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Abstract

As virtual reality hardware becomes more mature and affordable its use in informa-
tion visualization is getting more common. We explore possibilities for the visualiz-
ation of graphs in an virtual reality environment with focus on intuitive interaction,
automatic layout generation and dynamic visualization of additional vertex attrib-
utes. Furthermore we analyse methods of creating a comparison view between two
graphs with common vertices in this virtual reality environment. We show an exem-
plary use case of such a visualization with the use of sample data from bioecological
coexistence simulations

Zusammenfassung

Da Virtual-Reality-Hardware immer ausgereifter und erschwinglicher wird, wird
auch ihr Einsatz in der Informationsvisualisierung immer häufiger. Diese Bachelor-
arbeit untersucht die Möglichkeiten der Visualisierung und Interaktion mit Graphen
in einer Virtual-Reality-Umgebung. Hierbei liegt der Fokus auf intuitiver Interakti-
on, automatischer Layoutgenerierung und dynamischer Visualisierung zusätzlicher
Knotenattribute. Darüber hinaus werden Methoden zur Erstellung einer Vergleichs-
ansicht zwischen zwei Graphen mit gemeinsamen Knoten in dieser Virtual-Reality-
Umgebung analysiert. Wir zeigen einen exemplarischen Anwendungsfall einer sol-
chen Visualisierung unter Verwendung von Beispieldaten aus bioökologischen Ko-
existenzsimulationen.
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1 Introduction

Virtual and augmented reality are concepts that introduce computer generated ele-
ments into the environment. While augmented reality aims at enhancing the per-
ception of the real world by displaying additional computer generated information
about real world objects in the users field of view, virtual reality (VR) replaces the
whole perceived environment with an artificial computer-rendered world. This is
usually done by using head-mounted displays that cover the entire field of view of
the user.

With VR, the user can directly interact with the scene he or she is presented with by
touching or grabbing objects with just his or her hands instead of having to use some
kind of pointing device. Furthermore the user can be placed inside the visualization
with elements all around him/her instead of just looking at a computer monitor.

While ideas and concepts for virtual and augmented reality have been around for
a long time, up until a few years ago, computer hardware was just not able to
deliver enough performance for this technique. But as hardware has gotten better,
a number of head-mounted displays (HMDs) have been released in recent years,
two of the most popular being the HTC Vive1 and the Oculus Rift2. These HMDs
feature accurate positional tracking and high-resolution displays that are placed
directly in front of the users eyes. Many HMDs ship with specifically designed
controllers that allow tracking of the user’s hands as well. Through the availability
of these affordable consumer-grade HMDs the use of VR not only in games but
also in industry applications such as complex visualizations is as common as never
before.

The visualization of graphs is a widespread topic in research focusing on how to draw
different forms of graphs in an aesthetically pleasing way. Up until now, most of the
work in this area focuses on 2D drawings, although there is some research done on

1https://www.vive.com/eu/product/
2https://www.oculus.com/rift/
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3D visualizations as well. Large graphs still pose a great challenge in visualization
and are often just too complex for 2D visualizations. This provides great potential
for VR applications, which allow for an actual immersive 3D visualization without
being constrained to a 2D monitor of limited size. Chapter 2 goes into more detail
on similar approaches and lists related work of this thesis.

Large graphs are a common occurrence in bioecology for the visualization of eco-
logical simulations that often consist of many different agents. Examples of such
models are described by Cabral, Valente and Hartig (2016). Therefore we have
developed an application of which a picture is shown in Figure 1.1 to display the
coexistence of species in a mechanistic, eco-evolutionary simulation model. The
application is an interactive visualization of two similar scenarios that should be
compared. Each scenario is represented by a graph with vertices corresponding to
species and edges corresponding to the strength of coexistence between two species.
The user can interact with and move around each individual vertex but also change
the appearance of the whole graph by selecting different visualizable attributes. An
comprehensive overview over all features is provided in Chapter 3.

The application has undergone an iterative development and evaluation process,
with multiple testing and feedback sessions performed together with two bioecolo-
gical researchers. This process and the evaluation results are presented in Chapter 4.
The project is summarized in Chapter 5 which also provides ideas for future work
that could be performed based on this thesis.

