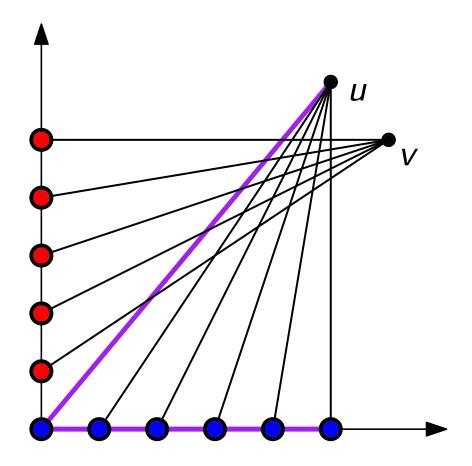
- $\Rightarrow$  Binary Search Tree  $\Rightarrow O(k \log k + m \log m)$
- Overall Runtime:  $O(n + k \log k + m \log m)$



*n* red, n + 1 blue vertices



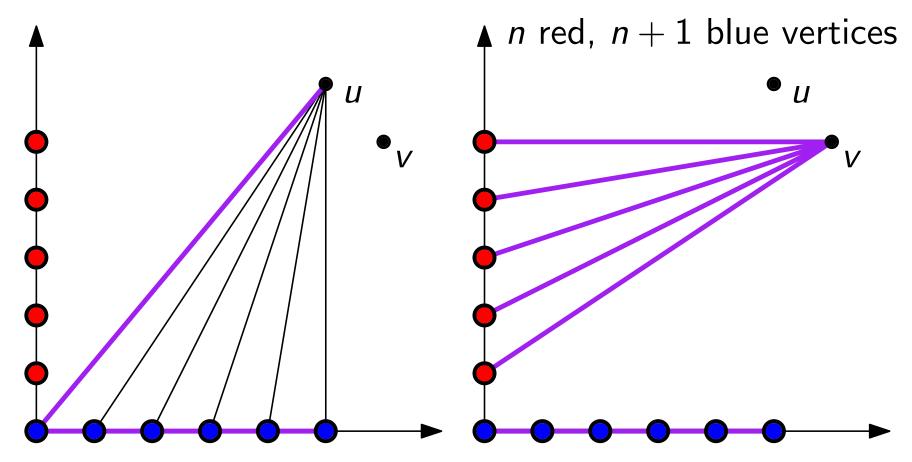
*n* red, n + 1 blue vertices



