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Abstract
This thesis introduces the Clustered Dial-a-Ride problem, which isNP -hard. In practice,
the Clustered Dial-a-Ride problem occurs in the domain of public transportation in
rural areas. Every village is represented by one cluster. A restriction of the structure
of allowed solutions yields a fixed parameter algorithm whose parameter represents the
size of the clusters. This makes the Clustered Dial-a-Ride problem solvable faster in
practice than the original Dial-a-Ride problem. It turns out that the restriction on the
set of solutions does in many realistic cases not play a role. In order to decide whether a
specific instance allows the restriction, a classifier is presented. Experiments show that
the classifier becomes more accurate the wider the villages lie apart. The classifier’s
recall is above 80 percent for instances with six passengers and a mean distance of eight
kilometers between the villages.

Zusammenfassung
Diese Arbeit führt das Clustered Dial-a-Ride Problem ein, welches NP -schwer ist. In der
Praxis taucht das Clustered Dial-a-Ride Problem bei der Umsetzung von öffentlichem
Nahverkehr im ländlichen Raum auf, wobei Ortschaften durch Cluster abgebildet werden.
Durch eine Einschränkung der erlaubten Lösungen wird ein Festparameter-Algorithmus
möglich, dessen Parameter die Größe der Cluster ist. Damit ist das Problem in der
Praxis schneller lösbar als das traditionelle Dial-a-Ride Problem. Experimente zeigen,
dass die Einschränkung der Lösungsmenge in vielen realistischen Fällen keine relevante
Rolle spielt. Um zu entscheiden, ob eine gegebene Instanz eine solche Einschränkung
erlaubt, wird ein Klassifikator präsentiert. Der Klassifikator wird akkurater, je weiter
die Ortschaften auseinanderliegen und erreicht eine Trefferquote von über 80 Prozent für
Instanzen mit sechs Passagieren und mittleren Abständen von acht Kilometern zwischen
den Ortschaften.
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1 Introduction

Fig. 1.1: A traditional bus line
through villages. The red lines
indicate walking distances of cus-
tomers.

Bus stops are lousy. Often, they must be reached by
foot. Sometimes, one feels insecure waiting at night for
the bus. Always, standing at a bus stop is wasted time,
which becomes even more inconvenient if the weather
becomes unfriendly. In the city, these aspects are not as
severe as in villages: The density of bus stops is higher,
therefore walking distance is reduced. There are lights
and other people around. And bus stops in the city
are highly frequented, so the waiting time is not that
long. Nowadays, villages are often connected to the
cities with traditional bus lines using normal bus stops,
even though the thoughts above indicate that standard
bus lines are not well suited to be used in less densely
populated areas.
This thesis suggests a different mode of public trans-

portation in rural areas. As mentioned above, bus stops
are often only located on the main street of the village
and the walking distance to the bus stop can be very
long. Figure 1.1 shows such a situation. The bus line
goes from south to north and the colored dots indicate
source and destination of the customers. The red lines
show the distance they have to walk to and from the
bus stops. However, it is not helpful to increase the
density of stops inside the villages. The buses had to
drive detours through the village to serve those stops
even if no customer is waiting there. Due to the small
number of customers this is supposed to happen often.
The complementary means of transport solves these

problems: By using taxi cabs, the customers can be
fetched at their doorstep and brought exactly to their
destination. No time is wasted at the bus stop and
there is no need to walk through raining weather. But
taxi cabs are nor as cheap as public buses neither are
they very environment-friendly because they carry only
one passenger at once.
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Fig. 1.2: The optimal route to
serve the customers from the
doorstep. It is only slightly longer
than the traditional bus line.

It turns out that a combination of both means of
transport is sensible: The customers are served not at
static bus stops but rather at their precise venues, yet,
unlike taxi cabs, other passengers may board or un-
board during the journey. Naturally, the customers do
not want to experience big detours to fetch or deliver
foreign people, but they may accept little deviations of
the shortest path. An instance is shown in Figure 1.2.
The customers are identical to Figure 1.1, but the ve-
hicle serves the customers directly at their venues. The
detours experienced by the the customers are small:
The yellow customer is on board while fetching the vio-
let customer in the southern village. The extra journey
for the blue dot in the northern village is still more
neglectable.
The task of finding a route that minimizes the sum of

all detours to serve a set of customers is called the Dial-
a-Ride problem. Unfortunately, this problem is known
to be computationally hard because it is a close rela-
tive to the well known Traveling Salesperson Problem.
This and other kinsmen are glanced onto in Section 2.
There exist slow exponential time algorithms to solve
the Dial-a-Ride problem which are described in Chap-
ter 3. However, there is one observation which makes
the case at hand special: All customers are located in-
side villages. Intuitively, the cheapest tour is supposed
to serve the villages along the main roads. This prop-
erty would make the problem easier than the general
variant. But the intuition is wrong. There are cases
in which the optimal tour does not use the main road
connecting the villages unidirectionally. Instead, it goes
back and forth between the villages. In order to grasp
and describe such instances the Clustered Dial-a-Ride
problem is introduced in Chapter 4. In the same chap-
ter, the central contribution of the thesis can be found:
A classifier which decides for a given set of customers
and villages if the optimal tour is unidirectional. Chap-
ter 5 explains how the algorithms presented in the two
proceeding chapters were implemented technically and
Chapter 6 examines realistic examples and evaluates
the classifier. The last section of the thesis concludes
the findings made in the preceding sections and gives
proposals to future work.
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2 Related Work

The introduction used the term Dial-a-Ride problem, which is the central algorithmic
topic of this thesis. This chapter locates the Dial-a-Ride problem in its surrounding
literature.
When talking about the Dial-a-Ride problem, one must take care because there are

many different variants discussed in literature. The most basic of these variants resembles
the Traveling Salesperson Problem (TSP) very strongly [31]. In a (euclidean) TSP
instance, there are several points in the plane. The task is to find a roundtrip through
all points that is as short as possible. This roundtrip must not contain any junctions
or branches. The problem is very hard to solve and it remains hard even if only a
simple path (not a roundtrip) is wanted. A small modification of the TSP is to organize
the points in ordered pairs. For every pair, an order is defined in which both points
of the pair must be visited. This variant of the TSP is the simplest representative of
the Dial-a-Ride problem. It is also called TSP with Pickup and Delivery (TSPPD).
The goal remains to find the shortest path containing all points, but the visiting order
must be maintained. This problem can be generalized to the TSP with Precedence
Constraints, where the order of some points (not necessarily pairs) must be obeyed [2].
Figure 2.1 shows a normal TSP instance and a TSPPD instance. It is easy to see that
the route solving the TSP instance does not solve the TSPPD instance. In 2008, Irina
Dumitrescu et. al. tackled this variant of the Dial-a-Ride problem with an ILP based
branch-and-cut algorithm [13]. Their algorithm is able to solve instances of up to 35
pairs in several minutes, more than doubling previous results [23]. But this TSPPD
setting neither does punish detours of customers nor obeys the number of seats in the
vehicle. These two additional constraints, however, occur relatively early in the history
of the TSP. In 1959, the father of linear programing, Georg Dantzig, formulated the
Vehicle Routing Problem (VRP) [8]. The task is to deliver a certain amount of goods
from a fixed depot to customers. He introduced a capacity constraint for the vehicles
and solves the problem with ILP, too. The paper also mentions that other constraints
and target functions can be incorporated easily into the VRP. For example, one can add
a last-in-first-out requirement on the tour. In this setting, every unloading must occur
in reverse order of the loading. Jean-François Cordeau solves this kind of problem with
a branch-and-bound algorithm [4]. On the other hand, it is also possible to ask for the
first-in-first-out property where the first customer to be fetched must also be the first
customer to be delivered. Ideas to solve this problem can be found in work by Carrabs
et al. [3].

Most of the publications mentioned above focus on the transportation of goods. They
mainly optimize and restrict the feasible routes in a way that allows efficient cargo deliv-
ery. If paying customers are to be transported, then other aspects become important and
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Fig. 2.1: The left image shows a TSP instance and a route visiting all points. In the right image,
the points are paired. For every pair, the left point has to be visited before the right
point. The tour of the TSP can not be used to visit the points in the correct oder.

the problem is refered to as Dial-a-Ride problem. In 1980, Harilaos Psaraftis augmented
the well known Held-Karp algorithm [18] for solving the TSP problem so that it is able
to compute an optimal route for the Dial-a-Ride problem with sophisticated constraints
and target functions [29]. Originally, his implementation obeys a capacity constraint
and punishes detours as well as waiting times of the customers. It also incorporates an
order in which the customers requested the service. This ensures that no customer waits
forever if other customers at more convenient locations keep posting requests. How-
ever, it is easy to change constraints and target function in Psaraftis’ algorithm without
making it more complex. In Section 3.2, this algorithm is explained in detail. It is the
fundamental algorithm of this thesis.
The aforementioned variants of the TSP problem, including the Dial-a-Ride problem,

share the property that they are NP-hard. A reduction from TSP (which is known to be
NP-hard [15]) to the TSPPD works as follows: Take a TSP instance and duplicate every
vertex so that the original vertex and its copy reside in the same location. For every such
pair any feasible route must visit the original vertex first, then its copy. Every tour in
the TSPPD instance can be transformed into a TSP tour by deleting the copy vertices.
In the optimal TSPPD tour no detours are made because every pair of vertices is visited
consecutively. Consequently, the reduction can also be used to show the NP-hardness of
the Dial-a-Ride problem, which incorporates the minimization of detours in its objective
function.
The Dial-a-Ride problem is part of the algorithmic scope of the ride sharing problem.

This problem is characterized by drivers owning vehicles and offering tours between two
locations and customers without vehicles who search a suitable offer to travel to their
destination. Examples for ride sharing platforms are BlaBlaCar [27] and Uber [22]. How-
ever, their applications are different from the Dial-a-Ride or TSPPD problem described
above. The main task of those platforms is to match requests to offers such that the
detours of the offering drivers are not too big. A method to find a good matching is
presented by Geisberger et. al. [16]. Their algorithm is meant to be applied by ride
sharing platforms mainly addressing private drivers wanting to reduce the costs of single
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journeys. On the other side, there are companies like Uber, as well as traditional taxi
companies, which have to assign requests to their vast fleet of vehicles in real time. Often,
these companies operate in metropolitan areas where it is desirable that the customer
is fetched only minutes after posting the request. For these high-demand environments
Alonso-Mora et. al. propose a heuristic matching method [1].
After the matching of offers and requests is done, the actual route is either computed

with an exhaustive search (if the capacity of the vehicle is small), or heuristics are
used [1]. Another way to find a route after the matching has been done is to agree on
one single destination [26]. This use-case is motivated by touristic points of interests.
Several tourists traveling to a city together agree on one venue in the city where they
all start their sightseeing tour individually.
As can been seen, the Dial-a-Ride problem is only a subproblem of the bigger setting of

ride sharing. However, exact algorithms to find the optimal route once the requests have
been matched to offers are rarely used. In the rural setting of this work, the matching
of requests is done naturally because the village is served by one bus line and for every
customer inside a village it is clear which line to use. If the bus line is replaced by a
more dynamic vehicle, it is still clear which customer has to take which vehicle. This
thesis does not cover changing bus lines during the journey. However, it can be useful to
aggregate customers with many small vehicles to a assembly point where they transfer
to a bigger vehicle. Drews and Luxen [12] examine ride sharing with hops. However,
they pose two limitations on their approach: The hopping stations are pre-defined and
the capacity of the vehicle being regarded is two. It is not clear whether their approach
can be incorporated in the Dial-a-Ride instance considered in this thesis.
As mentioned in the introduction, the goal of this thesis is not only to solve the Dial-

a-Ride problem, but to exploit the fact that all customers are located inside villages.
In other words, the instances to be solved are clustered. The author is not aware of
any existing literature about the Clustered Dial-a-Ride problem. However, there is work
on the clustered version of the traditional TSP problem (CTSP). In CTSP, the points
are partitioned in predefined clusters and all points inside one cluster must be visited
consecutively. Ding et. al. present a genetic algorithm that gives good heuristic results
on CTSP instances [10]. Unfortunately, the optimal TSP tour through a CTSP instance
often does not obey the clusters, so the lengths of the shortest routes of TSP and CTSP
differ in general. Another approach is to find the clusters while computing a good
TSP tour. Schneider et. al allow small deteriorations of the optimal route [30] while
computing natural clusters. However, despite their similar nature to the Dial-a-Ride
problem in rural areas, both approaches are not useful to find exact solutions.
The next section formulates the Dial-a-Ride variant used in this thesis in detail. Then,

three different approaches to solve the Dial-a-Ride problem are presented. The clustered
variant of the Dial-a-Ride problem is covered in Section 4.
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3 The Dial-a-Ride Problem

As shown in the last chapter, the name Dial-a-Ride problem is not unique and there
are many different ways to optimize a route. There are also various ways to limit the
number of feasible routes, for example by defining ordering constraints or introducing
vehicle capacities. This chapter describes the precise nature of the Dial-a-Ride problem
concerned in this thesis. Then, the algorithm developed by Psaraftis [29] is explained
in detail. This algorithm is already very powerful, but its recursive structure has some
disadvantages, especially in storage management. A non-recursive variant is presented
in this chapter, too, which admits a more economic usage of space. The last section of
the chapter consists of a excursion to an ILP formulation of the Dial-a-Ride problem.

3.1 Problem Definition
The central part of all variants of the TSPPD, respectively. Dial-a-Ride problems are
the customers. In literature, there are often called riders. Apart from the riders, a
special person is introduced: the driver conducts the vehicle. A Dial-a-Ride instance
is a triple I = (n, S, [di,j ]). The variable n is the number of riders, S is the number of
seats in the vehicle being used. Every person contributes two points to the instance,
her pickup point and her dropoff point. The exact coordinates of these points are not
relevant but rather the distances between all pairs of points (i, j) play an important role.
They are stored in the distance matrix [di,j ]. Since there are n riders plus one driver,
there are 2n+2 different points. Let m = n+1 be the number of persons in the instance.
Hence, the distance matrix has the size 2m× 2m. Technically, the number n is encoded
in the size of the matrix [di,j ] but stating n explicitly in I makes its relevance clearer.
Similar as in Psaraftis’ work, all points induced by I are ordered in a special way: The
location with index 0 always refers to the starting point of the driver, and the location
with index m is his target point. The pickup point of the first rider has index 1 and the
dropoff point of the first rider has index m + 1. Generally, the pickup point of the ith
rider is found at index i and the corresponding dropoff point at index m+ i. Notice that
the riders are counted starting from 1, since 0 is reserved for the driver. The following
example makes this indexation clear.

Example. Let n = 5, i. e. there are five riders. Then there are 12 points in total
and [di,j ] has size 12×12. The entry d[4, 7] refers to the distance between the pickup point
of the forth rider and the dropoff point of the first rider (since 1 = 7−n+1 = 7−m). On
the other hand, the entry d[4, 9] is the distance between the pickup and dropoff location
of the forth rider.
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A location (of I) is an element from the interval [0, . . . , 2m− 1]. A tour or route T is
a permutation of all locations. Let pT (i) be an indicator variable which is 1 if the ith
step of a tour is a pickup point; steps being counted starting from 1. Analogously, dT (i)
indicates whether the ith step is a dropoff point. Both values can be computed easily:

pT (j) =
{

1 if T [j] < m

0 else
dT (j) =

{
1 if T [j] ≥ m
0 else

= 1− pT (j)

Then kT (i) =
∑i

j=1 pT (j) − dT (j) counts the number of persons inside the vehicle
after the ith step of a route T . The route T is feasible if three conditions are met.
First, it begins with location 0 and ends with location m. Second, for dropoff point d
in T , the corresponding pickup point p = d −m must precede d in T . Third, for every
possible step 1 ≤ i ≤ 2m the inequality kT (i) ≤ S must hold. These constraints
result in the following properties which all feasible routes share (given n > 0): kT (1) = 1
since the driver is boarded first, kT (2) = 2 because the second step must always be a
pickup, kT (2m−1) = 1 follows from the last rider to be dropped and kT (2m) = 0 marks
the end of the journey.