6



Figure 1.1. An overview over the application. The central element is the graph
that is coloured in blue and red depending on the scenario each vertex and edge
corresponds to. The user can freely move around vertices and interact with the
sliders and connection buttons that are mounted on a table below the visualization.
A detailed explanation of this UI is given in Section 3.3
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2 Related Work

Although VR is a relatively new technology (at least in practical use), the use of
VR in the field of graph visualization has already been investigated. Nevertheless,
this bachelor thesis uses concepts from non-VR fields of research as well, which will
be detailed in the following sections.

2.1 VR Graph Visualization and Interaction

As of today there are only very few scientific publications that use commonly avail-
able consumer virtual reality hardware such as the HTC Vive1 or the Oculus Rift2

for interacting with graphs in VR. Nevertheless Huang, Fujiwara, Lin, Lin and Ma
(2017) and Erra, Malandrino and Pepe (2018) present possibilities of interaction
with 3D graphs using the Leap Motion system, a hand and finger tracking device.3

They both programmed gestures for moving around vertices and edges, rotating and
translating the whole graph and grouping or ungrouping of vertices. Both papers
conduct studies on the effectiveness of their visualizations. Huang et al. (2017)
find out that interaction with gestures recorded by leap motion performs better
compared to mouse interaction in a VR context. However the results by Erra et
al. (2018), who compared an Oculus/LeapMotion combination with a traditional
screen/mouse combination, show that VR does not necessarily perform better. This
might be caused by some limitations on the virtual reality setup of the study such
as a seating position which does not allow for a lot of natural head movement and
requires additional locomotion techniques (apart from the natural head movement
of the user) which are prone to causing motion sickness. Despite these limitations
most participants in their study found the VR visualization more enjoying and sat-
isfying than the non-VR counterpart. Millais, Jones and Kelly (2018) found similar

1https://www.vive.com/eu/product/
2https://www.oculus.com/rift/
3https://www.leapmotion.com/

8



evidence in their study on 2D versus VR interaction, but mention that VR produced
fewer inaccurate data insights.

Continuing on the topic of interaction, Souza, Dias and Sousa Santos (2014) per-
formed a study comparing two ray tracing selection modes in virtual reality. Two
years later Dias, Pinto, Eliseu and Santos (2016) investigated two different modes of
navigation and object manipulation. Their preliminary study shows that interaction
via body tracking was preferred over a controller selection mode. Furthermore their
results indicate that complex menus are not suited for VR as test subjects took
much longer navigating through them in the non-controller setup. Their study also
shows that positioning of objects via gesture interaction is much faster.

Lubos, Bruder and Steinicke (2014) performed a sophisticated study on selection
errors in VR interaction depending on the view direction of the user. They found
out that the selection error along the direction of view is by far the largest. They
therefore suggest additional selection tolerance along the view axis.

2.2 3D Graph Layout/Drawing

One of the simplest methods for generating a graph layout usable for visualization
are spring/force based layouts. They were earliest described by Eades (1984) and
Fruchterman and Reingold (1991) who use equations similar to Hooke’s Law to gen-
erate repulsive forces between all vertices and attractive forces between neighbouring
ones. These algorithms were only designed for small graphs with up to 100 vertices.
Therefore Gajer, Goodrich and Kobourov (2001) suggest an hierarchical approach
to handle larger graphs. Kobourov (2012) summarises some more algorithms that
work on a similar basis.

There are of course other approaches for the placement of vertices in 3D space. Reiss
(1993) describes a possibility of using the Breadth- or Depth First Search trees to
generate a layout. Furthermore it is possible to adapt 2D layouts to 3D space,
either by mapping the 2D drawing onto the surface of a sphere as shown by Kwon,
Muelder, Lee and Ma (2016) or by drawing a multiple layers of 2D drawings, which
was suggested by Reiss (1993), too.

Still most graph drawing algorithms focus on a specific family of graphs beaucause
it is simpler to draw a graph if some assumptions can be made about its structure.
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Therefore it seems feasible to focus on the older, yet much simpler approaches as a
starting point and give the user the possibility of manually adjusting the layout.

