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Abstract

This thesis concerns with an augmentation of an algorithm for visualising certain graphs,
the so called planar st-graphs. More specifically it is about upward planar straight-line
drawings of embedded planar st-graphs on a grid of quadratic size. Planar st-graphs are
directed planar acyclic graphs with one source and one sink. A drawing of a graph is a
mapping of its vertices to points and its edges to curves in the plane. An upward planar
drawing is a drawing, where all curves, representing edges are monotonically increasing
in the vertical direction. In the original algorithm a bitonic st-ordering is computed
first. For a graph to admit this ordering, some edges might have to be split. Then the
drawing is computed with the ordering, the splits of the edges are represented by bends
of the curves in the drawing. As the existence of a bitonic st-ordering is not a necessary
condition for an upward planar straight-line drawing to exist, there are graphs, where
edges are split unnecessarily. The augmented algorithm is additionally reversing all edges
of the graph and testing if this reversed graph requires less edge splits to admit a bitonic
st-ordering, as an upward planar drawing of the reversed graph can be transformed into
an upward planar drawing of the original graph.

Zusammenfassung

Diese Arbeit befasst sich mit der Erweiterung eines Algorithmus, der der Visualisierung
bestimmter Graphen, den st-planaren Graphen, dient. Genauer geht es hier um die auf-
wdrtsplanare geradlinige Zeichnung festgelegter Einbettungen dieser Graphen auf einem
quadratisch grossen Gitter. St-planare Graphen sind gerichtete planare kreisfreie Gra-
phen, mit genau einer Quelle und einem Senke. Eine Zeichnung eines Graphen ist eine
Abbildung seiner Knoten auf Punkte in einer Ebene, sowie seiner Kanten auf Kurven
in einer Ebene. Eine aufwdrtsplanare Zeichnung ist eine Zeichnung, in der diese Kurven
monoton steigend sind. Im urspriinglichen Algorithmus wird zunéchst eine bitonische
st-Ordnung gesucht oder durch Teile von Kanten erzeugt und dann mithilfe dieser Ord-
nung die Zeichnung erstellt, wobei die Teilung der Kanten den Knicken in der Zeichnung
entspricht. Da die Existenz einer solchen Ordnung eine hinreichende, jedoch nicht not-
wendige Bedingung fiir die Existenz einer quadratisch groffen Zeichnung ist, gibt es Falle,
in denen unnotig Kanten geteilt werden. Die Erweiterung des Algorithmus besteht dar-
in, zuséatzlich alle Kanten des Graphen umzukehren und auch hier zu testen wie viele
Kanten geteilt werden miissen, da sich eine aufwértsplanare Zeichnung des umgekehrten



Graphen durch Spiegelung und erneutes Umdrehen der Kanten in eine aufwértsplanare
Zeichnung des urspriinglichen Graphen umwandeln lasst.
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1. Introduction

Previous Work Graphs are used in a variety of fields especially in sciences, to model
relationships between objects of any kind in the form of edges and vertices. For the
visualisation of graphs to be easily understandable for humans it has been shown that
it is important to minimize the number of bends per edge, number of crossings per
edge and the size of the drawing [WPCMO02, [Pur00, [PCA02]. Drawings without any
crossings between edges are called planar drawings, graphs that admit such drawings
are called planar graphs. The first linear-time algorithm testing graphs for planarity
was published in 1974 by Hopcroft and Tarjan [HT74]. Fary’s Theorem states that
every planar graph can be drawn without crossings and all of its edges being straight
lines. The first algorithm that achieved this in quadratic area, but required O(nlog(n))
time, was introduced in 1990 by De Fraysseix, Pach and Pollack [DFPP90]. As the
algorithm required triangulated graphs, dummy edges were inserted and removed after
drawing, for non-triangulated graphs. In 1995 an algorithm was published by Chrobak
and Payne [CP95|, which solved this problem in linear time. The algorithm, which is
used later for drawing upward planar graphs in quadratic area, was introduced in 1998 by
Harel and Sardas [HS98|, produces visually more pleasing drawings, still in linear time,
by removing the necessity of triangulating the graph.

For directed graphs it is also often desirable to create so called upward planar drawings,
drawings where curves representing the edges of a graph are y-montone. Deciding wether
it is possible to draw a directed graph this way has been proven to be NP-complete by
Garg and Tamassia in 1995|GT95]. Tamassia and Di Battista|DT88| proved that every
upward planar graph is the spanning subgraph of a planar st-graph, which is a planar
acyclic graph with a single source and a single sink. Moreover they showed that every up-
ward planar graph admits an upward planar straight-line drawing. Those drawings might
require exponential area. Di Battista and Tamassia introduced an approach that created
drawings of graphs with n vertices in quadratic area, by allowing at most (10n — 31)/3
bends and at most two bends per edge. Later it was proven by Di Battista, Tamassia
and Tollis[DTT92| that every reduced planar st-graph, a planar st-graph without tran-
sitive edges, can be drawn upward planar in quadratic area and linear time. To apply
this algorithm to all planar st-graphs transitive edges are split which is later represented
as bends in the drawing. The maximum number of transitive edges is 2n — 5, thus the
algorithm can create an upward planar drawing of any planar st-graph, with not more
than 2n — 5 bends in quadratic area and linear time.

Looking at algorithms for drawing undirected planar graphs, we notice that all of
them are using canonical orderings. While the first algorithms required triangulated
graphs, they were later extended to triconnected graphs to create visually more pleasing
drawings. Gronemann [Grol4| noticed that looking at the ranks of successors of each



vertex in the canonical ordering, they form a bitonic sequence in their clockwise ordering
around the vertex in the embedding. Thus he introduced a new ordering of vertices, the
bitonic st-ordering, which is admitted by every biconnected planar graph. He proved
that this ordering is sufficient to use the straight-line drawing algorithm of Fraysseix,
Pach and Pollack [DFPP90]. Furthermore the concept of the bitonic st-orderings can be
extended to directed graphs. While not all directed graphs admit a bitonic st-ordering,
Gronemann showed that given a bitonic st-ordering of a directed graph, the straight-line
drawing algorithm is creating an upward planar straight-line drawing of this graph in
quadratic area. Both the recognition of embedded graphs that admit those orderings
and the computation of the orderings, require only linear time. Additionally if some
edges are split, it is possible to find a bitonic st-ordering for every planar st-graph. As
these edge splits equal edge bends in the drawing and as a maximum of |V'|—3 edge splits
is required, an upward planar drawing with at most |V| — 3 edge bends and quadratic
area can be found for every planar st-graph.

Our contribution As Gronemann [Grol5| observed in his introduction of bitonic st-
orderings for directed graphs, his worst case example in terms of edge splits does not
require any bent edges to be drawn upward planar. Thus he had the idea of modifying
the algorithm, by checking for a bitonic st-ordering for the graph with reversed edges and
if it requires fewer edge splits using a drawing of this graph to obtain an upward planar
drawing of the original graph by reversing all edges again and turning the drawing upside
down. We were able to prove that this procedure leads to an upward planar drawing of
the original graph.

This gives rise to the question if this augmented algorithm has a lower maximum num-
ber of required edge splits. While we were not able to prove this, several observations
have been made that might prove useful when searching for a new upper bound. Fur-
thermore we were able to find a family of graphs, that require 3/4|V| — 3| edge splits to
admit a bitonic st-ordering, establishing a new lower bound for the maximum number of
edge splits.



