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Abstract

This thesis deals with the segment number of maximal outerplanar graphs. The segment
number is the minimum number of segments necessary to draw a graph. We summarize
results of related work on segment numbers and go into detail on the work of Dujmović
et al.[DESW07] on maximal outerplanar graphs.

We examine the segment number of a subfamily of maximal outerplanar graphs, max-
imal outerpaths. We determine the segment number for the special case that except one
vertex with a high degree all vertices have a maximum degree of three. We apply this
knowledge to more general outerpaths by defining relations between vertices with high
degree and prove a lower bound for the segment number of maximal outerpaths which
does not allow one of these relations.

Finally, we discuss the question if there is a constant c, such that cn is a lower bound
for the segment number of a n-vertex maximal outerplanar graph. We define a ratio for
number of segments and vertices as well as a ratio for number of edges and segments.
In the end we give a graph sequence which serves as an upper bound for c.

Zusammenfassung

Diese Arbeit beschäftigt sich mit der Streckenzahl von maximalen außerplanaren Gra-
phen. Als Streckenzahl bezeichnet man die minimale Anzahl an Strecken, die benötigt
wird, um einen Graphen zu zeichnen. Wir fassen Ergebnisse aus verwandten Arbeiten zur
Streckenzahl zusammen und gehen im Detail auf die Arbeit zu maximalen außerplanaren
Graphen von Dujmović et al.[DESW07] ein.

Wir untersuchen die Streckenzahl einer Teilfamilie der maximalen außenplanaren Gra-
phen, der Außenpfade. Für den Spezialfall, dass bis auf einen Knoten mit hohem Grad,
alle Knoten Maximalgrad 3 haben, bestimmen wir die Streckenzahl. Dieses Wissen wen-
den wir auf den allgemeineren Fall an, indem wir Beziehungen zwischen jenen Knoten
mit hohem Grad definieren. Wir beweisen eine untere Schranke für die Streckenzahl
maximaler Außenpfade, die einen dieser Beziehungstype ausschließen.

Zuletzt diskutieren wir die Frage, ob es eine Konstante c gibt, sodass cn eine untere
Schranke für die Streckenzahl von einem maximalen außerplanaren Graphen mit n Kno-
ten ist. Wir führen das Verhältnis von Strecken- und Knotenanzahl und das Verhältnis
von Kanten- und Streckenanzahl ein und geben eine Graphenfolge, die uns eine obere
Schranke für c liefert.
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1 Introduction

Graphs serve as a useful tool for describing a set of related entities and analysing the
structure of their relations. Be it a network of routers, a metro network or a neuronal
network; in many scientific fields, as well as in daily life, graphs can be used to capture
these relations.

Graphs need to be presented in a manner which allows an observer to easily extract
the important information. The common method to do so is by graph drawings, in which
the vertices are represented as discs or circles and the edges as some connection between
them, e.g. lines, polylines or arcs. The scientific field of graph drawing analyses how to
obtain understandable visualizations of graphs.

Drawings. There are several conventions for graph drawings. In this thesis we will
focus on crossing-free straight-line drawings. For simplicity we will refer to them as
drawings. A drawing is a straight-line drawing if all the edges are drawn as a straight
line segment. It is crossing-free if edges do not intersect with each other or overlap each
other.

Segments. One criterion for the readability of a drawing is its visual complexity. This
is the number of geometric objects used to draw the edges. In the case of straight-line
drawings, these objects can be lines or segments. The measurement with lines is captured
in the line cover number of G, the minimum number of lines whose union contains a
crossing-free straight-line drawing of G. In this thesis we will focus on segments as
measurement. A segment is a maximal set of edges that form a straight-line segment.
To obtain a low visual complexity, we therefore seek to find a minimum-segment drawing
of a planar graph G, a drawing that among all possible drawings of G uses the least
segments. The number of segments which are used in a minimum-segment drawing of
G is called segment number of G.

Bounds. For analysing the segment number of graph families, there are three bounds:

� We call e existential lower bound of the segment number of a graph family if there
exists a G in the family which needs at least e segments to be drawn.

� We call s universal lower bound of the segment number of a graph family if for
each G in the family the segment number is at least s.

� If we know that each graph of a graph family can be drawn with less than u
segments, then u is an upper bound for the segment number of the graph family.
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The first one is useful to analyse the worst cases in a graph family. The last two bounds
help us determine whether a drawing D of a graph G is a minimum-segment drawing.
If its amount of segments matches the lower universal bound for segments, it is; if the
amount is greater than the upper bound, it is not. With no such bounds, in the first case,
one would have to prove that there is no drawing of G which uses less segments than D;
in the second case one would have to find a drawing of G which uses less segments than
D. To illustrate this we will later consider an example.

Related Work. The segment number for planar graphs was introduced by Dujmović
et al.[DESW07] along with the planar slope number. For this number, we consider a
graph G and the number k of different slopes in each crossing-free straight-line drawing
of G. The minimum of k over all these drawings is the planar slope number. In general
they presented the obvious universal lower bound for the segment number. If η is the
number of vertices with uneven degree in a graph G = (V,E), the lower bound for the
segment number is η/2. Further more they found bounds for segment and slope number
among others of trees, maximal outerplanar and plane 3-connected cubic graphs. For
trees in particular, they showed that for each tree there is a drawing which achieves both
the segment and planar slope number simultaneously. Their existential lower bound for
plane 3-connected cubic graphs was later improved by Mondal et al.[MNBR13] to n/2+3,
which is known to be optimal.

Most recently, Okamoto et al.[ORW19] applied the concept of the segment numbers
not only to planar graphs and their crossing-free straight-line drawings. They analysed
the segment number of planar graphs and their crossing-free polyline drawings in 2D.
For any, not necessarily planar graph they introduced the segment number for crossing-
free straight-line drawings in 3D and straight-line drawings with crossings in 2D. To
compare these segment numbers they constructed graphs with which they obtained ex-
istential lower-bounds for the original segment number of connected and biconnected
cubic graphs. In this paper we will only consider the segment number of crossing-free
straight-line drawings in 2D. Some known lower and upper bounds for that segment
number are listed in Table 1.1.

Maximal outerplanar graphs. In this thesis we will focus on the segment numbers of
maximal outerplanar graphs and their outerplanar drawings. A graph G is outerplanar
if there is a 2D drawing D of G such it is crossing-free and all the vertices are on the
boundary of the outer face. We call D a outerplanar drawing of G. An outerplanar
graph G = (V,E) is considered maximal if (V,E ∪ vw) is not outerplanar for any pair of
non-adjacent vertices v, w ∈ V . For a n-vertex maximal outerplanar graph we know that
its outerplanar embedding is unique [DESW07] and according to Euler’s Theorem it has
exactly 2n− 3 edges. In Figure 1.1 (a) and (b) we illustrate two outerplanar graphs G1

and G2. They is outerplanar, because all vertices are on the boundary of the outer face;
they is maximal because any new edge would either cause crossings or a vertex that is
not on the boundary of the outer face.
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Tab. 1.1: Overview of existing lower and upper bounds for segment numbers of several graph
types and their 2D crossing-free straight-line drawings. The upper bounds are
universal for all graphs. The lower bounds are existential, except for trees, for which
the lower bounds are universal. Here n is the number of vertices and η is the
number of vertices of odd degree.

graph type lower bound upper bound source

trees η/2 η/2

[DESW07]

maximal outerplanar n n
plane 2-trees 2n 2n
plane 3-trees 2n 2n

plane 2-connected 5n/2 -
plane 3-connected 2n 5n/2
planar 2-connected 2n -
planar 3-connected 2n 5n/2

1-connected cubic graph 5n/6 -
[ORW19]

2-connected cubic graph 3n/4 -

3-connected cubic graph n/2 + 3 n/2 + 3 [MNBR13]

Maximal outerpaths. In the main part of this thesis we will discuss a subfamily of
maximal outerplanar graphs, the outerpaths. To define them we first need to define the
weak dual graph. For a plane graph G = (V,E) the dual graph D = (U,F ) is defined by
U = {f | f face of G} and F = {ef | e, f ∈ U, e shares an edge with f in G}. If f ∈ U
is the outer face, we call D \ f the weak dual graph. Note that the expression H \ v for a
graph H = (W,J) is defined by H\v = (W \v, J ′) with J ′ = J \{e ∈ J | e incident to v}.

Let G be a outerplanar graph with embedding and H its weak dual graph. We call
G outerpath, if H is a path. We define maximal outerpath analogously to maximal
outerplanar graph. Note that for a maximal outerplanar graph the embedding is unique
and therefore the weak dual graph is well defined. In Figure 1.1 (c) we display a maximal
outerpath G2 and its weak dual graph H2.

Examples for bounds. With the examples in Figure 1.1 we explain the use for bounds
of the segment number. Given that the upper bound for the segment number of G1

is 12, see Table 1.1, we know that D1 with 13 segments is not a minimum-segment
drawing of G1. But for D′1, we don’t know if it is a minimum-segment drawing. The
drawing admits the upper bound with 9 segments; but given that we do not have an
universal lower bound, we’d now have to prove that there is no possible drawing of G1

which uses less segments. On the other hand, with Theorem 3.16 we will have shown
a universal lower bound for some maximal outerpaths to which G2 belongs. With this
theorem, we know a lower bound of G2 for the segment number is 8, proving that D2 is
a minimum-segment drawing.
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(a) (b) (c)

G1 G2

H2

Fig. 1.1: A maximal outerplanar graph G1 with 12 vertices drawn with (a) 13 segments in
drawing D1 and (b) 9 segments in drawing D′1. (c) Furthermore a maximal
outerpath G2 drawn with 8 segments in D2 in black; blue illustrates the weak dual
graph H2 of G2.