2.3 Visual Comparison of Graphs

Another aspect of this thesis is the task of visually comparing graphs. Gleicher et al.
(2011) provide a good general taxonomy on different methods for visualization of
differences between objects. They define three general categories of comparisons:
Juxtaposition (drawing objects next to each other), Superposition (drawing objects
in the same location over each other) and the explicit representation of differences.

More specific work in on visual graph comparison has been done by Andrews, Wohl-
fahrt and Wurzinger (2009), who have built an application called the Semantic
Graph Visualizer, that allows the user to merge two graphs with common vertices
drawn in 2D. They use color coding in the merged graph to indicate to which of the
original graphs a vertex corresponds or if it was present in both. Brandes, Dwyer
and Schreiber (2004) show a 2.5D comparison of metabolic pathways, by drawing
individual graphs on layers along the third dimension. Although the use of the third
dimension for comparison makes it hard to adapt it to data that already uses three
dimensions, it still shows how close proximity can help with the comparison. Other
research in this area is often domain specific because it is hard to find matching ver-
tices in arbitrary graphs without additional information. This thesis will therefore
focus on comparisons where corresponding vertices are known.
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3 Software Description

The software written for this thesis consists of several different components, which
will be described in detail in this chapter. These components are:

• The general graph visualization and vertex interaction methods (Section 3.1)

• The spring embedder responsible for automatically generating a reasonable
layout for the visualization (Section 3.2)

• The UI for interaction with selected vertices and the complete graph

• Visualization of vertex attributes (Section 3.4)

• Views for comparing two graphs with common vertices (Section 3.5)

3.1 Basic interactions

The given graph is drawn with small spheres as vertices and simple straight lines
as edges in between them, as can bee seen in Figure 3.1. The basic interactions
that are possible with this implementation follow the same ideas as those motivated
by Erra et al. (2018) and Huang et al. (2017): Vertices can be grabbed with each
hand by pressing the trigger button on the back side of the controller. Further
interactions were implemented but later dropped because they conflicted with the
features described in Section 3.4 and were not used for the visualization of the
bioecological population data, which was the focus of this thesis. Those interactions
were:

• Rescaling vertices by grabbing them with both hands and pulling the hands
away from each other,

• selection of vertices by touching them with the controller. Selected vertices
will highlight in a different size or colour.
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• Grouping of selected vertices by pushing a button on the controller. Grouped
vertices are displayed as their own graph inside a semi-transparent vertex in
the parent graph. An example of this can be seen in figure 3.1.

As these grouping and scaling interactions change size and colour of vertices, it is
hard to combine them with the visualization of attributes described later.

What sets this software apart from the studies by Erra et al. (2018) and Huang
et al. (2017) is the use of room-scale virtual reality. Instead of sitting in front of a
Desk, in the case presented here, the user has an area of approximately three by four
meters in which he can walk around freely. Because of this it is not necessary to use
of any additional locomotion techniques, for example moving the camera forward
by pressing a button on the controller. This allows for a much more natural and
intuitive interaction with the virtual environment.

Figure 3.1. A simple graph with an embedded subgraph, The vertex that contains
the subgraph becomes more transparent when the camera gets closer.
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3.2 Spring embedder

In order to generate a feasible layout for visualization, a simple force-directed layout
method is used, similar to the ones described by Eades (1984) and Fruchterman and
Reingold (1991). In each iteration loop, it calculates repulsive forces between each
pair of vertices and attractive forces for each pair of vertices that are connected by an
edge. Furthermore a force is generated for each vertex that approaches a predefined
bounding sphere to ensure that all vertices remain inside this sphere. This is useful
to define the amount of space the graph should occupy in the virtual environment.

This relatively simple approach was chosen over more complex algorithms because
in allows easy integration into the existing framework. For relatively small graphs
of up to 100 vertices, these force calculations can run in real time during the engine
loop which allows for continuous adjustment of the layout while the user moves
around vertices as described in Section 3.1.

