Public Transportation in Rural Areas: The Clustered Dial-a-Ride Problem

Fabian Feitsch
November 16th, 2018

Attributions of third party images can be found on slide 12.

Public Transportation

Public Transportation

2/11

Public Transportation

Public Transportation

Public Transportation

So far, so good?

Public Transportation

So far, so good? \rightarrow Probably in the city, but not in villages!

Public Transportation

So far, so good? \rightarrow Probably in the city, but not in villages!
\rightarrow Doorstep Service in Rural Areas

The Dial-a-Ride Problem

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple $I=\left(n,\left[d_{i, j}\right], S\right)$.

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple $I=\left(n,\left[d_{i, j}\right], S\right)$. $n:=$ number of riders

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple $I=\left(n,\left[d_{i, j}\right], S\right)$. $n:=$ number of riders

.

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple $I=\left(n,\left[d_{i, j}\right], S\right)$. $n:=$ number of riders

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple $I=\left(n,\left[d_{i, j}\right], S\right)$.
$n:=$ number of riders
Number of persons $m=n+1$

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple $I=\left(n,\left[d_{i, j}\right], S\right)$.
$n:=$ number of riders
Number of persons $m=n+1$

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple $I=\left(n,\left[d_{i, j}\right], S\right)$.
$n:=$ number of riders
Number of persons $m=n+1$
$\left[d_{i, j}\right]:=$ distance matrix

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple $I=\left(n,\left[d_{i, j}\right], S\right)$.
$n:=$ number of riders
Number of persons $m=n+1$
$\left[d_{i, j}\right]:=$ distance matrix start with 0 (driver's pickup) 0

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple $I=\left(n,\left[d_{i, j}\right], S\right)$.
$n:=$ number of riders
Number of persons $m=n+1$
$\left[d_{i, j}\right]:=$ distance matrix start with 0 (driver's pickup) 盆。 enumerate pickups

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple $I=\left(n,\left[d_{i, j}\right], S\right)$.
$n:=$ number of riders
Number of persons $m=n+1$
$\left[d_{i, j}\right]:=$ distance matrix start with 0 (driver's pickup) enumerate pickups enumerate dest's in same order

会。2
$3 / 11$

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple $I=\left(n,\left[d_{i, j}\right], S\right)$.
$n:=$ number of riders
Number of persons $m=n+1$
$\left[d_{i, j}\right]:=$ distance matrix start with 0 (driver's pickup) 崌。 enumerate pickups enumerate dest's in same order

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple $I=\left(n,\left[d_{i, j}\right], S\right)$.
$n:=$ number of riders
Number of persons $m=n+1$
$\left[d_{i, j}\right]:=$ distance matrix
start with 0 (driver's pickup) enumerate pickups enumerate dest's in same order

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple $I=\left(n,\left[d_{i, j}\right], S\right)$.
$n:=$ number of riders
Number of persons $m=n+1$
$\left[d_{i, j}\right]:=$ distance matrix start with 0 (driver's pickup) enumerate pickups enumerate dest's in same order
$S:=$ number of seats in the vehicle

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple $I=\left(n,\left[d_{i, j}\right], S\right)$.
$n:=$ number of riders
Number of persons $m=n+1$
$\left[d_{i, j}\right]:=$ distance matrix start with 0 (driver's pickup) enumerate pickups enumerate dest's in same order
$S:=$ number of seats in the vehicle
 for this presentation: $S=\infty$

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple $I=\left(n,\left[d_{i, j}\right], S\right)$.
$n:=$ number of riders
Number of persons $m=n+1$
$\left[d_{i, j}\right]:=$ distance matrix start with 0 (driver's pickup) enumerate pickups enumerate dest's in same order
$S:=$ number of seats in the vehicle
 for this presentation: $S=\infty$

Objective: Feasible tour minimizing the sum of total distances.

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple $I=\left(n,\left[d_{i, j}\right], S\right)$.
$n:=$ number of riders
Number of persons $m=n+1$
$\left[d_{i, j}\right]:=$ distance matrix start with 0 (driver's pickup) enumerate pickups enumerate dest's in same order
$S:=$ number of seats in the vehicle
 for this presentation: $S=\infty$

Objective: Feasible tour minimizing the sum of total distances.

