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Abstract

The Quality-of-Service Multicast Tree problem represents a generalization of the Steiner
tree problem. The input of this (NP -hard) Steiner tree problem is a weighted, undirected
graph G = (V,E) and a set of terminals R ⊆ V . The goal is to �nd a tree T = (V ′, E′)
with minimal weight connecting all terminals.
The Quality-of-Service Multicast Tree (QoSMT) problem also expects a weighted,

undirected graph G = (V,E) with a set of terminals R ⊆ V , but now every terminal
possesses a non-negative rate, and a source s ∈ V that every terminal needs to be
connected to is given. As in the Steiner tree problem, the solution is a tree T = (V ′, E′)
connecting all terminals and the source s with minimal costs, but now the costs of every
edge e ∈ E′ are its own weight multiplied with the highest rate of any node connected
to the source s over a path containing e. Many names and formulations exist for the
Quality-of-Service Multicast Tree (QoSMT) problem such as Multi-Level Steiner tree
problem, Grade-of-Service Steiner tree problem or Multi-Tier Tree problem.
We �rst analyse the best currently known algorithm by Karpinski et al. [KMOZ05]

solving the QoSMT problem, which provides a constant approximation guarantee. It
relies on approximation algorithms for the Steiner tree problem with the special feature of
them being β-convex α-approximation algorithms. We show that β ≥ 1 always holds for
every Steiner tree approximation algorithm, and that every α-approximation algorithm
for the Steiner tree problem is a α-convex (α + ε)-approximation algorithm for every
ε > 0.
We analyse the algorithm of Byrka et al. which provides the lowest known approxima-

tion guarantee of ln(4) + ε for all ε > 0 for the Steiner tree problem with regard to the
characteristic mentioned above, and combine it with the Karpinski-algorithms, obtain-
ing new approximation guarantees of at least 3.769 for the QoSMT problem and at least
1.849 for the special case of the two-rate QoSMT problem, in which the terminals have
exactly two di�erent rates. We think and will also argue that for this Byrka-algorithm
the value of β can not be signi�cantly smaller than the value of α.
Furthermore we present two di�erent component-based LPs for the two-rate QoSMT

problem in order to use them to transfer the component-based approach of Byrka et
al. [BGRS13] for it. The �rst one works with homogenous components (the costs of
all edges belonging to one component are all multiplied with the same rate), and we
show that an integer solution to this LP does provide a 2-approximation for the two-rate
QoSMT problem, but there are graphs for which the computed solution is not optimal.
The second LP, which is not restricted to homogenous components, computes an exact
solution to the two-rate QoSMT problem in the integral case. We concentrate on the
question whether QoSMTs can be approximated arbitrarily close with trees consisting
of components each with at most k terminals. We present a theorem which says that
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this question can be decided on a small subset of graphs. Furthermore we analyse the
approach of Borchers and Du [BD97], who did prove a similar result for the Steiner tree
problem, with regard to the question whether it can be adopted for QoSMTs, and show
the occuring di�culties.

Zusammenfassung

Das Quality-of-Service Multicast Tree Problem stellt eine Verallgemeinerung des Steiner-
baumproblems dar. Bei diesem NP -schweren Problem sind ein gewichteter, ungerichteter
Graph G = (V,E) und eine Terminalmenge R ⊆ V mit dem Ziel gegeben, einen Baum
T = (V ′, E′) ⊆ G zu �nden, der alle Terminals verbindet und dabei minimale Kosten
verursacht.
Für das Quality-of-Service Multicast Tree (QoSMT) Problem existieren viele Namen

und Formulierungen, wie beispielsweise Multi-Level Steiner Tree Problem, Grade-of-
Service Steiner Tree Problem oder Multi-Tier Tree Problem. Dabei ist ebenfalls ein
ungerichteter, gewichteter Graph G = (V,E), sowie einen Terminalmenge R ⊆ V ge-
geben. Jedoch besitzt jetzt auch noch jedes Terminal einen Level, und es ist eine Quelle
s gegeben, an die alle Terminale angeschlossen werden müssen. Gesucht ist nun wieder
ein Baum T = (V ′, E′) mit minimalen Kosten, der alle Terminals und s miteinander
verbindet. Jedoch berechnen sich nun die Kosten jeder einzelnen Kante e ∈ E′ aus ihrem
Eigengewicht multipliziert mit dem höchsten Level eines Knotens, der durch e mit der
Quelle s verbunden wird.
In dieser Arbeit untersuchen wir daher zunächst den besten zur Zeit bekannten Algo-

rithmus für das QoSMT Problem von Karpinski et al. [KMOZ05], der eine konstante Ap-
proximationsschranke von 3,802 besitzt. Dieser benötigt Approximationsalgorithmen für
das Steinerbaumproblem, die zusätzlich sogenannte β-konvexe α-Approximationsalgorithmen
sind. Wir zeigen, dass β ≥ 1 für jeden das Steinerbaumproblem lösenden Approximati-
onsalgorithmus gelten muss, und dass jeder α-Approximationsalgorithmus für das Stei-
nerbaumproblem auch ein α-konvexer (α+ε)-Approximationsalgorithmus für jedes ε > 0
ist.
Wir untersuchen den Algorithmus von Byrka et al. [BGRS13], der die niedrigste bisher

bekannte Approximationsschranke von ln(4) + ε für alle ε > 0 für das Steinerbaumpro-
blem aufweist, auf diese oben genannte Eigenschaft und setzen ihn in den Karpinski-
Algorithmus ein. Dabei erhalten wir neue Approximationsgüten von 3,769 für das allge-
meine QoSMT Problem und 1,849 für den Spezialfall des zwei-Raten-QoSMT Problems,
in dem jedes Terminal genau eine von zwei verschiedene Raten r1 und r2 besitzt. Wir
zeigen auÿerdem, dass für den Byrka et-al.-Algorithmus β und α immer nahezu identisch
sind.
Auÿerdem präsentieren wir zwei verschiedene komponentenbasierende LPs für das

Zwei-Raten-QoSMT Problem, die dem Zweck dienen sollen, den komponentenbasierten
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Ansatz von Byrka et al. [BGRS13] auf das Zwei-Raten-QoSMT Problem zu übertra-
gen. Eines davon arbeitet mit homogenen Komponenten (die Kosten aller Kanten einer
Komponente werden mit derselben Rate multipliziert), und wir zeigen, dass es sich bei
ganzzahligen Ergebnissen dieses LPs um eine 2-Approximation, im Allgemeinen jedoch
nicht um eine exakte Lösung für das Zwei-Raten-QoSMT Problem handelt. Das zweite
LP, welches nicht nur auf homogene Komponenten beschränkt ist, liefert im ganzzahligen
Fall einen exakten Wert. Wir beschäftigen uns mit der Fragestellung, ob wir QoSMTs
mit Bäumen approximieren können, die aus Komponenten mit je höchstens k Terminals
bestehen. Wir präsentieren einen Satz, der eine starke Einschränkung der Graphenklasse
bietet, auf der wir diese Frage beantworten müssen. Weiterhin überprüfen wir den An-
satz von Borchers und Du [BD97], die ein ähnliches Resultat für das Steinerbaumproblem
bewiesen haben, auf seine Eignung für diese Fragestellung, und zeigen Schwierigkeiten
dabei auf.
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1 Introduction

Motivation The Quality-of-Service Multicast Tree (QoSMT) problem appears in the
design of low-cost network structures connecting a transmitter with its receivers. Usually,
these receivers have a great variety in Quality-of-Service requests (e.g. video streaming
with di�erent resolutions), and sending data with higher quality is more expensive than
sending data with lower quality. Therefore it would cost far too much to send the
highest quality to every receiver. It is therefore advantageous to construct a network
respecting this variety in Quality-of-Service requests. Apart from this application in
network design, multi-scale representations of graphs can be used in applications such as
geography or network visualization, where users want to examine complex (street, river,
or abstract) networks at di�erent levels of detail. Here, the cost models the stability of
the visualization. [AAS+18].