Vertices that are grabbed and moved around by the user have their physics simu-
lation temporarily paused to not interfere with the drag action performed by the
user, but will still influence the physics of other vertices. Therefore other vertices
connected to the one moved around will follow the users movement in some way,
subject to their other connections. Furthermore it is possible to pin a vertex to a
certain location which will stop the vertex from getting moved around by the spring
simulation while other vertices will still be affected by it. Of course, a pinned vertex
can be unpinned again.

3.3 Placement in the Scene and UI

This Section is divided in two parts as there are two very different versions of UI
that were developed for this project. The first iteration of the UI which consisted
of radial menus attached the controller was removed after the second development
cycle due to its insufficient usability and replace by the new version which only uses
UI elements that are attached to fixed positions in the room.
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Figure 3.2. Menus attached to the controllers. Each menu item can be used by
pressing the touchpad in the corresponding sector of the circle

3.3.1 Initial Controller Based UI

Figure 3.2 shows the first iteration of the UI that uses radial menus attached to the
controller which can be controlled by moving the thumb on the controllers touchpad.
Until the UI was removed, only place holder graphics were used for the menu items.
The menus allow for the following actions:

• Enabling and disabling a visualization of the bounding sphere around all ver-
tices that allows the user to move and scale the whole graph.

• Enabling and disabling of a selection mode. While in selection mode, the user
can select nodes by touching them.

• Grouping and ungrouping of selected vertices.

• Cycling between time steps with a forward and backward button.

• Reloading or regenerating the displayed graph
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3.3.2 Second UI Version

In the second UI iteration the graph in its virtual bounding box is placed on a small
table in the middle of the room. The purpose of the table is to hold UI elements for
interacting with the graph. Currently it consists of only two sliders and the interface
for attribute mapping described in Section 3.4. This UI can be seen in Figure 3.3

Figure 3.3. Picture of the UI. The upper slider is used for switching between graphs,
the lower one is used for scaling. Below is the UI for mapped attributes

The first slider is used to cycle between different graphs that are loaded into the
application to be displayed. That can for example be multiple stages of a graph
that evolves over time. With the slider the user can switch between different time
steps. The second slider is used to change the scale of the displayed graph to the
users liking.

Both sliders can be manipulated in the same way as vertices can be moved around,
but can only be moved within their sliding range.
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3.4 Attribute visualization

Another feature of the application is the flexible visualisation of vertex attributes.
This visualization is achieved by altering the properties of a vertex such as size,
colour and shininess. Figure 3.4 shows an example of this.

Figure 3.4. Vertices in a comparison view that have their size property mapped to
an attribute

An attribute can be interpreted as a function that associates each vertex with a
numerical value. There is no limit on how many attributes a single graph can have.
Therefore a system has been developed to select a subset of attributes that will
be visualized at the same time, limited to number of vertex properties mentioned
above.

Altering the displayed subset is achieved with an UI Element that consists of two
columns, as seen in Figure 3.3. While the left column contains all possible Attributes
that were read from the data, the right column contains all visual properties that
attributes can be mapped to, e.g. size or colour. An attribute can be connected to
a visual property (always a 1 to 1 connection) by drawing a line from left to right.
These connections can be changed dynamically during runtime and will become
visible immediately. In accordance with the results of Lubos et al. (2014) the lines
are drawn orthogonal to user standing in front of the UI and the virtual size of the
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elements that is used for determining controller interaction has been increased along
the view axis to accommodate for imprecise selection.

3.5 Comparison

Apart from the visualization itself, another important topic of this project is the
integration of a comparison view between two graphs with common vertices.

Out of the methods of comparison described by Gleicher et al. (2011) the two main
Methods Juxtaposition and Superposition are implemented. This allows for a broad
comparison of these two methods in the context of visualizing graphs in virtual
reality. In both cases, two scenarios consisting of multiple time steps are given.
The scenarios contain common vertices that should be displayed in a comparable
fashion.

3.5.1 Juxtaposition

Figure 3.5. Two scenarios in juxtaposition
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In this comparison view, the two scenarios are drawn side by side with common
vertices drawn in the relative same location. An example of this is shown in Fig-
ure 3.5. When selecting a vertex, the corresponding vertex in the other graph is
highlighted. Moving around vertices will move the corresponding vertices as well.
The attribute visualization can be selected independently for each scenario but it is
of course possible to select the same options for both drawings. The displayed time
step is controlled by a slider for both scenarios synchronously. Furthermore, both
graphs can be scaled in size.