*n* red, n + 1 blue vertices

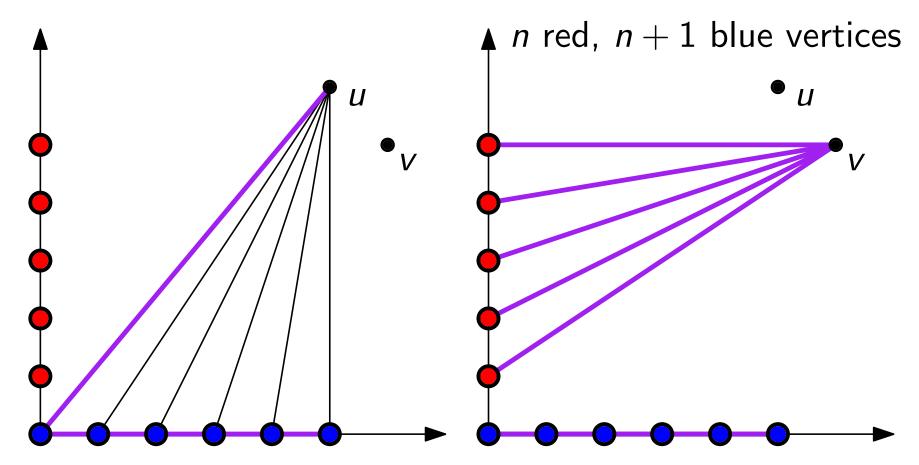


Greedy/Reverse Greedy: n + 2 clusters



Greedy/Reverse Greedy: n + 2 clusters

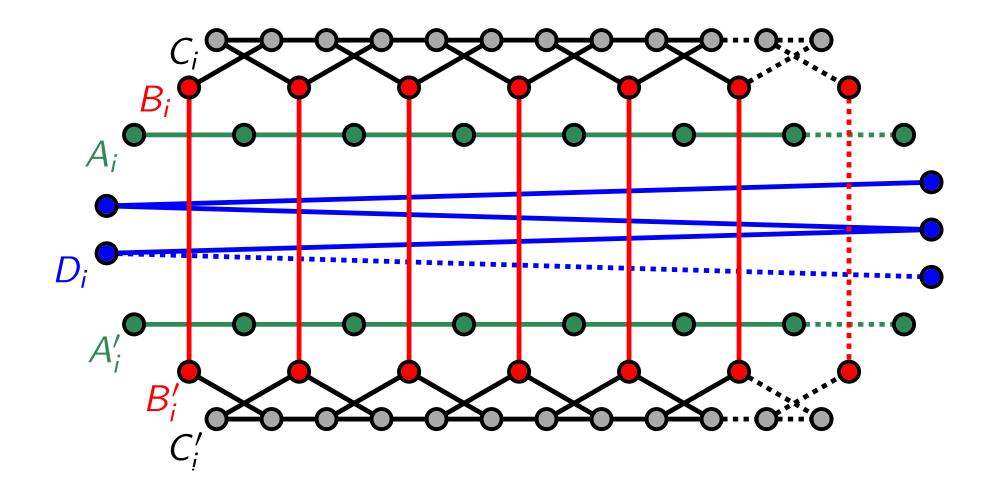
**Optimal solution:** 

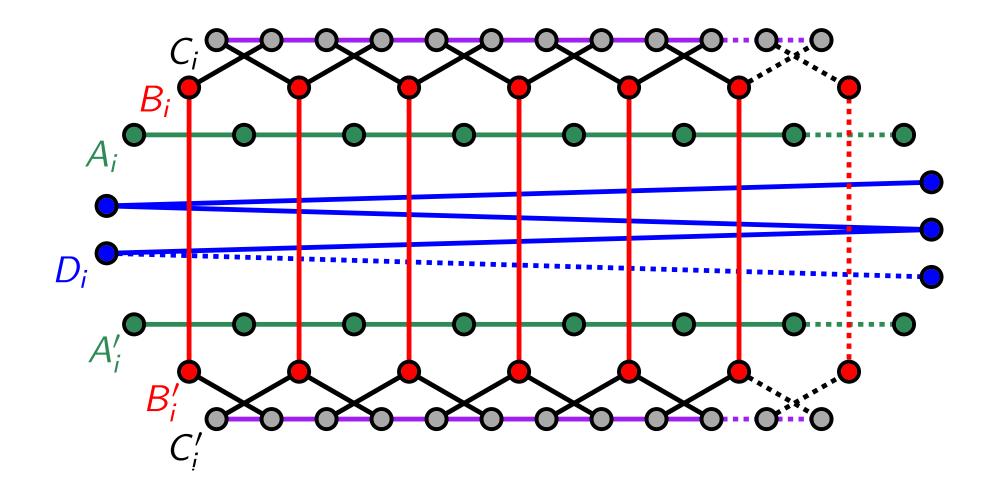