Related work The QoSMT problem is based on the Steiner tree problem (de�nition 2.1),
which is one of the most fundamental problems in Computer Science and Operations
Research [BGRS13]. Solving it is NP -hard as was shown by Karp [Kar72]. In fact,
Chlebík and Chlebíková [CC08] have proven that it is already NP -hard to approximate
it with an approximation factor ≤ 96/95 .
A simple 2-approximation algorithm is the terminal-spanning-tree algorithm [GP68]. It

is also a good example for an algorithm computing a so-called k-restricted tree (de�nition
2.3) for k = 2. Borchers and Du [BD97] have shown that k-restricted trees can be used
to arbitrarily approximate Steiner trees (we will cite this result in theorem 2.4).
Several further algorithms working with k-restricted trees habe been published, culmi-

nating with an 1+ln(3)/2+ε < 1.55-approximation algorithm by Robins and Zelikovsky
[RZ05], ε > 0 being arbitrary small.
For many years, this was the best known approximation algorithm for the Steiner tree

problem until Byrka et al. [BGRS13] published an LP-based (consider De�nition 3.7 for
the LP) algorithm with an approximation guarantee of ln(4) + ε for every ε > 0. This
algorithm will be one of the main subjects in this work, as we analyse it with regard to
its use as a blackbox algorithm in the Karpinski et-al.-algorithm.
The QoSMT problem (de�nition 2.2) generalizes the Steiner tree problem. Several

names, formulations and similiar problems exist for the Quality-of-Service Multicast Tree
(QoSMT) problem, such as Multi-Level Steiner tree problem [AAS+18], Grade-of-Service
Steiner tree problem [XLD01] or Multi-Tier Steiner tree problem [Mir96].
Charikar et al. [CNS04] were the �rst to present an approximation algorithm with a

constant approximation factor for an unbounded number of rates. Their approximation
factor of (e · α) < 4.212 for α being an approximation guarantee for the Steiner tree
problem and e being Euler's number was later improved by Karpinski et al. [KMOZ05].
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They presented an 3.802-approximation-algorithm for the Quality-of-Service Multicast
Tree problem for an unbounded number of rates and an 1.960-approximation-algorithm
for the special case that there are only two rates, further called two-rate QoSMT problem.
An algorithm without a constant approximation factor, but with very small approxi-

mation guarantees for small numbers of rates was published by Ahmed et al. [AAS+18].
Using the algorithm of Byrka et al., they provide an approximation guarantee < 1.848
for two levels in the Multi-Level Steiner tree problem.

Our contribution First, we study β-convex α-approximation algorithms (de�nition 2.5)
which are a special group of Steiner tree approximation algorithms. These are needed as
subroutines in the algorithms of Karpinski et al. [KMOZ05]. We prove that for every β-
convex α-approximation algorithm, β ≥ 1 always holds; and that every α-approximation
algorithm for the Steiner tree problem is an α-convex α+ ε-approximation algorithm for
every ε > 0.
Using these theorems on the algorithm of Byrka et al. [BGRS13], we improve the

approximation guarantees to at least 3.769 for the QoSMT problem and at least 1.849
for the two-rate QoSMT problem. As these new results are just obtained for the highest
possible β, a natural question would be whether this value could be proven to be smaller,
providing another improvement on the bounds given above. We provide an argument for
this being not possible if we want our α to be as good as it can be.
As this approach will not bring any better results, we concentrate on component-based

LPs for the two-rate QoSMT problem in order to use the iterative randomized-rounding
technique introduced by Byrka et al. [BGRS13]. The �rst one (de�nition 4.2) works
with homogenous components (the costs of all edges belonging to one component are all
multiplied with the same rate), and we show that an integer solution to this LP does
provide a 2-approximation for the two-rate QoSMT problem, but there are graphs for
which the computed solution is not optimal. The second LP (de�nition 4.7), which is
not restricted to homogenous components, computes an exact solution to the two-rate
QoSMT problem in the integral case. We concentrate on the question whether every
QoSMT can be approximated arbitrarily close with a tree consisting of components each
with at most k terminals. We present a theorem which says that this question can be
reduced to a small subset of graphs. Furthermore we consider the approach of Borchers
and Du [BD97] who have proven a similar result for the Steiner tree problem with regard
to the question, whether it can be adopted for our question, and show the occuring
di�culties.

Organization The rest of this work is organized as follows. First, we will introduce
some basic de�nitions in Section 2. We will then take a look at the results of Karpinski
et al. [KMOZ05] for solving the Quality-of-Service Multicast Tree problem in Section 3.1,
and after that analyse how we can use the algorithm of Byrka et al. [BGRS13] in order
to improve the results presented before in Section 3.2. In Section 4 we present our LPs
and focus on the question whether the Quality-of-Service Multicast tree problem can be
approximated with components each containing only a given limited number of terminals,
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trying to solve the QoSMT problem with the approach of Byrka et al. [BGRS13]. Finally,
we will conclude and give a perspective about what could be studied in future works based
on the results presented in this work.
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2 De�nitions

We �rst introduce some basic de�nitions.

De�nition 2.1 (Steiner tree problem [BGRS13]). Given an undirected graphG = (V,E),
an edge cost function c : E → Q+

0 and a subset of terminals R ⊆ V , the Steiner tree
problem asks for a tree S with minimal costs spanning all terminals, this means c(S) :=∑

e∈S c(e) is minimal over all trees in G spanning R. This tree S is called a Steiner tree,
the non-terminal nodes v ∈ V \R are called Steiner nodes. The weight c(S) is called opt.

Solving the Steiner tree problem is NP -hard as was shown in 1972 by Karp [Kar72].
In fact, it is already NP -hard to approximate it with an approximation factor ≤ 96/95
[CC08]. Note that in order to obtain a minimal Steiner tree S, it is possible that S
contains several Steiner nodes. It is also reasonable to replace any G = (V,E) we are
searching a Steiner tree for with its metric closure G′ = (V ′, E′). We obtain G′ by
chosing V ′ = V , completing G and replacing our weight function c with c′ : E′ → Q+

0 ,

c′(e = {v, u}) := min{c(f) | f is u-v-path }

It is obvious that the weights of an optimal Steiner tree S in G and an optimal Steiner
tree S′ in G′ are equal. For any tree T ′ in G′, a tree T in G with c(T ) ≤ c′(T ′) can
be found by simply taking all the paths which gave their weight to those e′ ∈ T ′ and
removing as many as needed to get a tree. Furthermore, if there is an edge in G, the
corresponding edge in G′ can not have a greater weight, so if there is a Steiner tree in
G, it surely is a terminal connecting tree with at most equal weight in G′. Therefore,
without loss of generality we can consider metric graphs only.
The Steiner tree problem can be generalized to the Quality-of-Service Multicast Tree

problem.

De�nition 2.2 (Quality-of-Service Multicast Tree problem - QoSMT problem [KMOZ05]).
Let G = (V,E) be a graph, l : E → Q+

0 be a function which represents the weight of
every edge and r : V → Q+

0 be a function which assigns a rate to each node. Let
{r0 = 0, r1, r2, . . . , rN} be the �nite range of r and de�ne Si to be the set of all nodes
with rate ri. Furthermore we presume that ri < rj for i < j. The Quality-of-Service
Multicast Tree problem asks for a minimum-cost subtree S ⊆ G, spanning a given source
node s and the nodes in Si for all i ≥ 1, all referred to as terminals. Let re be called the
rate of edge e in S, which is de�ned as the maximum rate of any node in the component
of S\{e} which does not contain the source s. The cost of an edge e in S is c(e) = l(e)·re.
The tree S is called a Quality-of-Service Multicast Tree and, as in the Steiner tree case,
non-terminal nodes are referred to as Steiner nodes.
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Note that the rate of the source s is not determined. But, without loss of generality,
it is valid to and we will do treat s as a node with the highest rate rN , as it has to be
connected to all rN -nodes with this rate. Therefore, we will treat s as a terminal also.
A special case of the QoSMT problem is the two-rate QoSMT problem. In this case,

the nodes of G have only two rates, so the range of the rate function r : V → Q+
0 can be

denoted by {r0 = 0, r1, r2}.