Example. Let T = [0, 1, 2, 6, 3, 7, 5, 4] be a route. Since T consists of 8 steps, m = 4.
After picking the first rider (1), the second rider is picked (2). Then the second rider is
dropped (2 + 4 = 6) and the third rider is picked (3). In the sixth step, the third rider
is delivered (7). On all these journeys rider 1 was in the vehicle and is not dropped until
the last-but-one step (5). Consequently, this route is only feasible if S ≥ 3 since at most
three persons are sitting in the vehicle at once. The route T ′ = [0, 7, 2, 6, 3, 1, 5, 4] is not
feasible because rider 3 is dropped before she was picked.

Finding such a feasible route is easy. The permutation T = [0, 1,m+1, 2,m+2, . . . ,m]
is always allowed. It means that every rider is fetched and delivered one after another,
similar to taxi cabs. But this tour might not be satisfying. Naturally, one wants to
minimize the costs of a tour T . There are three intuitive possibilities to define tour
costs.

Distance being driven by the Driver Given a tour T , the distance driven by the driver
is given by the following summation. Figure 3.1a shows an instance and a tour which
optimizes this costs function.

c(T ) =
2m∑
i=2

d
[
T [i− 1], T [i]

]
Finding the tour minimizing these costs may be useful if the entities being trans-

ported are goods. Humans, on the other side, do not want to travel along huge detours,
especially to serve foreigners. Thus, this criterion is not used in this thesis.
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(a) This route minimizes the distance
driven by the driver. But the first rider
is not happy

0

1 2

6

3

75

4

(b) This route minimizes the total distance
that is driven. No rider is exposed to
detours.

Fig. 3.1: A simple Dial-a-Ride instance with two different routes. The two locations belonging
to the same rider are drawn with identical shapes. The numbers of the locations
reflect the order of the locations inside the distance matrix [di,j ]. In this example, all
distances are euclidean.

Total Person distance driven Unlike the previous costs, the costs based on total dis-
tance contain the sum of all distances experienced by any person inside the vehicle. The
resulting optimal tour can differ compared to the tour optimizing the previous costs, as
depicted in Figure 3.1b. The costs function is realized by multiplying the distance with
the number of persons inside the vehicle after every step:

c(T ) =
2m∑
i=2

kT (i− 1) · d
[
T [i− 1], T [i]

]
This costs function is sensible in the setting of this thesis because it does only punish

detours, but not waiting times of the passengers. Waiting times need not to be taken into
account because the aim of this thesis is to improve bus lines, which naturally have fixed
departure times. Therefore, riders are willing to wait at home until they are fetched,
even if the vehicle sometimes comes several minutes later than normal.

Total distance driven and waiting time The last costs function takes waiting times
into account. The numbers of passengers waiting after step i of a route T is given
by k′T (i) =

∑2m
j=i+1 pT (j). Distance and waiting time are regarded to be equal. This is

not quite accurate because the vehicle does not drive constant speed, but it simplifies
the model without making totally insensible assumptions.

c(T ) =
2m∑
i=2

(
kT (i− 1) + k′T (i− 1)

)
· d
[
T [i− 1], T [i]

]
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Psaraftis uses a deviation of this objective function in his original paper, which also
incorporates a weighting between travel time and waiting time as well as a parameter
describing customers’ preferences. As mentioned above, the second objective function
suits better to the use case at hand. Thus, the total person distance driven objective is
used in the thesis, except stated differently. All three objective functions evolve naturally
from Psaraftis’ original objective function by setting selected parameters to 1 or 0, so
no major modifications need to be made.
The first attempt to find an optimal route is to enumerate all feasible routes. As with

its close relative TSP, this approach is not bearable for the Dial-a-Ride problem. Low
values for the capacity S reduce the number of feasible routes, but it is easy to see that
n! is a lower bound on the number of feasible routes if S = 2: Serving the riders one after
another yields n! possible routes. If S > m, then the exact number of feasible routes is
given by the following theorem:

Theorem 3.1. Given n riders, there are Πn
i=1(2i2 − i) permutations in which every

pickup occurs before the corresponding drop-off.

Proof. The theorem can be proven by induction. For n = 1 there is only one allowed
permutation and 2 · 12 − 1 = 1. The statement is proven for an arbitrary n under the
assumption that it is correct for n− 1. Let N be the number of permutations for n− 1
riders. Since the statement is correct for n − 1 the value for N is N = Πn−1

i=1 (2i2 − i).
Select one arbitrary permutation P of theseN permutations. Then there are

∑2(m−1)−1
i=1 i

possibilities to incorporate an additional rider into P . To see this, fix the pickup of the
new rider to be after the first step of P , which is picking up the driver. Then there
are 2(m − 1) − 1 ways to locate the dropoff in P because the last step cannot be a
dropoff of a rider. In general, if the pickup is fixed to happen after the ith step in P ,
then there are 2(m − 1) − i ways to arrange the dropoff. The sum accumulates the
possibilities for every legal choice of i. Applying Gauss yields

2(m−1)−1∑
i=1

i =
2(m− 1)

(
2(m− 1)− 1

)
2 = (2m− 2)(2m− 3)

2

= 4m2 − 10m+ 6
2 = 2m2 − 5m+ 3 = 2(m− 1)2 − (m− 1).

There are N ways to select P , therefore, there are N ·
(
2(m − 1)2 − (m − 1)

)
ways

to serve an additional rider. Substituting m − 1 with n yields the term N · (2n2 − n).
Since N = Πn−1

i=1 (2i2 − i), the number of feasible routes for n riders is Πn
i=1(2i2 − i).

It holds that Πn
i=1(2i2− i) > n! and n! ∈ 2O(n log n) for sufficiently large n. Thus, every

exponential time algorithm has a better performance than this brute force approach.
Before such an exponential time algorithm is introduced, the definition of the Dial-a-

Ride problem is extended. This extension makes it easier to understand the algorithms
presented in the next section and is necessary in Section 4 where an algorithm is needed
to solve Dial-a-Ride instances partially.
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Fig. 3.2: A feasible (possibly not the best) tour visiting only necessary locations of the partial
Dial-a-Ride instance I ′ = (4, S, [finish,wait, travel,wait], [finish, finish, finish,wait]).

Therefore, the term partial Dial-a-Ride problem is defined. A partial Dial-a-Ride
instance I ′ = (n, S, [di,j ], initial,final) is a quintuple. The first three properties are the
same as in the normal Dial-a-Ride instance I. The new properties initial and final are
both arrays of length n, indexed at 1. Every cell of these two arrays contains one element
of {wait, travel, finish}. These elements encode states of the riders. A wait at location i
means that the rider i is waiting at his pickup point. When the driver i is in the vehicle,
then the ith entry contains a travel. The element finish means that the rider is delivered.
Such arrays are referred to as state vectors or state arrays in this thesis. Given a partial
Dial-a-Ride instance I ′, the goal is to find a cost optimal route through the locations
such that when starting with inital, the states in final evolve. The route still has to start
at location 0 and end at location m.

Example. Let I ′ = (4, S, [di,j ], [finish,wait, travel,wait], [finish, finish, finish,wait] be a par-
tial Dial-a-Ride instance. The inital array states that the first rider is already delivered,
the second and the forth rider are still waiting and the third rider is in the vehicle. The
aim is to find a tour T such that after traveling T the first three riders are delivered and
the forth rider is still waiting. All tours satisfying this property are permutations of the
locations [0, 2, 5, 7, 8] because the other locations must not be touched. A sample tour
is depicted in Figure 3.2.

Of course, the inital and final states must be compatible, otherwise there is no solution.
If wait > travel > finish, this condition can be expressed by initial[i] ≥ final[i] for
every 1 ≤ i ≤ n. Given a normal instance I = (n, S, [di,j ]), its corresponding partial
version is I ′ = (n, S, [di,j ], [wait]n, [finish]n). Although the ordering of the locations and
the state vectors were introduced by Psaraftis, his work did not mention partial Dial-
a-Ride instances. Despite that, his algorithm can natively compute partial Dial-a-Ride
instances without major modifications. Because his algorithm plays an important role
in this thesis, the entire next section is dedicated to his algorithm. However, Psaraftis
did restrict the set of feasible routes by obeying the order in which the riders posted
their requests. For example, the fourth rider that posted a request must be picked up
between steps 4− c and 4 + c where c is a constant. This restriction does not take place
in this thesis because it does not fit to the use case addressed in Chapter 4.
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Fig. 3.3: The left box shows a Dial-a-Ride instance I, the other two boxes show partial in-
stanes I ′ in which the location 0 was moved accordingly. The optimal route for I can
be obtained by comparing the sum of costs of connecting location 0 to the subroutes
and the costs of the subroutes themselves.

3.2 Psaraftis’ Algorithm
When thinking about the partial Dial-a-Ride problem, one can recognize the recursive
nature of the problem. Let I = (n, S, [di,j ]) be a Dial-a-Ride instance. Suppose that the
first i steps of the optimal tour T ∗ are known and the remaining steps are still unknown.
The goal is to find an optimal tour through the remaining locations only. This task
can be represented as a partial Dial-a-Ride instance whose initial state is defined by
the already visited locations. This thought results in an approach to solve I: Guess the
second step of T ∗ (the first is always visiting location 0) and solve the remaining partial
instance recursively. There are n guesses in total, of which the best one is chosen.
An example with two riders is shown in Figure 3.3. The leftmost box shows the original

instance, the two other boxes show the optimal tour with the second step being guessed.
Since partial Dial-a-Ride instances have to start at location 0, too, the location 0 was
artificially moved to location 1 and 2 in the recursion. Every recursive call reduces the
complexity of the problem by one location. As soon as the there is only one location
left, the sub-problem can be solved trivially.
This structure invites to use the dynamic programing technique, where a problem is

reduced to several smaller problems of the same kind, which are computed and than
incorporated into the main result [5]. Psaraftis’ algorithm essentially works as sketched
above, however, it uses a more elegant way to reduce the problem instead of moving
locations around.
The algorithm of Psaraftis is a recursive algorithm. It employs a global associative

map V : [0, . . . , 2m − 1] × {finish, travel,wait}n → R which assigns a rational number to
a combination of a location index and a state array. The number V [l, s] represents the
minimal costs for reaching the final state and then traveling to location m when starting
with the location l and state s.
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Algorithm 1: Psaraftis’ Algorithm to solve the Dial-a-Ride problem
Input: A partial Dial-a-Ride instance I ′
Output: The costs of the cheapest route to solve I ′

1 (n, S, [di,j ], initial,final) = I ′ // Extract partial instance I ′

2 V = new Map() with all entries being initially ∞ // Initialize global map V
3 PsaraftisRecursive(I ′, 0 , initial) // Call the recursive method
4 return V [0, initial]

Example. If final = [finish]n then V [6, [travel] + [finish]n−1] represents the optimal costs
when starting at location 6, then delivering the first rider and than driving to m. Notice
that m < 6 in this instance because all pickups have clearly been visited. The exact
value of V [6, [travel] + [wait]n−1] is 2d[6, 1 +m] + d[1 +m,m], because on the second last
leg of the route, two persons are inside the vehicle and the last leg is only driven by the
driver.

Psaraftis’ algorithm populates V with the correct values such that the properties
above are fulfilled after the completion of the algorithm. At that moment, the costs of the
optimal route for an instance I = (n, S, [di,j ]) is found in the cell V [0, [wait]n]. For partial
instances I ′ = (n, S, [di,j ], initial,final) this value is located in the cell V [0, initial]. The
algorithm consists of two methods. The first method is a wrapper method that starts a
recursion. The second method does the main work and is recursive. These two methods
are shown in detail in Algorithm 1 and Algorithm 2. The two pseudocodes do not repeat
the original algorithm but rather present a modified version which suits better to the
Dial-a-Ride problem investigated in this thesis. The basic idea however was formulated
by Psaraftis [29].
Algorithm 2 works as follows. The first if-statement checks that the current state does

not violate the capacity constraint. The second if-statement abbreviates the calculation
in case the value has already been computed. The third if-statement cancels the recursive
algorithm in case the final state is reached. In this case, the cheapest value is only the
distance of the current location i to the destination of the driver m, which is saved in V .
Otherwise, the computation starts from scratch in the for-loop. The idea is to generate
all states which may follow from i and state, compute their optimal values and select the
successor which yields the minimal costs in combination with i and state. This is done
by filtering all state entries which are not yet finished. For each of those entries a new
location i′ a new state state′ are constructed. The new state advances the respective
rider to the next stage. To this end, the ↓-operator is utilized. It is a shorthand for a
conditional statement and has the following semantic: wait↓ = travel and travel↓ = finish.
Then the recursive calculation is started. At the end of the loop, the best value is saved
in V .
The algorithm always terminates because every recursive call represents a smaller

instance, until the instances are so small that they are trivial to solve. The running
time of the algorithm is O(n23n−1). There are 2n3n−1 + 2 entries in V because there
are 2n+2 locations. Except for locations 0 andm, there are 3n−1 allowed states for every
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Algorithm 2: PsaraftisRecursive(I ′,i,state)
Input: A partial Dial-a-Ride instance I ′, a location index i and a state array state
Output: Costs of cheapest route starting at i with state state, ending at final of I ′

1 (n, S, [di,j ], initial,final) = I ′ // Extract the partial instance I ′

2 k = Count occurrences of waits in state // Does not contain the driver.
3 if k + 1 > S then return
4 if V [i, state] <∞ then return // Value is already cached.
5 if final == state then
6 V [i, state] = d[i,m]
7 return
8 v =∞
9 foreach index, entry ∈ state do

10 if entry == final[index] or entry == finish then
11 continue

// The “:” inside arrays is Phython’s slice notation.
12 state′ = state[: index] + [entry↓] + state[index + 1 :]

13 i′ =
{

index if entry == wait
index +m if entry == travel

// Computing new location.

14 PsaraftisRecursive(I ′, i′, state′)
15 if (k + 1) · d[i, i′] + V [i′, state′] < v then
16 v = (k + 1) · d[i, i′] + V [i′, state′]

17 V [i, state] = v

location because the location fixes the state for exactly one rider. Computing the value
of a location i and a state state needs O(n) steps. The claimed running time follows.
The alert reader may have noticed that the algorithm described as above does not

return the optimal tour, but only the value of the optimal tour. This is typical for
dynamic programs. To obtain the actual optimal tour, a second associative map P is
introduced. This map stores parents of V ’s key values. Every time a value v is stored
in V , the location and state that caused v are saved in P . Thus at the end of the
algorithm P contains pointers. Starting with P

[
0, [wait]n

]
, traversing the pointers and

thereby collecting the locations until the location m is reached yields the actual tour.
The algorithm of Psaraftis’ is the fundamental algorithm of this thesis. However, the

experiments that were conducted are based on another variant of Psaraftis’ algorithm
than described above. This variant and the reasons for using it instead of the original
algorithm are discussed in the next section.
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Fig. 3.4: A complete decision tree for two riders. The numbers on the edges indicate the number
of persons in the vehicle at the time the edge is taken. If S = 2, then the four inner
branches would be pruned and there were only two feasible routes.