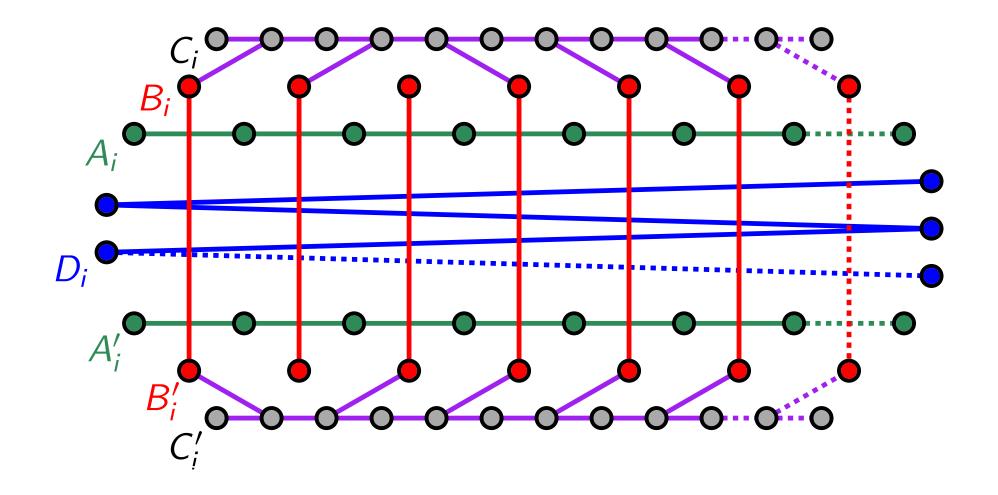
Greedy/Reverse Greedy: n + 2 clusters

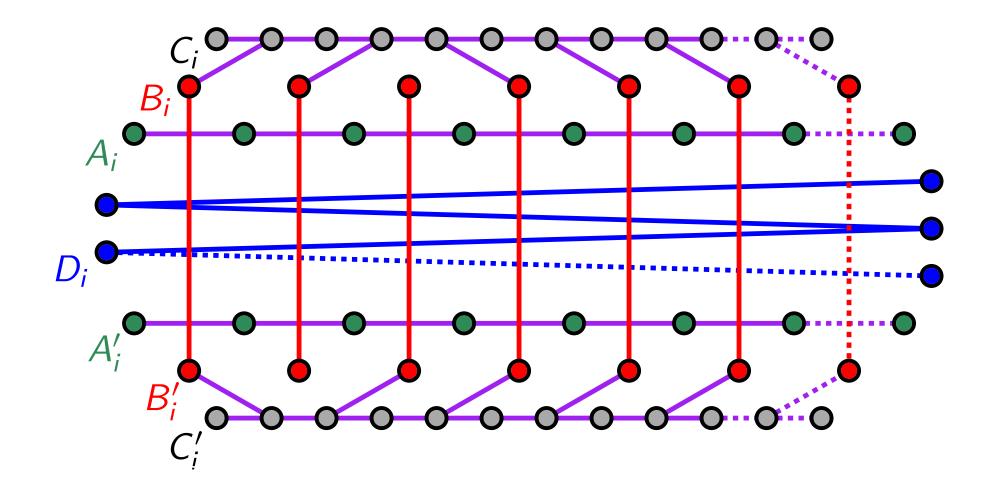
Optimal solution: 4 clusters

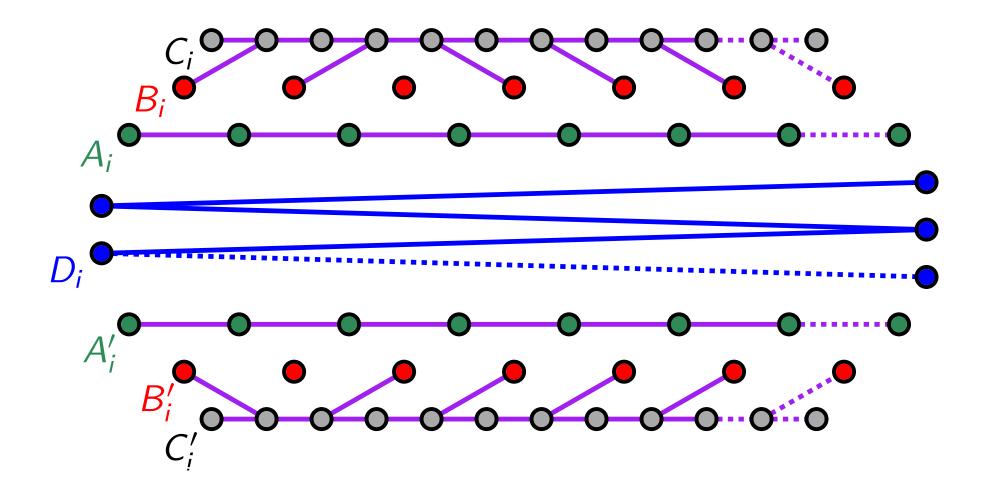
 $\Rightarrow$  no constant approximation factor for both heuristics!