Using the same argument as before, we can always work with the metric closure of G.
By studying a graph with just one rate r1 = 1 and treating the source s as an r1 node, it
is obvious that the QoSMT problem is a generalization of the Steiner tree problem and
hence also NP -hard. Therefore, assuming P 6= NP , no algorithm time-bounded by a
polynomial exists which calculates a minimal QoSMT for any given graph G.

Karpinski et al [KMOZ05] published an approximation algorithm for the QoSMT prob-
lem with a constant approximation guarantee, regardless of the number of rates. In their
algorithm, they use Steiner tree approximation algorithms with a special feature. In
order to understand this feature, we need a few more de�nitions.

De�nition 2.3 (k-restricted [KMOZ05]). A given Steiner tree S is called full if every
terminal v ∈ R is a leaf. It follows that every Steiner node contained by S is an internal
node. Given any Steiner tree S′, it can be decomposed into a set of full components by
breaking S′ up at its internal terminal nodes.
A given Steiner tree is called k-restricted if every component obtained by this decom-

position has at most k leafs (and, equivalent to that, at most k terminals). Since we are
working with complete graphs, for every graph G = (V,E) with optimal Steiner tree S
and every k ∈ N≥2, an optimal k-restricted Steiner tree S′ can be found, possibly using
some edges and Steiner nodes in more than one component. Its weight c(S′) is denoted
by optk, the weight c(S) of the optimal tree is denoted by opt.
We then denote the k-Steiner ratio as ρk, which is de�ned as follows:

ρk := max
G=(V,E)

{
optk
opt

}
where the maximum is taken over all instances of the Steiner tree problem.

By considering the metric closure of a star graph with one Steiner node, k+1 terminals
and an edge e with weight 1 between the Steiner node and every terminal, we easily
observe that ρk is greater than 1 for every k ∈ N≥2. But as was shown by Borchers and
Du [BD97], ρk gets arbitrarily close to 1 for su�ciently large k.

Theorem 2.4 (Borchers and Du [BD97]). For a given k ∈ N≥2, let r and s be the
non-negative integers saitsfying k = 2r + s and s < 2r. Then

ρk =
(r + 1) · 2r + s

r · 2r + s
≤ 1 +

1

blog2 kc
.1
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Knowing this, we can de�ne β-convex α-approximation algorithms, a subgroup of
approximation algorithms that solve the Steiner tree problem. We will need them as
blackbox algorithms that we can plug into the algorithm of Karpinski et al. [KMOZ05].

De�nition 2.5 (β-convex α-approximation algorithm [KMOZ05]). A Steiner tree heuris-
tic A is called a β-convex α-approximation algorithm if there existm ∈ N≥2 and λi ∈ R≥0
for i = 2, . . . ,m, so that

β =

m∑
i=2

λi and α =

m∑
i=2

(λi · ρi),

is ful�lled as well as the weight l(A) of the tree computed by A is upper bounded by

l(A) ≤
m∑
i=2

(λi · opti).

Note that the last equation guarantees that A is also an α-approximation algorithm
for the Steiner tree problem.
The following result provides the lower bound 1 for β for every Steiner tree approxi-

mation algorithm.

Theorem 2.6. Let A be a β-convex α-approximation algorithm, then β ≥ 1.

Proof. We presume β < 1. Since A is an α-approximation algorithm, we know that
α > 1. There exist an m ∈ N≥2 and λi, i = 2, . . . ,m, so that

β =
m∑
i=2

λi and l(A) ≤
m∑
i=2

(λi · opti).

Now we can pick any n ∈ N and a metric complete graph G with n nodes in which all
nodes are terminals (obviously such a graph exists) and look at an optimal Steiner tree S
on it. As every component in S consists of exactly one edge and the adjacent two nodes,
it is obvious that opt2 = opt3 = · · · = opt. So the length l(A) of the computed tree for
G′ is upper bounded by

m∑
i=2

(λi · opti) =
m∑
i=2

(λi · opt) = opt ·
m∑
i=2

λi = opt · β < opt

This is impossible. Therefore β ≥ 1.

This analysis is sharp. To see this, consider the Minimal Terminal Spanning Tree
algorithm which computes a terminal spanning tree T for a Graph G (as stated before,
since we are studying metric and complete graphs, this does always exist). T is an optimal
2-restricted Steiner tree for G, because it is the optimal tree where no component contains
more than two nodes and every component contains only one edge (the metric structure

1Note that Borchers and Du worked with a di�erent de�nition of ρk. Our ρk is their 1/ρk.
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guarantees us that this is su�cient). Also we know that ρ2 = 2 by inserting k = 2 into
theorem 2.4. Therefore, the MST heuristic is a 1-convex 2-approximation algorithm.
Note that, given any α-approximation algorithm, it is not clear if such a β exists.

However, this changes if we add a small amount to α.

Theorem 2.7. Given any α-approximation algorithm A and any ε > 0, the following is
true: A is a β-convex (α+ ε)-approximation algorithm for β = α.

Proof. Let A be an α-approximation algorithm which solves the Steiner tree problem
and ε > 0. Choose an integer k, so that

ρk ≤
(
1 +

ε

α

)
.

Set m = k, λk = α and λi = 0 for all i = 2, . . . ,m− 1. Then

l(A) ≤ α · opt ≤ α · optk ≤ λk · optk =
m∑
l=2

λl · optl,

and
m∑
l=2

λl = α,

m∑
l=2

λl · ρl = λk · ρk ≤ α ·
(
1 +

ε

α

)
= α+ ε.

Therefore A is an α-convex (α+ε)-approximation algorithm for the Steiner tree problem.
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3 Combining the algorithms of Byrka et

al. and of Karpinski et al.

In this chapter we �rst take a look at the algorithms given by Karpinski et al. [KMOZ05]
for solving the QoSMT problem for both two rates and an unlimited number of rates.
We then analyse how we can use the algorithm of Byrka et al. [BGRS13] to improve the
results obtained with the aforementioned algorithms.

3.1 The algorithms of Karpinski et al.

The two-rate QoSMT problem

Theorem 3.1 ([KMOZ05]). Let A1 be an α1-approximation algorithm and A2 be a β-
convex α2-approximation algorithm both solving the Steiner tree problem. Then there
exists an algorithm Karpinski1 (consider algorithm 1) which computes a QoSMT spanning
all terminals with an approximation ratio of

max

{
α2, max

r∈Q>0

α1 ·
α1 − α2r + βr

α1 − α2r + βr2

}
1

for any graph G = (V,E), l : E → Q+
0 , two non-zero rates r1 < r2 and terminal sets

Si ⊆ V of rate ri for i ∈ {1, 2}.
Note here that r describes the value r1/r2. Not knowing which rates our graph G has,

we have to assume the worst case. However, if we know which rates our input graph G
has, we can re�ne the approximation guarantee for the speci�c problem.

According to Karpinski et al. [KMOZ05], the best approximation guarantee they could
achieve for Karpinski1 was 1.960 + ε.