Contribution. First, we will revisit the results of Dujmović et al.[DESW07] for the
segment number of maximal outerplanar graphs and present their proofs in Chapter 2.
The main part of the thesis, Chapter 3, focuses on the segment number of maximal
outerpaths. We first analyse in Section 3.1 the segment number of maximal outerpaths
which have one vertex with a degree greater than 4, and all other vertices lower than
4. To turn to a more general case we then define strong and weak connections of Type
A and Type B in Section 3.2 and provide some algorithms for maximal outerpaths in
Section 3.4. We use these to prove the lower bound for maximal outerpaths with no
strong Type A connections in Section 3.5. In the end, we consider the question if there
is a constant c such that cn is a lower bound for the segment number of a n-vertex
maximal outerplanar graph in Chapter 4. To illustrate the lower bound constant we
define two ratios for a graph drawing Section 4.1. We then give a graph sequence, which
provides an upper bound for the lower bound constant in Section 4.2.
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2 Bounds for Maximal Outerplanar Graphs

In this chapter, we look at the work of Dujmović et al.[DESW07] on the number of
segments in a drawing of a maximal outerplanar graph. They obtained an upper and an
existential lower bound, see Theorem 2.4 and Theorem 2.5. In order to examine them
in detail, we first need to define two terms, see Figure 2.1 for their illustration.

Definition 2.1 (Star-Shaped). A drawing D of a graph is called star-shaped, if there
exists a point p in some internal face of D, and every ray from p intersects the boundary
of the outer face in exactly one point. We will call p a star-point of D.

Definition 2.2 (Wedge). For three non-collinear points u, v and w in the plane, the
wedge(u, v, w) is the infinite region that contains the interior of the triangle uvw, and
is enclosed on two sides by the ray from v through u and the ray from v through w.

u

v

wwedge(u, v, w)

(a) (b) (c)

p

Fig. 2.1: Illustrations of (a) a non-star-shaped drawing of a graph G, (b) a star-shaped
drawing of this graph G with star-point p and (c) the wedge(u, v, w)

2.1 Upper Bound

First we consider the upper bound. Obviously, the segment number of a graph cannot
by greater than the number of vertices of this graph. As stated in Chapter 1, the number
of edges is defined by the number of vertices:

Observation 2.3. Let G be a n-vertex maximal outerplanar graph. Then G has exactly
2n− 3 edges.

Thus for a n-vertex maximal outerplanar graph a natural upper bound is 2n−3. With
the following theorem, we can show that there is an even sharper upper bound. For this
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we use the fact that for a given maximal outerplanar graph G with a vertex v with a
degree of 2, the graph G \ v is still a maximal outerplanar graph. Hence we can perform
a proof by induction where the main idea for the inductive step is to position v such
that one of its incident edges is sharing a segment with an edge in G′ and does not cause
any crossings.

Theorem 2.4. Every n-vertex maximal outerplanar graph G has an outerplanar drawing
with at most n segments.

Proof. For n ∈ {0, 1, 2} the theorem is trivial. For n ≥ 3, we prove the theorem by
induction over n and with the additional invariant that the drawing is star-shaped.

Initial case. The theorem holds for n = 3. G is a triangle, and any drawing of G is
outerplanar with three segments. The invariant holds true, as any point in the inner
face of the triangle is a star point.

Induction hypothesis. Any given maximal outerplanar graph with n − 1 ≥ 3 vertices
has an outerplanar drawing with at most n− 1 segments which is star-shaped.

Inductive step. Let G be a maximal outerplanar graph with n vertices. Since G is
maximal, G has a vertex v with degree 2 whose neighbours x and y are adjacent. Thus
G′ = G/v is maximal outerplanar graph with n − 1 vertices. Given the induction
hypothesis, G′ has a star-shaped outerplanar drawing D′ with n− 1 segments and star-
point p. In D′ the edge xy separates the outer face and some internal face F . As G′ is
maximal, F is bound by a triangle xyr. Without loss of generality we can assume that
yx is horizontal in D′ and F is below xy. Due to induction the star-point p is either in
wedge(y, x, r) or in wedge(x, y, r). We assume p is in wedge(y, x, r), the other case
follows analogously. Let R be the area in the wedge(x, p, y) above xy, see Figure 2.2
(a).

p
r

p
r

x

p
r

x

(a) (b) (c)

y

v

y

R

x

y

v
R R

Fig. 2.2: Construction of a star-shaped drawing of an outerplanar graph.

The ray rx is intersecting the area R, see Figure 2.2 (b). Let v be anywhere on rx and
in R, and let D be the drawing resulting from D′ with the additional straight lines vx
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and yv, see Figure 2.2 (c). Note that D is a drawing of G with the required properties
as the following conditions hold:

� Star-shaped: From the induction hypothesis we know that p is a star-point in D′.
Any ray starting in p intersecting with R intersects with the boundary of the outer
face only in xy. Therefore R ∩ D′ = ∅. Rays from p intersecting with vx or vy
therefore have no further intersections with the outer face.

As p is still in some internal face, p is still a star-point for D, and hence D is
star-shaped.

� Number of segments: Given our induction hypothesis, D’ has only n−1 segments.
The segment covering xr is one of them. When adding v to the drawing xv shares
the same segment as xr. So, we add at most the segment covering vy. We can
conclude that D has at most n segments.

Note that the upper bound given in Theorem 2.4 is not sharp, see Figure 2.3 (a). The
graph has seven vertices, but only needs six segments.

(a) (b)

Fig. 2.3: (a) A drawing of a maximal outerplanar graph with 7 vertices that only needs 6
segments. (b) A drawing of the graph G9 of Theorem 2.5.

2.2 Lower Bounds

As discussed in Chapter 1 there are two different lower bounds: Existential and Uni-
versal. For maximal outerplanar graphs so far no universal lower bound has been found
except the natural universal lower bound for all graphs mentioned in Chapter 1. If η
is the number of vertices with uneven degree in a graph G = (V,E), the bound for
the segment number is η/2. That is because there is one edge e ∈ E incident to each
v ∈ V with uneven degree which cannot share a segment through v with another edge.
This edge implies a start or ending for a segment. Obviously, this lower bound is not
sharp. We will later give a sharper universal lower bound for a subfamily of maximal
outerplanar graphs.
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In terms of the existential lower bound, Dujmović et al.[DESW07] were able to find a
graph sequence whose number of segments meets the upper bound. We therefore know
that for a sharper upper bound than in Theorem 2.4, more than just the number of
vertices has to be considered. Each graph Gn of this sequence is unique for each n. To
do a proof by induction, we use the fact that Gn \ v with deg(v) = 2 is also part of the
sequence and thus a drawing of Gn always contains a drawing of Gn \v. In the inductive
step we use that both neighbours of v have a maximum degree of 4 to conclude that a
drawing of Gn needs one more segment than a drawing of Gn \ v.

Theorem 2.5. For all n ≥ 3, there is an n-vertex maximal outerplanar graph that has
at least n segments in any drawing.
More precisely, let Gn be a maximal outerplanar graph with n ≥ 3 vertices with the
following characteristics:

� Gn is an outerpath.

� The maximum degree of Gn is at most four.

Then every drawing of Gn needs at least n segments.

Proof. The proof is performed by induction over n.

Initial case. For n = 3 the graph Gn is a triangle, and therefore has n = 3 segments.

Induction hypothesis. For a fixed n − 1 ≥ 3 every drawing of the graph Gn−1 has at
least n− 1 segments.

Inductive step. The inductive step is done via contradiction. Suppose for the sake of
contradiction that there is a drawing Dn of Gn which has at most n− 1 segments. Since
Gn is maximal, it has a vertex v with degree 2 whose neighbours x and y are adjacent.
Either deg(x) = 3 or deg(y) = 3 otherwise the weak dual graph of G would not be a
path see Figure 2.4 (a). Without loss of generality we assume deg(x) = 3.

v

x

(a) (b) (c)

y

v

xy

rs

x

y

s r

Fig. 2.4: (a) Weak dual graph of G is not a path if deg(x) = 4 and deg(y) = 4, (b) Situation in
Dn, (c) Situation in Dn−1
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Note that Gn \v is isomorph to Gn−1. Therefore Dn contains a drawing Dn−1 of Gn−1
which with the induction hypothesis has at least n− 1 segments.

Therefore Dn has at least n − 1 segments and by our assumption, in fact, exactly
n − 1 segments. Given that Dn contains Dn−1, the edges vx and vy share a segment
with some edges in Gn−1. To be precise the segment covering vx has to contain another
vertex r such that xr is an edge in Gn−1. Analogously, the segment covering vy has to
contain another vertex s such that ys is an edge in Gn−1, see Figure 2.4 (b).

Given that v, x, y is a triangle, we know that x, s, r, y are pairwise different. The fact
that deg(x) = 3 allows the conclusion that y and r are neighbours. Thus xy cannot
share a segment with xr. Since deg(y) ≤ 4, and y already has four incident edges, there
is no edge with which xy can share a segment.

We can now produce a better drawing of Gn−1 using Dn. Move x in Dn−1 to the spot
where v is in Dn. Then the edge xy is now where the edge vy was in Dn and like vy,
the edge xy is on the same segment as ys, see Figure 2.4 (c). We showed before that xy
is not sharing a segment with another edge in Dn.

Thus with this procedure we removed one segment from Dn−1. Therefore Gn−1 can
be drawn with only n− 2 segments; a contradiction.

For this sequence of graphs, we know due to Theorem 2.5 and Theorem 2.4 that the
segment number is n for each Gn. The drawing of G9 provided in Figure 2.3 (b) therefore
is a minimum-segment drawing.

Note that for the inductive step we only use the fact that the dual graph is a path,
and that one neighbour of v has the degree four. So the inductive step of the proof above
also serves as proof of the following corollary.

Corollary 2.6. Let G = (V,E) be maximal outerplanar graph. Let deg(v) = 2 for a
v ∈ V and let v be adjacent to w ∈ V with degree 4. Suppose there exists a lower bound
s′ for segments of a drawing of G′ = G \ v. Then a drawing D of G needs at least s′ + 1
segments.

Additionally, the figure Figure 2.4 is a good illustration for the properties of the
neighbours of v. It shows that only one of them can have a degree greater than three.
For later use we put this observation down in a corollary.

Corollary 2.7. Let G = (V,E) be maximal outerpath with n ≥ 4. Let v ∈ V have
deg(v) = 2. Then v is adjacent to a vertex x with degree 3.
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3 Segment Number of Maximal Outerpaths

As mentioned in Section 2.2, there is no sharp lower bound for maximal outerplanar
graphs. In order to change that, we limit ourselves on one of its subfamilies, the maximal
outerpaths. We first consider vertices with a high degree in Section 3.1 and then define
relations between those vertices in Section 3.2. In Section 3.4 we present some algorithms
we then use to show a lower bound for the segment number in Section 3.5.