3.3 Incremental Variant of Psaraftis’ Algorithm
A natural way to approach the Dial-a-Ride problem is to illustrate the feasible routes
as a decision tree. An example of such a tree for two riders is shown in Figure 3.4. The
capacity S of this instance is ∞. In the first step, the driver can choose which rider to
fetch first. Then he can either pick an additional rider or drop the recently boarded rider
first. Every path in the tree represents a feasible tour. Remember that the locations
are referenced by their indices. Thus, the leaves of such a decision tree must always
contain the driver’s dropoff, which is m. In the example figure m = 3 because there
are two riders. An algorithm that builds and evaluates such a tree would essentially
be a brute force algorithm that enumerates all feasible routes. The number of leaves
is predicted by Theorem 3.1. However, the tree can be compressed since many parts
of the tree are redundant. Consider two vertices with the same depth that share the
same set of predecssors, including themselves. For example, in Figure 3.4 both vertices
of location 4 in the penultimate step have the same set of predecessors, but in different
order. Everything that happens after these two vertices (i.e. to the right of them) is
identical. Therefore, such vertices are merged. The compressed graph of Figure 3.4 is
shown in Figure 3.5. Using the compressed directed acyclic graph, Psaraftis’ algorithm
can be illustrated. It proceeds in a depth-first-search manor through the graph and
computes the values from right to left. Every vertex in the graph is a recursive call. The
parameter i can be found inside the vertex itself and the parameter state can easily be
deduced from the predecessors of the vertex. Every edge is traversed exactly one time
because cached values are reused.
Another possibility is to compute the values from left to right in a breadth-first-search

manor. Starting with the leftmost vertex having value 0, the values of the successors
are computed level-wise until the rightmost vertex is reached. The pseudocode is shown
in Algorithm 3. A huge share of the algorithm is very similar to the original variant.
The main difference is the utilization of a queue to organize the commutated values
instead of using recursion, which results in a different interpretation of the map V . The

17



0

1

2

4

2

1

5

2

4

5

1

5

4

3

1

1

2

2

2

2

1

3

3 3

3

1

2

2

2

2

1

1

Fig. 3.5: The compressed variant of Figure 3.4. Again, the current vehicle load is shown on the
edges. If S = 2, the four paths through the center would not exist.

cell V [l, state] contains the costs that are at most necessary to reach location l and state
vector state. The numbers in V decrease while the algorithm is running and are optimal
by the end of the algorithm. It starts by setting V [0, initial] to 0 and storing it in a
queue. The main for-loop extracts the states from the queue in first-in-first-out order.
For every extracted key all possible succeeding states are generated in the same way
as the recursive variant does. However, infeasible states are discarded at once and only
feasible states enter the queue. The if-condition in line 19 ensures that no location/state-
pair can enter the queue twice. All entries that are removed from Q have their optimal
value already set. The overall optimal value is found in V [m,final]. Notice that the
queue never contains more vertices than the number of maximal vertices in one vertical
layer of Figure 3.4.
The reason why this algorithm is preferred over the algorithm from literature is that

the author finds it more intuitive and better debugable than the original algorithm. Also,
the incremental algorithm seemed to be faster in reality, even if the asymptotic running
times are, of course, identical. This observation is not based on thorough benchmarking
but rather on some quick checks. Another advantage of the incremental algorithm is
that it offers a possibility to save space. While in the original recursive algorithm of
Psaraftis every state must be kept because it may be needed later on, the incremental
version need only keep two layers in the memory at once. If not only the value of the
optimal solution has to be found, than the parents must be saved too, in the same way as
they must be stored in the recursive variant. However, some of the states eventually can
not be reached any more. These states can also be deleted. Thus, when the algorithm is
implemented in a language that supports effective garbage collection, then the advantage
of needing less memory than the recursive variant remains.
Despite these fundamental changes to the original algorithm, the idea stays the same.

Therefore, the term Psaraftis’ Algorithm refers to either of both variants in the remainder
of the thesis. If the exact version is important, it will be stated at that point. Before
turning to the Dial-a-Ride problem in rural areas, a quick excursion is done. The next
section presents an ILP model for the Dial-a-Ride problem.
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Algorithm 3: A variant of Psaraftis’ algorithm. It proceeds in breadth-first-manor.
Input: A partial Dial-a-Ride instance I ′
Output: The value of the best tour to deliver all riders.

1 (n, S, [di,j ], initial,final) = I ′

2 Q = new Queue()
3 V = new Map() with all entries being initially ∞
4 V [0, initial] = 0
5 Q.enqueue[(0, initial)]
6 while Q 6= ∅ do
7 i, state = Q.dequeue()
8 if state == final then
9 V [m,final] = min{V [m,final], V [i, state] + d[i,m]}

10 continue
11 foreach index, entry ∈ state do
12 if entry == final[index] or entry == finish then
13 continue
14 state′ = state[: index] + [entry↓] + state[index + 1 :]
15 k = Count occurrences of waits in state′
16 if k + 1 > S then
17 continue

18 i′ =
{

index if entry == wait
index +m if entry == travel

19 if V [i′, state] ==∞ then
20 Q.enqueue[i′, state′]
21 V [i′, state]′ = min

{
V [i′, state′], (k + 1) · d[i, i′] + V [i, state]

}
22 return V [m,final]
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3.4 Excursion: An ILP for Dial-a-Ride Instances
Linear Programs are a popular technique to tackle optimization problems. If one is able
the formulate the problem using linear inequalities and a linear objective function, an al-
gorithm to solve the problem comes for free. The first algorithm to solve linear programs
is Dantzig’s Simplex algorithm [7] which runs in polynomial time in most cases. Every
Dial-a-Ride instance I can be described as a linear program and the variable values com-
puted by the solving algorithm can be translated into the optimal tour. Unfortunately,
the Simplex algorithm assigns fractional values to variables so that their interpretation
becomes ambiguous. The solution is to force all variables to be integer values. However,
if a NP-hard problem is modeled as such an integer linear program (ILP), then solv-
ing the ILP becomes NP-hard, too. Thus there is little hope to solve the Dial-a-Ride
problem in polynomial time using ILP (assuming P 6= NP ). Even so, the Dial-a-Ride
problem may be one of the problems for which solving the corresponding ILP is faster
or easier than developing and running a combinatorial algorithm.
To check this conjecture and to verify the results of the other algorithms, a program

was written to translate Dial-a-Ride instances I into integer linear models. The program
is written in the Optimization Programming Language [21], a language that creates
models for the IBM ILOG CPLEX Optimization Studio [20]. However, it turned out that
CPLEX needs much more time for solving an instance than the other two algorithms:
While Psaraftis’ algorithm needs only a couple of seconds to solve instances of size n = 8,
CPLEX did not finish after fifteen minutes. Both tests were run on usual desktop
computers. Thus, the ILP implementation can be regarded as pilot study with little
relevance for the remainder of the thesis. The author is aware that sophisticated methods
to improve CPLEX’s (and similar algorithms’) performance exist, but this is not the main
topic of the thesis. Ideas of utilizations of these advanced techniques for the Dial-a-Ride
problem can be found in the work by Dumitrescu et. al. [13] and Cordeau [4].
The remainder of the section presents the integer linear model describing a Dial-a-

Ride problem. It is important to note that in this linear model the driver is considered
to be a rider which means that the rider r = 0 is the driver. Given a Dial-a-Ride
instance I = (n, S, [di,j ]), a linear model can be constructed as follows. Introduce a set
of variables xpick

i,r and a set of variables xdrop
i,r for 1 ≤ i ≤ 2m and 0 ≤ r < m and allow

only values 0 or 1 for every variable. These variables are used to model the optimal
tour. If the solver assigns xpick

i,r = 0, then rider r is picked sometime after the ith step
in the tour. If, on the other hand, xpick

i,r = 1, then the rider is picked at or before step i.
Analogously, xdrop

i,r is interpreted. The consequence is that the position of rider r can be
determined for every fixed step i. If xpick

i,r = 0 and xdrop
i,r = 0 then the rider was not yet

fetched at step i of the tour, if xpick
i,r = 1 and xdrop

i,r = 0, then the rider is in the vehicle
at step i and when both variables are 1, then the rider is already delivered. It is obvious
that this distinction lacks one case: Logically, the case xpick

i,r = 0 and xdrop
i,r = 1 cannot

be interpreted because it contradicts the definition of the variables. This asks for a set
of constraints that guarantee a feasible route. The following inequalities accomplish this
goal. Be reminded that persons are 0-indexed and steps are 1-indexed.
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xpick
i,r ∈ {0, 1} and x

drop
i,r ∈ {0, 1} for all i ∈ [1, 2m], r ∈ [0,m− 1] (3.1)

xpick
i,r ≤ x

pick
i+1,r and xdrop

i,r ≤ xdrop
i+1,r for all i ∈ [1, 2m− 1], r ∈ [0,m− 1] (3.2)

xdrop
i,r ≤ xpick

i,r for all i ∈ [1, 2m], r ∈ [0,m− 1] (3.3)

m−1∑
r=0

xpick
i,r +

m−1∑
r=0

xdrop
i,r = i for all i ∈ [1, 2m] (3.4)

m−1∑
r=0

xpick
i,r −

m−1∑
r=0

xdrop
i,r ≤ S for all i ∈ [1, 2m] (3.5)

xpick
1,0 = 1 and xdrop

2m−1,0 = 0 (3.6)

The first line advises the solver of the linear program that all variables must be either
0 or 1. The second line ensures that once a variable for rider r at a fixed step i is 1, then
it stays 1 for the rest of the tour. In other words, the variables are monotonous with
regard to the step i for fixed r. Equation 3.3 forbids that a rider is dropped without being
picked before. Technically, this would be the case if xpick

i,r = 0 and xdrop
i,r = 1. Therefore,

it is required that the pick variable is always at least as big as the corresponding drop
variable. In Equation 3.4 every step is forced to carry out exactly one action. This can
be imagined as follows. Every time a person is picked or dropped in a feasible tour,
exactly one variable becomes 1. For a certain step i, there must have been i actions
carried out so far. Adding up all variables for this step has to be equal to i, otherwise
too few or too many actions happened so far, which is not allowed. It must also be
guaranteed that the capacity of the vehicle is never violated during the tour. Again,
this task can be regarded step-wise. For a fixed step, the difference of pick-variabes and
drop-variables denote the number of persons in the vehicle at step i, which must not
be greater than S. Equation 3.5 realizes this requirement. The last two inequalities
(Equation 3.6) distinguish the driver from the riders by forcing the driver to be the first
person to be fetched and the last person to be delivered. To illustrate the interaction of
these equations, an example with two riders and one driver is given in Figure 3.6. It can
be seen that the assignment of the variables fulfill the equations and induce a feasible
route. The complexity of the model so far is O(m2) variables and O(m2) constraints.

As mentioned earlier, it is easy to find a feasible route without an objective function.
Indeed, CPLEX produces feasible routes very fast if the objective function is not stated.
Unfortunately, the variables introduced above are not sufficient to state the desired ob-
jective function. Therefore, more variables are defined that are only needed to formulate
the objective function. The long term aim is to define a variable x(u,v),r being 1 iff
person r was in the vehicle at the time the vehicle drove from location u to location v.
Using this variable, the objective function can be stated with Equation 3.7.
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Person Variable i = 1 i = 2 i = 3 i = 4 i = 5 i = 6

Driver
xpick

i,0 1 1 1 1 1 1
xdrop

i,0 0 0 0 0 0 1

Rider 1
xpick

i,1 0 1 1 1 1 1
xdrop

i,1 0 0 0 1 1 1

Rider 2
xpick

i,2 0 0 1 1 1 1
xdrop

i,2 0 0 0 0 1 1

Location of Vehicle 0 1 2 4 5 3

Equation 3.4 1 2 3 4 5 6
Equation 3.5 1 2 3 2 1 0

Fig. 3.6: A feasible assignment of the xpick
i,r and xdrop

i,r variables. The route induced by this
assignment is: pick 0, pick 1, pick 2, drop 1, drop 2, drop 0. The last two lines
illustrate the referenced constraints.

min
∑

(u,v)∈[0,2m−1]2

m−1∑
r=0

x(u,v),r · d[u, v] (3.7)

The matrix [di,j ] is that of the instance I. When a connection (u, v) is never used in a
tour, the variable x(u,v),r is 0 for every rider and the edge is not included in the objective
value. The tuple (u, v) will be abbreviated as edge e in the remainder of the section.
This remainder explains how x(u,v),r is realized.
Let e ∈ [0, 2m − 1]2 be an edge between two locations. Then the value 1 should be

assigned to the binary variable xi,e if the edge e is used directly after the ith step. In
Figure 3.6 the edge (2,4) is taken between steps 3 and 4, so x3,(2,4) = 1. Location 2 is
the pickup location for the second rider and 4 is the dropoff location of the first rider.
In order to assign the correct value to xi,e it is important to distinguish four edge types:
An edge is either a connection between two pickup locations or two dropoff locations
or a combination of them. This thesis explains how the value xi,e is obtained for edges
connecting two pickup locations, the other types work with the same argumentation.
Let e = (u, v) be an edge with u and v both being pickup locations of riders r and s.
With other words, u < m and v < m, u = r and v = s. There is only one possible
constellation which allows the vehicle to use edge e at step i. Figure 3.7 shows that
situation. The values for the pick-variables must look like those depicted in the table.
The trick to formulate a constraint for xi,e is to add up all variables that ought to 1
and to subtract all variables that must not be 1. If this calculation yields the value 3,
then xi,e must be 1. The values for the drop-variables can be ignored because they are
forced to be 0 by the Constraints 3.2 and 3.3. Constraint 3.8 attempts to realize xi,e.
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Person Variable Step i− 1 Step i Step i+ 1
...

Rider r
xpick

i,r 0 1 1
xdrop

i,r 0 0 0

Rider s
xpick

i,s 0 0 1
xdrop

i,s 0 0 0
...

Fig. 3.7: In this situation, the vehicle uses the edge (u, v) at step i. There is no other way to
assign the variables and keep the edge used in step i.

xi,e ≥ −xpick
i−1,r − x

pick
i−1,s − x

pick
i,s + xpick

i,r + xpick
i+1,r + xpick

i+1,s − 2 (3.8)

for all i ∈ [2, 2m− 1], e ∈ [0, 2m− 1]2

The constraints for the other three types of edges have the same structure, the only
difference is that xpick must be replaced by xdrop accordingly. The variables of the form
x1,e must be handled specially to avoid index out of bounds errors. It is granted that
the first edge to be used connects location 0 and another pickup location (otherwise
the instance could be solved trivially). Thus the variables x1,(0,u) for arbitrary pickup
locations u must be at least as great as xpick

2,u . There must be one u for which xpick
2,u = 1

and the corresponding edge variable is forced to the correct value with Constraint 3.9.

x1,(0,u) ≥ x
pick
2,u for all u ∈ [1,m− 1] (3.9)

These edge constraints introduce O(m3) new variables and O(m3) new constraints.
The alert reader may have noticed that there is a problem with the constraints stated
above: The solver will set xi,(r,r+m) = 1, independently from the assignment of the
domain variables xpick

i,r and xdrop
i,r . The reason for this is that then all riders are delivered

without any detours which clearly minimizes the objective function. The core problem
is that in this case more edges are used than allowed. For m persons there can only
be 2m−1 used edges in any feasible tour. The following constraint asserts this property
and prevents the solver from using too many edges:

2m− 1 =
∑

e∈[0,2m−1]2

2m−1∑
i=1

xi,e (3.10)

Notice that the edge variables also intentionally contain trivial edges e = (p, p). These
variables are never assigned 1 and thus are not causing any harm. Moreover, it simplifies
the notation.
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Let tpick
r , tdrop

r be variables describing the step in which rider r was picked or dropped.
The variable te represents the step after which e was used, respectively. Be aware that
these three kinds of variables are natural, not binary. The values of all three variable
types are defined straight forwardly in the following three constraints. Since the steps
are counted starting with 1, the variables tpick

r and tdrop
r are incremented by 1.

tpick
r = 2m−

2m∑
i=1

xpick
i,r + 1 for all r ∈ [0,m− 1] (3.11)

tdrop
r = 2m−

2m∑
i=1

xdrop
i,r + 1 for all r ∈ [0,m− 1] (3.12)

te =
2m−1∑
i=1

xi,e · i for all e ∈ [0, 2m− 1]2 (3.13)

These three kinds of variables are the only variables that are not binary. This is
unfortunate because these variables increase the space of possible solutions enormously.
It is possible to replace these real number variables with binary variables, but this
means O(m4) new variables instead of O(m) new variables and a lot more constraints.
Tests showed that the running times of the binary-only linear programs were not better
than the running time of the model presented here. The author refrains from explaining
the binary variant in this thesis.
Naturally, xe,r = 1 iff rider r was picked before the edge e was used and dropped

after it was used, i.e xe,r = 1 ⇔ tpick
r ≤ te < tdrop

r . In order to express this logical rule
with linear inequalities two more auxiliary variables are needed. These variables reflect
whether the two relation-signs in the latter term are fulfilled or not. Let xpick

e,r be 1 iff
person r was picked any time before the vehicle used edge e. Analogously, xdrop

e,r should
be 1 iff person r was dropped any time after the vehicle used edge e. The correct values
for these types of variables are implemented by the those constraints:

xpick
e,r >

te − tpick
r

2m− 1 for all e ∈ [0, 2m− 1]2, r ∈ [0,m− 1] (3.14)

xdrop
e,r ≥

tdrop
r − te
2m− 1 for all e ∈ [0, 2m− 1]2, r ∈ [0,m− 1] (3.15)

Even though these terms include division it is a legal linear expression because 2m−1
is a constant in the realm of the model. Per definition, the result of Equation 3.14
lies in the interval ] − 1, 1[. The variable tpick

r is at most 2m − 2 because the last two
actions must be dropoffs, and te is at least 0. Thus, the minimal value of the division
is −(2m − 2)/(2m − 1) > −1. The maximal value is (2m − 1 − 1)/(2m − 1) < 1. The
result is negative if e was used before r was picked or e was not used at all, otherwise
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it is greater or equal to 0. Because xpick
e,r must be strictly greater than the result of the

devision and be binary, the correct value of either 0 or 1 is assigned to xpick
e,r . In the

same way the correctness of Equation 3.15 can be shown, which is omitted here. There
are O(m3) variables of the type xpick

e,r and xdrop
e,r , which contribute O(m3) new constraints.