The QoSMT problem for an unlimited number of rates

Theorem 3.2 ([KMOZ05]). Let A be a β-convex α-approximation algorithm. Then
there exists an algorithm Karpinski2 (consider algorithm 2, which can be derandomized
keeping its characteristics) which computes a QoSMT spanning all terminals with an
approximation ratio of

min
a∈R>1

(
(α− β) · a− 1

ln(a)
+ β · a

ln(a)

)
2

1The exact formula from Karpinski et al. is di�erent from this due to the fact that there is a factor of
opt written in the second term over which the maximum is taken. By considering the last few lines
in the corresponding proof, it is obvious that this opt was wrongfully duplicated.
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Algorithm 1: Karpinski1(G = (V,E), l : E → Q+
0 , source s ∈ V , non-zero rates

r1 < r2, terminal sets Si ⊆ V of rate ri, i ∈ {1, 2})
1 ST1 = A1(G,T = (s ∪ S1 ∪ S2))
2 T2 = A1(G,T = (s ∪ S2)
3 G′ = contract T2 into s
4 T1 = A2(G

′, T = (s ∪ S′1))
5 ST2 = T1 ∪ T2
6 return minimum cost tree among ST1 and ST2

for any graph G = (V,E), l : E → Q+
0 , with an unbounded number of rates.

Algorithm 2: Karpinski2(G = (V,E), l : E → Q+
0 , source s ∈ V , n ∈ N non-

zero rates r, positive number a

1 r = random([0, 1])
2 for i = 1, . . . , n do

3 round ri up to the next number in the set {ay, ay+1, ay+2, . . . }
4 form new sets S′i of the same new rate
5 T = ∅
6 for r′i 6= 0 in decreasing order do
7 Ti = A(G,R = S′i ∪ s)
8 T = T ∪ Ti
9 contract Ti into s

10 return T

According to Karpinski et al. [KMOZ05], the best approximation guarantee they could
achieve for Karpinski2 was ≤ 3.802.

3.2 An analysis of the Byrka et al. algorithm

We will now insert the algorithm of Byrka et al. [BGRS13] into Karpinski1 and Karpinski2.

A �rst result The algorithm of Byrka et al., further called B, can have an approximation
guarantee of ln(4) + ε, where we can choose ε > 0 at will. Without knowing anything
else, we can say the following:

Theorem 3.3. Set ε > 0. Then there exists an (ln(4)+ε)-convex (ln(4)+ε)-approximation
algorithm solving the Steiner tree problem.

2Karpinski et al. took the minimum not over all a > 1 but over all a > 0. As this could (and would
in our case) result into negative approximtion guarantees, we think that this was just forgotten to
mention.
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Proof. We know that B can have an approximation guarantee of ln(4)+ε/2. It follows by
theorem 2.7, that B can be an (ln(4)+ ε/2)-convex (ln(4)+ ε)-approximation algorithm.
We can choose a higher convexity as we wish. The claim follows.

We can now insert B into Karpinski1 and Karpinski2.

Theorem 3.4. Set ε > 0. Then there exists an ((ln(4) · 4)/3 + ε) - approximation
algorithm which solves the QoSMT for every graph G = (V,E) with edge weights l : E →
Q+

0 and with a two-rate function r : V → Q+
0 .

Proof. We combine the theorems 3.1 and 3.3. By setting A1 = A2 = B, we know that
there exists an algorithm A which solves the QoSMT problem and has an approximation
guarantee of

max

{
ln(4) +

ε · 3
4
, max
r∈Q>0

(
ln(4) +

ε · 3
4

)
·
(
ln(4) + ε·3

4

)
−
(
ln(4) + ε·3

4

)
· r +

(
ln(4) + ε·3

4

)
· r(

ln(4) + ε·3
4

)
−
(
ln(4) + ε·3

4

)
· r +

(
ln(4) + ε·3

4

)
· r2

}

=

(
ln(4) +

ε · 3
4

)
·max

{
1, max
r∈Q>0

1

1− r + r2

}
=

(
ln(4) +

ε · 3
4

)
· 4
3

=
ln(4) · 4

3
+ ε.

The factor ((ln(4) · 4)/3) is smaller than 1.849, which is clearly smaller than 1.960 + ε
which was the best approximation guarantee obtained by Karpinski et al. [KMOZ05].
We will now prove a similar result for an unlimited number of rates.

Theorem 3.5. Let ε > 0. Then there exists an (ln(4) · e+ ε) - approximation algorithm
which solves the QoSMT for every graph G = (V,E) with edge weights l : E → Q+

0 and
with an arbitrary number of rates r : V → Q+

0 .

Proof. The proof is quite similar to the proof of theorem 3.4. We combine the theorems
3.2 and 3.3. It follows that there exists an algorithm A which solves the QoSMT problem
and has an approximation guarantee of

min
a∈R>0

(((
ln(4) +

ε

e

)
−
(
ln(4) +

ε

e

))
· a− 1

ln(a)
+
(
ln(4) +

ε

e

)
· a

ln(a)

)
= min

a∈R>0

((
ln(4) +

ε

e

)
· a

ln(a)

)
= (ln(4) +

ε

e
) · min

a∈R>0

(
a

ln(a)
).

The minimum is at a = e, e being Eulers number, and we obtain the following:
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(
ln(4) +

ε

e

)
· min
a∈R>0

(
a

ln(a)

)
= ln(4) · e+ ε.

To compare this result to the one obtained by Karpinski et al. [KMOZ05] it is notable
that ln(4) · e < 3.769. We can see that this is smaller, but there is not a big di�er-
ence compared to 3.802. To obtain a better bound on the approximation guarantee of
Karpinski1 (algorithm 1) and Karpinski2 (algorithm 2), we tried to analyse the algorithm
of Byrka et al. [BGRS13] in order to get a better β.

Can β be improved? Unfortunately, a re�ned analysis of B brought no better bound
on β. In the following we give an argument (yet no proof) why this is the case.
We �rst have to know how B works. Therefore, we have to take a look at the LP used

to solve the Steiner tree problem it is based on.

De�nition 3.6 (directed component cut relaxation - DCR). Let G = (V,E) with edge
weights c : E → Q+

0 be an instance of the Steiner tree problem, R ⊆ V be the subset of
terminals and r ∈ R an arbitrary root node.
We then de�ne a directed component C as follows: Consider a subset R′ ⊆ R and pick

a sink node r′ ∈ R′ which is denoted as sink(C), then the component is the minimal
Steiner tree between R′ where all edges are directed to r′.
We denote the set of all components obtained this way by Cn and say that a component

C crosses a set U ⊆ R\{s} if at least one terminal in C is inside U and sink(C) is outside.
The set of components crossing U is denoted by δ+Cn

(U). The cost of a component C is
denoted by c(C).
The LP relaxation is then:

min
∑
C∈Cn

c(C) · xC

with the following constraints:∑
C∈δ+Cn

(U)

xc ≥ 1 ∀U ⊆ R \ {r}, U 6= ∅

xC ≥ 0 ∀C ∈ Cn.

As the cardinality of Cn is exponential, we have far too many constraints to solve our
LP in polynomial time. Therefore, an approximative LP is needed. We achieve this by
allowing only a polynomial account of components to be used.

De�nition 3.7 (k-DCR). For any k ∈ N≥2, Ck ⊂ Cn describes the set of components
with at most k terminals, and for a given cut U ⊆ R \ {r} the set of componets in Ck
crossing U is denoted by δ+Ck

(U). The LP relaxation is then:

min
∑
C∈Ck

c(C) · xC
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with the following constraints:∑
C∈δ+Ck

(U)

xc ≥ 1 ∀U ⊆ R \ {r}, U 6= ∅

xC ≥ 0 ∀C ∈ Ck.

Note that this LP is equivalent to DCR with the additional constraint that xC = 0 for
every component C with more than k terminals.