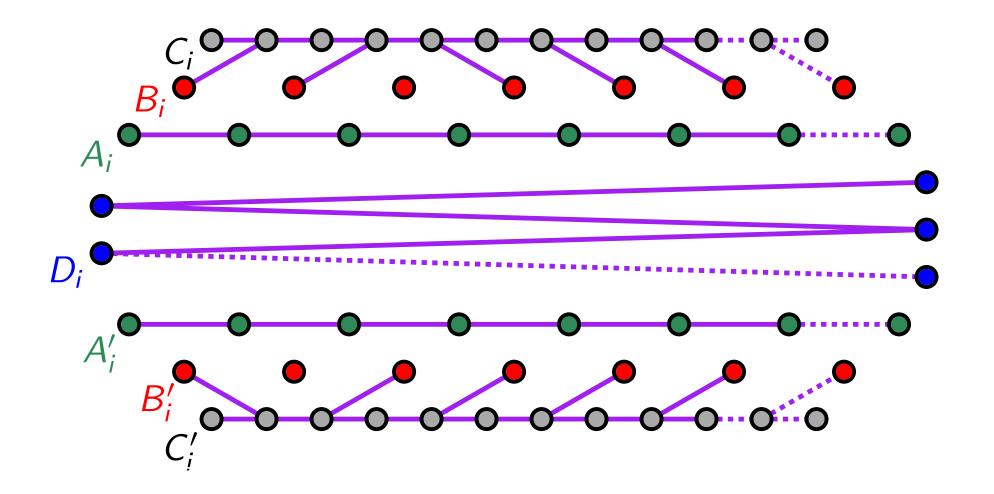


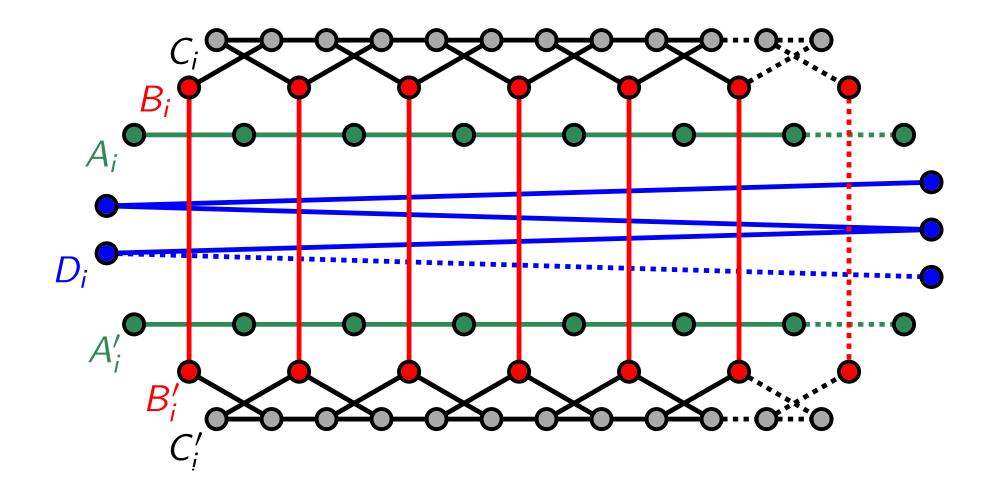


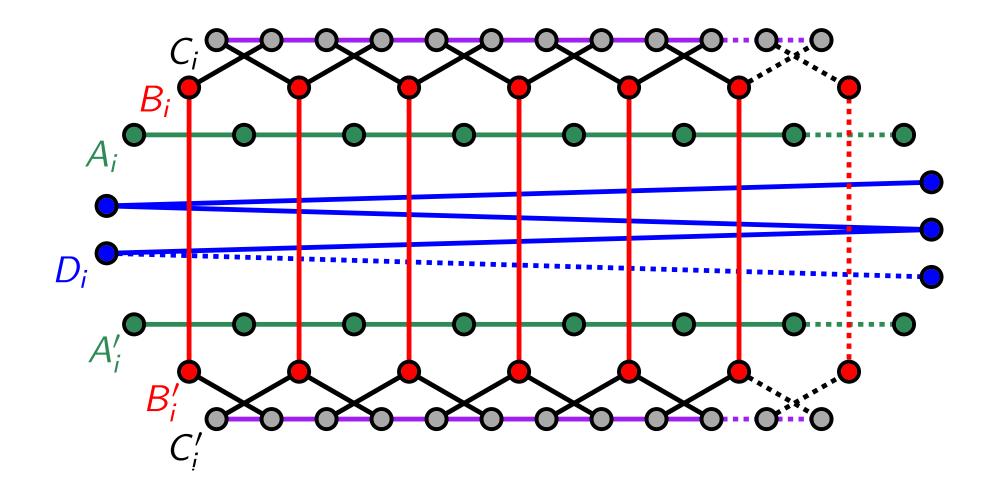


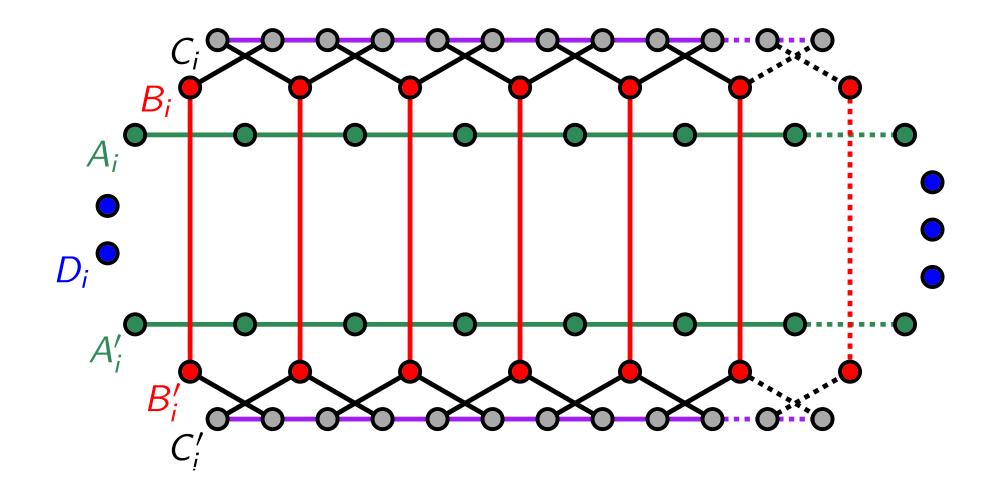


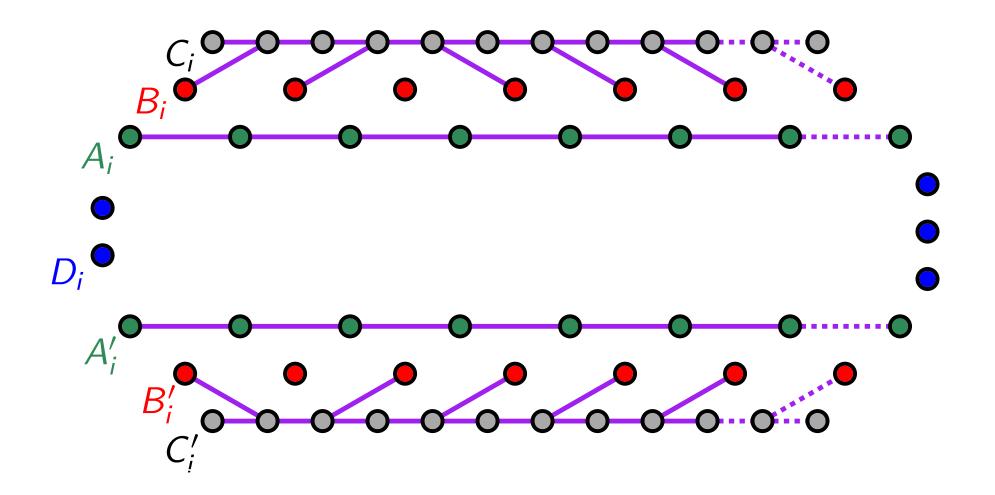


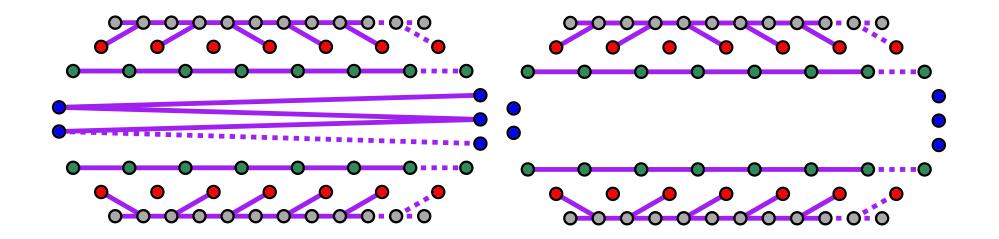












#### Greedy 7 clusters vs. Reverse Greedy k+7!

Sketch:

• Model Cluster Minimization as a flow network.

- Model Cluster Minimization as a flow network.
- Each node is either a source or a sink.

- Model Cluster Minimization as a flow network.
- Each node is either a source or a sink.
- Each edge is either selected or not selected, crossed edges are mutually exclusive.