With these auxiliary variables, the value of xe,r can be determined. Its value is given
by the following term. If both values on the right side are 1 then xe,r can only be 1, if at
least one variable is 0, the value xe,r can either be set to 0 or 1 but since the objective
function is minimized the solver sets only those xe,r = 1 which are absolutely necessary.

xe,r ≥ xpick
e,r + xdrop

e,r − 1 for all e ∈ [0, 2m− 1]2, r ∈ [0,m− 1] (3.16)

The overall complexity of the linear model is O(m3) variables and O(m3) constraints.
Thus, even for small numbers of riders, the linear program becomes very big. For an
instance with three riders CPLEX generated 1 850 constraints and 1 352 variables. An
instance with eight riders asks for 20 630 constraints and 14 922 variables. Advanced ILP
techniques may be used to handle such instances, for example column generation [9],
but the author did not follow this path. Instead, the combinatorial algorithms from the
previous sections are used to solve the use case described in the introduction. The next
section defines the precise structure of the Dial-a-Ride problem in rural areas and shows
approaches to accelerate the computation of optimal tours in these environments.
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4 The Dial-a-Ride Problem in Rural Areas
As mentioned in the introduction, the goal of this thesis is to establish a means of
public transport for rural and less frequented areas. The algorithms described in the
last section can indeed solve the Dial-a-Ride instances arising from rural areas, but
their running time is long. This chapter introduces the notion of clustered Dial-a-Ride
instances which model provincial public transportation scenarios. As mentioned in the
introduction, the intuitive optimal tour handles the villages unidirectionally. To this
end, the

→
T ∗-algorithm is described. It computes unidirectional optimal route and runs

faster than the algorithms from Section 3. As it turns out, the intuition is unfortunately
wrong: There are instances whose optimal tours serve the villages in an arbitrary order.
When the

→
T ∗-algorithm is used on these instances, the resulting tour is not globally

optimal. The second part of this chapter formulates a classifier that decides if the new
→
T ∗-algorithm gives an optimal result on a given instance. Based on that decision, the
appropriate algorithm can be chosen to compute the optimal tour.

4.1 The Clustered Dial-a-Ride Problem
Suppose a regional bus service line is to be replaced by a more flexible Dial-a-Ride system
which fetches the passengers at their doorstep. The resulting Dial-a-Ride instances
have a special structure: All requests occur only inside villages, the villages are often
connected by a big main road and the order in which the villages are visited is predefined
by the former bus line. Figure 4.1 shows an example of four villages aligned along one
road. It seems to be clear that there is only one sensible order in which the villages are
visited.
The clustered Dial-a-Ride problem extends the basic Dial-a-Ride problem with a clus-

ter quadruple Q: A clustered Dial-a-Ride instance I is a quadruple (n,C, [di,j ], Q),
with Q = ([Cj ], [aj ], [ej ], [di]). Q carries the information about the villages, which are
from now on referred to as clusters. The list [Cj ] assigns every location 0 ≤ j ≤ 2m− 1
the cluster in which location j lies. Every cluster (village) has two border points: an
access point and an exit point. These are the points through which the village is en-
tered and exited when all villages are visited one after another, shown as black dots in
Figure 4.1. The lists [aj ] and [ej ] carry for every location j the distances to its border
points. Thus a[j] is the distance from location j to the access point of cluster C[j],
and e[j] denotes the distance to the exit point of cluster C[j]. The last entry in Q is [di].
It carries information about the distances between consecutive border points. If i is even,
then d[i] refers to the distance between access and exit point of the (i/2)th cluster. If i
is uneven, than d[i] refers to the distance between cluster (i− 1)/2 and cluster (i+ 1)/2.
Notice that this formulation simplifies reality because it assumes that all distances in Q
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Fig. 4.1: This figure shows some clusters with their portals as well as the source and destination
of three riders and the driver. All persons are heading to the right

are symmetric. This is not necessarily the case in street networks. However, asymmetric
distances can be incorporated into the model by using three additional lists [a′j ], [e′j ]
and [d′i] which store the distances in counter-direction. For the sake of simplicity, it
is assumed that the differences between the plain lists and the primed lists are small
enough to not affecting the structure of the solutions. Notice also that the naming of
the border points only reflects the predefined order of the villages. The optimal tour is
allowed to enter villages from their exit points and leave them through the access points.

Since the driver always starts in the first cluster (i = 0) and finishes in the last
cluster (i = max{[Cj ]}), these two clusters are special. For i = 0, the access point is
set to coincide with the driver’s source point and for i = max{[Cj ]}, the exit point is
the same as the driver’s destination. The notation Ci henceforth is used to identify the
cluster with index i. It can be imaged as a subset of the location set {0, . . . , 2m − 1}
together with the access point as well as the exit point. Be aware not to confuse Ci

with the list [Cj ] of Q. The former is the natural mental image of a village with all its
properties, the latter is an assignment of locations to clusters.

As already mentioned, this chapter focuses heavily on tours that visit every village
at most once. A necessary (but not sufficient) requirement is that the capacity of the
vehicle is great enough to support an unidirectional tour. This does not mean that the
capacity S must be at least as high as the number of persons m in the instance, but
rather that the maximal number of passengers that intersect an imaginary line between
two subsequent clusters does not exceed S. In Figure 4.1 this number is three which
means that three seats are sufficient, even though there are four persons. It is easy to
test this property for a given instance. Therefore, it is from now on silently assumed
that S allows a unidirectional tour. Formally, S =∞ in the following discourse.

Figure 4.1 shows three requests of riders and provides additional observations that
make working with clustered Dial-a-Ride instances easier. First, the remaining part of
the thesis assumes that the clusters are located from left to right, i.e. cluster i = 0 is
always the leftmost cluster. This is a comfortable definition to allow for natural terms
such as “leave the cluster to the right” or “come from the left”.
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Fig. 4.2: A bus line starting
from the red city to the south.
The highway is shorter, but
loses customers in the smaller
villages.

The access point of a cluster always lies on the left bound-
ary of the cluster and the exit point on the right boundary.
Second, all riders and the driver aim to the right, i.e. the
pickup location is always located to the left of the cor-
responding dropoff location (or lies in the same cluster).
Third, the distances encoded in Q are conform with to
those in [di,j ]: For two locations j and j′, with j < j′, the
terms d[j][j′] and e[j] +

∑i2−1
i=i1+1 d[i] + a[j′] are equal.

In real world, this equation is not always fulfilled be-
cause the path through several villages might not be the
cheapest way to connect some of the villages. However,
when dealing with bus lines, small detours to serve addi-
tional villages are frequently met. Figure 4.2 shows such
a case. In 2018, there exists a regular bus route serving
these villages from north to south, even if this means a
detour for some passengers: Traveling from the northern
to the southern municipality is both faster and cheaper
using the federal highway than the country road. In the
evaluation in Section 6 it is shown that the “equality” re-
quired above allows a certain slack. As a side note, the
work by Welch et. al. [34] gives directions how to exam-
ine whether a detour from the optimal path is sensible to
increase the earnings from a bus route. Their analysis is
based on estimating the expected number of new passen-
gers in the detour segment and comparing it to the other
passengers’ loss of time caused by the detour. From now
on it is assumed that the equation above does hold and the
riders are ready to accept detours implied by the ordering
of the clusters.
Both, Figure 4.1 and Figure 4.2 suggest that the opti-

mal tour only leaves clusters through their exit points and
enters clusters only from their access points. If a route
has this property it will receive a little arrow above its
name, like →

T . The optimal unidirectional route is called
→
T ∗,

in contrast to ↔
T which denotes a non-unidirectional tour.

The optimal non-unidirectional tour is referred to with
the symbol

↔
T ∗. If there is no arrow over the name, it

can be either unidirectional or not. Intuitively, instances
with clusters being wide apart should have the property
that T ∗ =

→
T ∗. Although there is no guarantee for that

intuition, the next theorem is a strong indicator that the
inter-cluster distances pay an important role in defining
the optimal tour.
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Theorem 4.1. Let I be a clustered Dial-a-Ride instance with
→
T ∗ = T ∗. Add x ∈ R+ to

every entry with uneven index in [dj ]. Modify [di,j ] accordingly and obtain instance J .
For J , it holds that

→
T ∗ = T ∗.

Proof. The first observation is that any route remains feasible if only the inter-cluster
distances are changed because routes are only permutations of locations. Let T be the
optimal route for I. According to the premise, T is unidirectional. Let U be the optimal
route of J and assume, for the sake of contradiction, that U is not unidirectional. T ’s
costs in J are cJ(T ) = cI(T ) + x(q− 1) with q being the amount of clusters and it holds
that cJ(T ) > cJ(U). U uses more than q−1 inter cluster connections (otherwise it would
be unidirectional). Therefore the costs of U in I are cI(U) ≤ cJ(U)−xq. Combining the
previous results yields that cI(U) < cI(T ) + x(q− 1)− xq = cI(T )− x. Consequently, T
was not an optimal tour for I. Contradiction.

Remark. The theorem stays correct even if the x added to the inter-cluster distances is
different for every pair of subsequent clusters, i.e. a vector X is added. The proof must
be altered such that every occurrence x(q− 1) is replaced by

∑
X and every occurrence

of xq is replaced by
∑

X + min{X}.
Remark. The wording of the discussion assumes that the optimal tour is unambiguous.
In deed it could happen that c(

→
T ∗) = c(

↔
T ∗). Though, the statements and findings of this

thesis remain correct, but their description and proofs would require a more distinct and
cumbersome text. Thus, it is implied that either c(T ∗) = c(

→
T ∗) or c(T ∗) = c(

↔
T ∗).

Of course, the practical applicability of the theorem is questionable, but it indicates
that instances with a unidirectional tour will not lose this property if the inter cluster
distances are increased.
The main difference of computing

→
T ∗ compared to computing T ∗ is obvious: At every

location, the former computation needs only glance at the locations in the same cluster
and the next cluster at most. The latter computation can be carried out by Psaraftis’
algorithm. As already seen in Figure 3.5, this computation considers all unvisited loca-
tions in every step. Consequently, the computation tree for

→
T ∗ is much smaller than T ∗’s.

The optimal unidirectional tour
→
T ∗ can be obtained by applying Psaraftis’ algorithm sub-

sequently to the individual clusters. The key trick is to divide the clustered Dial-a-Ride
instance into several partial Dial-a-Ride instances. The following observation shows how
this can be established:

Observation. Any unidirectional tour →
T can use every connection between clusters at

most once, and this can only happen from the left to the right. Thus the only way two
tours →

T and
→
T ′ can differ is how they operate inside the clusters.

The idea is to regard the clusters as partial Dial-a-Ride instances and solve them with
Psaraftis’ algorithm. These partial instances are smaller than the original instance and
since Psaraftis’ algorithm has exponential running time, it is faster to run it several times
with small input sizes than once with a big input size. The next observation reveals how
the initial and final state for partial instances can be generated:
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Observation. Given a cluster Ci with index i and a unidirectional tour →
T . When

the vehicle enters Ci through its access point, the status of all other riders are known:
All riders with both their pick up and drop off points lying left of Ci must have been
delivered, all riders with pick up left of Ci and drop off in or right of Ci must be inside
the vehicle and all other passengers are still waiting. These states are known because
the algorithm is not allowed to drive to the clusters left of Ci again. Thus, all locations
in those clusters must already be visited. For the same reason, the locations in Ci and
in the clusters right of Ci cannot be visited at the moment Ci is entered through the
access point.

The same observation can be applied in the case when the vehicle leaves Ci through
the exit point. Let stateAccess(I,i) and stateExit(I,i) be algorithms computing these
states for every rider. Both algorithms can be implemented such that their running
time is linear in the number or riders; their exact implementation is omitted here. Both
methods are used in Algorithm 4, which computes an optimal unidirectional tour

→
T ∗.

The pseudocode of this
→
T ∗-algorithm is straight forward. In a loop, the optimal tour for

every cluster is computed and then merged with the already existing tour.

Algorithm 4: An algorithm computing
→
T ∗

Input: A clustered Dial-a-Ride instance I = (n,∞, [di,j ], Q)
Output: An optimal unidirectional tour

→
T ∗

1
−→
T = [0]

2 for i ∈ {1, . . . , q} do
3 initial = stateAccess(I, i)
4 final = stateExit(I, i)
5 [d′i,j ] = copy of [di,j ]
6 modify [d′i,j ] such that location 0 is Ci’s entry and location m is Ci’s exit
7 I ′ = (n,∞, [d′i,j ], initial,final)
8 T = tour found by Psaraftis on I ′

9
−→
T = −→T + T [1 : −1] // Omit first and last entry of T

10 return −→T + [m]

The running time of the algorithm is O (q · (n+ tPsaraftis(I ′)). The complexity of I ′
is only determined by the maximum number k of locations inside any cluster. This
makes the

→
T ∗-algorithm a fixed parameter algorithm with k being the parameter [6].

If k is small then the
→
T ∗-algorithm can compute

→
T ∗ for instances with a great number of

riders. The parameter k can be regarded to be small in villages. Thus, if
→
T ∗ = T ∗, then

the algorithm above offers the ability to find optimal routes a lot faster than Psaraftis’
algorithm. The question is how to decide if

→
T ∗ = T ∗ without computing both tours. The

answer lies in a classifier. In the remainder of this chapter, such a classifier is introduced
step by step.
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4.2 Classifying Clustered Dial-a-Ride Instances
The classifier to be established in the next three sections receives a clustered Dial-a-Ride
instance I and responds with either “yes” or “no”. If the answer is “yes”, then

→
T ∗ = T ∗

and the faster algorithm can be used. If the answer is “no”, then there is no information
about the relation of

→
T ∗ and T ∗. In this case Psaraftis’ algorithm must be applied, even

if this may be unnecessary. As a first step, induced costs Υ(Ci, T ) are introduced.

Definition 4.2. For an instance I let C be the set of all Ci and T the set of all feasible
tours in I. A relation Υ: C×T → R+ which has the property that

∑
Ci∈C Υ(Ci, T ) = c(T )

for all tours T represents the induced costs Υ(Ci, T ) of cluster Ci in T .