The Dial-a-Ride Problem

A Dial-a-Ride instance is a triple $I=\left(n,\left[d_{i, j}\right], S\right)$.
$n:=$ number of riders
Number of persons $m=n+1$
$\left[d_{i, j}\right]:=$ distance matrix start with 0 (driver's pickup) enumerate pickups enumerate dest's in same order
$S:=$ number of seats in the vehicle
 for this presentation: $S=\infty$

Objective: Feasible tour minimizing the sum of total distances.

An Exact Algorithm

An Exact Algorithm

There is an exact algorithm by Psaraftis, 1980.

An Exact Algorithm

There is an exact algorithm by Psaraftis, 1980.
It works similar to the Held-Karp-algorithm.

An Exact Algorithm

There is an exact algorithm by Psaraftis, 1980.
It works similar to the Held-Karp-algorithm.
Running Time: $O^{*}\left(3^{n-1}\right)$.

An Exact Algorithm

There is an exact algorithm by Psaraftis, 1980.
It works similar to the Held-Karp-algorithm.
Running Time: $O^{*}\left(3^{n-1}\right)$.

Can be generalized to solve partial instances:

An Exact Algorithm

There is an exact algorithm by Psaraftis, 1980.
It works similar to the Held-Karp-algorithm.
Running Time: $O^{*}\left(3^{n-1}\right)$.

Can be generalized to solve partial instances:

An Exact Algorithm

There is an exact algorithm by Psaraftis, 1980.
It works similar to the Held-Karp-algorithm.
Running Time: $O^{*}\left(3^{n-1}\right)$.

Can be generalized to solve partial instances:

Find best tour such that
a) girl is delivered
b) waiting customer is fetched
c) boy is still on board.

Back to Rural Areas ...

5/11

Back to Rural Areas ...

A rural Dial-a-Ride instance typically looks like this:

Back to Rural Areas ...

A rural Dial-a-Ride instance typically looks like this:

Assumptions:

Back to Rural Areas ...

A rural Dial-a-Ride instance typically looks like this:

Assumptions:
\rightarrow Locations are inside clusters.

Back to Rural Areas ...

A rural Dial-a-Ride instance typically looks like this:

Assumptions:
\rightarrow Locations are inside clusters.
\rightarrow Bypasses do not exist.

Back to Rural Areas ...

A rural Dial-a-Ride instance typically looks like this:

Assumptions:
\rightarrow Locations are inside clusters.
\rightarrow Bypasses do not exist.

Back to Rural Areas ...

A rural Dial-a-Ride instance typically looks like this:

Assumptions:
\rightarrow Locations are inside clusters.
\rightarrow Bypasses do not exist.
\rightarrow All riders head in the same direction.

Back to Rural Areas ...

A rural Dial-a-Ride instance typically looks like this:

Assumptions:
\rightarrow Locations are inside clusters.
\rightarrow Bypasses do not exist.
\rightarrow All riders head in the same direction.
Seems to be simpler than the Dial-a-Ride Problem ...

Back to Rural Areas ...

A rural Dial-a-Ride instance typically looks like this:

Assumptions:
\rightarrow Locations are inside clusters.
\rightarrow Bypasses do not exist.
\rightarrow All riders head in the same direction.
Seems to be simpler than the Dial-a-Ride Problem ...

Back to Rural Areas ...

A rural Dial-a-Ride instance typically looks like this:

Assumptions:
\rightarrow Locations are inside clusters.
\rightarrow Bypasses do not exist.
\rightarrow All riders head in the same direction.
Seems to be simpler than the Dial-a-Ride Problem ...

Back to Rural Areas ...

A rural Dial-a-Ride instance typically looks like this:

Assumptions:
\rightarrow Locations are inside clusters.
\rightarrow Bypasses do not exist.
\rightarrow All riders head in the same direction.
Seems to be simpler than the Dial-a-Ride Problem ...
$\rightarrow \overrightarrow{T^{*}}$-algorithm

Back to Rural Areas ...