3.1 Centered Outerpaths

In Theorem 2.5 we already analysed the segment number of a sequence of maximal
outerpaths. They had the additional condition, that the maximum degree of Gn is at
most four. Now we will consider graphs which allow higher degrees. To do so, we will
start off with the special case that there is only one vertex with a degree greater than
4, and no vertex with degree of exactly 4:

Definition 3.1. Let G = (V,E) be a maximal outerpath with n vertices. We call G
centered outerpath, if n ≥ 6 and there is a c ∈ V with degree n− 1. We call c its center,
Einner = {e ∈ E | e incident to c} its inner edges and Eouter = E \Einner its outer edges.

cu

w x

y

z

v

c

(a) (b) (c)

c

Fig. 3.1: (a) Centered outerpath with 12 vertices. G \ c colored blue. Its inner edges are
colored black, its outer edges colored blue.
(b) Graph where c is not connected to all other vertices.
(c) Graph where G \ c is not a path.

Figure 3.1 (a) illustrates a centered outerpath with n = 12 and its inner and outer
edges. We can use it to extract some simple observations:

Lemma 3.2. Let G be a centered outerpath with n vertices and center c.

(a) The graph G \ c is a path.

(b) The center is adjacent to all other vertices.
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(c) For a given n, the centered outerpath is unique.

For a better understanding, Figure 3.1 (b) and (c) display graphs where G \ c is not
a path or where c is not connected to all vertices. Both contradict the graph being
maximal outerplanar.

Since G \ c is a path, and c is connected to all vertices, we can easily determine the
exact degrees of all vertices in a centred outerpath:

Corollary 3.3. Let G = (V,E) be a centered outerpath with n vertices and center c.
There are exactly two vertices w and w′ both with degree 2. For all u ∈ V \ {c, w,w′}
applies deg(u) = 3.

This corollary shows that the centered outerpath matches the requirements we had
for our special case: A centered outerpath has one vertex with a degree greater than 4,
and all other are lower than 4.

Now we draw conclusions about the edges in centered outerpaths and in what ways
they can share segments. For a better understanding of the following proof, see Fig-
ure 3.1 (a).

Theorem 3.4. Let G = (V,E) be a centered outerpath with center c and D a drawing
of G.

(a) For any e ∈ Einner and any e′ ∈ Eouter there is no drawing where e and e′ are
sharing a segment.

(b) Any e ∈ Einner can share a segment with at most one other edge e′. In this case,
e′ is also in Einner.

Proof. Let us consider an edge uc ∈ Einner. We know that if uc is sharing a segment
with other edges, one of them needs to be incident either to c or to u.

(a) Let us first consider an edge uw ∈ Eouter incident to u. Suppose uw and uc share
the same segment s, then u, c and w are collinear. Since the center c is adjacent
to w, we know uwc is a triangle but also collinear. A contradiction to a proper
crossing-free drawing.

Now consider xy ∈ Eouter which is not incident to the vertex u. For xy and uc
to be on the same segment, the vertices x, y, c, u need to be collinear. Since the
center c is adjacent to x and y, we know yxc is a triangle but also collinear; a
contradiction to D being a proper crossing-free drawing.

(b) Consider an edge cu ∈ Einner. By (a) we know that cu cannot share a segment with
an edge in Eouter. Thus suppose there are cv, cz ∈ Einner with c, v, u, z pairwise
different such that cu, cv, cz share a segment. Then one of these edges would be
on top of another; a contradiction to D being a proper crossing-free drawing.
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With Theorem 3.4 we can show a lower bound for the segment number of centered
outerpaths.

Theorem 3.5. Let G = (V,E) be a centered outerpath with n vertices. A drawing D of
G needs at least dn/2e+ 2 segments.

Proof. Let c be the center of G. Due to the definition of centered outerpaths |Einner| =
n − 1. First consider Eouter. Because of Theorem 3.4 (a) no edge in Eouter can share a
segment with edges of Einner. Given that Eouter 6= ∅, we need at least one segment to
cover Eouter.

Case 1: Let us assume we use only one segment a to cover Eouter. Then all vertices
in V \ c are on this segment. Obviously, no pair of edges in Einner can then share a
segment. This implies that each edge in Einner needs its own segment. In this case we
therefore need at least 1 + |Einner| = 1 + n− 1 = n segments.

Case 2: Let us assume we use two segments to cover Eouter. For this case we need
to consider two different cases:

(a) The number of vertices n is even. To cover Eouter we now use two segments. Thanks
to Theorem 3.4 (b) we know that to cover Einner we need at least d(n − 1)/2e
segments. Since n − 1 is odd we need at least n/2 segments to cover Einner. In
summary we need at least n/2 + 2 to draw G.

(b) The number of vertices n is odd. We suppose that we need only two segments s
and t to cover Eouter and at the same time can use Theorem 3.4 (b) to cover Einner

with only d(n−1)/2e = (n−1)/2 segments. Then we would only need (n−1)/2+2
to draw G.

Given that G \ c is a path (see Lemma 3.2), there needs to be a vertex u, which
has to be the intersection of s and t. Let us take a look at the edge uc. Because of
our assumption, uc is sharing a segment r with another edge cw in Einner. Due to
Theorem 3.4 (a), the segment r is different to t and s. The vertex w ∈ V \ c has
to be either on s or t. Without loss of generality, we can say that w is on s. The
vertices w and u therefore both would be on s and on r, two different segments; a
contradiction. So one of our two assumptions was wrong.

i If the first assumption was wrong, we cannot use only two segments to cover
Eouter. Hence we need three segments, see Figure 3.2 (b).

ii If the second assumption was wrong, uc and cw cannot share a segment.
Hence we cannot use Theorem 3.4 (b) to cover Einner with only d(n−1)/2e =
(n − 1)/2 segments. We therefore need at least (n − 1)/2 + 1 segments to
cover Einner, see Figure 3.2 (c).

In both cases we need one more segment than we supposed. Thus we need at least
(n+ 1)/2 + 2 segments.
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(a) (b) (c)

Fig. 3.2: Drawing of centered outerpaths with minimum segments: (a) n is even, (b) n is odd,
using three segments to cover Eouter, (c) n is odd, using two segments to cover Eouter

Case 3: We use more segments to cover Eouter than discussed in case 2.

(a) For an even number n of vertices, we already assumed in case 2 (a) that we can
use Theorem 3.4 (b) to its full extend. So, having more segments to cover Eouter

does not reduce the number of segments for Einner. We therefore end up with more
than n/2 + 2 segments.

(b) For an odd number n of vertices, we ended up with another case distinction in case
2 (b):

i In the first case, we have two edges uc, cw ∈ Einner that cannot share with
another edge in Einner. Adding another segment to cover Eouter is the same
we did in case 2 (b) ii). We again end up with at least (n+1)/2+2 segments.

ii In the other case, we use Theorem 3.4 (b) to its full extend, but need three
segments to cover Eouter. As we already used the pairing of the inner edges
to its full extend, adding another segment for the outer edges can not reduce
the segments for Einner. So, we would use more than (n+ 1)/2 + 2.

So, using more segments to cover Eouter than discussed in case 2 does not lower the total
number of segments.

Summary In conclusion we can say that in case 1 we need at least n segments. In case
2 we need at least dn/2e + 2 segments, and case 3 is always worse than case 2. So in
general we need at least min (dn/2e+ 2, n) segments. Since in Definition 3.1 we defined
n ≥ 6 we know min (dn/2e+ 2, n) = dn/2e+ 2.

We now provide an algorithm to draw centered outerpaths while matching the lower
bound. We split this process in two algorithms as one of them will be used in later
proofs. For the first one we assume that three vertices are already positioned in R2.

Theorem 3.6. Let G = (V,E) be a n-vertex centered outerpath with center c and let
u1, . . . , udeg(c) be a path of G\c. Let m := deg(c) be odd and the triangle u1u2c already be
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positioned in R2. There is a drawing D of G such that Eouter is covered by two segments
and there is only one edge in Einner that does not share a segment with anther inner
segment. It uses n/2 + 3 segments and hence is a minimum-segment drawing.

Proof. Without loss of generality the segment x which covers u1u2 is vertical, the center
c is on the right half-plane of x and u2 is above u1 as illustrated in Figure 3.3 (a).

(b)

u6

u1

u2

x

(d)

u11

c

(a)

u3

u4

u5

u6

u1

u2

u3

u4

u5

u1

u2

u7
u8

u9
u10

c

y

(c)

u11

u6

u1

u2

u3

u4

u5

c

y

c

Fig. 3.3: Step by step algorithm to draw centered outerpath with 12 vertices.

� We extend x upwards, at its endpoint put the vertex u(m+1)/2 and draw a segment
from it to c. Between u2 and u(m+1)/2 we position the ui with 2 < i < (m+ 1)/2
in the proper order, see Figure 3.3 (b)

� We draw a segment from u(m+1)/2−1 through c while exceeding c and position um
on its endpoint. Now we draw a segment y from u(m+1)/2 to um, see Figure 3.3(c)

� In the end we draw segments starting in ui with 1 ≤ i < (m+ 1)/2− 1 through c
until they cross y, at this crossing point we put u(m+1)/2+i.

For each ui with 1 ≤ i < (m + 1)/2 there is a segment through c that covers uic
and cu(m+1)/2+i. Furthermore we have drawn a segment to cover cu(m+1)/2. These are
2 · ((m+ 1)/2− 1) + 1 = m inner edges, and thus all of them. Furthermore we have all
outer edges, as can be seen in Figure 3.3 (d).

In summary we have used (m+1)/2+2 = n/2+2 segments to draw D which matches
the lower bound of Theorem 3.5. It thus is a minimum-segment drawing.

Theorem 3.7. The segment number of a n-vertex centered outerpath is dn/2e+ 3.

Proof. Let c be the center and let u1, . . . , udeg(c) be a path of G \ c. Let u1, u2c be
positioned anywhere in R2. If deg(c) = n − 1 is odd, we know with Theorem 3.6
that there is minimum-segment drawing matching the lower bound of Theorem 3.5. If
deg(c) = n−1 even, we consider G\udeg(c) and use the drawing obtained by Theorem 3.6.