When T is clear from the context, the notation is abbreviated by Υ(Ci). An important
point is that the induced costs are defined abstractly in this section. Two sensible and
concrete definitions are discussed in the next section. For now it suffices that Υ(Ci)
fulfills the summation above, independently of how it is realized. The classifier works by
computing two values Φ(Ci) and Ψ(Ci) for every cluster Ci. These values are compared
and the result of this comparison defines the answer.
Let Φ(Ci) ≤ Υ(Ci, T

∗) be a lower bound on the induced costs of Ci in the optimal
tour. In contrast, let Ψ(Ci) = Υ(Ci,

→
T ∗) be the exact induced costs of Ci in the best

unidirectional tour
→
T ∗. The following theorem forms the basis of the classifier:

Theorem 4.3. If ∀C0, . . . , Cq ∈ C : Ψ(Ci) = Φ(Ci), then
→
T ∗ = T ∗.

Proof. Suppose T ∗ 6=
→
T ∗, then there is an non-unidirectional route

↔
T ∗ with

↔
T ∗ = T ∗. In

↔
T ∗

there must be a sequence K = [Ci, . . . Ci′ ] of contiguous clusters which are all at least
visited twice. It is always possible to select |K| ≥ 2, otherwise

↔
T ∗ was unidirectional.

The costs c(K) of K are related to Ψ(Ci) and Φ(Ci):

c(K) =
i′∑

j=i

Υ(Cj , T
∗) =

i′∑
j=i

Υ(Cj ,
←→
T ∗) ≥

i′∑
j=i

Φ(Cj)

By definition of Ψ(Ci), the clusters in K can be handled unidirectionally with costs c′K
defined be the summation:

c′(K) =
i′∑

j=i

Ψ(Cj) =
i′∑

j=i

Φ(Cj) ≤
i′∑

j=i

Υ(Cj , T
∗) = c(K)

Therefore, the costs of c′(K) are at most c(K) and K can be handled unidirectionally
for at most the same costs. Contradiction to the assumption that c(

↔
T ∗) < c(

→
T ∗).

The classifier basically tests the theorem for every cluster. If there is a cluster for
which the condition of the theorem does not hold, then the answer is “no”, otherwise it is
“yes”. The next section introduces a sensible implementation of induced costs Υ(Ci, T ).
In Section 4.4, a method to compute a good lower bound Φ(Ci) is presented. The
performance of the classification with these realizations is evaluated in Chapter 6.
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4.3 Classifier Step 1: Distribute Costs To Clusters
The last section introduced a powerful theorem which helps to determine if the result of
the

→
T ∗-algorithm computes an globally optimal tour T ∗. Remember that if the answer is

“no”, then the
→
T ∗-algorithm may still provide an optimal tour. Therefore, the aim is to

find induced costs Υ(Ci) and lower bounds Φ(Ci) that maximize the number of correct
answers. This section covers the choice of induced costs Υ(Ci). Remember that for a
tour T the sum

∑
Υ(Ci, T ) of the induced costs for every cluster Ci must add up to the

cost of the tour c(T ).
A natural cost distribution is obtained by looking directly at the individual clusters.

For a cluster Ci, let Υ(Ci, T ) be the costs of all subtours happening inside Ci plus the
costs of all edges leaving the cluster Ci. This way

∑
Ci∈C Υ(Ci, T ) = c(T ) is guaranteed.

Unfortunately, this approach is not powerful enough. The problem is that any lower
bound on Υ(Ci) cannot incorporate riders coming into Ci from the wrong direction, for
example, riders with dropoffs left of or in Ci that enter Ci from the right. These riders
are counted in the induced costs of one of the neighboring clusters. But neither the
lower bound on the neighbors nor the bound on Ci can include those costs because the
lower bound must assume the best case, which is in this case that the riders are already
delivered when reaching Ci+1. Figure 4.3 illustrates the problem. Cluster Ci is handled
in two parts. The rider 5 with destination 15 was picked in Ci−1, travels through Ci,
then to Ci+1 and then back to Ci. Nominally, the last external edge of rider 5 is charged
by the induced costs of Ci+1 but the lower bound for Ci+1 assumes the best case: that
rider 5 was already dropped and does not visit Ci+1 at all. Therefore, the edge from Ci+1
to Ci gets lost. This is bad because the greater the lower bounds are, the more likely is
it that Theorem 4.3 can be applied.

Ci−1 Ci Ci+1

T

5
1

2
3

5

3
15

3

2
4

2

12 16

11

4

3

2

m = 10

Fig. 4.3: A sample tour T and edges counted in simple realization of Υ(Ci) (fat). Riders 1 and 5
visit Ci twice. Notice that the edges are multiplied with the number of persons inside
the vehicle when it is on that edge, written as encircled numbers. Before entering Ci−1
only rider 6 and the driver are on board, when leaving Ci+1 rider 3 is on board.
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Ci Ci+1
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α = 8
β = 0
γ = 0
δ = 1

α = 2
β = 2
γ = 0
δ = 0

2

4

Fig. 4.4: The same instance as in Figure 4.3. The modified cost distribution shares the center
edge between Ci and Ci+1. The values for the counters for both clusters are given left
and right.

Therefore, another cost distribution Υ(·) is used. Let r be a rider, pr the index of
his pickup cluster and dr the index of his dropoff cluster. For a feasible tour T and
a cluster Ci, the following counters are defined: α counts the events that a rider r
with pr ≤ i or the driver exits to the right, β the events that a rider r with dr ≥ i or
the driver exits to the left. In the same spirit, the counter γ and δ are used: γ counts
how often a rider r with pr ≥ i enters from the left, and last, δ counts the occurrences
of riders with dr ≤ i, that enter from the right.
Then Υ(Ci, T ) is given by:

Υ(Ci, T ) = αd[2i+ 1] + βd[2i− 1] + γd[2i− 1] + δd[2i+ 1] + inside(Ci) (4.1)

The list [di] denotes the list of distances between clusters which is found in Q. Fig-
ure 4.4 shows an example of the induced costs of cluster Ci in the feasible tour T . In
this instance, one can easily check that the sum of the induced costs of all clusters is
exactly the cost of the tour T . This property is formally stated for all feasible tours in
the next theorem. However, this theorem requires a brief lemma:

Lemma. Consider a journey from Ci to Ci+1. Then the journey can either be counted
by Ci’s α-counter or by Ci+1’s γ-counter, but not both. The same applies for a left-bound
journey between Ci+1 and Ci.

Proof. If the right-bound journey is covered by Ci’s α-counter, then pr ≤ i. Yet, Ci+1’s
γ-counter catches the journey only if the condition pr ≥ i + 1 is true. That cannot
happen since the first condition prohibits it. Thus, the γ-counter can only be used if the
α-counter of the cluster to the left does not fire. Symmetrically, the same argumentation
shows that either Ci’s δ-counter or Ci+1’s β-counter is responsible for a journey from
the cluster Ci+1 to the cluster Ci.

33



With the help of this lemma the validity of the induced costs can be shown:

Theorem 4.4. For every feasible tour T , the sum of induced costs according to Equa-
tion 4.1 equals the total cost of T :

∑
Ci∈C Υ(Ci, T ) = c(T ).

Proof. All costs generated inside the clusters are covered once by the last term of Equa-
tion 4.1, so the main task is to show that the costs that are generated between the
clusters are only counted once. Pick an arbitrary journey of one person between the two
clusters Ci and Ci+1. If this person is the driver and the journey goes from cluster Ci to
cluster Ci+1, then the α-counter of Ci carries this journey and no counter of Ci+1 counts
the same movement. This applies for a journey of Ci+1 to Ci symmetrically.
If the journey’s person is a rider r and the journey goes from Ci to Ci+1, then it can

only be counted by Ci’s α counter or Ci+1’s γ counter. It suffices to show that at least
one of these counters catches the journey. The previous lemma ensures that no other
counter catches the same journey. The two locations of r can lie in four different ways
relative to Ci:

Both locations are left of Ci. This case occurs when pr < dr ≤ i, i. e. the rider travels
further than he needed. This journey is counted by Ci’s α because pr < i.

Pickup left of Ci and dropoff in or right of Ci That is the case if pr < i ≤ dr. Since
pr ≤ i, it is counted by Ci’s α counter.

Both locations lie in Ci Then pr = i = dr and Ci’s α counter is responsible for counting
the journey.

Pickup left of or in Ci and dropoff right of Ci This condition can be expressed math-
ematically as pr ≤ i < dr. It is counted by Ci’s α counter because pr ≤ i.

Both locations are right of Ci In formal terms, i < pi ≤ di and thus, only Ci+1’s γ
counter cares about this journey.

The same steps can be applied to a right-to-left journey and Ci’s δ counter and Ci+1’s β
counter. Therefore, every journey is counted exactly once in

∑
Ci∈C Υ(Ci, T ).

Interestingly, the induced costs Ψ(Ci) in a unidirectional tour −→T are the same for both
the simple induced costs depicted in Figure 4.3 and the counter-based induced costs. In
such a tour all clusters are visited only once and it cannot happen that any inter-cluster
edge is used leftwards. Thus, all counters except α are zero and the costs generated
by leaving Ci+1 are covered by α. A nice consequence is that Ψ(Ci) = Υ(Ci,

→
T ∗) can

be computed easily for all Ci. A simple modification of the
→
T ∗-Algorithm collects the

costs generated by Psaraftis’ algorithm in cluster Ci and adds them to the costs of
connecting Ci to Ci+1. This sum is saved as Ψ(Ci) and can be accessed afterwards. The
last ingredient needed for a working classifier is a computable lower bound Φ(Ci) on the
induced costs Υ(Ci, T

∗).
The next section introduces a non-trivial lower bound on Υ(Ci, T

∗) which can be
computed in bearable time for small cluster sizes.
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4.4 Classifier Step 2: Estimate Distributed Costs
The last section introduced a definition for induced costs Υ(·) which can be combined
with Theorem 4.3 in order to decide whether a faster algorithm than Psaraftis’ algorithm
can be used to compute the optimal tour T ∗. Until now, the classifier lacks a manageable
and sensible lower bound Φ(Ci) on the induced costs of Ci in

↔
T ∗. This section presents a

method to compute such a lower bound Φ(Ci) in bearable time if the number of locations
inside Ci is small. The idea is based on the observation that a tour that handles Ci in
one or more subtours partitions the cluster into several subsets. Thus the approach is
to enumerate all possible partitions and compute a lower bound for all of them. The
smallest of these lower bounds is the wanted value.
Let Ci be an arbitrary cluster and S an ordered partition of Ci into several sub-

sets S1, . . . , Sk. Then ΦS(Ci) represents the lower bound of serving cluster Ci in the sub-
sets defined by S. Notice that for S = [{3, 5}, {10, 4}, {1}] and S ′ = [{1}, {3, 5}, {10, 4}]
the bounds ΦS(Ci) and ΦS′(Ci) may differ because of the order of the subsets. The
overall lower bound Φ(Ci) is given by Equation 4.2.

Φ(Ci) = min
S ordered partition of Ci

ΦS(Ci) (4.2)

For a given partition S of Ci there are several ways to connect the subsets inside S
because every subset S ∈ S can be entered from the left or from the right of the cluster.
Analogously, the vehicle can leave the cluster through the access point or through the
exit point. Therefore, for k = |S| there are 22k possibilities to serve S. Let P be a list
with length k of 2-tuples. Every tuple is an element of {a, e}×{a, e}. The i-th tuple in P
determines through which border point the i-th set of S is entered. For some choices
of P the vehicle must traverse a cluster without touching a point in it. This happens
when the individual entries in P do not match. An example is given in Figure 4.5. The
path entries of the instance in the center match a finished domino game while the path
of the right instance contains non-matching entries.

S1
S2

S3

S1
S2

S3

S1
S2

S3

P = [[a, e], [e, a], [a, e]] P = [[a, e], [e, e], [a, e]]Ci,S = [S1, S2, S3]

Fig. 4.5: The left picture shows a partition S of the cluster and the two right pictures show
different paths to serve the same partition. In order to handle the rightmost partition,
the vehicle has to traverse Ci without visiting a point inside Ci. This journey is
indicated as dashed line.
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Let ΦS,P (Ci) be a lower bound to handle the partition S with respect to the path P .
The value of ΦS(Ci) can thus be calculated with Equation 4.3.

ΦS(Ci) = min
P∈({a,e}2)k

ΦS,P (Ci) (4.3)

Summarizing the last paragraph, the algorithm computing a lower bound Φ(Ci) first
generates all ordered partitions of Ci. For each ordered partition S the set of paths going
through S is computed. Then for every partition S and every path belonging to S the
lower bound ΦS,P is calculated. The smallest of these bounds over all partitions and
paths represents the lower bound Φ(Ci) on the induced costs Υ(Ci, T

∗). Before exploring
how ΦS,P (Ci) is determined, a quick excursion into combinatorics is done in order to get
a feeling for the magnitude of required computations.
Let Ci be a cluster and n the number of locations inside the cluster. Then there

are a(n) ordered partitions S of Ci. The term a(n) refers to the ordered Bell num-
ber which counts the number of possible weak orderings of a set having the size n. In
OEIS, a(n) has the sequence number A670 [32]. There is a simple recursive formula to
determine a(n), which is a(n) =

∑n
i=1

(n
i

)
a(n − i) [17]. The ordered Bell number alone

does not represent the computational effort because it does not cover the number of
possible paths P through the subsets of the partitions. The number of paths can be
easily incorporated into the formula:

a′(n) =
n∑

i=1
4 ·
(
n

i

)
a′(n− i) a′(0) = 1 (4.4)

The only difference is the factor with which every summand is multiplied. This factor
is 4 because every set in the partition can be entered and exited in four possible ways.
Table 4.1 compares the vanilla Bell number a(n) with the augmented Bell number a′(n)
containing paths. Suppose that the computation of ΦS,P (Ci) takes about 40 microsec-
onds for n = 5. Then roughly 129 millisconds are needed to compute the lower bound
for a cluster size of n = 5. Assume that 40 microseconds are also sufficient to com-
pute ΦS,P (Ci) for clusters of size n = 6. Then approximately four seconds are needed
to find the minimum of all 5 227 236 configurations. However, in reality the time needed
to solve ΦS,P (Ci) for n = 6 is higher because the underlying algorithm of Psaraftis has
exponential running time. Therefore the estimation above is rather optimistic. Using a
parallelized implementation, the running time for n = 6 can be reduced to be roughly

n 1 2 3 4 5 6 7 8

a(n) 1 3 13 75 541 4 683 47 293 545 835
a′(n) 4 36 484 8 676 194 404 5 227 236 163 978 084 5 878 837 476

Tab. 4.1: A comparision between the ordered Bell number a(n) and the Bell numbers augmented
with path according to Equation 4.4.
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three seconds. Thus, clusters of size n = 6 pose the practical limit for acceptable in-
time computations. The description of the classifier is continued by the next paragraph,
which gives an algorithm to compute ΦS,P (Ci).