- Model Cluster Minimization as a flow network.
- Each node is either a source or a sink.
- Each edge is either selected or not selected, crossed edges are mutually exclusive.
- Selected edges may transport flow, unselected edges may not.

- Model Cluster Minimization as a flow network.
- Each node is either a source or a sink.
- Each edge is either selected or not selected, crossed edges are mutually exclusive.
- Selected edges may transport flow, unselected edges may not.
- Each sink represents the "center" of a cluster, connected nodes send the generated flow there.

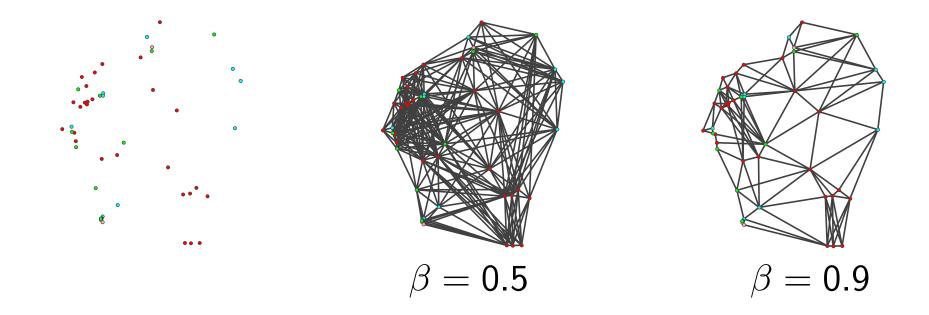
- Model Cluster Minimization as a flow network.
- Each node is either a source or a sink.
- Each edge is either selected or not selected, crossed edges are mutually exclusive.
- Selected edges may transport flow, unselected edges may not.
- Each sink represents the "center" of a cluster, connected nodes send the generated flow there.
- ILP minimizes the number of sinks.

• Use map of places of interest in a city.

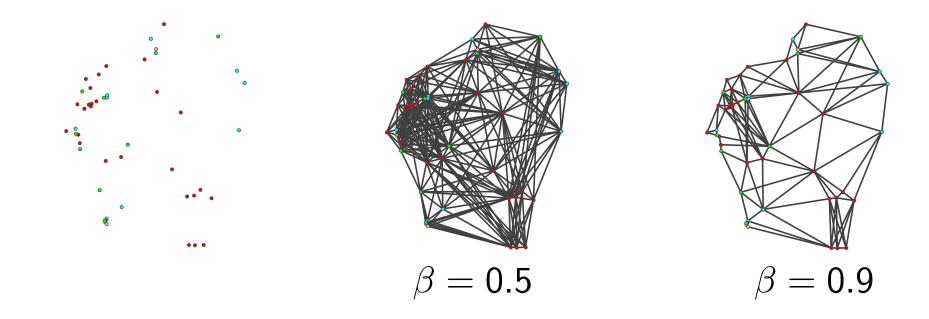
- Use map of places of interest in a city.
- Divide the map in quadrants of varying sizes.

