Julius-Maximilians-
UNJVERS'TI\T Lehrstuhl fiir I ' ' ' I I fl
WURZBURG INFORMATIK |

Algorithmen & Komplexitat Institut fiir Informatik

Cluster Minimization
in Geometric Graphs

Jakob Geiger

Motivation

Motivation

Cluster Minimization

Given: Geometric graph G = (V, E)

Cluster Minimization
Given: Geometric graph G = (V, E)

Goal: Find a subgraph H = (V/, E") of G such that no two
edges in E’ cross and the number of connected
components in H is minimized.

Cluster Minimization
Given: Geometric graph G = (V, E)

Goal: Find a subgraph H = (V/, E") of G such that no two
edges in E’ cross and the number of connected
components in H is minimized.

Edge Maximization

Given: Geometric graph G = (V, E)

Edge Maximization
Given: Geometric graph G = (V, E)

Goal: Find a subgraph H = (V/, E") of G such that no two
edges in E’ cross and |E’| is maximized.

Edge Maximization
Given: Geometric graph G = (V, E)

Goal: Find a subgraph H = (V/, E") of G such that no two
edges in E’ cross and |E’| is maximized.

State of the art

Problem Quality | Runtime
Cluster Minimization | exact ?

— Greedy ? polynomial
— 1-plane graphs exact | polynomial
Edge Maximization exact NP-hard

My contribution

Problem Quality Complexity
Cluster Min. exact NP-hard

— Greedy no const. factor n+ k+ mlogm

— Rev. Greedy no const. factor | n+ klog k + mlog m
— 1-plane graphs exact nlog n

Edge Max. exact NP-hard

NP-Hardness

Independent Set <, Cluster Minimization

NP-Hardness

Independent Set <, Cluster Minimization
e Given an instance of Independent Set,

NP-Hardness

Independent Set <, Cluster Minimization
e Given an instance of Independent Set,

e Construct an equivalent L-shape intersection graph...

[Gongalves et al. 2018]

|
L

NP-Hardness

Independent Set <, Cluster Minimization
e Given an instance of Independent Set, et 2000

e (Construct an equivalent L-shape intersection graph../—y
e ... then construct an equivalent segment intersection graph.

|':T \

X

NP-Hardness

Independent Set <, Cluster Minimization
Given an instance of Independent Set,

Construct an equivalent L-shape intersection graph...
... then construct an equivalent segment intersection graph.
Use the segments as edges in a geometric graph and place
vertices at each endpoint.

NN
AN

S

NP-Hardness

Independent Set <, Cluster Minimization

Given an instance of Independent Set,

Construct an equivalent L-shape intersection graph...
... then construct an equivalent segment intersection graph.
Use the segments as edges in a geometric graph and place
vertices at each endpoint.

In the resulting geometric graph, a solution with 2n — k
clusters represents an independent set of size k.

AN

Heuristics

Greedy: lteratively select the least crossed edge

Heuristics

Greedy: lteratively select the least crossed edge

Reverse Greedy: lteratively delete the most crossed edge

Heuristics
Greedy: lteratively select the least crossed edge
Reverse Greedy: lteratively delete the most crossed edge

Preprocessing: compute all edge crossings

Heuristics

Greedy: lteratively select the least crossed edge
Reverse Greedy: lteratively delete the most crossed edge

Preprocessing: compute all edge crossings

= O(k + mlog m)

Greedy

Iteratively select the least crossed edge

Greedy

Iteratively select the least crossed edge

Use Union-Find to manage clusters

Greedy

Iteratively select the least crossed edge

Use Union-Find to manage clusters = O(n + ma(m))

Greedy
Iteratively select the least crossed edge
Use Union-Find to manage clusters = O(n + ma(m))

Use Priority Queue to manage current crossing numbers

Greedy

Iteratively select the least crossed edge
Use Union-Find to manage clusters = O(n + ma(m))
Use Priority Queue to manage current crossing numbers

= Fibonacci-Heap!

Greedy

Iteratively select the least crossed edge
Use Union-Find to manage clusters = O(n + ma(m))
Use Priority Queue to manage current crossing numbers

= Fibonacci-Heap!