The following result will make sure that k-DCR provides a (1+ε)-approximation solu-
tion to DCR if we choose our k big enough, and that we can solve k-DCR in polynomial
time for every given k.

Theorem 3.8 ([BGRS13]). DCR is a relaxation of the Steiner tree problem, and k-DCR
is a relaxation of the k-restricted Steiner tree problem. In the integral case, an optimal
solution to the (k-restricted) Steiner tree problem can be gathered from an ILP solution to
(k-)DCR by taking every component C where xC = 1 is true and putting them together.
It follows from theorem 2.4 that, in this integral case, for the cost c(S) of an optimal
Steiner tree and the cost c(S′) of an optimal k-restricted Steiner tree obtained this way,
c(S′) ≤ ρk · c(S′).
This holds for fractional solutions. This means that for every G being an instance of

the Steiner tree problem, for the cost optf of an optimal fractional solution to DCR and
the cost optf,k of an optimal fractional solution to k-DCR, the following holds:

optf,k ≤ ρk · optf .

Also, for every instance G of the Steiner tree problem and any given k ∈ N≥2, a
fractional solution to k-DCR can be found by an algorithm which is time bounded by a
polynomial.

The algorithm of Byrka et al. works iteratively and contracts one component per
iteration, so the set of components changes. By Ct we denote the set of all components
and by xt the approximative solution to DCR at the begin of iteration t. As we solve
DCR only approximately, we denote each solution to it as (x,C) where x denotes the
solution vector and C the set used in the approximation. Now we have everything we
need to take a look at B (algorithm 3).

Theorem 3.9 ([BGRS13]). B is a randomized ln(4)+ε approximation algorithm for the
Steiner tree problem. It can be derandomized keeping its approximation guarantee.

It is not known if the approximation guarantee given in 3.9 is sharp. Therefore, all
following statements on a lower bound for β are only assumptions (because a better
approximation guarantee would directly result in a better β according to theorem 2.7).
But we will now argue that for the best approximation guarantee α (which probably is a
α′+ε factor for any ε > 0), the di�erence between α and β is nearly zero. The reason for
this lies in the approximation of DCR. In order to get the best approximation guarantee
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Algorithm 3: Byrka(G = (V,E). terminals R ⊂ V , edge weights c : E → Q+
0 ,

source r ∈ R, ε > 0

1 for t = 1, 2, . . . do
2 compute a (1 + ε)-approximate solution (xt, Ct) to DCR w.r.t. G
3 sample one component Ct′, each component C has probability

xtC/
∑

C′∈Ct xtC′ to be chosen
4 contract Ct into its sink sink(Ct)
5 if only one terminal remains then
6 return dti=1C

i′

we can, we have to solve k-DCR for a very big k. So we have to assume that components
with k terminals are contracted and therefore taken into the resulting tree. We know
that, in order to have a β-convex α-approximation algorithm, we need an m ∈ N≥2 and
λi ∈ R≥0 for i = 2, . . . ,m, so that

β =
m∑
i=2

λi, α =
m∑
i=2

λi · ρi and the length of the tree l(B) ≤
m∑
i=2

λi · opti.

As stated before it is most likely that k-components are used, which means that we could
not estimate the costs of our solution in terms of optl for any l ∈ 2, . . . , (k − 1). This
would mean that all λl are zero for every l ∈ 2, . . . , (k − 1). It follows that

β =
m∑
i=k

λi and β ≤ α =
m∑
i=k

λi · ρi ≤ ρk ·
m∑
i=k

λi = ρk · β.

As ρk is nearly 1 for a big k, this means that β and α are nearly the same.
We assume in our statement that we want to have the best possible approximation

guarantee �rst and analyse the corresponding β second. An interesting question (and not
further discussed in this work) would be if we could get a better β if we would willingly
choose a low k.
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4 Component-based LPs for the two-rate

QoSMT problem

The intention of this section was to adapt the approach of Byrka et al. for the two-rate
QoSMT problem. We therefore present two di�erent component-based LPs solving it,
the �rst one works only with components which contain edges of only one rate, and
we will prove that it is therefore only approximative. The second one is exact, but the
corresponding fractional linear program cannot prohibit a forbidden combination of com-
ponents. We will also give a reasonable assumption that a QoSMT can be approximated
with k-restricted trees, but we can not prove it.

4.1 An approach to the two-rate QoSMT problem with

homogenous components

We now introduce an LP which computes a tree with minimal weight for every instance
G of the QoSMT problem due to the condition that every component contains only edges
of one rate. Therefore, we have to modify our de�nition of a component.

De�nition 4.1 (directed homogenous two-rate component). Let G = (V,E), l : E → Q+
0

and r : V → Q+
0 be an entity of the two-rate QoSMT problem and R ⊆ V be the subset

of terminals. De�ne a directed homogenous two-rate component C as follows: Consider a
subset R′ ⊆ R and note whether it is treated as a r1 or a r2 component (denoted by rC
which is 0 in case of r1 and 1 in case of r2). Pick a sink node r ∈ R′ which is denoted as
sink(C). Then the component is the minimal QoSMT between R′ where every terminal
v is seen as given in rC , and all edges are directed to r. Note that this means that C
contains only edges of the rate given in rC .
Similar to the Steiner tree case, we denote the set of all components obtained this way

by C∗n and say that a component C crosses a set U ⊆ R \ {s} if at least one terminal
of C is inside U and sink(C) is outside. The set of components with rC = r2 is denoted
as C∗n,2, the set of components crossing a cut U is denoted by δ+C∗n(U). The cost of a

component C is denoted by c(C), in which the rate factor is already considered.

We can now modify DCR:

De�nition 4.2 (homogenous two-rate DCR). Let G = (V,E) with edge weights l : E →
Q+

0 , rates r : V → Q+
0 and a given source s ∈ V be an entity of the two-rate QoSMT

problem and R ⊆ V be the subset of terminals, S2 ⊂ R be the terminals with rate r2.
The LP relaxation then is:

min
∑
C∈C∗n

c(C) · xC
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with the following constraints:∑
C∈δ+

C∗n
(U)

xc ≥ 1 ∀U ⊆ R \ {s}, U 6= ∅

∑
C∈δ+

C∗n,2
(U)

xc ≥ 1 ∀U ⊆ S2 \ {s}, U 6= ∅

xC ≥ 0 ∀C ∈ C ′n.

Note that the only real di�erence between DCR and homogenous two-rate DCR (apart
from the fact that they expect di�erent input classes) is the second constraint, which
assures that a �ow of 1 connects every r2 terminal with the source s.

This LP can easily be adapted for more than two rates by adding more constraints
similar to the second for each additional rate. We now have to show that homogenous
two-rate DCR ful�lls what we claimed before.

Theorem 4.3. For every instance of the two-rate QoSMT problem, the integral homoge-
nous two-rate DCR computes a QoSMT T which is minimal due to the condition that
every component in T contains only edges of one rate (we will refer to this subproblem
as homogenous QoSMT problem).