3.5.2 Superposition

Figure 3.6. Two scenarios in superposition

In contrast to the Juxtaposition view, the superposition combines both scenarios
into one graph. Distinction between both scenarios is done by colouring. Vertices
and edges that are only present in the first scenario will be drawn in blue, those
only present in the second scenario will be drawn in red. For Edges present in both
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scenarios, a red and a blue line will be drawn, each with corresponding thickness.
As the edges are half transparent both can be easily compared. Vertices on the
other hand will be drawn of two half spheres with one coloured red and the other
one coloured blue when present in both graphs. In this case the effects of attribute
visualization described in Section 3.4 will apply to each corresponding half instead
of the whole sphere. An example of the superposition view can be seen in 3.6

As colour is used for marking the scenario, it is reserved in this case and no longer
available for attribute visualisation.
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4 Application and Discussion

During the development of the visualization an iterative development process with
alternating phases of implementation and evaluation has been used. For the evalu-
ation phases, the two researchers in bioecology who have provided the data for this
visualization phase were invited to test the application and give feedback on it. This
feedback was gathered through informal feedback interviews and Speak-Out-Loud
testing. The following sections will go into detail on each development cycle.

4.1 Initial Development and Data Specification

During the initial development phase the basic interaction possibilities, grouping and
ungrouping of vertices and the spring embedder were implemented. The controller
based UI was used to control these features. The main goal of this early prototype
was to examine which possible datasets could benefit from the visualization. As
a placeholder, a randomly generated graph with 20 vertices was used for feature
demonstration. The HTC Vive1 as the main hardware and the Unity Engine2 as a
software basis were chosen for this application.

4.1.1 Technical Foundations

The HTC Vive is one of the most popular consumer grade virtual reality devices for
desktop computers and provides room scale VR. The Vive is tightly coupled with
the SteamVR3 driver by Valve which provides many useful features for application
developers to interact with the device. Due to the abstraction level of SteamVR, it
should be possible to run the project of this thesis on other supported devices such
as the Oculus Rift with minimal effort.

1https://www.vive.com/eu/product/
2https://unity3d.com/unity
3https://steamcommunity.com/steamvr
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As a foundation for the application the Unity Engine is used. The Unity Engine
is one of the most popular game engines on the market and is not only used by
many games but other projects such as data visualizations as well, for example in
molecular networks, as developed by Lv et al. (2013). It is very accessible and allows
for fast prototyping which makes it an ideal choice for an application like this.

4.1.2 Data Specification

The prototype was presented to the two biologists to discuss what data they could
provide. After a short discussion they proposed using data from an mechanistic,
eco-evolutionary simulation model. This agent-based model is stochastic, spatially
explicit, grid-based, and integrates ecological (metabolic constraints, demography,
dispersal, and competition), evolutionary (mutation and speciation), and environ-
mental (geo-climatic dynamics) processes. A similar model is described by Cabral,
Wiegand and Kreft (2019). Each agent has its own genome that defines its ecolo-
gical behaviour, for example dispersal or environmental preferences. Agents with
similar genomes belong to one species. With this model, the two bioecologists are
especially interested in observing two different values:

• The strength of coexistence between species, which is determined by counting
the number of grid cells in which these species coexist.

• The intra- and inter-specific combination of genomic and ecological properties.

For this manner, the model has been simulated in two different scenarios, one with
and one without variation in environmental variables over time.

4.2 Integration of Data

After deciding on what data to use, a data format has been specified. In addition
a method for loading the provided sample data into the existing visualization has
been developed.
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4.2.1 Data Format

As described in Section 4.1 the data provided for this visualization consists of two
scenarios that should be compared. For each scenario, there are multiple keyframes,
each describing the situation in the scenarios at that specific point of time in the
simulation. While both scenarios have the same starting conditions (at time zero),
they might differ severely in later time steps due to differences in environmental
conditions between both scenarios. Each keyframe contains the following data:

• A vertex for each species that has alive agents in this scenario at the given
point in time.