A rural Dial-a-Ride instance typically looks like this:

Assumptions:
\rightarrow Locations are inside clusters.
\rightarrow Bypasses do not exist.
\rightarrow All riders head in the same direction.
Seems to be simpler than the Dial-a-Ride Problem ...
$\rightarrow \overrightarrow{T^{*}}$-algorithm
Goal:

Back to Rural Areas ...

A rural Dial-a-Ride instance typically looks like this:

Assumptions:
\rightarrow Locations are inside clusters.
\rightarrow Bypasses do not exist.
\rightarrow All riders head in the same direction.
Seems to be simpler than the Dial-a-Ride Problem ...
$\rightarrow \overrightarrow{T^{*}}$-algorithm
Goal:
Classify instances whose optimal tour is unidirectional.

Back to Rural Areas ...

A rural Dial-a-Ride instance typically looks like this:

Assumptions:
\rightarrow Locations are inside clusters.
\rightarrow Bypasses do not exist.
\rightarrow All riders head in the same direction.
Seems to be simpler than the Dial-a-Ride Problem ...
$\rightarrow \overrightarrow{T^{*}}$-algorithm
Goal:
Classify instances whose optimal tour is unidirectional.

A Classifier

A Classifier

Idea: Distribute the costs of a tour to the clusters.

Springfield

A Classifier

Idea: Distribute the costs of a tour to the clusters.

A Classifier

Idea: Distribute the costs of a tour to the clusters.

A Classifier

Idea: Distribute the costs of a tour to the clusters.

A Classifier

Idea: Distribute the costs of a tour to the clusters.

Let $C_{1}, \ldots C_{q}$ be the clusters.

A Classifier

Idea: Distribute the costs of a tour to the clusters.

Let $C_{1}, \ldots C_{q}$ be the clusters.
Let $\Upsilon\left(T, C_{i}\right) \in \mathbb{R}^{+}$

A Classifier

Idea: Distribute the costs of a tour to the clusters.

Let $C_{1}, \ldots C_{q}$ be the clusters.
Let $\Upsilon\left(T, C_{i}\right) \in \mathbb{R}^{+}$such that $\forall T: \sum_{i=1}^{q} \Upsilon\left(T, C_{i}\right)=c(T)$

A Classifier

Idea: Distribute the costs of a tour to the clusters.

Let $C_{1}, \ldots C_{q}$ be the clusters.
Let $\Upsilon\left(T, C_{i}\right) \in \mathbb{R}^{+}$such that $\forall T: \sum_{i=1}^{q} \Upsilon\left(T, C_{i}\right)=c(T)$
Let $\Phi\left(C_{i}\right)$ be a lower bound on $\Upsilon\left(T^{*}, C_{i}\right)$.

A Classifier

Idea: Distribute the costs of a tour to the clusters.

Let $C_{1}, \ldots C_{q}$ be the clusters.
Let $\Upsilon\left(T, C_{i}\right) \in \mathbb{R}^{+}$such that $\forall T: \sum_{i=1}^{q} \Upsilon\left(T, C_{i}\right)=c(T)$
Let $\Phi\left(C_{i}\right)$ be a lower bound on $\Upsilon\left(T^{*}, C_{i}\right)$.
Theorem (= Classifier):

A Classifier

Idea: Distribute the costs of a tour to the clusters.

Let $C_{1}, \ldots C_{q}$ be the clusters.
Let $\Upsilon\left(T, C_{i}\right) \in \mathbb{R}^{+}$such that $\forall T: \sum_{i=1}^{q} \Upsilon\left(T, C_{i}\right)=c(T)$
Let $\Phi\left(C_{i}\right)$ be a lower bound on $\Upsilon\left(T^{*}, C_{i}\right)$.
Theorem ($=$ Classifier): $\forall C_{i}: \Phi\left(C_{i}\right)=\Upsilon\left(\overrightarrow{T^{*}}, C_{i}\right) \Rightarrow T^{*}=\overrightarrow{T^{*}}$

A Classifier

Idea: Distribute the costs of a tour to the clusters.