Given a partition S of a cluster Ci and a path P through the partition, the task is to
find a lower bound ΦS,P (Ci) of Υ(Ci, T ) for all tours T handling Ci in the order defined
by S and P . Algorithm 5 sketches a realization of ΦS,P (Ci).
The algorithm is divided in four parts. Every part computes the costs of different

aspects in Ci. Refer to Figure 4.6 for an example of these aspects. Part One, Two and
Three only consider costs generated by the driver or riders that have either their pickup
or dropoff location inside Ci. Part Four aggregates the costs of riders traversing Ci.
Part One collects the costs at the beginning and at the end of S. It calls two additional

methods start(·) and end(·). They contribute the costs generated by the first and the
last leg of handling Ci. In order to do that both methods compute the number of
riders that must inevitable sit inside the vehicle when S[0] is entered and S[|S| − 1] is
exited. For example, in the centered instance of Figure 4.5 the vehicle must contain all
riders dropped in S2 as soon as it enters S1. In the same instance, the riders picked
up in S2 must be still on board if S3 is accessed. Let these both numbers be named a
and b. The number a can be computed by traversing S, starting with S[0] and follow
the way through S according to P . In every subset S ∈ S, the amount of dropoffs
is counted. The traversion stops as soon as Ci is exited to the left or entered from
the left. The riders of all dropoffs encountered so far must sit inside the vehicle when
S[0] is entered. Similarily, b can be computed by traversing S backwards, counting the
pickups and stopping when the vehicle comes from the right or drives to the right. The
method start(·) is implemented as follows:

start(S, P, Ci, I) =
{

0 if S[0] is entered via access point
(a+ 1)d[2i] + (2a+ 1)d[2i+ 1] else

If the first subset is entered through the access point then according to the definition of
Υ(·) no costs are generated. If, however, the first subset is entered through the exit point
of Ci, than all riders and the driver must have been traveled directly through Ci to the
next cluster Ci+1 (see α-counter of previous section). After doing business there, they
returned and entered from right. This time, the driver is not counted (see δ-counter).
Analogously, end(·) is realized:

end(S, P, Ci, I) = (b+ 1)d[2i+ 1] +


0 if S[0] is left

via exit point
(2b+ 1)d[2i− 1] + (b+ 1)d[2i] else

In any case, the picked riders and the driver must leave the cluster to the right, so
these costs (covered by the α-counter) are always included. If, however, the vehicle leaves
the cluster through its access point, then the vehicle must return at some point with all
riders still on board. The costs of driving to Ci−1 and coming from it are represented
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Algorithm 5: A realization of ΦS,P (Ci)
Input: Partition S, path P , cluster Ci and a clustered Dial-a-Ride instance I
Output: A lower bound ΨS,P (Ci)
// Part One

1 costs = start(S, P , Ci, I) + end(P , S, Ci, I)
// Part Two

2 foreach S ∈ S do
3 initial = initialStateVector(S)
4 final = finalStateVector(S)
5 I ′ = (n,∞, [di,j ], initial,final)
6 costs = costs + cost of optimal tour T ∗ in I ′
7 traversals = countTraversals(S, S)
8 costs = costs + traversals · length(T ∗)
// Part Three

9 for i ∈ {2, . . . , |P |} do
10 lastExit = P [i− 1][1]
11 nextEntry = P [i][0]
12 costs = costs + handleTransition(lastExit,nextEntry, Si−1, Si, I)

// Part Four
13 costs = costs + handleTraversingRiders(S, P, Ci, I)
14 return costs

P = [[a, a], [a, a], [e, e], [a, e]]Ci−1 Ci+1

Riders from clusters left of
Ci to clusters right of Ci.

S1

S2
S3

S4

Fig. 4.6: An partition S and a path P through the partition. The dashed green line shows the
costs of which Part One takes care, Part Two is responsible for the costs depicted in
solid blue. Part Three’s costs are drawn in solid green and Part Four is represented
in dashed blue. The gray lines are not part of the costs of cluster Ci but rather assist
the reader to trace the route.
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by the first summand in the case distinction. These costs are covered by the β- and
γ-counters, respectively. This first part is drawn in dashed green in Figure 4.6. In that
instance Part One only consists of the last edge outgoing from Ci. The explanation of
the algorithm’s first part is finished.
The second part covers all costs generated inside the cluster Ci, which are drawn in

solid blue in Figure 4.6. To this end, for every S ∈ S the initial state vector initial is
computed. This vector represents the states of all riders before entering S. Symmetri-
cally, the vector final is created. Both vectors have length n, where n is the number of
riders. The values for the entries is given by the assignment below:

initial[j] =


finish if the dropoff of rider j lies left of Ci

travel if the dropoff of rider j is inside S
wait else

final[j] =


finish if the dropoff of rider j lies left of Cior in S
travel if the pickup of rider j is inside S
wait else

The emerging vectors are used to solve partial Dial-a-Ride instances with Psaraftis’
algorithm, whose costs are summed up. But the bound of the internal costs of Ci is not
sharp enough yet. It does not take riders boarded before visiting S or dropped after
leaving S into account. These riders may sit in the vehicle for the complete tour through
S and their contribution to the costs should also be included in Φ(Ci). For example, a
rider picked in S[i− 1] is still on board if neither S[i− 1] is exited to the right nor S[i]
is entered from the right. These riders could be considered by altering the assignments
of the state vectors above, but this would overly complicate the generation of the states.
Instead, these traversals of S are counted manually (like a and b for the first and last
subset in Part One). The number of traversals is then multiplied with the length (not
costs) of the optimal partial tour and added to the total costs. After accumulating all
these inside costs of Ci, two more types of costs are missing.

The third part consists of aggregating the costs happening outside of Ci, but caused
by riders with at least one location in Ci. These are the costs which are covered by the
counters α, β, γ and δ. The function handleTransition(·) is similar to the already pre-
sented start(·) and end(·) methods. It consists mainly of case distinctions on the lastExit
and nextEntry variables and counting riders inside the vehicle, similar to the a and b
in start(·) and end(·). The exact implementation of handleTransition(·) is left as exercise
for the reader. The costs of the third part are shown in Figure 4.6 as solid green lines.
The dashed lines show tours that go directly through Ci without touching a location
inside. This intermediate crossings of Ci are necessary because the path P contains non-
matching entries. This is probably the right place to mention that S and P as depicted
in Figure 4.6 are most likely not the best way to solve Ci.

The last part deals with the costs generated by riders passing through Ci. In other
words, it deals with those riders whose pickup cluster is left of Ci and whose dropoff
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cluster is right of Ci, as indicated in Figure 4.6 with dashed the blue line. Those riders
are called hoppers. The number of these hoppers h can be determined easily using the
list [Ci]. There are three ways to transport the hoppers through Ci of which the cheapest
one is chosen. The first possibility is to fetch them in an extra tour after Ci was handled.
The second possibility is only available if there exists a S ∈ S which is entered from
the left and exited to the right. The hoppers can be transported through Ci using the
tour handling S. The costs are h times the length of the shortest left-right-tour through
any such S, if there is one. The last possibility exists if there are two consecutive
tuples t = (·, a) and t′ = (e, ·) in P . This constellation means that the vehicle must
drive directly through the cluster from its access point to its exit point. In Figure 4.6
this situation is met. However, in that example it is also possible to carry the hoppers
while serving S4. The cheapest available way of these three possibilities to transport the
hoppers is chosen.
It remains to discuss if the method above indeed computes a lower bound for Υ(Ci, T

∗).
In other words, the question is whether the induced costs Υ(Ci, T ) of cluster Ci in every
tour T that handles the locations in Ci according to S and P are always greater or equal
to the result returned by Algorithm 5. Part One, Two and Three only consider costs
contributed by riders with either their pick up or drop off located inside Ci. Every one
of these parts assumes the shortest possible tour to reach the locations without violating
the order and traversing rules implied by S and P is used.

However, there is one pitfall, or so it seems. It is assumed that between two matching
entries of P there is no additional traverse through Ci. For example, between (·, e)
and (e, ·) could be an even number of journeys through Ci in T ∗ that do not touch any
location. Since those journeys are never assumed to happen in Part Three of Algorithm 5
this sounds like the algorithm, and therefore the classifier, too, are broken. Yet, if argued
a bit more carefully it becomes clear that there is a solution to this predicament. First,
Algorithm 5 is by definition correct because it cares only about serving locations inside Ci

and two successive intermediate tours are not part of Ci’s service. Second, the classifier
is also correct because in a non-unidirectional optimal tour

↔
T ∗ there must be at least

one cluster without such intermediate tours, otherwise the tour would trivially not be
optimal. This cluster is identified by Theorem 4.3 as the causing cluster for the non-
unidirectionality and the classifier responds correctly.
Only Part Four is occupied with foreign riders. For these riders, it is supposed that all

of them take the shortest route through Ci. In a real tour T , all these assumptions must
not be necessarily true, but in this case, the induced costs only increase. This makes the
result of Algorithm 5 a valid lower bound ΦS,P (Ci).
This finishes the implementation of the classifier and closes the chapter. In the previ-

ous sections and paragraphs the Clustered Dial-a-Ride problem was introduced, as well
as a classifier. Using this classifier can shorten the total time needed to compute an
optimal route. The expected amount of saved time and other properties of Clustered
Dial-a-Ride instances are evaluated in the next-but-one chapter. Before that, the imple-
mentation of all participating algorithms and programs is described. This includes the
pseudocodes depicted so far as well as instance generators for both artificial euclidean
instances and realistic geographical instances.
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5 Implementation

In order to evaluate the performance of the classifier and to gain knowledge about the
clustered Dial-a-Ride problem, the algorithms presented so far were implemented, along
with auxiliary programs. The auxiliary programs include two instance generators, a
visualizer for the optimal routes and some other tools to process the acquired data. This
chapter explains the important details of these components.
The implementation of the algorithms can be divided into two phases. The first

phase consisted of implementing Psaraftis’ original algorithm as well as the modified
incremental algorithm in the Java programming language. These prototypes were mainly
tested in respect to maintenance, performance and readability, i.e. they were a proof
of concept. The incremental variant fared better in all three categories, so the decision
was to use the incremental algorithm. The ILP was also implemented in the first phase,
but due to its poor performance not evaluated further. This phase only considered the
vanilla Dial-a-Ride problem, not the clustered variant. Sample instances could either
be generated by defining every rider manually or by selecting a rectangular section of a
geographical map, in which a specified number of riders was generated randomly.
After all the algorithms and the data needed to describe the problem were understood

properly, the second phase started, in which the complete workbench was implemented.
Unfortunately, the Java programming language has some properties which complicates
the development of complex algorithms. This includes cumbersome generic variable
declarations, boilerplate code to realize multi-type return statements and the inconve-
nient way of using functions as first-order objects. Therefore, the main components
of the workbench like all algorithms and some parts of the instance generators were
(re)written in the Go Programming Language [11], version 1.10.3. Figure 5.1 shows
the workbench after the second phase was finished. The modules in shaded boxes are
implemented in Java, the rest is written in Go. It can be seen that Java is only used
for geographical purposes and visualizations. Beginning at the left side, the journey of
a (clustered) Dial-a-Ride instance can be traced through the workbench.
The first step consists of creating the Dial-a-Ride instance. This thesis differentiates

between two types of instances: Euclidean instances are guaranteed to fulfill the assump-
tions of Chapter 4, geographical instances reflect the problem domain better. Thus, it is
sensible to examine both kinds. The euclidean instances reside in the two-dimensional
plane and its generator is realized as command line tool written in Go. The geograph-
ical instances are based on real street networks. The corresponding generator offers a
graphical interface in which the user can define clusters by selecting polygonal shapes
on a OpenStreetMap map. He can also pick the border points of the clusters and de-
fine the number of riders as well as the maximal number of locations inside the cluster.
This visualization is done with JXMapViewer2, a component that displays map tiles [33]
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Psaraftis’ Algorithm
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Fig. 5.1: The complete workbench. All shaded components are implemented using Java, the
white components are implemented in the Go Programming Language. Dashed arrows
indicate communication between the components.

in Swing. The distances between the randomly chosen locations are computed by the
GraphHopper Java library [24]. The data of the underlying street network and the tile
images are provided by OpenStreetMap data [28]. However, the data was not used di-
rectly, but rather downloaded from the Geofabrik site, which offers data for individual
regions, thus avoiding the download of the complete Earth data set [25].
No matter whether the generated scenarios are euclidean or geographical, they are

saved in a json-file with identical structure for both types. These files can be fed into
four different commands. The first component represents the classifier introduced in
Section 4.2. For a given instance, it replies with “yes” or “no”, as explained in Section 4.2.
Psaraftis’ algorithm is the implementation of the incremental variant of Algorithm 2, its
pseudocode can be found in Algorithm 3. The output is an optimal tour. Between
both of the previous components lies the Analyzer. The command runs the classifier
and Psaraftis’ Algorithm and records whether the prediction of the classifier was correct
by checking the tour given by Psaraftis’ Algorithm. It also runs the

→
T ∗-algorithm and

gathers additional data which is evaluated in Chapter 6. The last component is the
aforesaid

→
T ∗-Algorithm which gives an optimal uni-directional route. If the classifier’s

response is “yes”, this route is also optimal under all feasible routes. Routes are stored
as json-file (omitted in the figure) and then visualized, which is done by the Route
Visualizer. If a route is based on a geographical instance, the tour can be drawn either
directly onto a map, or in the euclidean plane. All other instances can only be drawn in
the euclidean plane. A screenshot of the Route Visualizer is depicted in Figure 5.2.

While most of the implementation described so far is not difficult to realize, some
points should be emphasized because they play an important role in the forthcoming
evaluation of Chapter 6. The implementation of Psaraftis’ algorithm generalizes the
pseudocode so that all three target functions from Section 3.1 can be used easily without
altering the code of the algorithm. The vertices of the graph are realized as Go-structs
which were garbage collected after they could not be reached any more, therefore, storage
capacities could be saved. The most complicated component is that of the classifier. As
already sketched in Section 4.4, there are several stages.
The first stage consists of generating all ordered partitions, the second stage augments

these partitions with paths through the subsets of the partitions. Stage three computes
the lower bound and the forth stage collects the minimal value of these lower bounds.
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Fig. 5.2: The visualization of a geographical tour and an euclidean tour in Java. Geographical
Routes can be shown in two ways: Fix to the road or like the crow flies.

Figure 5.3 shows these stages. All of these stages can be imagined as independent
workers which receive their input and send their output to other workers. Because
of that, the four workers can run in parallel. Pieces of code that run synchronously
are called goroutines in the Go Programming Language. The communication between
several goroutines happens via channels. When a goroutine sends some data onto a
channel, the goroutine gets blocked until the data is processed by another goroutine.
Analgousley, a goroutine reading from a channel is delayed until there is some data on
that channel that can be received. The idea of this type of synchronous communication
originated in a 1978 paper by Hoare [19]. The advantage of using native channels is that
the communication between synchronously running pieces of code is handled by the Go
runtime itself and need not to be reimplemented. It should be mentioned that besides the
channels described so far there exist also buffered channels. These offer the possibility
to place a limited amount of data into the channel even if there is no goroutine ready
to read it. The implementation of this thesis did not make use of buffered channels. All
communications between workers took place through unbuffered channels.
Unsurprisingly, the four workers are not equally fast. Tests on a normal desktop

computer revealed that the partition generator supplies on average every 7 microseconds
a new partition. The path generator needs 21 microseconds to handle a partition. Thus,
the partition has to idle 14 microseconds. The cost calculator computes ΦS,P (Ci) in
approximately 27 microseconds and the minimum selector is ready to receive a new
value every 81 nanoseconds. These values are far from a solid analysis because the

Partition
Generator

Path
Generator

Cost
Calculator

Minimum
Selector

S S, P c ∈ R
every 7 ms every 27 msevery 250 ns

needs 21 ms needs 27 ms needs 81 ns

Fig. 5.3: The chain of workers to selected the smallest lower bound over all partitions and paths.
The four workers work in parallel and communicate with channels. These channels
are depicted as unidirectional arrows.
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Fig. 5.4: This variant of workers incorporates 15 parallelized tasks and finishes after a sixth of
the time the variant with four parallel workers needs (see Figure 5.3).

running times of the path generator and the cost calculator depend on the size of the
partition. The values above are gained by evaluating 15 different clusters of which one
with size 0, three with size 1, one with size 2, three with size 3, five with size four and two
with size 5. It can be seen in a few moments that this quick analysis already accelerates
the computations to approximately a sixth of the original times.
The idea is to increase the capacity of the workers. Since they are independent,

the slower workers can be duplicated in order to keep in step with the faster workers.
Therefore, three path generators are introduced so that the partition generator usually
finds a free path generator to which the partition can be sent. The cost generator is also
fairly slow, compared to the interval in which a path generator is able to produce paths:
A path generator is able to send a new path every 250 nanoseconds on average. Since
there are three of them, a new path is ready every 80 nanoseconds. This means that
approximately 34 cost calculators are needed so that no path generator does ever have to
wait. However, physical resources limit the theoretical thoughts because the overhead of
context switching outperforms the advantages of parallel computation. The number of
ten cost calculators yielded the fastest worker chain on both desktop computers and an
above-average computer (see next chapter for details). Figure 5.4 shows the enhanced
chain of workers. There are still only three channels, which are illustrated as white
rectangles.
If a worker wants to put something onto a channel, it has to wait until a consumer

is ready to receive the data. Analogously, a consumer blocks until there is data in
its incoming channel. The Go runtime takes care that every dataset is only put to
exactly one receiving worker. The minimum selector is fast enough to deal with ten
cost calculators. The complete analysis can be carried out in more detail, of course, but
the enhanced version already accelerated the computation: Without duplicate workers
computing Φ(Ci) with Ci having size five needs 18 seconds, the enhanced version finishes
under three seconds.