• Edges between certain species that describe the strength of their coexistence,
which corresponds to the width of the edge.

This data is written into one CSV (comma separated values) formatted file in the
following way: For each keyframe in each scenario, a single file is provided which
contains a symmetrical adjacency matrix with edge weights that correspond to the
desired width. An example of such a dataset can be seen in Table 4.1.

vertex id 0brn 1MSL 1VFt 3uGE 6cTB
0brn 0 0 0 0 30
1MSL 0 0 12 0 0
1VFt 0 12 0 0 7
3uGE 0 0 0 0 0
6cTB 30 0 7 0 0

Table 4.1. Extract from an adjacency matrix from one keyframe. The top row and
the left column specify the vertex identifier while the matrix entries contain the
width of edges between the vertices.

4.2.2 Integration

As a starting point, loading of a single scenario has been implemented. The loaded
graph replaces the randomly generated one. As a scenario consists of multiple time
steps (and therefore multiple independent graphs) a system had to be developed to
display theses steps. It has been decided to display one keyframe at a time and
introduce additional menu entries to the controller to allow the user to step forward
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and backward through the time line. Figure 4.1 shows an example of a loaded
scenario.

Figure 4.1. Three time steps of a loaded scenario. In the actual application these
would be displayed in place one at a time by cycling through the time steps, but for
the purpose of this screenshot they have been arranged side by side.

4.2.3 Evaluation

A short testing session with one of the two biologists showed many shortcomings
of this initial prototype based on which the further directions of development have
been defined:

• It was pointed out by the tester that while an observation of the development
of a scenario over time can be interesting, the main focus of interest lies on the
comparison between two scenarios at any given point in time. Therefore it was
agreed that a view should be developed that allows for comparison between
the two scenarios.

• While it is already a good starting point to compare the coexistences between
species, all of the species have additional attributes such as the population
size and its dispersal strength which would be interesting to compare visually
as well.

• By observation of the test subject it became very clear that the menu based
UI became too complicated and needs a replacement. It was suggested by the
tester to use a slider instead. This would be especially beneficial if more time
steps are added.
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• The features of grouping and selection were not used by the tester and can
therefore be removed in favour of a simpler UI and an easier technical imple-
mentation of the newly requested features.

4.3 Comparison and Attribute Visualization

Following the goals stated in the previous section, two separated comparison views
have been implemented (see Section 3.5 for details). This was done to evaluate
which of the two methods performs better. Attribute visualization was integrated
into both views as an integral element of the comparison. For the Juxtaposition view
this was simply done by giving each of the graphs its own attribute visualization.
For the Superposition view this was harder and therefore it was only possible to
visualize attributes of one scenario at a time in the early versions.

4.3.1 Data Extension

As information about attributes was not yet contained in the data, additional data
was specified. Attributes contain more details about the population for each vertex,
which can also change over time. These are for example the number of adults and
juveniles or the dispersal strength of a population.

The attributes are read from a common file built up of many rows where each
row holds the list of attributes for one tuple of vertex, keyframe and scenario. An
example of such data is shown in Table 4.2.

4.3.2 General Feedback

The implementation of the described features resulted in two prototypes, one using
juxtaposition and the other one using superposition. Those prototypes were tested
by one of the two biologists, each one for a time of thirty minutes. Feedback was
given during testing and afterwards.

In general the visualization provides a great insight into the analysed data. Accord-
ing to the expert it was the first time he could look at his data at such an individual
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time scenario lineage dispmean juveniles adults
200 static 0brn 0.681 235.757 4.272
200 static 1MSL 0.902 581.657 4.057
200 static 1VFt 0.667 46.090 1.363
200 static 6cTB 0.441 2959.685 21.142
200 variable 0brn 0.578 235.500 3.500
200 variable 1MSL 0.919 4626.400 29.028
200 variable 1VFt 0.634 4249.666 166.333
200 variable 3uGE 0.773 11.500 0.400
200 variable 6cTB 0.392 2117.571 23.228
500 static 1MSL 0.853 608.400 5.342
500 static 1VFt 0.640 51.416 1.875
500 static 6cTB 0.400 5790.628 41.142
500 variable 1MSL 0.931 2901.371 23.028
500 variable 6cTB 0.374 18148.600 378.400
800 static 1MSL 0.853 687.371 5.571
800 static 1VFt 0.614 80.105 2.315
800 static 6cTB 0.381 5677.828 41.085
800 variable 1MSL 0.937 214.942 1.657
800 variable 6cTB 0.370 17430.771 251.571