2. Preliminaries

2.1. Basic definitions

In this section basic definitions are introduced as they are mostly used in literature.
While this thesis focuses on directed graphs, we first introduce graphs in general as a
lot of properties apply to directed and undirected graphs simultaneously.

Definition 2.1 (Graph). A graph is a pair of a finite set of vertices V' and a finite set
of pairs of edges E C (‘2/)

Vertices u,v € V are called adjacent or neighbours if the edge e = {u,v} exists in
E. The set of all vertices adjacent to a vertex v is denoted by adj(v). The degree of a
vertex v is defined as the number of its neighbours: deg(v) = |adj(v)|.

We call a vertex v and an edge e incident to each other if v € e.

The edges of graphs can have assigned directions. We call those graphs directed
graphs.Thus a directed graph is a pair of a set of vertices V' and a set of edges F,
with £ C V x V. This means F is a set of ordered pairs of vertices.

For each directed edge (u,v) € E, we call u the predecessor of v and v the successor of u.
For each vertex v € V' we call the edges (v,u) € E outgoing edges of v and the edges
(u,v) € E ingoing edges of v.

The number of predecessors of a vertex v is called indeg(v) and the number of outgoing
edges is called outdeg(v).

Definition 2.2 (Path). A path p is a sequence of vertices vy, va, ..., v, k > 2, together
with the sequence of edges {v1,v2}, ..., {vk_1,vr}. The length of a path is the number of
its edges, namely k — 1. A path from a vertex s to a vertex t is denoted by s ~» t. When
we want to specify that a path between two vertices has length one, and thus contains
only one edge, we write s — t. For simplicity when describing a path we often only refer
to it by its vertices and the existence of the edges is implied. A cycle is a path with the
added edge {vk,v1}. The length of the cycle is the number of its vertices which is equal
to the number of its edges. When a graph does not contain any cycles it is called an
acyclic graph.

An undirected graph is connected, if for each pair of vertices u and v there exists a
path from w to v. A directed graph is called weakly connected, if for every pair of vertices
u and v there exists a path from u to v in the underlying undirected graph, which we
obtain by ignoring direction of the edges. It is called strongly connected if a directed
path exists between every pair of vertices. All graphs that are relevant to this thesis are
weakly connected.



Graphs are often used to model relations between various kinds of objects. To make
those relations quickly and easily understandable it is desirable to visualise graphs. This
can be done with a drawing, where the vertices of a graph are represented by points in the
plane and the edges of the graph are curves between those points. As this thesis focuses
on the creation of specific drawings of graphs we give a formal definition of drawings of
graphs.

Definition 2.3 (Drawing of a graph). A mapping I is called drawing of a graph G =
(V, E), if the following requirements are met:

e forallv eV :I'(v) € R?
o forv,u e Vv #u:I'(v) #I'(u)

e for all {u,v} € E:T'({u,v}) = Ty,3([0, 1]), where T',, 11 ([0, 1]) is an open Jordan
curve in R?, with I'g,, 1 (0) = I'(u) and T'g, 3 (1) = ().

A drawing ' of a graph G = (V, E) is called a straight-line drawing if every curve
representing an edge of G is a straight line segment. Formally this can be written as:
{u,v} € B: Ty (w) =T(u) + (T'(v) — () - o for 0 <z < 1.

Often the points in R? representing vertices are simply referred to as vertices of the
drawing and the curves representing edges are just referred to as edges of the drawing.

For graph drawings to be easily readable, it is desirable if none of the curves repre-
senting the edges are crossing each other.

A planar drawing of a graph G = (V| FE) is a drawing without any crossings be-
tween edges. This means for every two edges {a,b},{c,d} € E with {a,b} # {c,d} :
Ciapy([0,1]) N Tieqy(J0,1[) = 0. A graph is called planar, if a planar drawing of the
graph exists. Every planar graph can be drawn straight-line planar. Planar graphs can
have a maximum number of 3|V | — 6 edges.

Considering a drawing I' of a graph G the faces of I are the connected components of
R2. All but one of the faces are bounded. The unbounded face is called the outer face
of the drawing, all other faces are called inner faces.

A drawing in which each vertex has integer coordinates is called grid drawing. Grid
drawings are useful, as they guarantee a minimum distance between distinct vertices,
and thus improve readability. Because of the given minimum distance between vertices,
the size of a drawing can be used to compare the minimum and maximum distance
between vertices. Because a non-grid drawing can be scaled arbitrarily we imply that
the underlying drawing is a grid drawing when speaking about the size of a drawing.

A planar st-graph is a directed acyclic planar graph with a single source and a single
sink, which are both on the outer face of the graph. A sink is a vertex without outgoing
edges and a source is a vertex without ingoing edges. An ordering 7 : V — {1,...,|V|} of
the vertices of a planar st-graph G = (V, E) is called an st-ordering if for every (u,v) € E,
m(u) < m(v) holds. A planar drawing I" of a directed graph G is called upward planar
drawing if all curves representing the edges E are monotonically increasing in the vertical



direction. This means for all (u,v) € Eand 0 <i < j <1: Fz(/um) (1) < F?w))(j) The
graphs that admit upward planar drawings are spanning subgraphs of st-planar graphs.

The algorithm used in this thesis requires some edges of graphs to be subdivided in
order to admit specific vertex orderings. This is done by dividing an edge into two parts
and adding a vertex between them. Formally the subdivision of an edge (u,v) € E is
obtained by adding a new vertex w, removing the edge (u,v) and adding the two edges
(u,w) and (w,v). Subdividing is also called splitting an edge (u,v). Given an embedding
of GG represented by the successor and predecessor lists of each vertex, as w has only one
predecessor v and one successor v its embedding is trivial. For u, w is replacing v in its

successor list and for v, w is replacing « in the predecessor list.

Definition 2.4 (Planar Embedding). Given a planar drawing of a graph G the clockwise
circular order of all edges incident to each vertex is fixed. An equivalence class of planar
drawings of G that determine the same circular order of edges around each vertex is
called a planar embedding of G.

A bimodal embedding of a directed planar graph is an embedding where the prede-
cessors and successors of each vertex appear contiguous in the ordering of its incident
edges.

As all st-planar graphs are bimodal, we are able to define embeddings of st-planar
graphs by their successor and predecessor lists as ordered sets S(v) = (v1,...,v,) and
P(v) = (u1,...,uy) for each vertex v € G. For S(s) the first successor v; is defined to
be the vertex that follows s clockwise on the outer face. Similarly we choose u; in P(t)
such that it is the vertex that follows ¢ clockwise on the outer face.

A planar graph G together with an embedding of the graph is often referred to as a
plane graph.

This thesis is focusing on graphs that admit so called bitonic st-orderings. A sequence
A = (a1,...,ay) is called bitonic increasing, if there exists h € {1,...,n} with a1 <
- < ap > -+ > a,. Because bitonic decreasing sequences are of no relevance in this
thesis, bitonic increasing will be referred to as only bitonic.

Definition 2.5 (Bitonic st-ordering). An ordering 7 of all vertices in a graph G is called
a bitonic st-ordering if it is an st-ordering and additionally for every vertex v € V its list
of successors S(v) = (v1,...,Un) is bitonic increasing with respect to the ordering. This
means 7(vy) < -+ < 7(vp) >+ > mw(vy,) for some h € {1,...,m}.

Similarly a bitonic ts-ordering can be defined as an ordering 7 of all vertices of G if
for every (u,v) € E, w(u) > 7(v) and the predecessor list P(v) of every vertex v € V' is
bitonic increasing with respect to .