Let $C_{1}, \ldots C_{q}$ be the clusters.
Let $\Upsilon\left(T, C_{i}\right) \in \mathbb{R}^{+}$such that $\forall T: \sum_{i=1}^{q} \Upsilon\left(T, C_{i}\right)=c(T)$
Let $\Phi\left(C_{i}\right)$ be a lower bound on $\Upsilon\left(T^{*}, C_{i}\right)$.
Theorem ($=$ Classifier): $\forall C_{i}: \Phi\left(C_{i}\right)=\Upsilon\left(\overrightarrow{T^{*}}, C_{i}\right) \Rightarrow T^{*}=\overrightarrow{T^{*}}$
Proof. Via exchange argument. \square

A Classifier

Idea: Distribute the costs of a tour to the clusters.

Let $C_{1}, \ldots C_{q}$ be the clusters.
Let $\gamma\left(T, C_{i}\right) \in \mathbb{R}^{+}$such that $\forall T: \sum_{i=1}^{q} \gamma\left(T, C_{i}\right)=c(T)$
Let $\Phi\left(C_{i}\right)$ be a lower bound on $r\left(T^{*}, C_{i}\right)$. ${ }^{T} \mathrm{OD}_{\mathrm{O}}$!
Theorem (= Classifier): $\forall C_{i}: \Phi\left(C_{i}\right)=\Upsilon\left(\overrightarrow{T^{*}}, C_{i}\right) \Rightarrow T^{*}=\overrightarrow{T^{*}}$
Proof. Via exchange argument. \square

Distribute Costs to Clusters

Distribute Costs to Clusters

Assign the parts of a tour to clusters.

Distribute Costs to Clusters

Assign the parts of a tour to clusters.

Obs.: Edges of a tour are weighted.

Distribute Costs to Clusters

Assign the parts of a tour to clusters.

Obs.: Edges of a tour are weighted.

Distribute Costs to Clusters

Assign the parts of a tour to clusters.

Obs.: Edges of a tour are weighted.

Distribute Costs to Clusters

Assign the parts of a tour to clusters.

Obs.: Edges of a tour are weighted. \rightarrow Count atomic journeys!

Distribute Costs to Clusters

Assign the parts of a tour to clusters.

Obs.: Edges of a tour are weighted. \rightarrow Count atomic journeys!
Every cluster C_{i} has four counters:

Distribute Costs to Clusters

Assign the parts of a tour to clusters.

Obs.: Edges of a tour are weighted. \rightarrow Count atomic journeys!
Every cluster C_{i} has four counters: _pickup cluster of r $\alpha:=\#$ rightbound persons with $p_{r} \leqslant i$.

Distribute Costs to Clusters

Assign the parts of a tour to clusters.

Obs.: Edges of a tour are weighted. \rightarrow Count atomic journeys!
Every cluster C_{i} has four counters: pickup cluster of r $\alpha:=\#$ rightbound persons with $p_{r} \leqslant i$.

Distribute Costs to Clusters

Assign the parts of a tour to clusters.

Obs.: Edges of a tour are weighted. \rightarrow Count atomic journeys!
Every cluster C_{i} has four counters: pickup cluster of r $\alpha:=\#$ rightbound persons with $p_{r} \leqslant i$. dropoff cluster of r $\beta:=\#$ leftbound persons with $d_{r} \geqslant i$.

Distribute Costs to Clusters

Assign the parts of a tour to clusters.

Obs.: Edges of a tour are weighted. \rightarrow Count atomic journeys!
Every cluster C_{i} has four counters: _pickup cluster of r $\alpha:=$ \#rightbound persons with $p_{r} \leqslant i$. dropoff cluster of r $\beta:=$ \#leftbound persons with $d_{r} \geqslant i$.

Distribute Costs to Clusters

Assign the parts of a tour to clusters.

Obs.: Edges of a tour are weighted. \rightarrow Count atomic journeys!
Every cluster C_{i} has four counters: pickup cluster of r $\alpha:=$ \#rightbound persons with $p_{r} \leqslant i$. dropoff cluster of r $\beta:=$ \#leftbound persons with $d_{r} \geqslant i$.
$\gamma:=$ \#left-entering persons with $p_{r} \geqslant i$.

Distribute Costs to Clusters

Assign the parts of a tour to clusters.