Table 4.2. A list of species attributes. The first two columns specify the keyframe
while the third column contains the vertex id. Further columns contain one attribute
each.

level. Furthermore the visualization provides a very good overview over how attrib-
utes change over time. This is possible because the selection of time steps is very
intuitive: After grabbing the slider for cycling between time steps the user can focus
his attention towards vertices he wants to observe. As long as he keeps holding the
handle, he can still adjust the time.

What could be improved is the positioning of the sliders. At the moment they are
placed on one side of the table which limits the position where a user can stand
at while he wants to interact with the sliders. Therefore it would be more suitable
to place the controls on a panel that is positioned relative to the user so that the
controls stay in range all the time. Furthermore a feature to rotate the graph in all
directions would help in accessing vertices that are at the top or back of the sphere
without the need for walking around too much.

Another feature the tester requested was the ability to display detailed information
about highlighted vertices. This could be achieved by temporarily displaying the
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numerical values of attributes as floating numbers around a vertex as long as the
user touches it with the controller. In doing so, one has to consider the current
limitations of displaying text in virtual reality due to the limited screen resolution,
which already makes it hard to read the labels of vertices.

4.3.3 Attributes

The attribute visualization works well both when looking at individual vertices and
edges and when looking at an overview of the entire graph. One can easily spot
vertices with extreme values with a glimpse at the graph but also overview the
change in attributes of single vertices over time. One small problem is the scaling
of data for the mapping. Currently the input values are linearly mapped to the
range from 0 to 1. In cases where most input values are very small with some
very extreme exceptions, most vertices are not distinguishable. While this could be
solved by applying a logarithmic scale, this would break the visualization of other
attributes that require a linear scale. Therefore the best scale would ideally be
contained in the data.

While the visualizations of attributes works well in general, the UI for controlling
which attributes should be displayed turns out to be more counter-intuitive and
tedious than expected and should be reworked. A possible solution for this would
be to use some sort of rotatable selectors, one for each visual property.

4.3.4 Automatic Layout

As detailed in Section 3.2 an automatic layout of the graph is achieved by using a
simple spring simulation. When this simulation is run in real time, which is feasible
for up to 100 vertices, other vertices will dynamically adapt to rearrangements by
the user. This is especially helpful as it allows entire groups of strongly connected
vertices without the need for an dedicated group moving ability and therefore results
in a simpler usability.

Due to the time complexity of the spring simulation in O(n2), it is not feasible to
run the computations every frame for a larger amount of vertices. Therefore in the
case of larger graphs the simulation is only run during startup of the application
to create an initial layout and is disabled afterwards. A possible improvement for
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medium sized graphs would be to run the simulation in a background thread and
only periodically update the visualization. This would of course be not as smooth
but still provide some interactivity.

One could also consider using different and more complex layout algorithms with
better time complexity that can handle larger amounts of vertices with reasonable
amounts of computation time.

Another solution would be to encode positional data in the input files and get rid
of automatic layout completely or at least partially. Vertex positions could even be
used as an additional option for attribute visualization so more attributes can be
compared simultaneously.

4.3.5 Comparison View

As mentioned in Section 3.5, two different views for the comparison of two scenarios
have been implemented: Juxtaposition and Superposition. While it works fine for
comparing differences between populations within a scenario, for the main task of
making it easily possible to compare between two scenarios, the juxtaposition view
has some problems.

• The possibility for scaling each graph independently turns out to be a disad-
vantage because the lack of a synchronized size makes comparing size mapped
attributes very hard.