17



It uses (n − 1)/2 + 3 segments. We add a segment starting in c and ending such that
it crosses the outer edge udeg(c)−2udeg(c)−1. On that crossing point we position udeg(c)−1
and consider the old udeg(c)−1 as new udeg(c), compare Figure 3.3 (d) with Figure 3.4
(a). That way we have (n− 1)/2 + 3 + 1 = dn/2e+ 3 segments. In both cases we have
achieved a drawing matching the lower bound of Theorem 3.5.

c

v1

v6+1
v6+2

v6+3

v6+4

v6+5

v6+6v2

v3

v4

v5

v6

(b)(a)

u12

u6

u1

u10

c u11

Fig. 3.4: (a) Minimum-segment drawing of a centered outerpath with 13 vertices. (b)
Centered outerpath whose center c has deg(c) = 12, and where all e ∈ Einner share a
segment with another f ∈ Einner.

Before turning to more general cases of maximal outerpaths, we make one more impor-
tant observation for centered outerpaths with an odd number of vertices on how edges
belonging to Einner are paired optimally if we ignore Eouter.

Observation 3.8. Let G be a centered outerpath with center c. Let deg(c) be even
and v1, . . . , vdeg(c) be a sequence of vertices for the path G \ c. If all e ∈ Einner share a
segment with another f ∈ Einner, then vic is sharing a segment with cv(deg(c)/2)+i where
1 ≤ i ≤ deg(c)/2.

Figure 3.4(b) illustrates Observation 3.8. Remember that using the pairing for all
edges in Einner requires at least three segments to cover Eouter. Apart from that the
observation is independent of the number of segments being used to cover Eouter.

3.2 Connections Types between Centres

We can now turn away from this special case and apply our new knowledge to a more
general case. To do so, we first need to apply the concept of centres to outerpaths in
general.

Definition 3.9. Let G = (V,E) be a maximal outerpath. We call c ∈ V a center,
if deg(c) ≥ 5. We call S(c) = (U,F ) with U = {w ∈ V | w adjacent to c} ∪ c and
F = {wu | w, u ∈ U} ∩ E the c-centered subgraph of G.
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c2

c3

c4

c5

c1

c6

Fig. 3.5: A drawing of a maximal outerpath G with the centres c1, . . . , c5 and with the
c1-centered subgraph of G coloured blue.

Obviously S(c) is a centered outerpath, see Figure 3.5 and thus the results in Sec-
tion 3.1 can be used.

One might hope that gaining a lower bound for maximal outerplanar graphs might
now be fairly simple: For a given maximal outerplanar graph G with centres c1, . . . , cm
one could combine the result of Theorem 3.5 and Corollary 2.6. For Corollary 2.6, one
would count all vertices with degree four. To combine it with Theorem 3.5 one would
then add the sum of lower bounds for the ci-centered subgraphs for all centres. But this
method is not sufficient, since the subgraphs of centres can share segments with each
other, see Figure 3.5. The subgraphs of c2 and c3 for example share three segments with
each other. We therefore need to analyse if and how subgraphs of centres share segments.
To do so, we first define relations between centres. For illustrations, see Figure 3.6.

Definition 3.10. Let G = (V,E) be a maximal outerpath and v, w ∈ V be centres. We
say v and w have a

(a) Type A connection if v and w are adjacent.

(b) Type B connection if v and w are not adjacent, but there is at least one u ∈ V
which is adjacent to v and w.

(c) strong connection if there are two vertices u1, u2 ∈ V which are adjacent to both
v and w

(d) weak connection if there is only one vertex u3 ∈ V which is adjacent to both v and
w.

If one of the these cases applies, we say v and w are connected.

Let us revisit Figure 3.5 and analyse which connection types these centres have:

� The centres c1 and c2 are not adjacent, but have one vertex they both are adjacent
to. Therefore they have a weak Type B connection.
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Fig. 3.6: Examples for the connection types: (a) strong Type A connection, (b) weak Type A
connection, (c) strong Type B connection, (d) weak Type B connection

� The centres c2 and c3 are adjacent and have one vertex they both are adjacent to.
They thus have a weak Type A connection.

� The centres c3 and c4 are not adjacent and have two vertices they both are adjacent
to. Therefore they have a strong Type B connection.

� Between c4 and c5 there is no connection, because they don’t have a vertex that
is a common neighbour and they are not adjacent.

� The center c6 shares two neighbours with c5 and is also adjacent to c5. Thus they
have a strong Type A connection.

Since the weak dual graph H is a path, a center c can only be connected to at most
two other centres. That is why we only considered some pairs of centres, namely the
centres right before and after c, in the order of the path H.

3.3 Centres at the End of the Path

Our main proof for a lower bound will be performed via induction. In its inductive step
we will compare two graphs, namely any maximal outerpath G with no strong Type A
connection and the graph G \ v where v is a vertex in G with degree 2. As stated in
Corollary 2.7 one of the neighbours of v has degree 3. So, to cover all possible transitions
from G \ v to G, we only need to make a distinction of cases for the degree of the other
neighbour of v. We already cover one case with Corollary 2.6 where v is adjacent to a
vertex w with degree 4. Thus we now want to analyse the case where v is adjacent to a
center c.
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For the following section we want to analyse properties of minimum-segment drawings
of a maximal outerplanar graph G where v is adjacent to a center c with deg(v) = 2. To
do so, we suppose that these properties do not apply for a minimum-segment drawing
D of G. We then provide an algorithm to obtain a drawing D′ of G for which these
properties apply and argue why D′ uses less segments then D. In this algorithm we
always redraw S(c). But we do not assure that the drawing D′ is crossing-free as S(c)
might be causing crossings with edges that are not in S(c) or even overlap with them.

Therefore we need a different concept of drawings for this analysis, that allows this
kind of overlapping while keeping our results so far. This concept is rather theoretical.

Definition 3.11. Let G = (V,E) be a maximal outerplanar graph. For each vertex
v ∈ V we consider the subgraph S(v) = (U,F ) with V = {w ∈ V | w is adjacent to w}
and F = {wu | w, u ∈ U}∩E. We call a straight-line drawing D of G locally-crossing-free
if for every v ∈ V the subgraph S(v) is drawn crossing-free. It is considered outerplanar
if for every v ∈ V the subgraph S(v) is drawn outerplanar.

To illustrate the concepts of locally-crossing-free drawings consider the drawings in
Figure 3.7. Both drawings D and T are drawings of the same graph G. For illustration
the same part of the graph G is coloured orange and its edges dashed. The drawing D is a
straight-line crossing-free drawing as we know it. The drawing T however is not crossing-
free, one crossing is marked blue. The drawing T however is locally-crossing-free, for
each vertex v the subgraph S(v) is crossing-free. One problem is that locally-crossing-free
drawings allow edges to be on top of each other, also marked blue. To consider whether
T is minimum-segment we still need to be able to analyse their number of segments.
However given that we allow edges to be on top of each other, the original definition of
segments is not sufficient any more.

(a) (b)

GD

T

e

e′

f f ′

Fig. 3.7: Two drawings of the same maximal outerplanar graph G : (a) A straight-line
crossing-free drawing D and (b) a straight-line triangle-invariant drawing T with
crossing and overlapping edges.
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Definition 3.12. Let G = (V,E) be a maximal outerpath and D be a locally-crossing-
free drawing of G. We call a maximal set S of edges a segment if they form a straight-
line segment in D and if S is a path in G. We call a locally-crossing-free drawing D
a minimum-segment drawing of G if it uses the least number of segments among all
triangle-invariant drawings of G.

With this new definition consider the edges e and e′ in T . They are the maximum set
to form a straight-line segment, hence by the old definition this would be one segment.
With with the new definition, however it is not any more: they are the only edges
forming that straight-line segment and do not have a vertex they both are incident to.
Hence they are not a path.

On the other hand the edges f and f ′ are on the same segment by new and old
definition. They form a straight-line segment and they are a path as they have a vertex
they are both incident to.

These concepts are crucial for the next sections, however we will not show any more
drawings with overlapping edges. We will only consider the drawing of a part of G
in which there are no crossings or overlapping. Note that a straight-line crossing-free
drawing always is a locally-crossing-free drawing. Before we can go on, we need to
evaluate which of the results so far apply for locally-crossing-free drawings.

For simplicity all drawings in the rest of this chapter are straight-line triangle-invariant
drawings, unless stated otherwise. We start off with a theorem in which we only consider
a specific case, namely that deg(c) is odd. We consider the odd case so that we can later
draw conclusions for the even case.

Theorem 3.13. Let G = (V,E) be a maximal outerpath. Let v ∈ V with degree 2 be
adjacent to a center c with odd degree m. Let S(c) = (U,F ) be the c-centered subgraph
of G. Let u1, . . . , um be the sequence of vertices for the path S(c) \ c with v = um. Let
D be a minimum-segment drawing of G.

(a) There is only one edge e ∈ Finner such that e does not share a segment with another
e′ ∈ Finner.

(b) The edge u(m+1)/2u(m+1)/2+1 is either sharing a segment with u2u3 or um−1um.

Proof. For the sake of contradiction suppose D is a minimum-segment drawing such that
either (a) or (b) does not hold. We will provide an algorithm to obtain a drawing D′

for which (a) and (b) apply and then analyse why it uses less segments then D. For
illustration Figure 3.8 (a) is a drawing of a graph G for which (b) does not apply. In
our illustrations u2u3 is not sharing a segment with u1u2. Its sharing behaviour through
u2 does not have an impact on our algorithm. Hence it could be sharing with u1u2 or
edges in E \ F as well.

To gain a drawing D′ we remove all vertices and edges from D that are in S(c)
except the vertices u1, u2, u3, c and the edges between them. By doing so we obtain
a drawing similar to the one in Figure 3.8 (b). We will use Theorem 3.6 to draw a
centered outerpath with deg(c)− 1 vertices. For the triangle mentioned in the theorem
we consider u′1u

′
2c with u′1 = u2 and u′2 = u3. By doing so we obtain the drawing in
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Fig. 3.8: Procedure to reduce D by one segment: (a) Initial case where u(m+1)/2u(m+1)/2+1 is
neither sharing a segment with u2u3 or um−1um. (b) After removing all vertices and
edges from D that are in S(c) except the vertices u1, u2, u3, c. (c) After applying
Theorem 3.6. (d) New drawing D′ with one segment less.