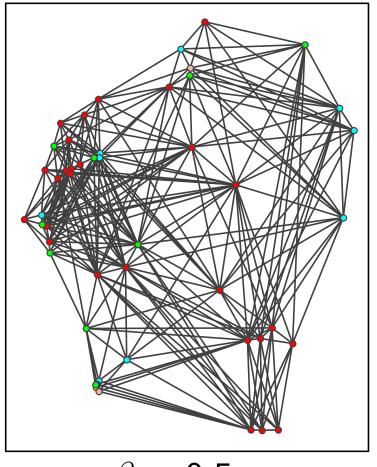
- Use map of places of interest in a city.
- Divide the map in quadrants of varying sizes.
- Connect the vertices with  $\beta$ -skeletons.

- Use map of places of interest in a city.
- Divide the map in quadrants of varying sizes.
- Connect the vertices with  $\beta$ -skeletons.

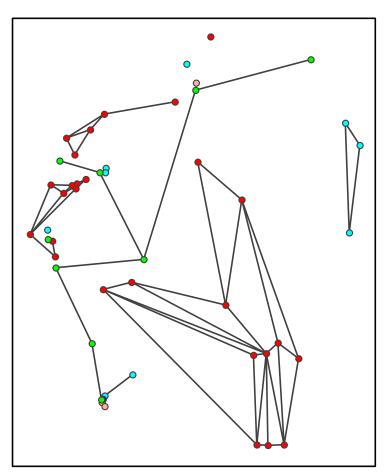


- Use map of places of interest in a city.
- Divide the map in quadrants of varying sizes.
- Connect the vertices with  $\beta$ -skeletons.
- Run both heuristics, ILP where feasible.





$$\beta = 0.5$$



50 points, 15 clusters

# Performance Analysis - Experiments



 $\beta = 0.5$ 

# Performance Analysis - Experiments



 $\beta = 0.9$ 



#### Biggest difference: Greedy 37 clusters vs. ILP 34 clusters!

# **Experiment Summary**

#### Biggest difference: Greedy 37 clusters vs. ILP 34 clusters!

# Reverse Greedy tends to perform better than Greedy, but differences are marginal

| Problem          | Quality          | Complexity          |
|------------------|------------------|---------------------|
| Cluster Min.     | exact            | NP-hard             |
| – Greedy         | no const. factor | $n+k+m\log m$       |
| – Rev. Greedy    | no const. factor | $n+k\log k+m\log m$ |
| – 1-plane graphs | exact            | n log n             |
| Edge Max.        | exact            | NP-hard             |

| Problem          | Quality          | Complexity          |
|------------------|------------------|---------------------|
| Cluster Min.     | exact            | NP-hard             |
| – Greedy         | no const. factor | $n+k+m\log m$       |
| – Rev. Greedy    | no const. factor | $n+k\log k+m\log m$ |
| – 1-plane graphs | exact            | n log n             |
| Edge Max.        | exact            | NP-hard             |

- There is a graph family on which the Greedy algorithm is arbitrarily better than the Reverse Greedy algorithm.
- Is there a graph family where the opposite is true?

| Problem          | Quality          | Complexity          |
|------------------|------------------|---------------------|
| Cluster Min.     | exact            | NP-hard             |
| – Greedy         | no const. factor | $n+k+m\log m$       |
| – Rev. Greedy    | no const. factor | $n+k\log k+m\log m$ |
| – 1-plane graphs | exact            | n log n             |
| Edge Max.        | exact            | NP-hard             |

- There is a graph family on which the Greedy algorithm is arbitrarily better than the Reverse Greedy algorithm.
- Is there a graph family where the opposite is true?
- Is there a constant factor approximation for Cluster Minimization?

| Problem          | Quality          | Complexity          |
|------------------|------------------|---------------------|
| Cluster Min.     | exact            | NP-hard             |
| – Greedy         | no const. factor | $n+k+m\log m$       |
| – Rev. Greedy    | no const. factor | $n+k\log k+m\log m$ |
| – 1-plane graphs | exact            | n log n             |
| Edge Max.        | exact            | NP-hard             |

- There is a graph family on which the Greedy algorithm is arbitrarily better than the Reverse Greedy algorithm.
- Is there a graph family where the opposite is true?
- Is there a constant factor approximation for Cluster Minimization?
- How does the problem change if we allow *some* crossings?

• Can we enhance the Greedy algorithm somehow?

