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Attributions of third party images can be found on slide 12.
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Public Transportation

So far, so good? Ñ Probably in the city, but not in villages!

Ñ Doorstep Service in Rural Areas



3/11

The Dial-a-Ride Problem



3/11

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple I “ pn, rdi ,j s, Sq.



3/11

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple I “ pn, rdi ,j s, Sq.

n :“ number of riders



3/11

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple I “ pn, rdi ,j s, Sq.

n :“ number of riders



3/11

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple I “ pn, rdi ,j s, Sq.

n :“ number of riders



3/11

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple I “ pn, rdi ,j s, Sq.

n :“ number of riders

Number of persons m “ n ` 1



3/11

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple I “ pn, rdi ,j s, Sq.

n :“ number of riders

Number of persons m “ n ` 1



3/11

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple I “ pn, rdi ,j s, Sq.

n :“ number of riders

Number of persons m “ n ` 1

rdi ,j s :“ distance matrix



3/11

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple I “ pn, rdi ,j s, Sq.

n :“ number of riders

Number of persons m “ n ` 1

rdi ,j s :“ distance matrix
start with 0 (driver’s pickup) 0



3/11

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple I “ pn, rdi ,j s, Sq.

n :“ number of riders

Number of persons m “ n ` 1

rdi ,j s :“ distance matrix
start with 0 (driver’s pickup) 0

enumerate pickups

1

2

3



3/11

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple I “ pn, rdi ,j s, Sq.

n :“ number of riders

Number of persons m “ n ` 1

rdi ,j s :“ distance matrix
start with 0 (driver’s pickup) 0

enumerate pickups
enumerate dest‘s in same order

1

2

3



3/11

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple I “ pn, rdi ,j s, Sq.

n :“ number of riders

Number of persons m “ n ` 1

rdi ,j s :“ distance matrix
start with 0 (driver’s pickup) 0

enumerate pickups

4

enumerate dest‘s in same order

1

2

3

5

6

7



3/11

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple I “ pn, rdi ,j s, Sq.

n :“ number of riders

Number of persons m “ n ` 1

rdi ,j s :“ distance matrix
start with 0 (driver’s pickup) 0

enumerate pickups

4

enumerate dest‘s in same order

1

2

3

5

6

7



3/11

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple I “ pn, rdi ,j s, Sq.

n :“ number of riders

Number of persons m “ n ` 1

rdi ,j s :“ distance matrix
start with 0 (driver’s pickup) 0

enumerate pickups

4

enumerate dest‘s in same order

1

2

3

5

6

7
S :“number of seats in the vehicle



3/11

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple I “ pn, rdi ,j s, Sq.

n :“ number of riders

Number of persons m “ n ` 1

rdi ,j s :“ distance matrix
start with 0 (driver’s pickup) 0

enumerate pickups

4

enumerate dest‘s in same order

1

2

3

5

6

7
S :“number of seats in the vehicle

for this presentation: S “ 8



3/11

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple I “ pn, rdi ,j s, Sq.

n :“ number of riders

Number of persons m “ n ` 1

rdi ,j s :“ distance matrix
start with 0 (driver’s pickup) 0

enumerate pickups

4

enumerate dest‘s in same order

1

2

3

5

6

7
S :“number of seats in the vehicle

Objective: Feasible tour minimizing the sum of total distances.

for this presentation: S “ 8



3/11

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple I “ pn, rdi ,j s, Sq.

n :“ number of riders

Number of persons m “ n ` 1

rdi ,j s :“ distance matrix
start with 0 (driver’s pickup) 0

enumerate pickups

4

enumerate dest‘s in same order

1

2

3

5

6

7
S :“number of seats in the vehicle

Objective: Feasible tour minimizing the sum of total distances.

for this presentation: S “ 8



3/11

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple I “ pn, rdi ,j s, Sq.

n :“ number of riders

Number of persons m “ n ` 1

rdi ,j s :“ distance matrix
start with 0 (driver’s pickup) 0

enumerate pickups

4

enumerate dest‘s in same order

1

2

3

5

6

7
S :“number of seats in the vehicle

Objective: Feasible tour minimizing the sum of total distances.

for this presentation: S “ 8



4/11

An Exact Algorithm



4/11

An Exact Algorithm

There is an exact algorithm by Psaraftis, 1980.