Figure 3.8 (c). The part drawn with Theorem 3.6 is coloured blue. We do not use the
labelling of the vertices as in Theorem 3.6 because in our case the vertices U \ c have
different indices. We then extend u1c such that it intersects with an outer edge and
position another vertex on that intersection. The result is a drawing of a c-centered
subgraph with deg(c) + 1 vertices, see Figure 3.8 (b). Given that we did not change any
edges ẽ ∈ E \ F we know u2 and u1 still have the same neighbours as in D. Together
with Lemma 3.2(c) we know that the drawing D′ is a valid drawing for G. We can now
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label the vertices with u4, . . . udeg(c) in the proper order.
The new drawing is triangle-invariant as D was triangle invariant and the algorithm

Theorem 3.6 provides a crossing-free drawing.
Both (a) and (b) hold for D′. We did not change the positions of u1, u2, u3, c and

therefore did not change the edges that are incident to u1 and u2. These are the only
vertices incident to edges in E \ F . Hence for i ∈ {1, 2} if any edges incident to ui
is sharing a segment with another edge incident to ui in D, it still is in D′. Thus to
compare D with D′ in respect to the number of segments we only need to consider the
segments we use to cover S(c). We know that inner edges cannot share a segment with
outer edges by Theorem 3.4. Thus we can analyse Finner and Fouter independent from
each other.

(a) Suppose (a) does not hold for D. Then there are at least two inner edges not
sharing a segment with another inner edge in D. There are at least three such
edges because of Theorem 3.4 and since deg(c) is odd. Therefore D uses at least
(deg(c)− 3)/2 + 3 = (deg(c)− 1)/2 + 4 segments to cover Finner which is one more
than we use in D′, a contradiction to D being a minimum-segment drawing.

(b) Suppose (b) does not hold for D. Then we know that u(m+1)/2u(m+1)/2+1 is neither
sharing a segment with u2u3 nor um−1um. This means that there are at least 3
segments to cover u2u3, . . . , um−1um. That is one more segment than in D′, a
contradiction to D being a minimum-segment drawing.

Theorem 3.13 applies no matter if c has a connection or which type of connection
the center c has. We consider Theorem 3.13 (a) for a strong and a weak Type A
connection in Figure 3.9. In both cases we have marked the segment blue that covers

(a) (b)

u1

u2
u3 u4

u5

u6

u7

c

c

u1

u2
u4

u5

u6

u7

u3

Fig. 3.9: Drawings of graph G with center c where u(m+1)/2u(m+1)/2+1 shares (a) with u2u3
and (b) with um−1um

.

u(m+1)/2u(m+1)/2+1. For our examples applies m = 7, thus u(m+1)/2u(m+1)/2+1 = u4u5.
In one case the edge shares with shares with u6u7 in the other with u2u3. Thus both of
these drawings are possibly minimum-segment drawings.
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3.4 Centres with no strong Type A Connection

When finding a lower bound the segment number of maximal outerpaths, the goal is
to allow all kinds of connections in an outerpath. In this thesis we will only succeed
for maximal outerpaths with no strong Type A connections. Nevertheless we want our
results to be as general as possible. That is why in following theorems we only forbid
the center c that again is adjacent to a vertex with degree 2 to have a strong Type A
connection. By doing so, we make sure we can use this theorem, when analysing maximal
outerplanar graphs which have strong Type A connections, but the center c has none.

The exclusion of c having no Type A connection is only implicit. If again u1, . . . udeg(c)
is the path of S(c) \ c the candidates c could have strong Type A connection with are u2
and um−1. Both of them are not a center as we demand deg(u2) = 4 on the one hand
and on the other hand we know deg(um−1) = 3, with Corollary 2.7 and deg(um) = 2.

Lemma 3.14. Let G = (V,E) be a maximal outerpath. Let v ∈ V with degree 2 be
adjacent to a center c with odd degree m. Let S(c) = (U,F ) be the c-centered subgraph
of G. Let u1, . . . , um be the sequence of vertices for the path S(c) \ c with v = um
and deg(u2) ≤ 4. Let D be a minimum-segment drawing of G where cu(m+1)/2 ∈ Finner

does not share a segment with another inner edge. Furthermore let every cui with
1 ≤ i < (m + 1)/2 share a segment with cu(m+1)/2+i. Then there is only one segment
which covers u(m+1)/2u(m+1)/2+1, . . . , um−1um.

Proof. For the sake of contradiction suppose in D there are two segments which cover
u(m+1)/2u(m+1)/2+1, . . . , um−1um. Let us consider the vertex u2. If deg(u2) = 3, we know
G is a centered outerpath. We know u(m+1)/2u(m+1)/2+1 cannot share a segment with
u1u2 because with cu(m+1)/2+1 and cu1 sharing a segment that would imply that u1u2c
are collinear and a triangle; a contradiction. Hence Fouter is covered by three segments.
By Theorem 3.6 we know there is a drawing D′ of a centered outerpath with deg(c)
odd in which the sharing behaviour of the inner edges is the same, but the outer edges
are covered by two segments. That is one less than in D; a contradiction to D being a
minimum segment drawing.

If deg(u2) = 4 we consider the different edges adjacent to u2 with which u2u3 may
share a segment. Let r ∈ V \ U be the vertex incident to u2. Then u2u3 can share a
segment with u2u1, u2c, u2r or with no other edge via u2.

If u(m+1)/2u(m+1)/2+1, . . . , um−1um is covered by more than two segments, then the
edges u(m+1)/2u(m+1)/2+1 and um−1um need to be on different segments. Let s be the seg-
ment covering u(m+1)/2u(m+1)/2+1. If s does not cover u2u3 and does not cover um−1um
it is not a minimum-segment drawing, see Theorem 3.13(b).

Hence suppose s is covering u2u3. For each of the following four cases we now want
to find a contradiction.

Case 1: u2u3 shares a segment with u2c. We know S(c) is a centered outerpath with
u2u3 ∈ Fouter and u2c ∈ Finner. By Theorem 3.4 we know u2u3 and u2c cannot share a
segment.
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Case 2: u2u3 shares a segment with u2u1. Since s is covering the edges u2u3 and
u(m+1)/2u(m+1)/2+1 this case implies that u1, u2, u3, um+1/2, um+1/2+1 are collinear. But
we also know c, u1, um+1/2+1 are collinear due to requirements for the inner edges. Hence
the triangle u1u2c would be collinear; a contradiction to a triangle-invariant drawing.

Case 3: u2u3 shares a segment with no other edge via u2. There are at least 3
segments which cover Fouter only one of which might also cover edges in E \F , compare
see Figure 3.10 (a). By removing all F \ {u1c, u2c, u1u2} and U \ {c, u1, u2} we obtain
a drawing in which only the triangle u1u2c is left of S(c), see Figure 3.10 (b). We now
use Theorem 3.6 to gain the drawing D′. The new drawing D′ still represents G.

The sharing behaviour of the edges in Finner has not changed from D to D′. Now
there are 2 segments which cover Fouter one of which might also cover edges in E \ F .
The edges Fouter are covered by one less segment in D′ than in D. Hence D′ uses one
segment less than D in total, implying that D was not a minimum-segment drawing to
begin with.

c
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r r

u1

u2

cc

u1

r

(a) (b) (c)

u3 u3

u2u2

Fig. 3.10: Procedure to turn a drawing D where u2u3 is not sharing a segment through u2 (a)
into a drawing D′ where u2u3 shares with u2u1

Case 4: u2u3 shares a segment with u2r. Since deg(u2) = 4 and ru2, u2u3 are sharing
a segment with each other, the only other edges that could share a segment through
u2 are u2c and u1u2. We know however that u1u2 ∈ Fouter and u2c ∈ Finner and with
Theorem 3.4 (a) they cannot share a segment. Thus the segment covering u2c and
cu(m+1)/2+2 is not covering another edge. We now want to reduce the drawing by this
segment, for illustration it is coloured blue in our figures.

Without loss of generality the segment x which covers u1u2 is vertical, the center c is
on the right half-plane of x and u2 is above u1, see Figure 3.11 (a).

We know that u(m+1)/2+1 is an endpoint for the segment s and for the segment t which
is covering u1c, cu(m+1)/2+1:

� The vertex u(m+1)/2+1 is an endpoint of t. With Corollary 3.3 we know
deg(u(m+1)/2+1) = 3 and that the other two edges e, e′ incident to u(m+1)/2+1 are
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in Fouter. Thus cu(m+1)/2+1 ∈ Finner cannot share a segment through u(m+1)/2+1

due to Theorem 3.4 (a).

� The vertex u(m+1)/2+1 is an endpoint of s. Note that s is covering u2u3 and
u(m+1)/2u(m+1)/2+1. Suppose u(m+1)/2+1 is not an endpoint for s, then s is cover-
ing another edge adjacent to u(m+1)/2+1. With Theorem 3.4 (a) u(m+1)/2u(m+1)/2+1

cannot share a segment with cu(m+1)/2+1. Therefore s has to cover u(m+1)/2+1u(m+1)/2+2.
But we also know that cu(m+1)/2+2 is sharing a segment with u2c. Therefore u2
and u(m+1)/2+2 are on a segment with c and on a segment with u3. This implies
that u2, u3, c are collinear but also a triangle; a contradiction.
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c
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Fig. 3.11: Procedure to reduce D by one segment: (a) Initial case. (b) After removing all
segments that cover inner edges except t. (c) The optimized drawing D′.

We remove every segment covering Finner except t and position c on the intersection
of s and t, see Figure 3.11 (b). We then use the method of Theorem 3.6 to obtain the
drawing in Figure 3.11 (c). The new drawing D′ still represents G with Lemma 3.2.

Let us now analyse the number of segments. Given that we only changed positions
of edges in F , we only need to analyse Finner and Fouter. We did however change the
sharing behaviour of F with edges in E \ F .