REMOVE O(log n)*
EXTRACTMIN | O(logn)*
DECREASEKEY O(1)*

*amortized

Greedy

Iteratively select the least crossed edge

Use Union-Find to manage clusters = O(n + ma(m))
Use Priority Queue to manage current crossing numbers

= Fibonacci-Heap! = O(k + mlog m)

Greedy

Iteratively select the least crossed edge

Use Union-Find to manage clusters = O(n + ma(m))
Use Priority Queue to manage current crossing numbers

= Fibonacci-Heap! = O(k + mlog m)
Overall Runtime: O(n + k + mlog m)

Greedy

Iteratively select the least crossed edge

Use Union-Find to manage clusters = O(n + ma(m))
Use Priority Queue to manage current crossing numbers
= Fibonacci-Heap! = O(k + mlog m)

Overall Runtime: O(n + k + mlog m)

1-plane graphs: m, k € O(n)

Greedy

Iteratively select the least crossed edge

Use Union-Find to manage clusters = O(n + ma(m))
Use Priority Queue to manage current crossing numbers
= Fibonacci-Heap! = O(k + mlog m)

Overall Runtime: O(n + k + mlog m)

1-plane graphs: m, k € O(n)

= Overall runtime reduces to O(nlog n)!

Reverse Greedy

lteratively delete the most crossed edge

Reverse Greedy

lteratively delete the most crossed edge

Use Union-Find to manage clusters

Reverse Greedy

lteratively delete the most crossed edge

Use Union-Find to manage clusters = O(n + ma(m))

Reverse Greedy

lteratively delete the most crossed edge
Use Union-Find to manage clusters = O(n + ma(m))

Use Priority Queue to manage current crossing numbers

Reverse Greedy

lteratively delete the most crossed edge
Use Union-Find to manage clusters = O(n + ma(m))
Use Priority Queue to manage current crossing numbers

= Fibonacci-Heap!

Reverse Greedy

lteratively delete the most crossed edge
Use Union-Find to manage clusters = O(n + ma(m))

Use Priority Queue to manage current crossing numbers

= LEiboaaest=tE3D1

Reverse Greedy

lteratively delete the most crossed edge
Use Union-Find to manage clusters = O(n + ma(m))
Use Priority Queue to manage current crossing numbers

= Binary Search Tree

Reverse Greedy

lteratively delete the most crossed edge
Use Union-Find to manage clusters = O(n + ma(m))
Use Priority Queue to manage current crossing numbers

= Binary Search Tree

REMOVE O(log n)
EXTRACTMIN | O(log n)
DECREASEKEY | O(log n)

Reverse Greedy

lteratively delete the most crossed edge
Use Union-Find to manage clusters = O(n + ma(m))
Use Priority Queue to manage current crossing numbers

= Binary Search Tree = O(klog k + mlog m)

Reverse Greedy

lteratively delete the most crossed edge
Use Union-Find to manage clusters = O(n + ma(m))
Use Priority Queue to manage current crossing numbers

= Binary Search Tree = O(klog k + mlog m)
Overall Runtime: O(n + klog k + mlog m)

Performance Analysis — Theoretical

A n red, n+ 1 blue vertices

4.,

Performance Analysis — Theoretical

A n red, n+ 1 blue vertices

4.,

Performance Analysis — Theoretical

A n red, n+ 1 blue vertices

Performance Analysis — Theoretical

A A nred, n+ 1 blue vertices

®

00000
Greedy/Reverse Greedy: n + 2 clusters

Performance Analysis — Theoretical

A nred, n+ 1 blue vertices

®

00000

Greedy/Reverse Greedy: n + 2 clusters

Optimal solution:

Performance Analysis — Theoretical

A A nred, n+ 1 blue vertices

®

00000
Greedy/Reverse Greedy: n + 2 clusters

Optimal solution: 4 clusters

= no constant approximation factor for both heuristics!

Performance — Greedy vs. Reverse Greedy

Performance — Greedy vs. Reverse Greedy

Performance — Greedy vs. Reverse Greedy

Performance — Greedy vs. Reverse Greedy

Performance — Greedy vs. Reverse Greedy

Performance — Greedy vs. Reverse Greedy

Performance — Greedy vs. Reverse Greedy

Performance — Greedy vs. Reverse Greedy

Performance — Greedy vs. Reverse Greedy

Performance — Greedy vs. Reverse Greedy

Performance — Greedy vs. Reverse Greedy

O IRIGL
@ ‘@
%l HEE

RO
@ ‘@
%l HEE

Greedy 7 clusters vs. Reverse Greedy k—+7!

An ILP for Cluster Minimization

Sketch:

An ILP for Cluster Minimization

Sketch:

e Model Cluster Minimization as a flow network.

An ILP for Cluster Minimization

Sketch:

e Model Cluster Minimization as a flow network.

e Each node is either a source or a sink.