Definition 2.6 (Flipping the edges of a graph). For a directed graph G = (V, E) we
call the flipped graph G = (V, E) the graph that we get by reversing all the edges in E.
Thus there exists a mapping © : E — E, (u,v) — (v, ).

As the vertices have no direction and thus can’t be flipped, flipping the edges of a
graph is also referred to as flipping a graph.

When flipping a graph, the embedding remains the same, but the successor and pre-
decessor lists of every vertex are exchanged.



When flipping a graph G, which has a a drawing I, it is desirable to obtain a drawing r
of G whose visual representation in the plane is the same as that of T', just with reversed
edges. The drawing I itself is not a valid drawing of the flipped graph G, as the edges
don’t match. Obviously f’(v) has to be equal to I'(v) for every v € V. For each (v, u) € E,
L((v,u)) = I((u,v)), but L', y(0) = I'(v) = I'(u) and T, (1) = T'(u) = T'(u). To
achieve this we choose f’(%u) (x) = f(v’u) o (rev)(x) for 0 < z < 1 and rev : [0,1] —
0,1,z +— 1 —z.

It should be noted that a bitonic st-ordering 7 of the vertices of a graph G, is a bitonic
ts-ordering of the flipped graph G, as the successor and predecessor lists are exchanged
and as every edge is reversed. Thus in this thesis the property of a graph G to admit
a bitonic ts-ordering and the property of the flipped graph G to admit a bitonic st-
ordering are used interchangeably. When characterising properties of graphs and their
flipped graphs we sometimes refer to them as both directions or orientations of the graph.

2.2. Known results

In the introduction we gave an overview on the general results in the field of planar graph
drawing. In this section more details are given on the drawing of specific embeddings of
st-planar graphs using the bitonic st-ordering. Most of the results have been shown by
Martin Gronemann [Grol5, [Grol6, [Grol4].

First we introduce the theorem that prove that given a bitonic st-ordering of a plane
graph G a planar straight-line drawing of G in quadratic area can be obtained in linear
time.

Theorem 2.7. [Groll] Given a plane graph G = (V,E) and a corresponding bitonic
st-ordering ™ for G. A planar straight-line drawing for G of size (2|V| —2) x (|[V| —1)
can be obtained from m in time O(|V|).

Proof. The proof is given by Algorithm [3] A prove that the algorithm is achieving the
claimed is omitted due to its lengths, but it is given in [Grol5]. O

While the former theorem was about undirected graphs, the bitonic st-ordering is also
helpful, when applied to planar st-graphs.

Theorem 2.8. [Grold] If a planar st-graph admits a bitonic st-ordering, then it admits
an upward planar straight-line drawing within quadratic area.

Proof. Using Algorithm [3| applied to undirected graphs it is to be noticed that when
placing a vertex v € V for every (u,v) € E because of 7(u) < 7(v), it holds that y(u) <
y(v). Because after the placement of a vertex, the y-coordinate is never modified again,
y(u) < y(v) still holds in the final drawing. As the created drawing is a planar straight-
line drawing in quadratic area, by Theorem and because every line representing the
edges of GG is y-increasing, the drawing is upward planar. O
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Because there are planar st-graphs that do not admit an upward planar straight-line
drawing and because every graph that admits a bitonic st-ordering admits an upward
planar straight-line drawing, the following has to be true.

Corollary 2.9. [Groll] There exist planar st-graphs that do not admit a bitonic st-
ordering.

To further characterise graphs that admit a bitonic st-ordering we introduce an alter-
nate definition of a bitonic sequence.

Lemma 2.10. [Grold] An ordered sequence A = (a1, ...,ay) is bitonic increasing if the
following holds:

V1§i<j<n:ai<ai+1Vaj>aj+1

Proof. W first prove ” = 7. Assume that there exists a pair 4, with 1 < i < j <mn
and a; > aj+1 N aj < aj+1. Then from a; > a;41, it follows that h > ¢ and from
a; < aji1, it follows that j < h in contradiction to ¢ < j. For ” < 7 we choose, if it
exists, h = min{jla; > aj;+1}, otherwise we choose h = n. For every 1 <i < h, a; < a;41
has to hold. Additionally a; > aj;+1 has to hold for every h < j < n, because otherwise,
there exists 1 < h < j <n with ap > ap41 ANa; < ajiq. ]

Using this definition, when defining bitonic st-ordering yields the following expression:
A st-ordering m of a st-planar graph G is called bitonic st-ordering if the following
holds:

Vu € V with S(u) = (v1,...,vm)VI < i <j <m:7(v;) < 7(vig1) V (vy) > 7(vjg1)
(2.1)

As for a st-ordering 7w of a graph G for every edge (u,v) € E,n(u) < 7w(v) by the
definition, if for vertices k,l € V' a path exists from k to [, then 7(k) < 7(l) has to hold.
Using the condition in Equation and rewriting it as —(m(v;) > w(vig1) A T(v;) <
7(vj4+1)), leads to the fact that if a path exists from v; ;1 to v; and a path exists from v;
to vj41 with 4 < j then no bitonic st-ordering can exist for G.

This combination of paths is referred to as forbidden configuration of paths. To char-
acterise graphs that contain those forbidden configurations the following lemma is very
useful.

Lemma 2.11. [Grol)] Let G = (V,E) a plane st-graph and F be the subgraph of G
induced by a face that is not the outer face. For u,v € F if a path exists from u to v in
G, such a path has to exist in F.

Proof. This has been proven several times, the idea Gronemann used is that if a path
exists from w to v that is not part of F' it has to intersect either the paths from s to the
face-source or from the face-sink to ¢ as can be seen in Figure 2.1b] In both cases a cycle
is induced in contradiction to the st-planarity of G. O

11
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(a) [Grol5]A vertex u with successor list S(u) = g
(v1,..., 05, Vig1,...,05,v; + 1,...) and a forbidden i
configuration of paths v;y1 ~ v; and v; ~» vjy1. (b) The path from u to v has to ei-

ther intersect the path from the
facesink to ¢ or the path from s
to the facesource.

Fig. 2.1.

Additionally it can be said that every face consists of two paths from the facesource
sy to the facesink ty. As every face contains exactly two consecutive successors of the
facesource v; and v;;1, the path containing v; can be referred to as left path and the
paths containing v;11 can be referred to as right path.

As consecutive members v;, v;11 of a successor or predecessor list of a vertex u share
a face with wu, if a path exists from v; to v;41 or from v;11 to v; it has to exists on this
face. Additionally because v; is part of the left path of this face and v; 41 is part of the
left path, if there exists a path from v; to v; 11, then v;11 has to be the facesink and vice
versa. If neither v; nor v;11 is the facesink no path can exist between them. Thus, we
can test if a path exists between consecutive successors of a vertex u by looking at the
sink of their common face with wu.

Now that we established a forbidden configuration of paths, in an embedded planar
st-graph, for it to admit a bitonic st-ordering and a way to test for the existence of those
paths, we show that the absence of forbidden configurations is not only a necessary but
a sufficient condition for a plane st-graph to admit a bitonic st-ordering.

First we have to prove the following lemma.

Lemma 2.12. [Grold] Given an embedded planar st-graph and a vertex w € V with
successor list S(u) = (v1,...,vm). If it holds that

V1§i<j<m:vi+17/»vi\/vj%»vj+1
then there exists 1 < h < m such that
(VI<i<h:vi1 »v)NNVR<SB<m:ov % vit1)

holds. In other words, there exists at least one vertex vy, in S(u) whose preceding vertices
in S(u) are only connected by path in clockwise direction, whereas paths between following
vertices are directed counterclockwise.

