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State of the art

Problem Quality Runtime

Cluster Minimization exact ?
– Greedy ? polynomial
– 1-plane graphs exact polynomial

Edge Maximization exact NP-hard

all results by [Akitaya et al. 2019]



My contribution

Problem Quality Complexity

Cluster Min. exact NP-hard
– Greedy no const. factor n + k + m logm
– Rev. Greedy no const. factor n + k log k + m logm
– 1-plane graphs exact n log n

Edge Max. exact NP-hard
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NP-Hardness

Independent Set ≤p Cluster Minimization
• Given an instance of Independent Set,
• Construct an equivalent L-shape intersection graph...
• ... then construct an equivalent segment intersection graph.
• Use the segments as edges in a geometric graph and place

vertices at each endpoint.
• In the resulting geometric graph, a solution with 2n − k

clusters represents an independent set of size k .



Heuristics

Greedy: Iteratively select the least crossed edge



Heuristics

Greedy: Iteratively select the least crossed edge

Reverse Greedy: Iteratively delete the most crossed edge



Heuristics

Greedy: Iteratively select the least crossed edge

Reverse Greedy: Iteratively delete the most crossed edge

Preprocessing: compute all edge crossings



Heuristics

Greedy: Iteratively select the least crossed edge

Reverse Greedy: Iteratively delete the most crossed edge

Preprocessing: compute all edge crossings

⇒ O(k + m logm) [Balaban 1995]
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Greedy

Iteratively select the least crossed edge

Use Union-Find to manage clusters

Use Priority Queue to manage current crossing numbers

⇒ Fibonacci-Heap!

Overall Runtime: O(n + k + m logm)

⇒ O(n + mα(m))

⇒ O(k + m logm)

1-plane graphs: m, k ∈ O(n)

⇒ Overall runtime reduces to O(n log n)!
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Reverse Greedy

Iteratively delete the most crossed edge

Use Union-Find to manage clusters

Use Priority Queue to manage current crossing numbers

Overall Runtime: O(n + k log k + m logm)

⇒ O(n + mα(m))

⇒ O(k log k + m logm)⇒ Binary Search Tree
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Performance Analysis – Theoretical

u

v

Greedy/Reverse Greedy: n + 2 clusters

Optimal solution:

n red, n + 1 blue vertices

⇒ no constant approximation factor for both heuristics!

u

v

4 clusters
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Performance – Greedy vs. Reverse Greedy

Greedy 7 clusters vs. Reverse Greedy k+7!
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An ILP for Cluster Minimization

Sketch:

• Model Cluster Minimization as a flow network.

• Each node is either a source or a sink.

• Each edge is either selected or not selected,
crossed edges are mutually exclusive.

• Selected edges may transport flow,
unselected edges may not.

• Each sink represents the ”center” of a cluster,
connected nodes send the generated flow there.

• ILP minimizes the number of sinks.
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Experiment setup

• Use map of places of interest in a city.

• Divide the map in quadrants of varying sizes.

• Connect the vertices with β-skeletons.

• Run both heuristics, ILP where feasible.

β = 0.5 β = 0.9



Experiment setup

β = 0.5 50 points, 15 clusters



Performance Analysis - Experiments
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Performance Analysis - Experiments

β = 0.9
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Experiment Summary

Biggest difference: Greedy 37 clusters vs. ILP 34 clusters!

Reverse Greedy tends to perform better than Greedy, but
differences are marginal
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Summary and Future Work

Problem Quality Complexity

Cluster Min. exact NP-hard
– Greedy no const. factor n + k + m logm
– Rev. Greedy no const. factor n + k log k + m logm
– 1-plane graphs exact n log n

Edge Max. exact NP-hard

• There is a graph family on which the Greedy algorithm is
arbitrarily better than the Reverse Greedy algorithm.

• Is there a graph family where the opposite is true?

• Is there a constant factor approximation for Cluster
Minimization?

• How does the problem change if we allow some crossings?



Summary and Future Work

• Can we enhance the Greedy algorithm somehow?
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