The next chapter evaluates the tool chain presented in this chapter. It measures
the time the implementations needed as well as it finds other interesting properties
of Clustered Dial-a-Ride instances. For example, the prevalence of instances allowing
unidirectional routes is examined and the error rate of the classifier is determined for
different parameters of the instance generation.
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6 Evaluation
The last chapters mainly focused on the theoretical aspects of the Dial-a-Ride problem.
In contrast, the current chapter deals with the practical properties of the algorithms
and problems discussed before. This includes running times of the programs described
in Chapter 5 as well as the general structure of Clustered Dial-a-Ride instances in reality.
As already pointed out in Theorem 4.1, the distances between clusters play an important
role in the question whether T ∗ =

→
T ∗ or not. These inter-cluster distances may also affect

the performance of Chapter 4’s classifier. Thus, an evaluation that takes this distances
into account seems sensible. In real world instances, it is not easy to vary these distances
without violating the relations of shortest paths in the underlying street network. To this
end, the evaluation of real world examples is postponed to Section 6.2. First, Section 6.1
introduces euclidean Clustered Dial-a-Ride instances with whose help the evaluation can
take place in dependence on the inter-cluster distances.
All experiments were carried out on a computer with above-average performance run-

ning Ubuntu Xenial 16.04.3 LTS with Linux 4.13.0-36. It possessed an AMD Ryzen
Threadripper 1950X 16-Core Processor (3.4 GHz) with hyperthreading enabled, so there
are 32 virtual and real cores in total. The algorithms had access to 125 gigabytes of ran-
dom access memory and 41 gigabytes of swap. However, the algorithms did not make use
of this space because they all are written to use as few storage as possible. As described
in the last chapter, the classifier consists of 15 parallel tasks, so half of the cores are used
at once. It turned out that while running the classifier none of cores was used to full
capacity. This suggests that the cores waited a significant share of their time for new
input or that their output was processed. As described in the last chapter, the number of
needed parallel workers is fixed for any cluster size. An idea for future work is to balance
the number of used cores in accordance with the size of the cluster to be examined. On
the other hand, the classifier’s running time with the current implementation is already
rather neglectable, as the next section shows.

6.1 Euclidean Setting
As discussed in the introduction of the chapter, the euclidean setting simplifies analyzing
the algorithms. The meaning of the simplification gets clearer after the structure of
euclidean instances is explained. In euclidean instances, all clusters are represented by
squares which are vertically centered on the x-axis, as shown in Figure 6.1. Consequently,
every cluster has two intersections with the x-axis. The access point of a cluster is its
left intersection with the x-axis and the exit point is the right intersection point with the
x-axis. For two locations in the plane, their distance is given by the following rule: If
both locations are in the same cluster, then their distance is the euclidean length between
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Fig. 6.1: A sketch of an euclidean example. The two green lines indicate the distances between
to pairs of points. The blue lines show the intermediate distance between two clusters
and the width of a cluster, respectively.

them. If they are in different clusters, their distance is the sum of three components:
The distance of the left location to the exit point of its cluster, the distance of the right
location to the access point of its cluster and the distance between both border points.
An example for these lengths is shown by the greenish lines in the example figure. The
blue lines show the definition of the inter-cluster distance and the width of a cluster.
Distances are notated without any units in this section, however they can be interpreted
to be meters, kilometers or other arbitrary length measures.
The tests described in this section were carried out using randomly generated eu-

clidean instances. To control the variety of test cases, the following properties were fixed
throughout the complete test session, except stated differently.

Gaussian Distribution of Cluster Widths The cluster widths where constituted by
making use of the Gaussian distribution. The standard deviation was set to 1 000 and
the expected mean to 3 000. This seems reasonable because villages normally have a
diameter of this magnitude. The minimal cluster width is supposed to be 500 at least,
avoiding negative numbers generated by the Gaussian Distribution.

Standard Deviation of Inter-Cluster Distance Although the actual distance between
two subsequent clusters was changed for different tests, its standard deviation remained
the same. It was set to 2 000, which is small compared to the standard deviation of
cluster sizes. The reason is that the performance of the algorithms should be tested in
dependence of the inter-cluster distances. Allowing a bigger standard deviation blurs
the results obtained from these test. The value of 2 000 is small enough to get sensible
results and big enough to allow variety to a certain degree. The minimum distance
between to clusters is limited to be 0.

Number Of Clusters The number of clusters in the instances was set to eight. Nor-
mally, there are not more than eight villages on a bus route and less villages limit the
freedom of the riders too much. For example, suppose there were only six clusters. In
order to place 12 riders in the six clusters, the 26 locations must be distributed among
the clusters. Since the maximal cluster size is six (see Section 4.4), all clusters would be
nearly full, no matter how the locations are distributed.
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Fig. 6.2: The diagrams show the average running time to solve a Dial-a-Ride instance optimally
for different numbers of riders. The squares represent the running time for the

→
T ∗-

algorithm. Notice that the y-axis is drawn in logarithmic scale.

Distribution Of Riders Into Clusters A rider was generated by picking two different
clusters and promote the cluster with smaller index to be her pickup cluster, while the
other cluster is her dropoff cluster. Then two random points are chosen inside both
clusters which realize the actual locations. However, picking two clusters in the first
place was not implemented by randomly drawing two cluster indices, but rather in a
way that gives advantage to clusters with higher indices. The reason for this is that on
bus lines the bus stops tend to be busier the nearer the bus is at the final city. A cluster
is chosen by traversing the clusters from right to left and stopping with a probability of
30% at every cluster. This means that one of the two rightmost clusters are chosen with
a probability of approximately 50%. As already pointed out in Section 4.4 the bearable
cluster size is limited. Therefore, the maximal size of the rightmost cluster was set to
6, and declines to the left. The rate of declining depends on the number or riders being
tested. All clusters that are already full are not considered during the traverse.

There are three main algorithms in this thesis: The incremental variant of Psaraftis’
algorithm, the

→
T ∗-algorithm and the classifier. Figure 6.2 shows with squares the running

time of Psaraftis’ algorithm for different numbers of riders. Since the computational
effort to solve an instance does not depend on the distances found in [di,j ] and [di], the
variations on the inter-cluster distance are not found in the figure. The dots indicate
how long the

→
T ∗-algorithm took in average to solve the same instances. The difference

in both running times is very plain. While solving an instance with 12 riders optimally
takes approximately two minutes, an unidirectional optimal route

→
T ∗ can be found in

less than 20 milliseconds. It should be noted that the
→
T ∗-algorithm can be parallelized

easily by computing the partial tour for the clusters synchronously. This was not done
in these tests in order to compare it without bias to the single threaded algorithm of
Psaraftis.
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Fig. 6.3: Two times same instance with six riders, but with different inter-cluster distances. It
can be seen that the number of riders increases the more the clusters are to the right.

To describe the following results some terminology has to be introduced. A stack
S(n, d) is a set of 100 randomly created euclidean Dial-a-Ride instances. The number n
denotes the number of riders every instance has and d is the mean inter-cluster distance.
Stacks S(n, ·) with identical values for n form an aggregation A(n) =

⋃24 000
d=4 000 S(n, d).

The union sign increments d in steps of 1 000. An important aspect is that the ith
instance of S(n, d) differs only in the inter-cluster distances from the ith instance of
S(n, d + 1000). Figure 6.3 shows an element of S(6, 4 000) above the same element
of S(6, 10 000). The similarity between two instances is obvious. Consequently, A(n)
contains the same instance 11 times, but with different inter-cluster distances. The
stacks S(12, ·) are an exception because they contain only 50 instances. The reason for
this is that solving 100 instances with 12 riders would have not been practical. Running
times are stated as average per instance, so the smaller size of A(12) does not matter.

As discussed above, the tour
→
T ∗ needs not to be the globally optimal route, but can

be. Thus it is worth studying the ratio of instances where T ∗ =
→
T ∗. The data belonging

to that aspect can be found in Figure 6.4. The four diagrams show clearly that the
probability for the optimal tour being an unidirectional tour is higher the wider the
clusters lie apart. In all four aggregations it suffices that the mean inter-cluster distance
is 18 000 to make all instances in the stack A(·, 18 000) have unidirectional optimal tours.
By comparing the stacks of fixed mean inter-cluster distances between the different
aggregations one can also see that the more riders are present the more likely it is that
T ∗ 6=

→
T ∗: While for S(12, 4 000) the ratio of such instances is greater than 60%, it is

approximately 10% for S(8, 4 000) and S(6, 4 000). Depending on the instances at hand,
one can obtain an optimal route by using the

→
T ∗-algorithm in at least 40% of the cases.

If the inter-cluster distances are at least 6 000 or the number of riders is at most 10, then
→
T ∗ is an optimally global tour in at least 50% of the cases.

Section 4.2 provides a classifier which decides if for a clustered Dial-a-Ride instance
I the equation T ∗ =

→
T ∗ holds. Let instances for which T ∗ =

→
T ∗ indeed holds be called

positives and all other instances negatives. Positive instances for which the classifier’s
response was “yes” are true positives. On the other hand, negative instances that were
recognized by the classifier as such are referred to as true negatives. In between are the
false positives and the false negatives. The former instances were erroneously answered
with “yes” and the latter ones were erroneously answered with “no” by the classifier. The
precision of a classifier is the ratio of occurrences of true positives to the occurrences of
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(b) Distribution for 8 riders.
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(d) Distribution for 12 riders.

Fig. 6.4: The ratio of instances where T ∗ =
→
T ∗. Notice that the upper two diagrams have a

different x-scale than the two lower diagrams.
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(d) Aggregation A(12)

Fig. 6.5: The classifier’s recalls for the different stacks and aggregations. Notice that the upper
two diagrams have a different x-scale than the two lower diagrams.

true positives and false positives. Since the classifier of Section 4.2 does, per definition,
never produce false positives (if the assumptions of Section 4.1 are met), the precision of
this specific classifier is always 1. Consequently, the classifier recognizes correctly that
all instances in the lower parts of the stacks in Figure 6.4 fulfill T ∗ 6=

→
T ∗.

The recall denotes the ratio of occurrences of true positives to the occurrences of true
positives and false negatives. The recall for the four aggregations is shown in Figure 6.5.
Spoken vividly, a recall of 0.5 means that half of the instances for which T ∗ =

→
T ∗ holds

were actually recognized by the classifier. The figures make it clear that the errors made
by the classifier become the smaller the higher the inter-cluster distance is. Therefore
the stacks of Figure 6.4 consisting of only one part are nearly all classified correctly.
Following from Figure 6.5, the classifier has a decent error rate for inter-cluster distance

below 10 000 and a very good error rate for higher inter-cluster distances. Thus, from
the point of view of accuracy it is worth using the classifier. The other important aspect
is the time it takes to compute a response. The classifier was implemented so that it
checks one cluster after an other from left to right if it might be cheaper to handle the
cluster piecewise versus handling it in one tour. If a cluster was found that was cheaper
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(b) In about 45% of the cases, the classifier
reached the last cluster.

Fig. 6.6: The share of instances in which the last cluster was reached corresponds to the share
of instances in which the running time of the classifier took longest.

to handle piecewise then the answer can only be “no”. In this case the calculation was
canceled immediately. Thus it is sensible to distinguish the running time of the classifier
into two cases.
The first case concerns the instances in which the classifiers answer was “yes”. In

these instances, the classifier handled every cluster, maximizing the computational effort
it could possibly have. The average running time of the classifier in positive A(12)
instances was approximately 4.2 seconds and did not vary greatly.
The second case is more interesting. It examines the classifier’s running time in

negative-claimed instances. The running times of these classifications varies greatly
because it depends on how far the classifier gets until it finds the cluster aborting the
calculation. The size of the clusters play also an important role because the Dial-a-Ride
problem must be solved internally for every cluster. Figure 6.6a shows a histogram of
the running times of all instances in A(6) that were answered with “no”. There are two
ranges of running times. The first range is from 0 milliseconds to 50 milliseconds and
the second range is from 450 milliseconds to 600 milliseconds. The lower range contains
104, the higher range 114 of the 218 instances. The reason for this clear split lies in the
predefined cluster sizes. As described above, the generation of the artificial instances
preferred clusters lying further to the right to simulate traffic towards a bigger city. In
A(6), the rightmost cluster was allowed to have six locations in it and the other clusters
contained three riders at most. Thus, all instances lying in the first range could be
classified before reaching the last cluster. The instances lying in the second range, on
the other hand, were decided with the rightmost cluster, for which the internal Dial-a-
Ride problem took longer. To cross-check this conjecture, the indices of the clusters at
which the classifier exited were recorded. A histogram which counts the indices of these
clusters is presented in Figure 6.6b. These records support the conjecture that the last
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(a) Approximation ratio in S(10, 4 000),
there are 45 relevant instances (of 100).

1 1.02 1.04 1.06 1.08 1.1
0

2

4

6

approximation ratio c(
−→
T ∗)/c(T ∗)

in
st
an

ce
s
(3
2
to
ta
l)

(b) Approximation ratio in S(12, 4 000),
there are 32 relevant instances (of 50).

Fig. 6.7: The histograms show the empiric approximation ratios in S(10, 4 000) and S(12, 4 000).
The dashed lines indicate the mean.

cluster was responsible for the long running times in the second range. Interestingly, the
shape of the diagram in Figure 6.6a is nearly identical for all stacks S(6, ·).
The same analysis was carried out for A(12), with similar results. A notable difference

between A(12) and A(6) is that in A(12) the right range is not from 450 ms to 600 ms,
but from 3 000 ms to 4 000 ms. The reason for this range shift is that in A(12) the
clusters were more occupied than in A(6). In A(12), the last cluster had a maximal
size of six and the last-but-one cluster had a maximal size of five. Combined with the
exponential running time of Psaraftis’ algorithm this leads to a shift of the maximal
running times.
The key point of this analysis is that the running time of the classifier depends on

the instance at hand. For a similar distribution of riders into clusters like the examined
distributions, the classifier can be expected to finish after several seconds, compared to
a couple of minutes for running Psaraftis’ algorithm. Using the classifier is therefore
always worthwhile because the potential time loss is neglectable.
The time to solve an instance of 12 riders to optimality is rather high compared to the

running time of the
→
T ∗-algorithm. As seen in Figure 6.4 the probability that

→
T ∗ 6= T ∗ is

rather small when the inter-cluster distances grow. An understandable idea is to always
use the

→
T ∗-algorithm and accept non-optimal routes. The question is how bad

→
T ∗ is

compared to the globally optimal route T ∗. For a given instance I, the approximation
ratio is defined by c(

→
T ∗)/c(T ∗). It turns out that the worst approximation ratio that was

experienced in the test data is approximately 1.1. This occurs in the stack S(12, 4 000).
However, the mean ratio is 1.03 in S(12, 4 000), as well as in S(10, 4 000). Figure 6.7
shows the two histograms that illustrate the magnitude of approximation ratios. It is
important to note that both diagrams only consider instances for which

→
T ∗ 6= T ∗. In

other stacks than A(12, 4 000) and A(10, 4 000) the share of these instances is lesser and
illustrating their errors is not sensible for these small number of instances. To conclude,
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in most cases the
→
T ∗-algorithm will yield an optimal tour and if it does not, then the

tour is nearly optimal. However, there is no theorem that limits the error that can be
made, so using the

→
T ∗-algorithm without the classifier should be done with care.