12
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Fig. 2.2.: |Grol5] The augmented graph G’ in the proof of Lemma obtained by adding
edges between consecutive successors of u.

Proof. If there exists no path v;41 ~ v; with 1 < i < m, we choose h = m. Then
V1 < i < m : vyl ~ v; is satisfied. If there exists at least one such path, we set
h = min{i|viy1 ~ v;} to satisfy V1 < i < h : v;41 % v; by construction. Assuming that
there exists a path v; ~ v;11 with A < j < m, there exists vp41 ~ vy and h < j, which
contradicts the assumption. O

Lemma 2.13. [Groll] Given a planar st-graph with a fivzed embedding. If at every
vertex v € V. with successor list S(u) = (v1,...,vm) the following holds:

V1 <i<j<m:vgr v Vujh v
then G admits a bitonic st-ordering .

Proof. This proof requires several steps. First an algorithm is described that inserts
additional edges E’ into G. Those edges ensure that paths exist between all pairs of
consecutive successors of all vertices of G' = (V, E U E’). Then it is proven that G’ is
still planar and that any st-ordering of G’ is a bitonic st-ordering of G. For every vertex
u € V with successor list S(u) = (v1,...,vn), we can say by Lemma that there
exists a 1 < h < m such that for every 1 < ¢ < h there is no path v;11 ~ v;, and for every
h <4 < m no path v; ~ v;41 in G. These edges can be added to create the two paths
in v ~ vy ~ -~ oy € G and vy, ~ U1 ~ -~ v, € G as seen in Figure
For every 1 < i < m three cases are to consider. If a path v; ~» v;41 or v; 41 ~> v; exists
between v; and v; 41 nothing has to be done. If no path exists between v; and v; 41 and
i < h we add the edge (v;,vi1+1) to E’ to ensure that 7(v;) < 7(viy1). If no path exists
between v; and v;11 and h < i < m we add the edge (v;11,v;) so that 7(v;) > 7(viy1).
Now we prove that G’ is still a st-planar graph by induction over the number of added
edges. We assume that E’ is in random order. Let Gy be the graph after inserting the
first k edges into GG. Clearly, Gq is st-planar. When adding the k-th edge between two
consecutive successors of a vertex u we may assume it is the edge (v, v;41) without loss
of generality as the prove works symmetricaly with the edge (vi+1,v;). Let F' be the
subgraph induced by the common face of w,v; and v;41 in G. With w being the facesink,
the face consists of two paths u ~» v; ~» w and u ~» v;411 ~ w. Because we insert an

13



edge neither v; nor v;41 is the facesink. By our induction hypothesis we may assume
that Gj_1 is still st-planar. As a maximum of one edge is added to each face in G, F' is
a subgraph of Gj_1, too. Thus planarity is preserved when inserting (v;, viy1).

We now have to show that Gy, is still acyclic. Since G_1 is acyclic any cycle in G has
to exist because of inserting the edge (v, vi+1, thus has to contain the edge. This means
that a path from v;;1 to v; has to exist in G, which has to have existed in Gy_1, too.
This is not possible, because the path would have had to exist on F' by Lemma [2.11
contradicting the fact that v; is not the facesink. Thus every Gy is st-planar and it
follows that G’ is st-planar.

Considering any st-ordering 7 of G’, because E' C E U E’, 7 is an st-ordering for G.
As we constructed G’ in a way such that for every u € V with S(u) = (v1,...,vy), there
exists a path v; ~ v;41 for 1 <i < h and a path v;41 ~> v; for h < i < m. It follows for
every st-ordering 7 of G that

V1<i<h:7m(v;) <m(vig1) AVh<i<m:m(v;) > m(vig1).

In other words S(u) is bitonic increasing with respect to 7 for all v € V. As G’ is
st-planar at least one st-ordering 7 of G’ has to exist. O

This lemma does not only show that every graph without forbidden configurations
admits a bitonic st-ordering, but also provides us with a linear time algorithm to find
such an ordering.

For plane st-graphs that contain the forbidden configurations we introduced earlier,
we cannot find a bitonic st-ordering. By splitting certain edges however, we can create a
graph that admits a bitonic st-ordering. After drawing this graph we receive an upward
planar drawing of the original graph, with edge bends. We introduce this procedure with
an example. Let G = (V,E) be an embedded planar st-graph that contains a single
forbidden configuration at one of its vertices u € V' with S(u) = (v1,...,vm). Let this
configuration be the two paths v; 1 ~ v; and vj ~ v;11 with i < j.

By splitting the edge (u,v;) or (u,vj11) we can augment G in a way that it admits
a bitonic st-ordering. Let the split edge be (u,v;) without loss of generality. Then a
dummy vertex v} is inserted and the edge is replaced by the edges (u,v}) and (v}, v;).
The successor list S(v]) contains only one element, namely v;, thus it is bitonic with
respect to every st-ordering. Additionally v replaced v; in the successor list of u and
because no path exists from v; 1 to v} the forbidden configuration is resolved. By drawing
the augmented graph and removing the dummy vertex, replacing it by a bend point for
(u,v;) we obtain an upward planar drawing of G with one bent edge. As we want to
reduce the number of edge bends in the resulting drawing, we want to reduce the number
of edge splits, when augmenting the graph G to let it admit a bitonic st-ordering. The
following lemma shows that the number of edge splits is at most |V| — 3.

Lemma 2.14. [Groll|] Every embedded planar st-graph G = (V, E) can be transformed
into a new one that admits a bitonic st-ordering by splitting at most |V| — 3 edges.

Proof. Considering a vertex u with successor list S(u) = (v1,. .., vn) that contains mul-
tiple forbidden configurations. Using the second condition in Lemma [2.12] we want to
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V-3

Fig. 2.3.: [Grol5|Example of a pattern for graphs, with |V| — 3 forbidden configurations, each
requiring one edge split to be resolved.

find a v, such that every path between consecutive successors v; and v;41, is directed
from v; towards v;41 for ¢ < h and from v;11 to v; for h < i < m. As due to the existence
of forbidden configurations, this vertex does not exist, we have to split some edges. As-
suming v, would be the first successor, so h = 1, every path v; ~» v;41 with 1 <7 <m
contradicts that choice. We can resolve this issue, by splitting every edge (u,v;+1), for
which this path exists. The maximum number of splits is m — 1, if for every 1 <i <m a
path from v; to v; 41 exists. As G is acyclic, paths v; ~» v; 11 and v;41 ~ v; cannot exists
at the same time. Thus, if the number of splits required this way would be more than
mT_l we can instead chose h = m and because we have less than ’”T_l paths of the form
v; ~» vi41, the required amount of splits is less than v; ~» v;41. The sum ) i, |S(u)|
of the length of all successor lists is the number |E| of edges of G. Thus it holds that

Y ouey |1S(w)| = |E| < 3|V] —6. With m = S(u) in the former fraction, we get

[Sw)| -1 _3[V|-6—|V]|
< = _— .
E 5 < 5 V-3
ueV

O]

As the graph shown in Figure requires |V| — 3 edge splits, this upper bound for
the maximum number of required edges splits for a planar st-graph to admit a bitonic
st-ordering is tight. It is to note that the graph can be drawn upward planar in quadratic
area without edge bends, while requiring the maximum amount of edge splits to admit
a bitonic st-ordering. The algorithm that finds a minimum set of edges to split in linear
time is explained in Section [3.21]
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3. The augmented algorithm

In this chapter the algorithm is described that draws an upward planar graph by using the
algorithm of Gronemann [Grol5| on the given graph and on its flipped graph. This idea
is from Gronemann himself, who noticed that the pattern he introduced that matched
his calculated maximum number of edge bends when using the algorithm, was easily
drawable upward planar without any bends. The reason for that is the fact that the
ability to find a bitonic st-ordering is depending on the successor list of each vertex,
which are depending on the orientation of the given graph. For the upward drawings on
the other hand the orientation of the graph is nearly irrelevant, as an upward drawing of a
graph G can be easily converted to an upward planar drawing of its flipped graph G. This
can be achieved by flipping the given graph G with its drawing to get a downward planar
drawing of G and then mirroring the drawing on the x-axis to make it upward planar.
Before the new and thus implicitly the former algorithm by Gronemann is described in
its details we prove that these steps actually lead to an upward planar drawing.