Obs.: Edges of a tour are weighted. \rightarrow Count atomic journeys!
Every cluster C_{i} has four counters: _pickup cluster of r $\alpha:=$ \#rightbound persons with $p_{r} \leqslant i$. dropoff cluster of r $\beta:=$ \#leftbound persons with $d_{r} \geqslant i$.
$\gamma:=$ \#left-entering persons with $p_{r} \geqslant i$.
$\delta:=\#$ right-entering persons with $d_{r} \leqslant i$.

Distribute Costs to Clusters

Assign the parts of a tour to clusters.

Obs.: Edges of a tour are weighted. \rightarrow Count atomic journeys!
Every cluster C_{i} has four counters: _pickup cluster of r
$\alpha:=$ \#rightbound persons with $p_{r} \leqslant i$. dropoff cluster of r
$\beta:=$ \#leftbound persons with $d_{r} \geqslant i$.
$\gamma:=$ \#left-entering persons with $p_{r} \geqslant i$.
$\delta:=\#$ right-entering persons with $d_{r} \leqslant i$.

$$
\Upsilon\left(T, C_{i}\right)=\operatorname{in}\left(C_{i}\right)
$$

Distribute Costs to Clusters

Assign the parts of a tour to clusters.

Obs.: Edges of a tour are weighted. \rightarrow Count atomic journeys!
Every cluster C_{i} has four counters: _pickup cluster of r
$\alpha:=$ \#rightbound persons with $p_{r} \leqslant i$. dropoff cluster of r
$\beta:=$ \#leftbound persons with $d_{r} \geqslant i$.
$\gamma:=$ \#left-entering persons with $p_{r} \geqslant i$.
$\delta:=\#$ right-entering persons with $d_{r} \leqslant i$.

$$
\Upsilon\left(T, C_{i}\right)=\operatorname{in}\left(C_{i}\right)+\alpha \overline{C_{i} C_{i+1}}
$$

Distribute Costs to Clusters

Assign the parts of a tour to clusters.

Obs.: Edges of a tour are weighted. \rightarrow Count atomic journeys!
Every cluster C_{i} has four counters: _pickup cluster of r
$\alpha:=\#$ rightbound persons with $p_{r} \leqslant i$. dropoff cluster of r
$\beta:=$ \#leftbound persons with $d_{r} \geqslant i$.
$\gamma:=\#$ left-entering persons with $p_{r} \geqslant i$.
$\delta:=\#$ right-entering persons with $d_{r} \leqslant i$.

$$
\gamma\left(T, C_{i}\right)=\operatorname{in}\left(C_{i}\right)+\alpha \overline{C_{i} C_{i+1}}+\beta \overline{C_{i} C_{i-1}}
$$

Distribute Costs to Clusters

Assign the parts of a tour to clusters.

Obs.: Edges of a tour are weighted. \rightarrow Count atomic journeys!
Every cluster C_{i} has four counters: _pickup cluster of r
$\alpha:=$ \#rightbound persons with $p_{r} \leqslant i$. dropoff cluster of r
$\beta:=$ \#leftbound persons with $d_{r} \geqslant i$.
$\gamma:=$ \#left-entering persons with $p_{r} \geqslant i$.
$\delta:=\#$ right-entering persons with $d_{r} \leqslant i$.

$$
\gamma\left(T, C_{i}\right)=\operatorname{in}\left(C_{i}\right)+\alpha \overline{C_{i} C_{i+1}}+\beta \overline{C_{i} C_{i-1}}+\gamma \overline{C_{i-1} C_{i}}
$$

Distribute Costs to Clusters

Assign the parts of a tour to clusters.

Obs.: Edges of a tour are weighted. \rightarrow Count atomic journeys!
Every cluster C_{i} has four counters:
$\alpha:=\#$ rightbound persons with $p_{r} \leqslant i$.
$\beta:=$ \#leftbound persons with $d_{r} \geqslant i$.
$\gamma:=$ \#left-entering persons with $p_{r} \geqslant i$.
$\delta:=$ \#right-entering persons with $d_{r} \leqslant i$.

$$
r\left(T, C_{i}\right)=\operatorname{in}\left(C_{i}\right)+\alpha \overline{C_{i} C_{i+1}}+\beta \overline{C_{i} C_{i-1}}+\gamma \overline{C_{i-1} C_{i}}+\delta \overline{C_{i+1} C_{i}}
$$

Distribute Costs to Clusters

Assign the parts of a tour to clusters.