Proof. Let G = (V,E) with edge weights l : E → Q+
0 , rates r : V → Q+

0 and a given
source s ∈ V be an entity of the two-rate QoSMT problem and R ⊆ V be the subset of
terminals, S2 ⊂ R be the terminals with rate r2.
We will show �rst that every homogenous QoSMT S for G can be converted into

an integral solution of homogenous two-rate DCR with the same costs. Take every
component C in S and set xC = 1 for the corresponding xC , all other xC′ get assigned
the value 0, so the costs of both S and the minimized LP-function are equal. We still
have to show that the constraints are ful�lled: As all variables have the value 0 or 1, that
is trivial for the last constraint. Now consider any U ⊆ R \ {s}, U 6= ∅. Take a terminal
r ∈ U . There exists a path in S from r to s, therefore there has to be an edge e in S
which crosses U . We know that e is part of a component C in S, so C ∈ δ+C∗n(U) and
xC = 1, therefore the �rst constraint is ful�lled. The ful�llment of the second constraint
can be shown exactly the same way.
The other way around, if we have a feasible solution for homogenous two-rate DCR,

we can obtain a graph T connecting all terminals to the source and connecting all r2
nodes with an r2 path to the source with equal costs by building T exactly out of the
components (with the same rate) where xC = 1. To show that such a r−s path exists for
every terminal r ∈ R, we consider components crossing {r}. Due to the �rst constraint,
there exists at least one which we will call C. Therefore we have a r − sink(C)-path
in T . If sink(C) is not already s, we can now iterate this process, each time looking at
the cross between the already discovered terminals and the rest, and will always �nd a
component contained in T crossing this cut. As G is �nite and every cut really contains
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the one before, this will result in taking a component C ′ with s = sink(C ′) after a �nite
number of iterations. Therefore, r and s are connected, and such a path exists. We can
show that a r-s-path with rate r2 exists for every r ∈ S2 exactly the same way by using
the second constraint. We know that T , if it is no QoSMT itself, contains a homogenous
QoSMT S so that c(S) < c(T ).
As homogenous two-rate DCR calculates a minimal solution, the claim follows.

We will now provide some bounds on how good the approximation of homogenous
two-rate DCR is. Therefore we will �rst introduce some notations.

De�nition 4.4 (homogenous QoSMT (k-) ratio). Take any k ∈ N≥2 and denote for every
G being an entity of the two-rate QoSMT problem the weight of an optimal homogenous
QoSMT S∗ by optHom. We then denote by

ρ∗ := max
G=(V,E)

{
optHom
opt

}
,

the homogenous QoSMT ratio, which is the worst factor between an optimal QoSMT S
and an optimal homogenous QoSMT S∗ for all graphs G being entities of the two-rate
QoSMT problem.
We similarly denote the homogenous QoSMT k-ratio by

ρ∗k := max
G=(V,E)

{
optHom,k

opt

}
where optHom,k denotes the value of the optimal homogenous QoSMT which contains
only components with ≤ k terminals.

It is clear that ρ∗k ≥ ρ∗ for every k ∈ N≥2. To ensure that homogenous two-rate
DCR produces an optimal solution to the two-rate QoSMT problem, ρ∗ = 1 would be
necessary. Unfortunately, that is not the case, which is proven together with some other
bounds on ρ∗ and ρ∗k in the following theorem.

Theorem 4.5. Let k ∈ N≥2. For the homogenous two-rate QoSMT ratio ρ∗ and for the
homogenous two-rate QoSMT k-ratio ρ∗k, the following holds:

6

5
≤ ρ∗ ≤ 2;

6

5
≤ ρ∗k ≤ ρk · 2.

Paticularly this implies that ρ∗ and every ρ∗k are �nite and therefore exist. Yet the
two-rate QoSMT problem can not be solved exactly using homogenous components only.

Proof. We will at �rst proof 6/5 ≤ ρ∗. Consider the metric closure G′ of the graph G
given in �gure 4.1a with one source, one Steiner node, one r1 and one r2 terminal, in
which the Steiner node is connected to every other node with weight 1. Set r1 = 1 and
r2 = 2. Then the weight c(S) of the optimal QoSMT S for G′ (note that S is equivalent
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to G) is 5. If we only allow homogenous components, every minimal tree we can obtain
(an example is given in �gure 4.1b) has weight 6, which can be veri�ed due to the small
number of nodes by looking at all possible homogenous QoSMTs. Therefore,

ρ∗ = max
G=(V,E)

{
optHom
opt

}
≥ 6

5
.

a rate r1 b rate r2

s source

(a) The edges in G are black, all with weight
one, the grey edges form together with the
black edges the metric closure G′ of G.

a rate r1 b rate r2

s source

(b) A minimal homogenous QoSMT on G′.
The grey component is treated as r1 com-
ponent, the black one as r2 component.

Fig. 4.1: A counterexample for ρ∗ < 6/5.

To show that ρ∗ ≤ 2 we consider an arbitrary graph G being an entity of the QoSMT
problem with the two rates r1 and r2, and any minimal QoSMT S for G. We can describe
the weight of S by c(S) = r1 · c(S1)+ r2 · c(S2), Si each being the induced subgraph of S
containing exactly all edges of weight ri. We can now construct a homogenous graph S∗

by �rst taking every component in S2 as r2-component and then adding every component
in S as r1-component. So every terminal in S is connected to the source with at least an
r1 path and every r2 terminal is connected to the source via an r2 path, as there exists
such a path in S2. Note that we now may have more edges and components than we
might need, but that is not important, because S∗ contains a homogenous QoSMT in
every case. Then we can say that

ρ∗ ≤ c(S∗)

c(S)
=
r1 · c(S1) + r1 · c(S2) + r2 · c(S2)

r1 · c(S1) + r2 · c(S2)
≤ r1 · c(S1) + r2 · c(S2) + r2 · c(S2)

r1 · c(S1) + r2 · c(S2)
≤ 2.

Let us come to the homogenous k-ratios. Since ρ∗k ≤ ρ∗ for every k ∈ N≥2, 6/5 ≤ ρ∗k
follows immediately.
It is left to show that ρ∗k ≤ 2 ·ρk. We again consider any graph G being an entity of the

QoSMT problem with the two rates r1 and r2, and any minimal QoSMT S for G. Like
above, we �nd a homogenous QoSMT S∗ so that c(S∗) ≤ 2 · c(S). If we consider each
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component C in S∗ of its own, we �nd a k-restricted tree TC , so that c(TC) ≤ ρk · c(C),
which connects all terminals in C, as this problem can be seen as a Steiner tree problem.
By giving each TC the rate of the corresponding component C and combining all these
trees together into one k-restricted tree T , we obtain an upper bound c(T ) on the weight
of the optimal k-restricted homogenous QoSMT. We can now argue that

ρ∗k = max
G=(V,E)

{
optHom,k

opt

}
≤ c(T )

c(S)
≤ ρk · c(S∗)

c(S)
≤ ρk · 2.

We think both homogenous two-rate DCR and the proven bounds for ρ∗ and ρ∗k are
of independent interest, especially since the bounds are not sharp and it is possible that
smaller upper bounds can be proven. Nevertheless theorem 4.5 shows that homogenous
two-rate DCR is useless for our purpose, as we need an exact solution (or at least a
(1 + ε)-approximation for any ε > 0) for our two-rate QoSMT problem. So, to have
the possibility to get a useable component-based LP, we have to allow components with
mixed edge rates.

4.2 Approximating QoSMTs with k-restricted trees

We give consideration to the results proven above by introducing a new class of compo-
nents.

De�nition 4.6 (directed two-rate component). Let G = (V,E), l : E → Q+
0 and r : V →

Q+
0 be an entity of the two-rate QoSMT problem and R ⊆ V be the subset of terminals.

De�ne a directed two-rate component C as follows: Consider a subset R′ ⊆ R, pick a sink
node r ∈ R′ which is denoted as sink(C), and note for every v ∈ R′ whether it is treated
as an r1 or an r2 node (denoted by rC,v which is 0 in case of r1 and 1 in case of r2),
observing the following rules: The rate of all r2 nodes has to be r2 in every component,
and for a component C, vC,sink(C) ≥ vC,v′ has to be true for every terminal v′ ∈ C. Then
the component is the minimal QoSMT between R′ where every terminal v′ is seen as
given in rC,v′ , and all edges are directed to r.
We denote the set of all components obtained this way by C ′n and say that a component

C crosses a set U ⊆ R \ {s} if at least one terminal of C is inside U and sink(C) is not.
The set of components crossing U is denoted by δ+C′n

(U). The cost of a component C is

denoted by c(C), where the assignments of the terminals in C are considered.
We say that two components C and C ′ violate each other if there exists a terminal

v ∈ R, so that v = sink(C), v ∈ C ′ \{sink(C ′)} and vC,v > vC′,v (in other words, C �ows
into C ′, but they treat the rate of v di�erently and therefore C ′ cannot support the �ow
coming from C). We denote the set of pairs {C,C ′} violating each other by K ′n.