3.1. Correctness of the augmented algorithm

In this section we prove that the described procedure leads to an upward planar drawing
of the given graph. First we show that flipping an upward planar drawing results in a
downward planar drawing.

Lemma 3.1. Flipping every edge of a graph G = (V, E) and a corresponding upward
planar drawing I' results in a downward planar drawing I' of the flipped graph G.

Proof. Using the given definition of the flipped drawing of a graph it follows for every
edge (v,u) € B, T, )(k) = F(uv)(l—k) It follows with0 < i< j<1 <= 0<1—5<
1—1i <1 that T )(z) = Fy —1) > F( )(1 —Jj) = f‘z(/v u)(j). This is the definition

of a downward pianar graph t us the claim stands. ]

Notice that because the operation of flipping is its own inverse, flipping a downward
planar drawing, leads to an upward planar drawing. The next step is to show that
mirroring a downward planar drawing on the x-axis results in an upward planar drawing.

Lemma 3.2. Mirroring a downward planar drawing of a graph G on the z-axis results
in an upward planar drawing of G .

Proof. Let G = (V, E) upward planar graph and I' an upward planar drawing of G.

Mirroring I' on the x-axis results in a drawing A of G, with AY(v) = —I'Y(v) for every
v € V and with Az(’u 2 (z) = —F?(’u 2 (x) for all (u,v) € F and all x € [1,0]. Together with
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a>b <= —a < —b and the definition of upward planar drawings, it follows: For all
(u,v) e Eand 0<i<j<1: Aéyum)(i) = —I‘Z(/u,v)(i) > —F?um)(j) = A?um)(j). Thus A is
a downward planar drawing of G.

O

Similar to Lemma 5.1, mirroring an upward planar drawing of a graph on the x-axis,
results in a downward planar drawing of the graph because the process of mirroring is
its own inverse.

The results of these two lemmas show that given an upward planar drawing of a graph
G we can easily compute an upward planar drawing of the flipped graph G’ of G by first
flipping the drawing and then mirroring it on the x-axis.

3.2. Algorithm

In this section the enhanced algorithm for creating an upward planar drawing of a st-
graph G is described. The pseudo-code of the described algorithms can be found in the
appendix. The overall algorithm operates in the following steps:

e The minimum set of edges to split is computed for G and for its flipped graph G’.
Whichever requires less splits to create a bitonic st-ordering is chosen.

e A bitonic st-ordering is computed for the chosen graph with its split edges.

e The coordinates of the vertices are computed, using the bitonic st-ordering and the
algorithm by Gronemann. In case of the flipped graph being used, the coordinates
changed, such that the resulting drawing is upward instead of downward planar.

e Create the actual drawing I" by using the computed vertex positions and straight
lines between the vertices as edges.

e Remove the dummy vertices, inserted at the split edges to make the drawing a
drawing of the original graph, with bends.

In the following subsections we describe the most important steps of the algorithm.

3.2.1. Splitting the edges

The pseudo-code for this step can be found in Algorithm [I] In the first step the graph
with the split edges which is used for creating the drawing is computed. First the
minimum set of edges to be split is determined for the original graph with the algorithm
by Gronemann. The algorithm is checking for each vertex v € V and its successor list
S(v) = (vi,...,vm) which of its successors has to have the highest order in the bitonic st-
ordering to require the least amount of splits. To describe this procedure some notation
has to be introduced. Given a vertex u € V with successor list S(u) = (v1,...,vm) We
define L(u,h) = |({i < h : vig1 ~ v;}| and R(u,h) = |{i < h : v; ~ viy1}|. When
choosing a 1 < h < m for u, then every edge (u,v;+1) with i < h has to be split if a
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path v; 41 ~ v; exists, and every edge (u,v;) with A < i has to be split if G contains a
path v; ~» vi11. Overall L(u, h) + R(u,m) — R(u, h) edges have to be split. As R(u,m)
does not change for different 1 < h < m, to find the minimum set of edges to split to
resolve forbidden configurations for u we only have to consider L(u,h) — R(u,h) and
minimise it. If a path v, ~» vy exists its follows that R(u,h + 1) = R(u,h) + 1
and similarly L(u,h + 1) = L(u, h) + 1 if a path v;41 ~» v; exists. Thus in the first
case L(u,h +1) — R(u,h+ 1) = L(u,h) — R(u,h) — 1 and L(u,h+ 1) — R(u,h + 1) =
L(u,h) — R(u,h) + 1. Because L(u,1) — R(u,1) = 0 to calculate L(u,h) — R(u, h) for
every vertex we check for paths between v; and v;11 iteratively for each i. After finding
the 1 < h < m which requires the lowest amount of edge splits, it is computed, which
of the edges actually have to be split to admit the ordering. After this is repeated for
each vertex u, the minimum set of edges to be split is computed for the flipped graph
the same way. The amount of splits required in both cases are compared and the case
with the smaller number is chosen. For every edge (u,v) which has to be split, a dummy
vertex w is inserted and (u,v) is replaced by (u,w) and (w,v). The resulting graph is
then returned.

3.2.2. Computing the bitonic st-ordering

The pseudo-code for this step can be found in Algorithm[2} To find an bitonic st-ordering
the graph is prepared in a way, such that every st-ordering is bitonic. In a bitonic st-
ordering 7 of a graph the successor list S(v) of every vertex v € V has to be a bitonic
sequence. This means that for every S(v) = vy,..., vy, there exist a 1 < h < m, such
that 7(v;) < 7(vi1) and 7(vj) > w(vj41) for 1 <i < h < j < m. As the used graph at
this point has to admit a bitonic st-ordering this requirement is met for all neighbours
in the successor list, which have paths between them. To ensure that neighbours in the
successor list, which don’t have paths between them are ordered correctly, dummy edges
are inserted. For this we iterate over all successors of v and before we encounter a path
v; ~ V41 we assume that i < h and thus for every v;11 ¥ v; we insert the edge (vi41,v;),
to ensure 7(v;) is higher than m(v;11). When for the first time there exists v; ~» v;y1
we set h = i and for i > h if v; ¥ v;y1, we insert the edge (v;,vi+1), to ensure 7(v;y1)
is higher than 7(v;). After repeating this procedure for every vertex v € V' we compute
a st-ordering using depth first search which is a bitonic st-ordering for G as shown in