4/11

An Exact Algorithm

There is an exact algorithm by Psaraftis, 1980.

It works similar to the Held-Karp-algorithm.



4/11

An Exact Algorithm

There is an exact algorithm by Psaraftis, 1980.

It works similar to the Held-Karp-algorithm.

Running Time: O˚p3n´1q.



4/11

An Exact Algorithm

There is an exact algorithm by Psaraftis, 1980.

It works similar to the Held-Karp-algorithm.

Running Time: O˚p3n´1q.

Can be generalized to solve partial instances:



4/11

An Exact Algorithm

There is an exact algorithm by Psaraftis, 1980.

It works similar to the Held-Karp-algorithm.

Running Time: O˚p3n´1q.

Can be generalized to solve partial instances:



4/11

An Exact Algorithm

There is an exact algorithm by Psaraftis, 1980.

It works similar to the Held-Karp-algorithm.

Running Time: O˚p3n´1q.

Can be generalized to solve partial instances:

Find best tour such that
a) girl is delivered
b) waiting customer is fetched
c) boy is still on board.
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Back to Rural Areas . . .

A rural Dial-a-Ride instance typically looks like this:

Hogsmeade
Springfield Minas Tirith

Seems to be simpler than the Dial-a-Ride Problem . . .

Ñ All riders head in the same direction.

Ñ Locations are inside clusters.
Ñ Bypasses do not exist.

Goal:
Classify instances whose optimal tour is unidirectional.

(without computing it)

Ñ
ÝÑ
T˚-algorithm

Assumptions:
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A Classifier

Hogsmeade
Springfield Minas Tirith

Idea: Distribute the costs of a tour to the clusters.

Let C1, . . .Cq be the clusters.

Let ΥpT , Ci q P R` such that @T :
řq

i“1 ΥpT , Ci q “ cpT q

Let ΦpCi q be a lower bound on ΥpT˚, Ci q.

Theorem (= Classifier): @Ci : ΦpCi q “ Υp
ÝÑ
T˚, Ci q ñ T˚ “

ÝÑ
T˚

Proof. Via exchange argument.

TODO!
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Obs.: Edges of a tour are weighted. Ñ Count atomic journeys!

Every cluster Ci has four counters:

α :“ #rightbound persons with pr ď i .
β :“ #leftbound persons with dr ě i .
γ :“ #left-entering persons with pr ě i .
δ :“ #right-entering persons with dr ď i .

ΥpT , Ci q “ inpCi q ` αCiCi`1 ` βCiCi´1 ` γCi´1Ci ` δCi`1Ci

See thesis for proof ofcpT q “
ř

ΥpT , Ci q.

Todo: ΦpCi q ď ΥpT˚, Ci q

pickup cluster of r

dropoff cluster of r
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Runtimes:

Exact: 120 s
ÝÑ
T˚-Algorithm: 3 ms Classifier: 4 s

Ratio T˚ “
ÝÑ
T˚

Clusters close together („ 6km):
far apart (ě 16 km):
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0.4
0.9

ÝÑ
T˚-Algorithm as Heuristic:
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for n “ 12
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Topology of Street Networks

Street Networks often do not meet the assumptions.

Example #2:
Regional Instance

Really hard scenario . . .

False positives are to be
expected in this case.
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Attributions

The above icons are made by Freepik from flaticon.com

Ð CC 3.0 BY by SimpleIcon from flaticon.com

(c) Map Images from OpenStreetMap (osm.org)
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The following slides were abandoned at some point
and not officially shown at the presentation. They may
contain errors or are incomplete. Maybe they help you
nonetheless.
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The Objective Function

A tour T is a permutation of r0, 2m ´ 1s.

0

m

1

2

3

5

6

7

T feasible ôT r1s “ 0 & T r2ms “ m
& precedences obeyed
& S not violated

S ě 3

kpjq is the number of persons after step j of T .

min
T feasible

ř2m
i“2 kpi ´ 1q ¨ d

”

T ri ´ 1s, T ris
ı

Objective: T “ r0, 3, 1, 5, 7, 2, 6, 4s
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Tree is smaller, but the
BFS stays the same.
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Wait . . .What?!
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