We can now introduce another LP for the two-rate QoSMT problem.
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De�nition 4.7 (two-rate DCR). Let G = (V,E) with edge weights l : E → Q+
0 , rates

r : V → Q+
0 and a given source s ∈ V be an entity of the two-rate QoSMT problem,

R ⊆ V be the subset of terminals and S2 ⊂ R be the terminals with rate r2.
The LP relaxation then is:

min
∑
C∈C′n

c(C) · xC

with the following constraints:∑
C∈δ+

C′n
(U)

xc ≥ 1 ∀U ⊆ R \ {s}, U 6= ∅

xC ≥ 0 ∀C ∈ C ′n
xC + x′C ≤ 1 ∀{C,C ′} ∈ K ′n.

Note that in the integral case, the last constraint ensures that no con�icts emerge in
how a node should be seen.

As before homogenous two-rate DCR, we can generalize two-rate DCR for any number
of rates, using the same de�nition of components violating each other. We will now show
that two-rate DCR really is a relaxation of the two-rate QoSMT problem.

Theorem 4.8. For every instance of the two-rate QoSMT problem, the integral two-rate
DCR computes a minimal QoSMT T .

Proof. Let G = (V,E) with edge weights l : E → Q+
0 , rates r : V → Q+

0 and a given
source s ∈ V be an entity of the two-rate QoSMT problem, R ⊆ V be the subset of
terminals and S2 ⊂ R be the terminals with rate r2.
We will show �rst that a minimal QoSMT S for G can be converted into an integral

solution of two-rate DCR with the same costs. Similarly to the proof of theorem 4.3 we
take every component C in S and set xC = 1 for the corresponding xC , all other xC′ get
assigned the value 0, so the costs of both S and the minimized LP-function are equal.
To show the ful�llment of the �rst constraint in the proof of theorem 4.3 we have not
used that we have homogenous components, so we can just repeat the steps to obtain
the same result. It is to show that the last constraint is ful�lled. If we take a look at
our graph G, it is obvious that no pair of components in it can violate each other. So
for every pair {C,C ′} ∈ K ′n, only one C or C ′ can be used. This proves the ful�llment
of the last constraint.
The other way around, if we have an optimal solution for homogenous two-rate DCR,

we can obtain a graph T connecting all terminals to the source and connecting all r2
nodes with an r2 path to the source with equal costs by building T exactly out of the
components (with the same rate for each node and edge) where xC = 1. To show that an
r-s-path exists for every terminal r ∈ R, we can just follow the corresponding steps in the
proof of theorem 4.3, as we have not used the fact that our components are homogenous
there. It is left to show that every terminal with rate r2 ( 6= s) is connected to the source
with an r2 path in T . We therefore take a look at the u-v-path f given by the seqence of

24



components Ci and their sinks between r and s. The �rst sink s1 has to be treated as an
r2 node in the component containing r, because of our rules for the treatment of sinks.
So r is connected to s1 with a rate r2 path. Now s1 is again part of a component C2 as
a terminal (if it is not already s), and because we know that C1 and C2 cannot violate
each other, s1 has to be treated as an r2 node in C2. We can now iterate this process
over all components f is part of, arguing that every edge e ∈ f has rate r2. The claim
follows.

Theorem 4.8 proves that we can now try to repeat all the steps done by Byrka et al.
[BGRS13] to use two-rate DCR instead of DCR to obtain an approximation algorithm
for the two-rate QoSMT problem. But there are some problems.
At �rst, we have to note that two-rate DCR is a very weak LP as any fractional solution

can use violating components (e.g. by setting xC = xC′ = 1/2 for a pair {C,C ′} ∈ K ′n),
which leads to edge rates which are hard to use or not useful at all. So it would be
preferable to �nd another, stronger LP.
The second problem is that given a mixed component, it is not clear how the contraction

has to be done, because we have to assign a rate to the new node v (a statement, which
is true not only for two-rate DCR, but for every component-based LP exactly solving
the QoSMT problem). If we assign the highest rate, we will think that we can connect
r2 terminals to v, even if the connection would have led over an r1 node (and therefore
not be allowed in the former graph). On the other hand, if we assign the lower rate to
v, we can not connect any r2 terminals (even if we could have done that before), which
can lead to higher costs which would have been unnecessary. A possible solution to this
problem could be not to contract the component C but to assign its variable xC a �x
value of 1 before solving the LP again.
The last problem (which we study in the rest of this section) is that we do not know

if we can approximate QoSMTs with k-restricted trees. This would be necessary, since
(like in the DCR case) we have far too many components and constraints to solve the
LP in polynomial time.
Therefore, to procede, we will introduce a notation describing how good the approxi-

mation with k-components is.

De�nition 4.9 (QoSMT k- ratio). Let k ∈ N≥2. We then denote the k-restricted QoSMT
ratio by

ρ′k := max
G=(V,E)

{
optk
opt

}
where optk denotes the value of the optimal QoSMT which contains only components
with ≤ k terminals.
As we can use all components, the homogenous as well, it follows that ρ′k ≤ ρ∗k for

every k ∈ N≥2. Therefore it follows from theorem 4.5 that all ρ′k are �nite.

As stated before, we do not know if ρ′k gets as close to 1 as we need. It is therefore
necessary to �nd a proof or a counter example. The following theorem shows that we
can restrict our search to a small subgroup of graphs.
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Theorem 4.10. Take any k ∈ N≥2. Then the following equation holds:

ρ′k = max
G1=(V,E)

{
optk
opt

}
= max

G′2=(V,E)

{
optk
opt

}
where the �rst maximum is taken over all graphs G which possess a full optimal QoSMT
S and second the maximum is taken over all graphs G′ which are the metric closure of
a tree T whichs leafs are coincident with the terminals. Note that T is also an optimal
QoSMT for the corresponding G′.

Proof. We will prove the following three inequalities:

ρ′k ≤1 max
G1=(V,E)

{
optk
opt

}
≤2 max

G′2=(V,E)

{
optk
opt

}
≤3 ρ′k.

We will refer to the various maxima as the originial (being the maximum in de�nition
4.9), the �rst and the second one (the ones used in this theorem, depending on their
order in the equation). Now take any k ∈ N≥2.
We will prove the �rst inequality by showing that, given any graph G with optimal

QoSMT S, we can construct a k-restricted tree S′, so that

c(S′) ≤ max
G1=(V,E)

{
optk
opt

}
· c(S).

Take S and deconstruct it into its components Ci. Assign a source si to every component
Ci by picking the node that connects Ci to the rest of the tree containing the source and
treat each node as if it would have the highest rate it is connected with to s in S. Now
we have a number of independent graphs all having a full QoSMT. We take an optimal
k-restricted T ′i for each Ci. By putting them together (we know that the edge rates still
ful�ll their requirements because of our treatments) we obtain a tree S′, so that

c(S′) ≤ max
G1=(V,E)

{
optk
opt

}
·
∑
i

c(Ci) = max
G1=(V,E)

{
optk
opt

}
· c(S).

We will prove the second inequality similarly to the �rst by taking any graph G =
(V,E) which has a full Steiner tree S and show that we can construct a k-restricted tree
S′, so that

c(S′) ≤ max
G′2=(V,E)

{
optk
opt

}
· c(S).