Lemma 2131

3.2.3. Obtaining the upward planar drawing

The pseudo-code for this step can be found in Algorithm [3] To obtain an upward planar
drawing the algorithm provided by Gronemann |[Grol6| is used. It is based on the
algorithm by Harel and Sardas [HS98| to obtain a planar straight-line drawing, when
given a biconnected canonical ordering, which in term uses a modified version of the
algorithm by de Fraysseix et al. [DFPP90]. The original algorithm by de Fraysseix et al.
is using triangulated graphs for drawing and thus when a vertex is placed it has at least
two neighbours that have already been placed. To avoid the step of triangulation for
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a more pleasing visualisation Harel and Sardas introduced the property of having left,
rights and legal support, for vertices that only have one preceding neighbour. To apply
those properties to bitonic st-orderings dummy vertices vy, and vi are added that take the
roles of v; and w9 in the original algorithm. The algorithm only computes the coordinates
of the vertices, as the edges are represented as straight lines and follow implicitly.
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4. A new lower bound

Now after the algorithm has been introduced in the previous chapter the question arises
wether additionally considering the flipped graph actually lowers the upper bound of the
maximum number of edge splits. While it is obvious that the number of required splits
is lower for some graphs, it might be possible that the upper bound does not improve at
all. In this chapter we first introduce a simple pattern of graphs derived from the former
worst case, to get a lower bound for the maximum number of required splits. This pattern
leads to an observation on how to create patterns which require a high number of splits
for both orientations of the graph. Using this the pattern of our worst case example so
far is introduced.

Given the example of Gronemann [Grol5|, for graphs which require exactly |V| — 3
edge splits, matching the upper bound, the idea for a new bad pattern is to take the old
pattern two times, one time in the original, one time with flipped edges and connecting
their sinks and sources, as can be seen in Figure creating one graph with twice the
amount of vertices. As the old pattern is included in the graph and because stays the
same when flipping it requires |V| — 3 splits in both directions while having 2|V| vertices.
With n = 2|V this results in a graph with n vertices which requires n/2 — 3 edge splits
in both orientations.

Using the same method we notice that given a graph G = (V, E') we can always create
a graph which has 2|V| vertices and its required number of splits is the sum of the
number of splits required for G and for the flipped graph of G. Compared to the number
of vertices of each graph the new graph requires approximately the average number of
splits that G and its flipped graph require in both orientations. In the following lemmas
this will be proven and the exact number of splits required to find a bitonic st-ordering
or a bitonic ts-ordering is calculated.

Lemma 4.1. Given two plane graphs G1 = (V1, E1) and Go = (Va, E3), which require
k1 and ko edge splits to admit a bitonic st-ordering and 11 and lo edge splits to admit a
bitonic ts-ordering, a new graph G = (V, E) can be created, with |V| = |Vi| + |Vz| and
which requires ki + ko splits to admit a bitonic st-ordering and Iy + 1o edge splits to admit
a bitonic ts-ordering.

Proof. The Lemma is proven by uniting the two given graphs and inserting the two edges
(s2,s1) and (t2,t1) to make the resulting graph G = (V1 U Vs, E1 U E2U{s2, s1}U{t2,t1})
a st-graph with source s = s9 and sink ¢ = ¢;. This is visualised in Figure

Because new edges have been added, the embedding, which is represented by the
successor and predecessor list of each vertex, has to be updated. For s; its new and
only predecessor s is added as only vertex in the predecessor list and for to the new
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(b) Example of a graph with n vertices needing

(a) Overall graph after uniting procedure from n/2 — 3 edge splits in both directions

Lemma

successor t1 is added to the successor list. For so and ¢; the vertices s; and ¢y are added
as new first members in the successor and predecessor lists.

This way, every pair of vertices which appears consecutively in the successor list or
predecessor list of any vertex still appears consecutively in the new successor and prede-
cessor lists. Thus we can ensure that configurations that require edge splits for admitting
a bitonic st-ordering or bitonic ts-ordering still appear in the same way in the united
graph. O

Using this method of uniting two graphs with the same number of vertices n = |V;| =
|V3|, which require k1 and ko splits to admit a bitonic st-ordering as above, the resulting
graph G = (V, E) has 2n vertices and requires k; + k2 splits to admit a bitonic st-
ordering. The number of splits required relative to the number of vertices of the graph
is (k14 k2)/2n. This is the mean of the relative number of splits that G; and Ga require
to admit a bitonic st-ordering. Similarly the relative number of splits required to admit
a bitonic ts-ordering is (11 + l2)/2n.

Lemma 4.2. Given a plane graph G = (V, E) which require k edge splits to admit a
bitonic st-ordering and | edge splits to admit a bitonic ts-ordering, a plane graph G' =
(V',E") can be found, with |V'| = 2|V| which requires k + 1 splits to admit a bitonic
st-ordering or a bitonic ts-ordering.

Proof. Using Lemma with G and its flipped graph G leads to G. O

As the graph that is described in this lemma stays the same when flipped it requires
the same number of edge splits to admit a bitonic st-ordering or a bitonic ts-ordering.
This means that in order to find a graph that requires a high amount of splits both to
admit a bitonic st-ordering and a bitonic ts-ordering, not only a graph where the lower
number of splits required for the graph to admit one of the orderings, but the mean of
them.

The worst case pattern that we could find is the pattern seen in Figure [£.2] This
pattern leads to a lower bound for the maximum number of required edge bends when
creating an upward planar drawing of a directed graph G in quadratic area with the
given algorithm.
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Fig. 4.2.: Our worst case example in both orientations.

Theorem 4.3. There exist graphs that require 3/4|V | — 3 edge splits to admit a bitonic
st-ordering or a bitonic ts-ordering.

Proof. The pattern shown in Figure requires 2 x (|V'|/2 — 2) = |V| — 4 splits to
admit a bitonic st-ordering and |V’|/2 —1 splits to admit a bitonic ts-ordering. Using the
procedure described in Lemma [4.1] a graph with |[V| = 2|V’| is created which requires
[V]/2—2+|V]|/4—1=3/4|V|— 3 edge splits in both orientations, thus a upward planar
drawing is found with the given algorithm with 3/4|V| — 3 edge bends. O

As this pattern is requiring [3/4] — 3 edge splits to admit a bitonic st-odering or a
bitonic ts-ordering it also provides a lower bound for the maximum number of edge splits
when creating an upward planar drawing with our algorithm. Progress that we have
made on the way to finding a new upper bound is described in the next chapter.
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5. Towards upper bounds

To find out if the updated algorithm is better than the previous algorithm of Gronemann
in a meaningful way, a new upper bound for the maximum required number of edge
splits to admit a bitonic st-ordering has to be found.This chapter is about different
observations that have been made in the search of this new upper bound. While we were
not able to find a new upper bound the results of this chapter might prove useful on
the way to establishing a new upper bound. In Section we show that it suffices to
consider triangulated graphs when looking for a new upper bound. Section [5.2]focuses on
different observation about the degrees of vertices. In Section [5.3]two different directions
for finding a new upper bound are outlined.

5.1. The worst case is a triangulation

In Lemma we showed that if a path exists between consecutive successors v;, v;41
of a vertex w, it has to exist on the face the three vertices share. As w is the only
source of this face we can consider forbidden configurations as forbidden configuration of
faces instead of paths. One path and thus the corresponding face can form a forbidden
configuration with different faces, which are then all resolved by splitting the transitive
edge of that face. To account for that, when counting the required edge splits for certain
graphs it is a useful model to think of it as pairing faces together, which form forbidden
configurations. The linking of paths that form a forbidden configuration to the faces they
share with the vertex they form the configuration for leads to the following observation.

Lemma 5.1. All but one of the inner faces have to be involved in a forbidden configura-
tion to reach the maximum number of required splits.