� Consider Fouter. The edges u2u3, . . . , u(m+1)/2−1u(m+1)/2 in D′ are not on s like
they are in D, but on x. Both segments already exist in D and D′, which means we
did not produce a new segment. In D the edges u(m+1)/2+1u(m+1)/2+2, . . . , um−1um
are all on at least one segment which is not covering any edge in E \ F . In D′ the
edges u(m+1)/2u(m+1)/2+1, . . . , um−1um are all on the same segment which is not
covering any edge in E \ F . Therefore no segment was added to cover Fouter.

� Consider Finner. In D as well as in D all inner edges except cu(m+1)/2 share
a segment with one other inner edge. Also in both drawings applies that for
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3 ≤ i ≤ (m + 1)/2 the segments covering uic and ui+(m+1)/2c cannot cover edges
in E \ F . The only segments that can are t covering u1c and u1+(m+1)/2 and the
segment covering u2c and u2+(m+1)/2. We did not change the segment t, but in
D′ the segment covering u2c and u2+(m+1)/2 also covers an edge in E \ F , namely
u2r. In D however u2c and u2+(m+1)/2 were on their own segment. Hence D′ uses
one segment less than D.

In conclusion D′ uses one segment less than D.

We used the fact that deg(u2) = 4 at the very beginning of the prove, while analysing
which pairs of edges incident to u2 can share a segment. This argumentation obviously is
not valid as soon as deg(u2) = 5. Consider the drawing in Figure 3.12. The center c now

u2

c

umt

r

u1

s
x

u(m+1)/2+1

w

(b)

c

u(m+1)/2

um

r

u1

u2

s

y

x

w
x x

(a)

Fig. 3.12: A graph in which c has a strong Type A connection with u2 (a) and thus the
argumentation in Lemma 3.14 fails.

has a strong Type A connection with u2. The segment x covering u2c and cu(m+1)/2+2

now is covering another edge, namely wu2. Thus the provided procedure above will not
remove a segment in this case, as you can see in Figure 3.12 (b).

3.5 Outerpaths with no strong Type A Connection

We want our lower bound to be as sharp as possible. Hence we need to consider more
than just the number of vertices. Next to the connections and the connection types,
which we already introduced, we will need to keep the vertices in mind that are not in a
c-centered subgraph. Lemma 3.15 compares the already mentioned G and G\v in terms
of the number of these vertices.

Additionally we use our results, namely Lemma 3.14 and Corollary 2.6, to compare
the number of segments needed at least to draw G in comparison with the one needed
for G \ v.
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Lemma 3.15. Let G = (V,E) be maximal outerplanar graph with no strong Type A
connections. Let v ∈ V have deg(v) = 2. Suppose there exists a lower bound s′ for
segments of a drawing of G′ = G \ v. Let U ′ be the number vertices that are neither a
center nor adjacent to one in G′. Let U be defined analogously for G and let D be a
drawing of G.

1. If v is adjacent to a center, then |U | = |U ′|+1 and D needs at least s′+1 segments.

2. Let v be adjacent to a center c with degree 5. D needs at least s′ segments.

(a) If c has no connection to another center, then |U | = |U ′| − 5

(b) If c has a weak Type B connection to another center, then |U | = |U ′| − 4

(c) If c has a strong Type B connection to another center, then |U | = |U ′| − 3.

(d) If c has a weak Type A connection to another center, then |U | = |U ′| − 2.

3. Let v be adjacent to a center c with degree at least 6. Then |U | = |U ′|.
(a) If deg(c) is odd, then D needs at least s′ segments.

(b) If deg(c) is even, then D needs at least s′ + 1 segments.

Proof. Let G′ = (V ′, E′).

1. If c has no connection to another center, we have the same situation as in Corol-
lary 2.6. The proof for it follows analogously for triangle-invariant drawings. Hence
D needs at least s′ + 1 segments.

As v is not connected to a center nor a center as deg(v) = 2, we know v ∈ U \ U ′.
Thus |U | = |U ′|+ 1.

2. Let us first consider the number of segments. We know that D always contains a
drawing of G′ and thus needs at least s′ segments.

We now consider U . We know c is no center in G′, because deg(c) = 4 in G′.
So, to figure out how U has changed in comparison to U ′ we need to analyse c
and the five vertices adjacent to c. To be precise, we need to look at U ′ ∩W for
S(c) = (W,F ). We know v ∈ W \ U ′ and |W | = 6, therefore |U ′ ∩W | ≤ 5. We
illustrate all cases in Figure 3.13, the set U ′ ∩W is coloured blue.

(a) If c has no connection to another center, all vertices in W c are only adjacent
to one center in G, hence not connected to a center in G′. We therefore know
|U ′ ∩W | = 5 and

|U | = |U ′ \ (U ′ ∩W )| = |U ′| − |U ′ ∩W | = |U ′| − 5.

.
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Fig. 3.13: Illustration of G with the dashed edges in comparison to G \ v, without the dashed
edges. The vertex v is adjacent to a center c that has (a) no connection to another
center, (b) a weak Type B connection to another center, (c) a strong Type B
connection to another center, (d) a weak Type A connection to another center,.

(b) If c has weak Type B connection to another center, one vertex u ∈ W \ c is
adjacent to two centres, all other vertices in W \ c are only adjacent to one
center in G. Therefore u is adjacent to a center in G′ and thus u /∈ U ′. This
implies |U ′ ∩W | = 4 and so

|U | = |U ′| − |U ′ ∩W | = |U ′| − 4.

(c) If c has strong Type B connection to another center, two vertices u1, u2 ∈W \c
are adjacent to two centres, all other vertices in W \ c are only adjacent to
one center in G. Therefore u1 and u2 are adjacent to a center in G′ and thus
u1, u2 /∈ U ′. Hence we conclude |U ′ ∩W | = 3 and

|U | = |U ′| − |U ′ ∩W | = |U ′| − 3.

(d) If c has weak Type A connection to another center, one vertex u is adjacent
to two centres c and c′, and c′ is adjacent to c. Therefore u and c are adjacent
to the center c′ which is a center in G′. Thus u, c, c′ /∈ U ′. Hence we know
|U ′ ∩W | = 2 and so

|U | = |U ′| − |U ′ ∩W | = |U ′| − 2.

3. Let us first consider U . Since v is connected to a center c, we know v /∈ U .
Furthermore we know c was already a center in G′ hence U = U ′. Let us now
consider the different cases for the number of segments.
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(a) If deg(c) is odd, we know that D always contains a drawing of G′ and thus
needs at least s′ segments.

(b) If deg(c) is even, for the sake of contradiction suppose D needs less than s′+1
segments. Then it needs exactly s′ segments because a drawing of G always
contains a drawing of G′. Let D be an minimum-segment drawing of G which
uses s′ segments. And let D′ be the drawing of G′ obtained by removing v
and its adjacent edges from D. Then we know D′ uses at most s′ segments
and is therefore an minimum-segment drawing for G′.

To find a contradiction we compare the segments needed to draw D in com-
parison to D′. To do so we consider S(c) = (X,F ), the c-centered subgraph
of G and S′(c) = (X ′, F ′) analogously defined for G′.

Suppose there is a w ∈ Finner which is not sharing a segment with another edge
in Finner in D. Then there are at least two edges in Finner that are not paired
with another edge in Finner, because |Finner| is even. Therefore if D uses s′ seg-
ments, we know there are at leasttwo edges in F ′inner in the drawing D′ which
do not share a segment with another edge in F ′inner. By Theorem 3.13 (a) D′

then cannot be a minimum-segment drawing; a contradiction.

Now suppose all edges in Finner are sharing a segment with another edge in
Finner in D. Let u1, . . . , um be the sequence for the path of S(c) \ c where
udeg(c) = v and m = deg(c) in G. Thanks to Observation 3.8 we know umc
is sharing a segment t with cum/2. Thus um/2um/2+1 and um−1um cannot
be on the same segment, because otherwise the vertices um−1, um, c would
be collinear in D and a triangle in G; a contradiction to a triangle-invariant
drawing.

If D uses s segments we know um−1um needs to share at least a segment
with um−2um−1. Otherwise um−1um would be a segment on its own, which
does not exist in D′. Therefore um−2um−1 and um/2um/2+1 need to be on
different segments. So there has to be an minimum-segment drawing of G′

where um−2um−1 and um/2um/2+1 are on different segments. Furthermore
in that drawing cum/2 is not sharing a segment with another edge in F ′inner
but for every cui with 1 ≤ i < m/2 share a segment with cum/2+i. This
contradicts Lemma 3.14. Thus D needs at least s + 1 segments.

Now we only need to apply this Lemma in the inductive step to prove the following
formula.

Theorem 3.16. Let G = (V,E) be a maximal outerpath which has no strong Type A
connections with centres c1, . . . , ck. Let aweak be the number of weak Type A connections,
let bstrong be the number of strong Type B connections and bweak the number of weak Type
B connections. Let U ⊆ V be the vertices, that are neither a center nor adjacent to one.
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Then the number of segments s of a crossing-free straight-line drawing of G is bound by

s ≥ |U |+ 3k − 3aweak − 2bstrong − bweak +

k∑
i=1

⌊
deg(ci)

2

⌋
. (3.1)

Proof. We prove this theorem via induction over n = |V |. We show that the provided
bound as a lower bound for the number of segments of a triangle-invariant drawing D.

Initial case. For n = 3 know we the degree for all v ∈ V is 3. Therefore there are no
centres in G and thus no connection types. Thus, U = V and we get s ≥ 3 = |V | = |U |.
Given that a maximal outerpath with 3 vertices is a triangle, that needs 3 segments,
this lower bound is true.

Induction hypothesis. Let G be n-vertex maximal outerpath which has no strong Type
A connection and D a triangle-invariant drawing of G. Then the given formula for the
lower bound holds true for the number of segments in D.

Inductive step. Let G = (V,E) be a maximal outerpath with n + 1 vertices and no
strong Type A connection. Since G is maximal there exists a v ∈ V with degree 2. We
know G′ = G \ v = (V ′, E′) is a n-vertex maximal outerpath with no strong Type A
connection. We define a′weak, b

′
strong, b

′
weak, U

′, k′ analogously for G′. Let c′i be the centres
in G′ for 1 ≤ i ≤ k′ and D′ a drawing of G. With the induction hypothesis we then

know that D′ needs at least s′ = |U ′| + 3k′ − 3a′weak − 2b′strong − b′weak +
∑k′

i=1

⌊
deg(c′i)

2

⌋
segments.