• The distance between the two graphs is a bit to large (especially when scaled
down) which does not always allow for a decent overview, especially as it is
not always clear which vertex belongs to which graph. These issues could be
fixed by scaling the distance between the graphs according to their scale and
drawing a bounding box around each one.

• It is tedious to assign the attributes separately for each graph as most of the
time, one wants to compare the same attributes on both graphs

• The juxtaposition does not cope well with the current layout algorithm (De-
scribed in Section 3.2), which is only designed to layout on graph at a time.
That means that only one graph is layouted and the positions of vertices in
the other graph are synced to that. This produces a rather bad layout with
vertices that only exist in the second graph.
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This issue could potentially be resolved by generation of a virtual union graph
to use with the layout algorithm and then apply the computed position to
both visualizations.

While all these issues can be at least partially resolved, it turns out that it is much
simpler to switch to the superposition view instead, which does not have these four
drawbacks. In general the superposition view allows for much better comparison
because the user can focus on just one point in the scene instead of two. For example
one can easily spot how big the difference in thickness of an Edge is between the
two scenarios as can be seen in Figure 4.2. Therefore it is much more clear where

Figure 4.2. Example of an edge that has different width in both scenarios.

the coexistences of species are different and where they are similar.

One big drawback of the superposition view during the testing session was the lack
of a possibility to visualize attributes of both graphs at the same time, as a vertex
could only have one size and one colour. This was later resolved by introducing
the concept of using half spheres to visualize the attributes, with each half sphere
corresponding to one scenario. This separation of vertices into two halves to visualize
attributes of both scenarios simultaneously proves to work well for comparison, an
example of this can be seen in Figure 4.3
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Figure 4.3. Example of vertices that have different attributes for each scenario.

An additional feature that would be very useful for this view according to the tester
is the possibility of temporarily disabling the one of the two graphs to have a closer
look at the other one without visual interference.
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5 Conclusion

5.1 Findings

Virtual reality is becoming more and more common in data visualization. While
there are still hurdles to overcome and the hardware is not perfect yet, it allows us
to create more immersive visualizations that help in the analysis of data. In this
thesis it has been explored how graphs can be displayed in virtual reality and what
possibilities exist to visualize certain additional attributes. Furthermore possibilities
of creating an intuitive scenario for comparing two graphs with common vertices have
been developed.

The visualization has been tested with data from biological population development
simulations to find out which aspects work well and which would require improve-
ments if this software was to be used in production. Nevertheless the great potential
that this visualization has for the analysis of the predescribed data has been shown.
According to the bioecologists they got a quick insight into the coexistence and
survival time of the simulated species. Especially the differences between the two
scenarios could be spotted very quickly.

5.2 Future Work

While Chapter 4 has already detailed a lot of aspects in which the visualization
presented in this thesis could be improved, there are some further aspects that
could be looked at in more detail.

One of these aspects is providing a more interactive the layout of the graph. For
example, selected vertices could be moved to the front while others that are not in
the neighbourhood are moved further back. Completely different layout techniques
could be used as well such as positioning vertices in a sphere around the user as
done by Kwon et al. (2016). As part of exploring different layouts, grouping and
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the separation of sub-graphs could be reintroduced as well. This might be espe-
cially useful as the visualization clearly showed that most of the strong coexistence
relations are grouped into small complete sub-graphs meaning that throughout the
simulation, agents of the same group of species tend to coexist. Therefore it should
be considered if the visualization via a simple graph is really the best solution for
this kind of data. Shneiderman and Dunne (2012) present the idea to use different
geometric shapes (”motifs”) to represent certain complete sub-graphs. A similar
technique using for example platonic solids could possibly be applied here. Finding
an improved graph structure will become even more important to retain a good
overview if much larger data sets should be used.

Another aspect that could be worked on is the comparison. Currently it aims at
showing both datasets in an optimal way to make it as easy as possible for the user
to spot differences. Instead one could create a visualization that explicitly shows
the differences instead of the actual data.

Finally the findings of this thesis are mostly based on qualitative observations that
give good insights but no definitive results. Therefore it would be necessary to
conduct user studies on certain aspects such as the UI or different layouts and
comparisons to get quantifiable results.
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