Proof. Let u € V be a vertex with successor list S(u) = (vy,...,vn) and v;y1 ~ v; and
v; ~ vj41 with ¢ < j a pair of paths that form a forbidden configuration. Because u
is always the source of the faces that v;,v;11, v and v;, vj41,u share respectively, and as
faces have only one source in st-graphs, we need two faces for a forbidden configuration
and those faces can’t be part of a forbidden configuration of any other vertex. Using the
maximum number of faces and the fact that the outer face is never part of a forbidden
configuration, we have 2|V| — 5 faces left. The upper bound of forbidden configurations
is |[V] — 3. As two faces are needed for any one of these configurations, 2|V| — 6 faces
are needed to create the maximum number of forbidden configurations. This leaves one
inner face that is not part of any such configuration. O

As this lemma applies to the graph G as well as its flipped graph G, all but two
inner faces have to be part of a forbidden configuration in both orientations for the old
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maximum to be met.

This lemma implies that for a graph to require the maximum amount of edge splits it
has to be triangulated. While the maximum number of required edge splits for a graph
with the updated algorithm might be lower than |V| — 3 and thus we cannot assume
that a graph meeting this number is triangulated we can still limit our observations to
triangulated graphs as the following lemma shows.

Lemma 5.2. Given a graph G = (V, E) any triangulation G' = (V, E') of G needs at
least as many edge splits to admit a bitonic st-ordering as G.

Proof. We prove that for every vertex v € V the required amount of edge splits, to admit
a bitonic ordering of its successors, does not get smaller. Let S(u) = (v1,...,vy,) be the
successor list of u. If all faces that have u as source are triangulated already, the faces
incident to all pairs of successors of v;,v;41,1 < i < m — 1 and u don’t change and the
number of required splits stays the same.

As the only faces that are relevant for forbidden configurations for w are faces incident
to consecutive successors vy, v;+1 of u where there exists a path v; ~» v;41 or v;11 ~> v; we
have to prove that similar faces exist after the triangulation. Without loss of generality
we can assume that the path is a path from v; to v;1q. If after triangulating an edge
exists between v; and v;4; it has to be the edge (v;,v;+1) because else there would be
a cycle. If this edge doesn’t exist after the triangulation at least one new successor has
been added to the successor list of u between v; and v;11. Let the first of these new
successors be the the vertex vj ;. This vertex was incident to the same face as v;, v and
vi+1 before the triangulation. As the graph is triangulated now there has to be an edge
between v; and vj, ;. As vj,; was part of the path v; ~» v;;1 before the triangulation
that edge has to be the edge (vi,vj, ). O

As for the old upper bound to stand the graph has to be a triangulation, we can
say for every forbidden configuration that exists that between the faces of the forbidden
configuration there are no other faces except for pairs that are a forbidden configuration
themselves.

5.2. Different observations on vertex degrees

In this subsection we focus on different observations that were made regarding vertex
degrees. Looking at a Vertex u with one forbidden configuration, we already noticed
that it has to be the source of two faces. The sinks of these faces are different successors
of u. This means for the faces to be part of forbidden configurations after flipping the
graph they have to be newly paired. Thus getting a new upper bound by looking at bad
configurations for each vertex separately is impossible.

In the attempt to further characterise the graphs that are able to reach |V| — 3 splits
in both directions the following observations have been made.

Lemma 5.3. If the number of successors |S(u)| of a vertex w € V is even at least one
face that has v as its source, is not part of a forbidden configuration.
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Proof. We are using the same arguments that were used in the proof of Lemma[2.14] Let
S(v) = (v1,...,vm) be the successor list of u. For S(u) = (vi,...,v,) to be a bitonic
sequence with respect to an ordering 7 a vertex vy, 1 < h < m has to exist, such that for
consecutive successors v;, v;41 of u there is no path from v;y1 to v; for ¢ < h and there
is no path from v; to v;41 for ¢ > h. If those paths exist we can resolve it by splitting
edges. Assuming for v to be the first successor. Then every path from v; to v;41 for
1 <i <m—1, forces the edge (u,v;+1) to be split. If we chose vj, to be the last successor
of u, then every path from v;y; to v; forces the edge (u,v;) to be split. As G is acyclic
paths v; ~ v;41 and v; 41 ~ v; cannot exist simultaneously. Thus if more than mT_l path
exist from v; to v;41, less than mTfl paths from v;41 to v; can exist. Thus the maximum
number of splits at each vertex is a‘i most ?T_l for each vertex. If m is even, the biggest
m— m—

natural number that is at most T s . O

As every vertex but s and ¢ have at least one predecessor and one successor and because
we have to consider the flipped graph two, the vertex degree of every except for s and ¢
has to be even if all faces should be paired. This leads to the following lemma.

Lemma 5.4. The degree of each vertexr but s and t has to be even for all faces to be
paired in forbidden configurations.

Proof. As predecessors and successors are exchanged when flipping, and because as shown
in Lemma the number of successors have to be odd for every face to be paired, both
the number of predecessors and the number of successors have to be odd for each face to
be paired. Thus degree of the vertex which is the sum of its number of successors and
predecessors is even. m

This means for the old upper bound to stand, only a constant amount of vertices can
have odd degree. As for planar graphs the average degree of each vertex is less than six
and because in a triangulated graph every vertex has at least degree 3, at most half of
the vertices can have a degree higher than six.

To take a further look on local patterns the following lemma is very useful.

Lemma 5.5. In a triangulated graph G = (V,E) for every vertex u with S(u) =
(v1,...,Um) and P(u) = (w1,...,wy) that is not the source or the sink, the edges (w,v1)
and (w1, vy,) have to exist in E.

Proof. As the graph is triangulated for every pair of consecutive neighbours of each
vertex, there has to be an edge between those vertices. It can be seen in Figure [5.1a] that
the paths wy ~» v; and w; ~» v, exist, thus the orientation of these edges have to be
(wg,v1) and (wy, vpy,). O

For vertices of degree four, which require an edge split in the current orientation, thus
have three successors, this leads to configuration that can be seen in Figure If the
only predecessor of a degree four vertex is another degree four vertex, which has a degree
four vertex as its only predecessor and so on, this leads to a pattern which can be seen in
Figure that is similar to the worst case pattern that Gronemann |Grol5| introduced

25



V1 Um

‘ * W1 (b) A degree four vertex with three successors

and the forced edges between its predeces-
sor and its leftmost and rightmost succes-
SOrS.

W

(a) A triangulated graph with the edges
(wg,v1) and (w1, Vp).

Fig. 5.1.: The observation from Lemma leads to a specific pattern for degree four vertices.

that is shown in Figure This means that if degree four vertices are grouped together
it also leads to two vertices, which are incident to all those vertices and thus have a degree
equal to the number of degree four vertices in this section of the graph. When considering
the flipped graph, those two vertices are now the sources of all the faces incident to the
degree four vertices. No edge splits are required in this orientation for those faces as the
successors are sorted in ascending and descending order respectively. Thus for all faces to
be part of forbidden configurations, additional vertices have to be added. Looking at the
right successor w of the degree four vertices in the original orientation, for all the faces
to be part of a forbidden configuration in the flipped case, an equal number of successors
has to be added, where the edge between consecutive members of these successors has
to be the reversed direction of the edges between the degree four vertices, with respect
to the successor list of w. This is shown in Figure Using the same arguments to
add faces to the left half of this pattern, leads to an overall pattern which resembles our
worst case introduced in Theorem Thus it seems probable, that a graph with a lot
of degree four vertices cannot require a higher amount of splits than our example. If
this could be proven the only other case that would have to be studies is a graph with
many degree six vertices as the average degree in planar graphs is lower than six and we
showed that the majority of vertices have to have even degree for the graph to require a
large amount of splits.