We consider the following cases:

1. The vertex v is not adjacent to a center. Thanks to Lemma 3.15.1 we know that
D needs at least s′ + 1 segments and that |U | = |U ′|+ 1. Furthermore G has the
same centres as G′ and nothing has changed about their types, therefore:

s ≥ 1 + s′

= 1 + |U ′|+ 3k′ − 3a′weak − 2b′strong − b′weak +
k′∑
i=1

⌊
deg(c′i)

2

⌋

= |U |+ 3k − 3aweak − 2bstrong − bweak +
k∑

i=1

⌊
deg(ci)

2

⌋
.

So, in this case, the inductive step is done.

2. The vertex v is adjacent to a center c with degree 5. Thanks to Lemma 3.15.2 we
know that D needs at least s′ segments. Since c is not a center in G′, the number
of centres increases, thus k = k′ + 1 and ck = c. All other centres remain the

same. Note that
⌊
deg(ck)

2

⌋
= 2. We will now consider the different connections c

can have:
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(a) If c has no connection to another center, we know with Lemma 3.15.2 (a) that
|U | = |U ′| − 5. Nothing has changed about the amount of connection types.
We therefore obtain:

s ≥ s′

= |U ′|+ 3k′ − 3a′weak − 2b′strong − b′weak +
k′∑
i=1

⌊
deg(c′i)

2

⌋

= |U |+ 5 + 3(k − 1)− 3aweak − 2bstrong − bweak +
k−1∑
i=1

⌊
deg(ci)

2

⌋

= |U |+
⌊

deg(ck)

2

⌋
+ 3 + 3k − 3− 3aweak − 2bstrong − bweak +

k−1∑
i=1

⌊
deg(ci)

2

⌋

= |U |+ 3k − 3aweak − 2bstrong − bweak +

k∑
i=1

⌊
deg(ci)

2

⌋
.

(b) If c has a weak Type B connection to another center, by Lemma 3.15.2 (b)
we know that |U | = |U ′| − 4. In this case, we know bweak = b′weak + 1, but
nothing has changed about the other connection types. We can conclude:

s ≥ s′

= |U ′|+ 3k′ − 3a′weak − 2b′strong − b′weak +
k′∑
i=1

⌊
deg(c′i)

2

⌋

= |U |+ 4 + 3(k − 1)− 3aweak − 2bstrong − (bweak − 1) +
k−1∑
i=1

⌊
deg(ci)

2

⌋

= |U |+
⌊

deg(ck)

2

⌋
+ 3k − 3aweak − 2bstrong − bweak +

k−1∑
i=1

⌊
deg(ci)

2

⌋

= |U |+ 3k − 3aweak − 2bstrong − bweak +

k∑
i=1

⌊
deg(ci)

2

⌋
.

(c) If c has a strong Type B connection to another center, by Lemma 3.15.2 (c)
we know that |U | = |U ′| − 3. In this case, we know bstrong = b′strong + 1, but
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nothing has changed about the other connection types. We can conclude:

s ≥ s′

= |U ′|+ 3k′ − 3a′weak − 2b′strong − b′weak +

k′∑
i=1

⌊
deg(c′i)

2

⌋

= |U |+ 3 + 3(k − 1)− 3aweak − 2(bstrong − 1)− bweak +
k−1∑
i=1

⌊
deg(ci)

2

⌋

= |U |+ 3k − 3aweak − 2bstrong +

⌊
deg(ck)

2

⌋
− bweak +

k−1∑
i=1

⌊
deg(ci)

2

⌋

= |U |+ 3k − 3aweak − 2bstrong − bweak +
k∑

i=1

⌊
deg(ci)

2

⌋
.

(d) If c has a weak Type A connection to another center, analogously to the
cases before we can conclude with Lemma 3.15.2 (d) that |U | = |U ′| − 2 and
aweak = a′weak + 1. We obtain:

s ≥ s′

= |U ′|+ 3k′ − 3a′weak − 2b′strong − b′weak +
k′∑
i=1

⌊
deg(c′i)

2

⌋

= |U |+ 2 + 3(k − 1)− 3(aweak − 1)− 2bstrong − bweak +
k−1∑
i=1

⌊
deg(ci)

2

⌋

= |U |+
⌊

deg(ck)

2

⌋
+ 3k − 3aweak − 2bstrong − bweak +

k−1∑
i=1

⌊
deg(ci)

2

⌋

= |U |+ 3k − 3aweak − 2bstrong − bweak +

k∑
i=1

⌊
deg(ci)

2

⌋
.

3. The vertex v is adjacent to a center c with a degree of at least 6. Thanks to
Lemma 3.15.3 we know |U | = |U ′|. Furthermore we know c is a center in G′ as
well, thus c ∈ {c′1, . . . , c′k′}. Without loss generality, we can assume c = c′k′ . Given
that c was already a center in G′, nothing has changed about the connection types
and k′ = k. Since ck has a different degree in G′ as in G, we consider c′k ∈ G′ and
ck ∈ G. Note that deg(ck) = deg(c′k) + 1. We consider the following two cases:

(a) If deg(ck) is odd, we know with Lemma 3.15.3 (a) that D needs at least s′

segments. Furthermore we know
⌊
deg(c′k)

2

⌋
=
⌊
deg(ck)−1

2

⌋
=
⌊
deg(ck)

2

⌋
. We
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thus obtain

s ≥ s′

= |U ′|+ 3k′ − 3a′weak − 2b′strong − b′weak +
k′∑
i=1

⌊
deg(c′i)

2

⌋

= |U |+ 3k − 3aweak − 2bstrong − bweak +

k∑
i=1

⌊
deg(ci)

2

⌋
.

(b) If deg(ck) is even, we know with Lemma 3.15.3 (b) that D needs at least s′+1

segments. Furthermore we know
⌊
deg(c′k)

2

⌋
=
⌊
deg(ck)−1

2

⌋
=
⌊
deg(ck)

2

⌋
− 1. We

thus obtain

s ≥ 1 + s′

= 1 + |U ′|+ 3k′ − 3a′weak − 2b′strong − b′weak +
k′∑
i=1

⌊
deg(c′i)

2

⌋

= |U |+ 3k − 3aweak − 2bstrong − bweak +

k∑
i=1

⌊
deg(ci)

2

⌋
.

With Corollary 2.7 we know that one neighbour of v has degree of 3. Thus the case
distinction above for the other neighbour of v covers all possible transitions between G
and G′.

With this inductive proof the lower bound is true for triangle-invariant drawings. The
fact that crossing-free straight-line drawings are triangle-invariant proves the theorem.

Let us first compare this universal lower bound with the bounds we already know.
In case of Theorem 2.5 we have a n-vertex graph G = (V,E) whose maximum degree

is at most 4. Thus we do not have any centres, leaving us with V = U . We therefore
obtain in Equation (3.1) a lower bound of s = |U | + 0 = |V | = n which is the same
bound we obtained in Theorem 2.5.

In case of centered outerpaths, let us consider a n-vertex centered outerpath G =
(V,E) with center c1. With its definition we know deg(c1) = n − 1 and U = ∅ because
all vertices V \ c1 are adjacent to c1. Furthermore, since there is only one center, there
are no connection types. With Equation (3.1) we therefore obtain

s = 3k − 0 + 0 +
1∑

i=1

⌊
deg(ci)

2

⌋
= 3 +

⌊
deg(c1)

2

⌋
= 3 +

⌊
n− 1

2

⌋
=
⌈n

2

⌉
+ 2.

This is the same lower bound as proven in Theorem 3.5.
For a more general case let us revisit the graph G2 in Figure 1.1 (c). It has one center

with degree 6 and two edges that are not connected to a center. Given that there is only
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one center, there are no connections we need to consider. We thus obtain as a lower

bound: s = |U | + 3 − 0 +
∑k

i=1

⌊
deg(ci)

2

⌋
= 2 + 3 +

⌊
6
2

⌋
= 8. Therefore the drawing in

Figure 1.1 (c) is a minimum-segment drawing of G2.

c2
c4

c5c3

c1u1
u2

u3

u4

Fig. 3.14: A graph P as adaptation of the graph in Figure 3.5. For any center ci, the segments
covering the outer edges of the ci-centered subgraph are coloured blue. The
remaining segments are divided in two groups: Those covering inner edges are
coloured green and the rest black.

We will now consider a similar drawing to the one in Figure 3.5 as an example for
a more complicated maximal outerpath. Since we do not know, how to handle strong
Type A connections, we remove three vertices adjacent to c6. This way there is no more
strong Type A connection in the graph, see Figure 3.14. To count the segments more
easily we group them. We have 10 blue, 11 green and 5 black segments. Thus this
drawing has 10 + 11 + 5 = 26 segments.

Tab. 3.1: Centres and their degrees of graph P in Figure 3.14

i 1 2 3 4 5

deg(ci) 7 6 7 5 5

bdeg(ci)/2c 3 3 3 2 2

Now let us analyse the structure of P with the terms as in Theorem 3.16. There are
4 vertices in U = {u1, u2, u3, u4}. There are 5 centres, thus k = 5. In comparison to
Figure 3.5 the connection types only have changed the way that there is no more strong
Type A connection. With the analysis in Section 3.2 we obtain aweak = bstrong = bweak =
1. The centres, their degrees and their rounded fractures are listed in Table 3.1. As a
lower bound for the number of segments we therefore get with Equation (3.1):

s ≥ s = |U |+ 3 · 5− 3aweak − 2bstrong − bweak +

5∑
i=1

⌊
deg(ci)

2

⌋
= 4 + 15− 3− 2− 1 + 13 = 26
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In conclusion we know the drawing in Figure 3.14 is a minimum-segment drawing.
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4 Lower Bound Constant

The objective to find a lower bound for the segment number can be viewed from different
perspectives. One can analyse the total number of segments in the drawing as a function
of some other characteristic of the graph, e. g. the number of vertices with a degree of
at least five as seen in Theorem 3.16. As we have seen for maximal outerpaths, these
functions can turn out to be very specific. Another way to find a lower bound is to
consider a constant 0 < c < 1, such that every n-vertex maximal outerplanar graph
needs at least nc segments to be drawn. We call this c the lower bound constant. If such
a c existed for maximal outerplanar graphs, it would be easier to give an approximation
for the number of segments needed.