The next paragraph examines the absolute difference in the objective function of
→
T ∗ and

T ∗. However, interpreting the absolute values of the objective function is really difficult.
For example, an instance in S(12, 4 000) has c(T ∗) = 334 545 and c(

→
T ∗) = 337 686. Both

values carry not much information about the routes themselves. The really interesting
topic is not the objective value itself but rather the detours that are experienced by the
riders. The detour of a rider in a tour T is the difference of distance he really travels in T
and the direct distance between is pickup and dropoff location. The former value can be
computed from T in linear time, the latter value is stored in the distance matrix [di,j ].
It seems plausible that there is a psychological bound on the detours the passengers
accept. If a bus tour induces detours greater than this limit, the passengers will chose
other means of transport. The author is not aware of any studies on such accepted
detours, so the analysis of detours can only be made without any judging.
Figure 6.8 shows the average detours experienced by the riders of the dedicated stacks

in the optimal tour. For example, a randomly selected rider from any instance of
S(6, 4 000) has to accept a detour in the range from 1 750 to 2 250 with probability
50%. In S(10, 4 000) there was one rider who had to drive a detour of 6 100. In general,
the detours induced by the optimal tour increase with a growing number of riders and
rising inter-cluster distances. Logic tells that the detours induced by a non-unidirectional
route grows by at least 1 000 if the inter-cluster distances are increased by 1 000. Deduc-
ing from the Figure 6.8, the detours for S(·, 12 000) could be in the range around 26 000.
However, they are not, because at some d the optimal route becomes unidirectional.
Once the optimal route is unidirectional, the detours do not increase any more. Yet,
the detours in S(·, 12 000) are longer than in S(·, 4 000) because in the optimal unidirec-
tional tour the riders are obliged to witness all riders boarding and unboarding during
the journey. At low inter-cluster distances there are fewer unidirectional optimal tours
and some riders can be served in a more direct way than in the unidirectional tour. As
the four stacks show, this effect is the more obvious the more riders are present. The
figures only show the detours for the optimal tour T ∗. If

→
T ∗ is more expensive than

T ∗, then the difference of the objective costs distributes to the riders, but it was not
examined how this distribution looks like. One extreme is that the difference is shared
equally by all drivers, the other extreme is that one rider receives the entire difference
alone. Most likely, the truth lies somewhere in between.
The next aspect of the artificial instances’ evaluation consists of the potential im-

provements and modifications for the classifier. Since the classifier’s heart consists of
the estimation of the lower bound Φ(Ci) it is sensible to improve this lower bound. If an
instance I was incorrectly declared as negative then for a cluster Ci in I the inequality
Φ(Ci) < Υ(Ci,

→
T ∗) was fulfilled, i.e. there was a cluster for which the lower bound on

serving it in several parts was cheaper than serving it in one part. This is no contradic-
tion to the optimal route being unidirectional since the classifier does not take pairs of
clusters into account.
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Fig. 6.8: The average detours of the riders (without the driver) in the dedicated stacks shown
in Tukey box plots [14]. The outliers are defined by the interquartile range k = 1.5.

The best solution to solve Ci in several partitions may cause immense costs in the
neighboring clusters, but since the classifier works cluster-wise, these potential costs are
not considered in the lower bound. An open problem for future research is to combine
the lower bound of several clusters to make the prediction more robust. In order to
turn a false negative into a true positive, an improvement of the estimation must span
the difference between both numbers so that the inequality sign is flipped. Figure 6.9
shows that the lower bound is relative close to Υ(Ci,

→
T ∗), in nearly all cases the difference

was below the mean inter-cluster distance. This means that if only one additional (and
unnecessary) journey to one of the neighboring cluster could be identified by the classifier,
then the chances are high that the recall of the classifier rises significantly. On the other
hand, an improvement of the cluster’s internal tours may likely yield an improvement,
too, because there are many instances with a difference in the range under 1 000.
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Fig. 6.9: The difference between Υ(Ci,
→
T ∗) and Φ(Ci) in instances for which the classifier incor-

rectly stated that T ∗ 6=
→
T ∗.

An interesting modification of the classifier consists of altering it so that it can cope
with other objective functions. Section 3.1 introduced the objective to minimize travel
distance and waiting time. To simplify matters, waiting time is regarded to be equivalent
to travel distance. The optimal tour of all instances of A(6), A(8) and A(10) were
computed with the modified target function. Of these instances, only five had non-
unidirectional tours. These instances had a mean inter-cluster distance of less than
6 000 and at most eight riders. The reason why there are so few non-unidirectional
routes is simple. Let T be a tour and e be one edge in the tour. Then the costs of e are
multiplied with the number of riders that have not yet been delivered. Consequently, the
long distances between the clusters weight heavier than in the former objective function.
It is advisable to use as few of them as possible which results in more unidirectional
optimal routes. The classifier can also handle the new objective function because the
lower bound remains valid. However, the accuracy sinks enormously: For S(6, 4 000),
the recall is only about 0.07 which is significantly worse than the recall depicted in
Figure 6.5 for the same stack. After increasing the inter-cluster distances to 24 000, the
recall for S(6, 24 000) is again 1. In general, the recall gets better for increasing inter-
cluster distances and worse for more riders. In principle, it should be easy to modify the
classifier to incorporate the new objective function adequately by adjusting the weights
of Algorithm 5. In contrast, the prevalence of instances with non-unidirectional routes
is very small, so just using the

→
T ∗-algorithm as heuristic should be acceptable in most

cases.
This completes the picture of the artificial euclidean instances which had the nice

property that the distances between the locations were easy to understand. The main
point of the analysis was to discover the impact of inter-cluster distances on the structure
of the optimal tour. The next section turns to more realistic examples in which the
distances and locations are based on authentic geographical data.
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6.2 Geographical Setting
While the last section dealt with artificial instances and simple distance matrices, this
section addresses real world applications. The main goal is to investigate how often
unidirectional tours occur in practice and how good the optimal unidirectional tour

→
T ∗

is compared to T ∗ . Three scenarios are investigated, each of them with a different use
case. All distances are based on a street network. Thus it might occur that the distance
between two locations implied by the border points of the cluster is greater than the
direct connection between the locations.

Rural Bus Line This scenario reflects the ideas from the previous section. Its model is
a rural bus line connecting six small villages and with the german city Würzburg. The
mean inter-cluster distance is 1.2 km, the minimum distance is 808 m and the maximum
distance is 3.4 km. The villages have a diameter ranging from 610 m to 2.6 km. The
average diameter is 1.3 km. The capacity of the last cluster was set to six, all other
villages can contain at most four locations. The riders are distributed randomly inside
the clusters without simulating a higher density towards the last clusters like in the last
section.

Regional Bus Line The regional bus line connects six smaller towns in the region of
Lower Franconia but does not serve small villages. The towns are located along a federal
highway. The average distance between two towns is 7.9 km, ranging from 2.4 km to
11 km. The diameters of the villages range from 1.3 km to 6.4 km. All clusters have
a capacity of six and are chosen equally likely. The interesting part of this scenario is
that the federal highway follows a river, but the shortest distance between two towns is
shorter because the river makes a turn. The distance matrix [di,j ] encodes the shorter
distance, but the cluster quadruple Q obeys the ordering of the clusters.

Intercity Bus The intercity bus connects six major german cities: Munich – Ingolstadt
– Nuremberg – Erfurt – Magdeburg – Berlin. The smallest distance between two cities
is 67 km, the longest 218 km, with a mean of 129 km. The diameters are also greater
than in the other two scenarios: Ranging from 1.5 km to 20 km. Both values express
two extreme situations: Ingolstadt is located left of an autobahn. To enter the city, the
driver re-enters the autobahn via the same junction as he left it. Thus, the distance
between Ingolstadt’s border points is rather small. Magdeburg, on the other hand is
very stretched and the shortest path through the city is 20 km long.

All three scenarios were tested with 100 randomly generated instances, each of them
containing 10 riders. These numbers form a compromise to generate a great variety of
instances while keeping the running time to solve them in an acceptable time frame.
Figure 6.10 illustrates the performance of the classifier. Of all rural instances 77%

have a unidirectional optimal tour. However, the classifier would only state 5% of them
correctly. It makes sense to compare the rural stack to S(10, 4 000) from the previous
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Fig. 6.10: The results of the three geographical stacks. The effect of the difficult regional
instance can easily be recognized in the left picture.

section. It does not surprise that the recall of the rural stack is smaller than that for
S(10, 4 000) because the mean inter-cluster distances are significantly smaller. It does
surprise that the number of instances with unidirectional optimal tours is nevertheless
higher than in the artificial case. The reason for this likely is the special metric of the
underlying street network but the exact cause could not be determined. An important
topic to stress is that the classifier did not produce false positives in the rural stack.
Remember that per definition, if the classifier responds T ∗ =

→
T ∗, then this is correct,

i.e. false positives are impossible. Yet, there is a restriction on this strong statement
because it is only correct when all the assumptions made in Section 4 are fulfilled.
However, street networks often violate these assumptions and irritate the classifier. One
of these assumptions is that is never advisable to bypass a cluster. In the evaluation of
the last section this was achieved by using the euclidean distances between clusters.
In reality, this condition is not met, as Figure 6.11 demonstrates. On the left is the

expected order of clusters, but one instance used the order on the right instead. Other
similar cases could be found in the rural stack. In all these instances not one false
positive was generated. This suggests that the classifier is robust to some degree if the
idealistic assumptions under which it was developed and proven correctly are not met.
The regional bus line was designed to ignore all assumptions completely. This results

not only in fewer instances in which T ∗ =
→
T ∗ does hold (Figure 6.10) but also in several

false positives. In these cases the classifier said that T ∗ =
→
T ∗ but that was not true. There

were 16 false positives in the regional stack, thus the classifier’s precision in this stack
was 0.61 which is rather small compared to the precision of 1 in all stacks encountered so
far. As already mentioned, the regional bus line is a difficult scenario for the classifier.
Figure 6.12 shows why this scenario is so difficult as well as one tour which was classified
incorrectly. The reason for the classifier failing on these kind of instances is that there
is a huge discrepancy between the distances in [di,j ] and the distances in [di]. Psaraftis’
algorithm uses only the former distances while the classifier’s response is mainly based
on the latter distances. If these distances state that two locations are wider apart than
they are in reality, then the classifier likely reaches a wrong conclusion. In the case
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Fig. 6.11: The left image shows the intended order of the clusters, the right image shows one
Dial-a-Ride instance with an optimal tour that does not obey the intended order.

Fig. 6.12: The supposed tour follows the river while many of the optimal tours bypass the
nothern city or visit it later to avoid detours for riders boarded in the leftmost town.
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Fig. 6.13: The average detour a rider experiences in the optimal route. A different scale had to
be used for the intercity scenario because the detours are very big in this setting.
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at hand, the classifier assumes that the shortest path from the left to the right town
goes through the northern town because the clusters are defined in that way. When the
clusters are ignored, then there is a shorter path which bypasses the northern village.
However, the regional cases examined here is very extreme and the rural scenario shows
that some discrepancy is allowed between the two distance matrices.

To avoid false positives both distance matrices can be harmonized manually so that
they encode the same distance between two locations. Essentially this means pretending
that the shorter of the two alternative connections between the two locations is not
existent. The downside of this solution is that it forces the riders to take detours in all
instances, pretty much like a bus line induces detours for some riders. These detours
occur independently from the customers present at a specific day.
Unsurprisingly, all instances in the intercity scenario have an unidirectional optimal

tour, of which the classifier found 93%. In all but one of the seven false negative instances
the classifier reached only Nuremberg. The distance between Nuremberg and Ingolstadt
is the smallest inter-cluster distance in the scenario, so it is plausible that the classifier
fails there. In one false negative Ingolstadt was reached which is understandable for the
same reason.
Again, the acceptance of a service such as Dial-a-Ride depends on the detours made.

To this end, the average detours by all riders are examined. This examination meets the
expectations: In the rural setting the detours implied by the optimal route were relatively
small, and in the intercity scenario riders have to accept detours of tens of kilometers.
Figure 6.13 uses box plots to illustrate the detours for the different scenarios.
Especially in scenarios similar to the intercity setting, the temptation exists to use

the
→
T ∗-algorithm as a heuristic. It turned out that the approximation ratio in all three

scenarios was very similar to those of Figure 6.7 for the euclidean instances. The average
approximation ratio for negatives was around 1.02 for the rural scenario and 1.07 in
the regional scenario. However there are a few outliers, the worst of them was an
approximation ratio of 1.28. In all outliers a similar situation as in Figures 6.11 and 6.12
was met. A bad approximation ratio in these instances is acceptable, more important is
that the approximation is indeed quite good for sensible instances.
This concludes the evaluation of the classifier. It became clear that the classifier is

a powerful tool that can shorten the time to compute an optimal route significantly in
many cases because if the classifier declares an instance to be a “yes”-instance, then a
faster algorithm can be used. If the classifier returns “no”, then only the time expensive
algorithm by Psaraftis’ guarantees an optimal solution. If an instance was erroneously
classified with “no”, than the slower algorithm is used unnecessarily, causing a loss of
time. Fortunately, these cases are, depending on the instances at hand, rather rare. If
an instance really does not admit a unidirectional optimal route than the loss of time
by using the classifier is neglectable. The next and last chapter summarizes the findings
of the thesis and proposes directions for future work.
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7 Conclusion and Future Work

In order to set up a system for rural public transportation which combines the cheapness
of traditional bus routes with the convenience of door-to-door deliveries offered by taxi
cabs many aspects must be considered. Besides economical studies one has also to focus
on routes that are ecologically sensible and do not discourage potential customers from
using the service. This thesis dealt with approaches to compute tours that minimize
a certain objective function, for example total distance driven or waiting times. In
Chapter 3 the Dial-a-Ride problem was introduced formally and a basic algorithm to
solve it was presented. However, the Dial-a-Ride problem and the existing algorithms
did not portray the structure of instances evolving in rural environments. To this end,
the problem definition was extended to the Clustered Dial-a-Ride problem in Chapter 4.
This extended problem variant allowed for the

→
T ∗-algorithm which computes the best

route serving the villages one-after-another. The evaluation showed that there are many
cases in which this optimal unidirectional route is also the globally optimal route. In
order to distinguish such cases, Section 4.2 presented the idea of classifying instances.
This led to a concrete classifier which decides if for a given instance T ∗ equals

→
T ∗.

Per definition, the classifier can never produce false positives if the instance at hand
satisfies some natural restrictions. Although not obeying them may lead the classifier
to false conclusions, tests showed that the classifier remains robust even if some of these
restrictions are violated.
The classifier was evaluated in Chapter 6. The main result was that utilizing the

classifier in order to check if a specific instance admits the
→
T ∗-algorithm is worth waiting

a few seconds for the answer. Tests on real geographical data showed that the classifier is
best used in regional settings connecting several towns with wide inter-cluster distances.
In settings involving many small villages with low distance between them, the classifier is
not that accurate. However, one can use the

→
T ∗-algorithm and accept non-optimal routes

in less than a quarter of the cases, especially given the good empiric approximation ratio
of the

→
T ∗-algorithm.

The prospect to future work on the computational side is threefold. The first point
addresses the estimation at the heart of the classifier: It may be possible to increase
the lower bound so that more instances are recognized correctly. Additionally, it may
be also worth to study the interaction of several clusters in the estimation process. The
second suggestion is more technical. The classifier’s implementation is parallelized, but
without a profound study on the impact of the number of processes. Chances are high
that some time can be gained by dynamically spawning parallel processes. The last topic
concerns the objective function. The classifier of this thesis can deal adequately with
one objective function only, namely minimizing the total distance driven. It is desirable
to generalize it so that other objective functions can be used easily.
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