We de�ne a new graph G′ = (V ′, E′) being the metric closure of S. Note that V ′ ⊆ V ,
E′ ⊆ E, S is an optimal QoSMT for G′ and every edge e ∈ E′ has the same or less
costs in E′ as in E. We can now �nd an optimal k-restricted tree T in G′. This is also
a terminal connecting k-restricted tree S′ in G, so with that c(S′) ≤ c(T ), and we know
that

c(S′) ≤ c(T ) ≤ max
G2=(V,E)

{
optk
opt

}
· c(S).

The third inequality follows directly out of the fact that we take a maximum in both
cases, and every graph considered in the second maximum is also considered in the
original one.
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As the same problem has already been solved for the Steiner tree case by Borchers and
Du [BD97], an implied question is:

Can the approach of Borchers and Du [BD97] be used to prove that ρ′k gets arbitrarily
close to 1? To outline an answer for this question, we will �rst take a look at the
structure of the proof of theorem 2.4. To prove the inequality

ρk ≤
(r + 1) · 2r + s

r · 2r + s

they �rst reduce the problem to the case where they have a given graph G with a full
Steiner tree S (similar to our theorem 4.10). All further work is performed on S and all
edges used in the constructed components are edges in S. Then they transform S into a
full binary tree S′ with the same weight in which all leaves (and therefore terminals) are
in the last layer or the one before. For r and s being the non-negative integers satisfying
k = 2r + s, a number of r · 2r + s k-restricted trees Tl for l = 1, . . . , r · 2r + s is created,
each of them spanning all terminals. The Steiner tree S′ is disjointed into a number of
disjoint paths, and it can be shown that the weight of every path is counted only 2r times
in the sum c(L1)+ c(L2)+ · · ·+ c(Lr·2r+s) where each Li is a subgraph of Ti, so that the
part of Ti disjoint to Li covers S

′ exactly once. They draw the conclusion that

c(L1) + c(L2) + · · ·+ c(Lr·2r+s) ≤ 2r · c(S)

and therefore there has to be a d ∈ {1, . . . , r · 2r + s} so that

c(Ld) ≤
2r

r · 2r + s
· c(S).

Combining the previos results, they conclude

c(Td) = c(S) + c(Ld) ≤ (1 +
2r

r · 2r + s
) · c(S)

and have therefore found a k-restricted tree Td so that c(Td)/c(S) ≤ ρk ful�lls the
inequality which had to be proven.
As can be seen this proof relies on the fact that we know the exact edge costs in S′

and how often these edges are used in the k-restricted trees. If we now take a look at
our corresponding k-restricted QoSMT problem, we do know what the edge costs in the
optimal QoSMT are, but if we just construct a big number of k-restricted trees we can
not say how the edges are treated in these. This is getting problematic at the point
where it can happen that the rate r1 nodes which could be connected to the source over
a low-cost r1 path are the docking points for components containing nodes with rate
r2. But in order to obtain a bound on ρ′k which gets arbitrarily close to 1, we can not
pre-estimate the costs of these edges being treated as r2 edges, therefore we think that
this approach leads only to the ρ′k ≤ 2 · ρk factor proven above.
We will substantiate this vague argument on shortcutting trees. We obtain these

shortcutting trees as follows: Let G = (V,E) be a complete, metric instance of the
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r2 tree T1 r1 tree T2 r2 tree T3 . . .

. . .

optimal QoSMT S

source s ∈ T1

r2 tree TN

Fig. 4.2: An example for the di�culty in using the shortcutting approach for �nding low-cost
k-restricted QoSMTs.

Steiner tree problem with an optimal Steiner tree S. We know that for a minimal
terminal-spanning tree T ′, c(T ′) ≤ 2 · c(S) holds. To prove this, take a look at the
Steiner tree S. By doubling it, we obtain a cycle S′ connecting all terminals, so that
c(S′) = 2 · c(S). The cycle S′ provides an order (v1, v2, . . . , v|T |) on the set of terminals
according to their order in S′ and starting with an arbitrary terminal v1. (Note that
S′ may contain several Steiner nodes which are not contained in the sorted terminal
set.). We know that S′ contains a v1-v2-path f . By replacing f with the edge {v1, v2}
we obtain a new cycle with costs at most c(S′). By iterating this process, we obtain
a cycle S∗ including only terminals and with costs c(S∗) ≤ 2 · c(S). We know that
S∗ contains a terminal-spanning tree, so a minimal terminal-spanning tree T ′ has costs
c(T ′) ≤ c(S∗) ≤ 2 · c(S) [GP68]. Now in order to create a k-restricted shortcutting tree,
we start at an arbitrary terminal v ∈ T . Now we take v and the next (k−1) terminals in
the cycle S′ as terminal leafs for a component C and make a shortcut from C to the next
node v′ in S′. This procedure is iterated until all terminals are part of the constructed
k-restricted tree. It is possible that we just started at a point where many shortcut edges
have a high cost compared to the other ones. We handle this case by repeating this
procedure for every possible starting terminal r ∈ R and taking a result with the lowest
costs. We think (but have not proven) that this shortcutting approach would result in
an upper bound bk ≥ ρk for the k-Steiner ratio, so that bk is getting arbitrarily close to
1.
To outline why shortcutting can not be used to prove that ρ′k gets arbitrarily close to

1, we consider the metric closure G of the full tree (which is its own QoSMT S) given
in �gure 4.2. This tree contains several separated subtrees, each containing k terminals
of only one rate. The r1-subtrees are connected to the rest with an edge with very high
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costs. Now if we try to use our shortcutting-approach, we always shortcut between an
r1 and an r2 node. So the high-costing edges are all used with rate r2. If the rate-ratio
r2/r1 is very high, the cost-di�erence between S and the computed tree is also very high.
This demonstrates our statement made before.
We have pointed out the di�culty in adapting the approaches for proving bounds on

ρk to ρ′k. But note that our example is no counterexample for our assumption that ρ′k
gets arbitrarily close to one, as we could connect the r1-subtrees to the nearest r2 node
with rate r1. So it could be possible to work with one of the approaches mentioned above
if a good criterion would be found when to separatly handle r1-nodes and when not to.
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5 Conclusion and future work

An important aspect of this work was the question whether the algorithm of Byrka et
al. [BGRS13] could be used together with the algorithms of Karpinski et al. [KMOZ05]
in order to obtain better approximation guarantees on the QoSMT problem. We have
shown that we can use every Steiner tree approximation algorithm as a β-convex α-
approximation algorithm, answering the question if we can combine these two algorithms,
and obtained the slightly improved bounds of at least 3.769 for the QoSMT problem and
at least 1.849 for the the two-rate QoSMT problem. Another question was if this upper
bound on β could be improved. We argued why this should not be possible if we want
the algorithm to be a β-convex (ln(4) + ε)-approximation algorithm for ε > 0 as small
as possible and if the analysis given by Byrka et al. [BGRS13] is sharp. An interesting
question would be if this changes for a willingly higher ε.
In order to use a component-based approach to �nd approximation algorithms for the

(two-rate) QoSMT problem, it would be good if QoSMTs could be arbitrarily approxi-
mated with k-restricted trees. We have shown that this is not the case if all components
in the k-restricted tree are homogenous. An outstanding question is whether we can
approximate QoSMTs with k-restricted trees using components with mixed edge-rates.
We have shown that this can be proven or refuted only using graphs which are the metric
completion of their own full QoSMT. We further pointed out the di�culties in adapting
approches for proving a similar result for ρk in Steiner trees. In order to avoid these
di�culties, good criteria for deciding whether to treat a speci�c group of r1-terminals
independently in advance would be needed. Additionally we presented two component-
based LPs for the QoSMT problem.
In order to use the randomized rounding approach of Byrka et al. [BGRS13] for the

QoSMT problem, another strong component-based LP would be needed. To �nd such
an LP is an open problem and an interesting subject for future work.
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