4.1 Segment-Vertex-Ratio

To analyse the lower bound constant it is helpful to consider the ratio of segments over
the vertices:

Definition 4.1. Let G be a n-vertex graph, and D be a drawing of G with s segments.
Then we call

rsv(D) :=
s

n
(4.1)

the segment-vertex-ratio of D or sv-ratio of D.

Consider a minimum segment drawing D of a maximal outerplanar graph. This graph
then needs nrsv(D) = s segments to be drawn. We then know c ≤ rsv(D). Therefore a
lower bound for the sv-ratio is equivalent to the lower bound constant c.

For a better understanding of the sv-ratio, we consider the class we defined earlier
as centered outerpaths. For simplicity, we only consider n-vertex centered outerpaths
Gn with n being even. Let Dn be the drawing of Gn obtained with the algorithm
Theorem 3.6. We then know rsv(Dn) = (n/2 + 2)/n = 1/2 + 2/n. In Figure 4.1 you can
see the problem with the sv-ratio: Since there are several vertices on one segment, the
sv-ratio does not tell you anything about the number of segments a vertex is on. For a
better illustration, we therefore introduce another ratio:

Definition 4.2. Let G = (V,E) be a graph, and D be a drawing of G with s segments.
Then we call

res(D) :=
|E|
s

(4.2)

the edge-segment-ratio of D or es-ratio of D.
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(a) (b) (c)

Fig. 4.1: Centered outerpaths with n vertices with
(a) n = 6 and the ratios rsv(Dn) = 5/6 and res(Dn) = 1.8 ,
(b) n = 8 and the ratios rsv(Dn) = 3/4 and res(Dn) = 13/6 ≈ 2.17,
(c) n = 18 and the ratios rsv(Dn) = 11/18 and res(Dn) = 3

The es-ratio has the advantage, that each edge is exactly on one segment. Therefore
the ratio tells us, how many edges on average are on a segment for the given graph. Since
for maximal outerplanar graphs the number of edges is dependent only on the number
of vertices, compare Observation 2.3, the es-ratio and the sv-ratio are directly related.
We will therefore consider both the es-ratio and the sv-ratio in the following chapter.

As example, let us revisit the centered outerpaths in Figure 4.1. With Theorem 3.5
and Observation 2.3 we obtain: res(Dn) = (2n−3)/(n/2+2) with Dn being a minimum-
segment drawing of Gn. Thus for D6 the es-ratio is 1.8 which tells us that the average
number of edges a segment covers is almost two; a conclusion, we can easily draw from
the drawing as all except one segment cover two edges. We have a similar situation for
D8. Of course the es-ratio has the problem every average has: If the variance is high,
we do not gain a lot information about the amount of edges each segment covers from
the average any more, as you can see with D18. The two outer segments cover so many
edges that the average is three, even though most of the segments only cover two edges.
Despite this fact, the es-ratio still helps us compare two graph drawings intuitively.

4.2 Asymptotic upper Bound

Given the research on segment numbers of maximal outerplanar graphs and its bounds
presented in Chapter 2 we know the sv-ratio of an minimum-segment drawing D of a
maximal outerplanar graph is bound by 1 ≥ rsv(D) > 0. Analogously with Observa-
tion 2.3 the es-ratio is at least (2n − 3)/n = 2 − 3/n if G has n vertices. While an
example for the worst case rsv(D) = 1 is already given in Theorem 2.5, there are only
few attempts to find a possible lower bound for the sv-ratio, in other words to find the
lower bound constant. So far Park and Wolff [PW20] found a drawing D of an maxi-
mal outerplanar graph with rsv(D) = 13/29, see Figure 4.2. Therefore c is bound by
13/29 ≥ c ≥ 0. This drawing has a es-ratio of res(D) = 55/13 ≈ 4.23. Thus the question
now is if we can fit more than an average of 4.23 edges on a segment.

Based on the graph in Figure 4.2, we define a sequence of graphs which serves as new
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12 convex vtc.
13 segments

2 flat vtc.
15 reflex vtc.

29 vertices

x

y

Fig. 4.2: Graph with sv-ratio rsv(G) = 13/29 and es-ratio res(G) = 55/13

asymptotic upper bound for the lower bound constant c. The sv-ratio of the drawings
of this graph sequence converges to 3/7 ≤ 13/29 and the es-ratio converges to 14/3 >
55/13. The main idea of this sequence is to combine the graph in Figure 4.2 with it self
repeatedly. The formal definition is done in 5 steps:

Step 1: First element of the sequence. We defineG0 and its drawingD0 by Figure 4.2.
Furthermore we define y, x as the points displayed in Figure 4.2.

Step 2: Combine G0 with G0. Let us consider the drawings D0 and an exact copy D′0.
We turn D′0 by 180° and put the two points y and y′ on top of each other. As a result
we obtain the graph given in Figure 4.3 (a). It has 57 vertices and 24 segments.

Step 3: Adding missing edge e. This graph is not yet maximal, because a maximal
outerplanar graph has 2n − 3 = 2 · 57 − 3 = 111 edges. In this case we have twice as
many vertices as G0 has, so we get 2 · (2 · 29 − 3) = 110 < 111 vertices. The missing
edge e can be added without any crossings as displayed in Figure 4.3 (b). We define
the resulting graph as G1 and its drawing as D1. It has 25 segments and therefore the
drawing D1 has a sv-ratio of 25/57 < 13/29 and a es-ratio of 111/25 = 4.44.

Step 4: Combine G1 with G0. Let us consider the point z in Figure 4.3 (b). We
combine the drawing D1 with D0 by putting z on top of x and adding an edge which
makes the new drawing a maximal outplanar graph. By doing so we get the graph in
Figure 4.3 (c), which we now define as our G2. The drawing D2 of this graph has 37
segments and 85 vertices. For D2 the sv-ratio therefore is 37/85 < 25/57 and the es-ratio
167/37 ≈ 4.51.
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(a)

(b) (c)

e

z

Fig. 4.3: Construction of the graph sequence Gi: (a) Combining G0 with itself, (b) Illustration
of G1 with the edge e, (c) Illustration of G2

Step 5: Combine Gi with G0.

� If i is odd, the left lowest vertex in the drawing of Gi is on the intersection of two
red segments. We then combine Gi with G0 analogously to step 4.

� If i is even, the left lowest vertex in the drawing of Gi is on the intersection of one
green and one red segment. Then we combine Gi with G0 analogously to step 2
and 3.

Analysis. For the given sequence of graphs Gi and their drawing Di the number of
segments is given by 12i+ 13 and the number of vertices by 28i+ 29. We therefore have
a sv-ratio of

rsv(Di) =
12i+ 13

28i+ 29
. (4.3)
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The limit of this sequence is

lim
i→∞

rsv(Di) =
12

28
=

3

7
. (4.4)

With Observation 2.3 the es-ratio of the drawing Di is given by

res(Di) =
(28i+ 29) · 2− 3

12i+ 13
=

56i+ 55

12i+ 13
. (4.5)

with its limit

lim
i→∞

res(Di) =
56

12
=

14

3
≈ 4.67. (4.6)

Given this sequence, we therefore know the constant lower bound c is bound by 3
7 ≥

c > 0. Note that the proposed method to define a sequence can be applied to any finite
maximal outerplanar graph.
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5 Conclusion and Outlook

Summary. In this thesis, we discussed the segment number of maximal outerplanar
graphs from different perspectives. For its upper and existential lower bound the results
and proofs of Dujmović et al.[DESW07] were presented. We then turned to maximal
outerpaths and defined connections types. We prove a lower bound for the segment
number of maximal outerpaths with no strong Type A connection. In the end we defined
the lower bound constant and a graph sequence that provides a asymptotic upper bound
for the lower bound constant.

Maximal Outerpaths: Upper Bound. Due to time constraints it was not possible to
show that the provided lower bound in Theorem 3.16 is the segment number of the given
graph. My approach would be to divide the graph into blocks, show that for each of
them there is a crossing-free drawing that matches the lower bound and then combine
them. One block type can be subgraphs of G such that all vertices in L are neither a
center nor adjacent to one in G. The other blocks can be grouped by the connection
types of Definition 3.10: e.g. a subgraph L2 of G such that there are only weak Type
A connections or L3 that only allows strong Type B connections. To avoid crossings I
would suggest some kind of monotony: Consider x(v) as x-value of a vertex v in R2.
We could then define a path w1, . . . , wh through each block such that for a drawing D
the monotony of x(wi) proves it is crossing-free. As seen in Figure 3.6 (b) and (d) some
connections let the drawing curve. Thus for each block and for the union of blocks one
has to make sure that despite this curvature the monotony is still possible. The centres
themselves can serve as link between the center-based blocks. Given that a center c can
have two connections, it can be in L3 as well as in L2. A c-centred subgraph S(c) can be
drawn with an adjustment of the algorithm in Theorem 3.6. This algorithm still has two
degrees of freedom: The position of the vertex u(m+1)/2 and the position of the vertices
on the segment between u2 and u(m+1)/2 have only few constraints. They can be used to
assure the monotony. An open question is how to link center-based blocks with blocks
that have no centres.

Maximal Outerpaths: Lower Bound. Another open task is to find a lower bound
for the segment number of maximal outerplanar graphs that also allow strong Type A
connections. In the inductive step from G′ = G\v to G with deg(v) = 2 the critical point
was to show that G needs one more segment than G′. We made a difference between
v being adjacent to a center c that has no strong Type A connection and v not being
adjacent to a center. The proof for both cases can be traced down to the crucial fact
that there was vertex w with degree 4 or 2. This limits the possibilities of how edges
incident to w can share a segment through w. In one case w was adjacent to v, in the
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other adjacent to c. Hence a possible approach for the case that v is adjacent to a center
c that has a strong Type A connection is the following: Let c1, . . . , cm be the maximal
sequence in G such that ci has strong Type A connection with ci+1 and c = c1. Then
cm is adjacent to a vertex with degree 2 or 4. We then again need to analyse the outer
and inner edges of these centres.

Lower Bound Constant.
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