5.3. Future work

This section is about future research that can be done on this algorithm. One way to go
is to prove wether the algorithm has a lower maximum number of edge bends than the
old algorithm that did not consider bitonic ts-orderings. As all but one face are part of
a forbidden configuration to reach |V| — 3 edge bends, this means that all but two faces
have to be part of a forbidden configuration in both orientations of the graph. Thus, if
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(a) The pattern that is a consequence of a lot

of degree four vertices together. It matches (b) The faces that have exist to pair the given
the worst case example of the original al- faces incident to w.

gorithm.

Fig. 5.2.

we would be able to show that more than a constant amount of faces are only part of
forbidden configurations in one direction, the old upper bound for the maximum number
of edge bends in the resulting drawing would not hold for the augmented algorithm.
While not being able to show that this is the case, overall our observations led us to
believe that the maximum number of required edge splits is lower than the former one.

Another important direction to go is to actually find the maximum number of edge
bend in the resulting drawing. To get a tight upper bound the most common way is to
find an upper bound and match it with an example to show that it is tight. One of our
approaches was to try and find patterns that require the same number of edge splits in
both orientations of the graph. The worst one we found was the pattern introduced in
Theorem but all approaches seemed to lead the same way when trying to pair as
many faces as possible in both directions. Looking at Figure [5.3] we see that if there
is a bad configuration of paths v;y1 ~ v; and v; ~ v for vertex u, two other faces
have to exist to pair with them in the flipped case to form a bad configuration. As a
path from s to every other vertex has to exist and a path from every vertex to ¢ has to
exist, the paths s ~ u, v; ~» ¢t and vj;1 ~» ¢ have to exist. Because ki is a predecessor
of v; the path from s to ki, that has to exist, cannot share any vertices with the paths
from v; to ¢ as it would induce a cycle. The same is true for /; and the path from v
to t. Thus at least one of them has to be connected to s through w and through the
inside of the configuration. Note that k1 and [y may be the same vertex. Without loss
of generality we can assume that this vertex is k;. For the face that contains k1,ks and
v; to be a part of a forbidden configuration in the orientation shown in the figure, there
has to exist another face that is paired with it between w and ko with respect to k.
This leads to an endless cycle of adding faces to make to form a part of a forbidden
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configuration in one of the orientations. While we were not able to resolve what this
leads to asymptotically with increasing number of faces, it seemed that the total number
of forbidden configurations did not increase as fast as the number of vertices that had to
be added, leading us to believe that at least one of the original faces cannot be part of
a forbidden configuration in both orientations. Thus it seems probable that the pattern
that requires close to 3/4|V| edge bends is the worst case.
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u

(a) A vertex u with two paths v;41 ~ v; and
v; ~» vj41 that form a bad configuration.

u

(b) The two faces are added to pair with the
first two in the flipped graph.

|
1
LS (d) The paths from s to k; or [ has to contain

(c) Paths are added, because s ~» u as well as
v; ~» t and v;41 ~» t have to exist.

Fig. 5.3.: A pattern that seems to always occur when trying to find pairs of forbidden con-
figurations in both direction simultaneously. For simplicity the paths that form the
forbidden configurations are drawn as edges.
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6. Conclusion

This thesis focused on an algorithm for creating upward planar drawings in quadratic
area with few bends. We were able to show the following results.

e When looking for an upper bound for the maximum number of bent edges, it suffices
to consider triangulated graphs.

e A new lower bound for the number of edge splits for a graph to admit a bitonic
st-ordering or bitonic ts-ordering has been found. This was accomplished by finding
a graph that requires 3/4|V| — 3 edge splits to admit a bitonic st-ordering and a
bitonic ts-ordering respectively.

e For graphs to require a large amount of edge splits to admit a bitonic st-ordering
the majority of the vertices have to have even degree.

e Patterns were found that are enforced by multiply vertices of degree four chained
together. As a non-constant amount of vertices have to have degree four or six for
the graph to require a higher amount of splits than the lower bound we found those
patterns are relevant in search of a new upper bound.

e A reasoning with structural observations was given, why we believe that the aug-
mented algorithm requires a lower number of edge splits than the original algorithm.
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A. Algorithms

Algorithm 1: Algorithm for computing the minimum set of edges to
split |Grol6]

© W N o A W N

[
= o

12
13

14
15

input : Embedded planar st-graph G = (V, E) with S(u) for every v € V.
output: Minimum set E,;;; C E to split for admitting a bitonic st-ordering.
Esplit — @

for v € V with S(u) = {v1,...,v,} do

h+1

Cmin <— c+ 0

for i =2 tom do

w < FaceSink (u,v;_1,v;)
if w=wv,_1thenc<+c+1
if w=wv;,thenc+c—1
if ¢ < ¢;in then

Cmin < C
h <1
fori=1toh—1do
L if v; =FaceSink (u,v;, vi+1) then Egy  Egpi U (u, v5)

fori=htom—1do
L if v;11 = FaceSink(u, vi,vi+1) then Egyy < Egpir U (4, viq1)

16 return
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Algorithm 2: Algorithm for computing a bitonic st-ordering [Grol6|

input : Embedded planar st-graph G = (V, E') that admits a bitonic
st-ordering, with S(v) for every v € V'

output: A bitonic st-ordering 7 for G

E' + 0

for v € VwithS(u) = {v1,...,v, do

decreasing < false

fori=1tom—1do

w <FaceSink (u, v;, vjy1)

if w = vy then decreasing < true

if V1 75 w 7& Vi+1 then
if decreasing then E' <+ E' U {v;41,v;}
else I/ <+ E'U {Ui7 Ui+1}

© W N o A W N

10 compute 7 € II(V, EU E')
11 return 7
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Algorithm 3: Drawing algorithm for bitonic st-orderings [Grol6]

input : Embedded planar st-graph G = (V, E') with successor list for every
u € V and bitonic st-ordering 7 for G.

output: Grid coordinates for an upward planar straight-line drawing of G.

z(vr) < O03y(vr) < O;

z(v1) < Liy(vr) < L

z(vr) < 2;y(vR) « 0;

Ch < vr, v1, UR;

for k =2 ton do

© W N O A W N+

e
N = O

13
14
15
16
17
18
19
20

21
22

2
2

N @

25
2

(=)

I + min{i|(w;,vg) € E};

r < max{i|(w;,v;) € E};

if [ =r then
vp < Preceding vertex of vy, in S(wy);
if v, =nil or 7(vy) < kthenl«+ [ -1
vs < following vertex of vi in S(w;);
if vy =nil or 7(vs) < k then r < r+1

d 2430 w(wi)
2(en) + (d+ ylwy) — ylwn)/2
y(ug) < (d+y(wy) +y(w))/2;
t <+ 1—xz(vg);
fori=[0l+1tor—1do
parent(w;) < vg;
t <+ t+ x(w;);
x(w;) + t;
z(wr) 4 wg;
Cy < replace wiy1, ..., wpr—1 in Cx_1 with vy

for i +2 to |C,| do

L x(w;) + z(w;) + z(w;—1)
for kK =n down to 1 do

L if parent(vy) # nil then x(vg) = x(vg) + z(parent(vy));
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Wiirzburg, den 7. Januar 2019

Chris Rettner
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