An ILP for Cluster Minimization

Sketch:
e Model Cluster Minimization as a flow network.
e Each node is either a source or a sink.

e Each edge is either selected or not selected,
crossed edges are mutually exclusive.

An ILP for Cluster Minimization

Sketch:

e Model Cluster Minimization as a flow network.
e Each node is either a source or a sink.

e Each edge is either selected or not selected,
crossed edges are mutually exclusive.

e Selected edges may transport flow,
unselected edges may not.

An ILP for Cluster Minimization

Sketch:

Model Cluster Minimization as a flow network.
Each node is either a source or a sink.

Each edge is either selected or not selected,
crossed edges are mutually exclusive.

Selected edges may transport flow,
unselected edges may not.

Each sink represents the "center” of a cluster,
connected nodes send the generated flow there.

An ILP for Cluster Minimization

Sketch:

Model Cluster Minimization as a flow network.
Each node is either a source or a sink.

Each edge is either selected or not selected,
crossed edges are mutually exclusive.

Selected edges may transport flow,
unselected edges may not.

Each sink represents the "center” of a cluster,
connected nodes send the generated flow there.

ILP minimizes the number of sinks.

Experiment setup

e Use map of places of interest in a city.

Experiment setup

e Use map of places of interest in a city.

e Divide the map in quadrants of varying sizes.

Experiment setup
e Use map of places of interest in a city.
e Divide the map in quadrants of varying sizes.

e Connect the vertices with (3-skeletons.

Experiment setup
e Use map of places of interest in a city.
e Divide the map in quadrants of varying sizes.

e Connect the vertices with (3-skeletons.

° f A\-\‘v
T O

- <\

,y- = NN

R =1
M 4 Ocl e

. / A De '."/l //’(.

Experiment setup

e Use map of places of interest in a city.
e Divide the map in quadrants of varying sizes.
e Connect the vertices with (3-skeletons.

e Run both heuristics, ILP where feasible.

Experiment setup

N
<
AN

I N\

50 points, 15 clusters

Performance Analysis - Experiments

8O
&0
£z

20

— Gregdy —=—Raeverseloreedy = ILP

B =05

Performance Analysis - Experiments

120

100

8O

&0

20

20

— Gregdy —ReverseGreedy = ILP

3=009

Experiment Summary

Biggest difference: Greedy 37 clusters vs. ILP 34 clusters!

Experiment Summary

Biggest difference: Greedy 37 clusters vs. ILP 34 clusters!

Reverse Greedy tends to perform better than Greedy, but
differences are marginal

Summary and Future Work

Problem Quality Complexity
Cluster Min. exact NP-hard

— Greedy no const. factor n+ k+ mlogm

— Rev. Greedy no const. factor | n+ klog k + mlog m
— 1-plane graphs exact nlog n

Edge Max. exact NP-hard

Summary and Future Work

Problem Quality Complexity
Cluster Min. exact NP-hard

— Greedy no const. factor n+ k+ mlogm

— Rev. Greedy no const. factor | n+ klog k + mlog m
— 1-plane graphs exact nlog n

Edge Max. exact NP-hard

e There is a graph family on which the Greedy algorithm is

arbitrarily better than the Reverse Greedy algorithm.

e Is there a graph family where the opposite is true?

Summary and Future Work

Problem Quality Complexity
Cluster Min. exact NP-hard

— Greedy no const. factor n+ k+ mlogm

— Rev. Greedy no const. factor | n+ klog k + mlog m
— 1-plane graphs exact nlog n

Edge Max. exact NP-hard

e There is a graph family on which t

ne Greedy algorithm is

arbitrarily better than the Reverse Greedy algorithm.

e Is there a graph family where the opposite is true?

e |s there a constant factor approximation for Cluster

Minimization?

Summary and Future Work

Problem Quality Complexity
Cluster Min. exact NP-hard

— Greedy no const. factor n+ k+ mlogm

— Rev. Greedy no const. factor | n+ klog k + mlog m
— 1-plane graphs exact nlog n

Edge Max. exact NP-hard

e There is a graph family on which the Greedy algorithm is

arbitrarily better than the Reverse Greedy algorithm.

e Is there a graph family where the opposite is true?

e |s there a constant factor approximation for Cluster
Minimization?

e How does the problem change if we allow some crossings?

Summary and Future Work

e Can we enhance the Greedy algorithm somehow?

	Motivation
	State of the art
	My contribution
	NP-Hardness
	Performance -- Greedy vs. Reverse Greedy
	Experiment setup
	Experiment Summary
	Summary and Future Work