Obs.: Edges of a tour are weighted. \rightarrow Count atomic journeys!
Every cluster C_{i} has four counters:
$\alpha:=\#$ rightbound persons with $p_{r} \leqslant i$.
$\beta:=$ \#leftbound persons with $d_{r} \geqslant i$.
$\gamma:=$ \#left-entering persons with $p_{r} \geqslant i$.
$\delta:=$ \#right-entering persons with $d_{r} \leqslant i$.
See thesis for proof of
$c(T)=\sum r\left(T, C_{i}\right)$.
$r\left(T, C_{i}\right)=\operatorname{in}\left(C_{i}\right)+\alpha \overline{C_{i} C_{i+1}}+\beta \overline{C_{i} C_{i-1}}+\gamma \overline{C_{i-1} C_{i}}+\delta \overline{C_{i+1} C_{i}}$
Todo: $\Phi\left(C_{i}\right) \leqslant r\left(T^{*}, C_{i}\right)$

Lower Bound on $\Upsilon\left(T^{*}, C_{i}\right)$ (Sketch)

Lower Bound on $\Upsilon\left(T^{*}, C_{i}\right)$ (Sketch)

Idea: Any T induces an ordered partition on every cluster.

Lower Bound on $\Upsilon\left(T^{*}, C_{i}\right)$ (Sketch)

Idea: Any T induces an ordered partition on every cluster.

Lower Bound on $\Upsilon\left(T^{*}, C_{i}\right)$ (Sketch)

Idea: Any T induces an ordered partition on every cluster.

Other Possibilities?

Lower Bound on $\Upsilon\left(T^{*}, C_{i}\right)$ (Sketch)

Idea: Any T induces an ordered partition on every cluster.

Other Possibilities? $\mathcal{S}=[\{4\},\{8\}] \quad \mathcal{S}=[\{4,8\}]$

Lower Bound on $\Upsilon\left(T^{*}, C_{i}\right)$ (Sketch)

Idea: Any T induces an ordered partition on every cluster.

Other Possibilities? $\mathcal{S}=[\{4\},\{8\}] \quad \mathcal{S}=[\{4,8\}]$
Additionally: List of Portals P.

Lower Bound on $\Upsilon\left(T^{*}, C_{i}\right)$ (Sketch)

Idea: Any T induces an ordered partition on every cluster.

Other Possibilities? $\mathcal{S}=[\{4\},\{8\}] \quad \mathcal{S}=[\{4,8\}]$
Additionally: List of Portals P.

Lower Bound on $\Upsilon\left(T^{*}, C_{i}\right)$ (Sketch)

Idea: Any T induces an ordered partition on every cluster.

Other Possibilities? $\mathcal{S}=[\{4\},\{8\}] \quad \mathcal{S}=[\{4,8\}]$
Additionally: List of Portals P.
Given \mathcal{S} and P the lower bound can be estimated.

Lower Bound on $\Upsilon\left(T^{*}, C_{i}\right)$ (Sketch)

Idea: Any T induces an ordered partition on every cluster.

Other Possibilities? $\mathcal{S}=[\{4\},\{8\}] \quad \mathcal{S}=[\{4,8\}]$
Additionally: List of Portals P.
Given \mathcal{S} and P the lower bound can be estimated.
Solve internal tours.

Lower Bound on $\Upsilon\left(T^{*}, C_{i}\right)$ (Sketch)

Idea: Any T induces an ordered partition on every cluster.

Other Possibilities? $\mathcal{S}=[\{4\},\{8\}] \quad \mathcal{S}=[\{4,8\}]$
Additionally: List of Portals P.
Given \mathcal{S} and P the lower bound can be estimated.
Solve internal tours.
Compute lower bounds for α, β, γ and δ.

Lower Bound on $\Upsilon\left(T^{*}, C_{i}\right)$ (Sketch)

Idea: Any T induces an ordered partition on every cluster.

Other Possibilities? $\mathcal{S}=[\{4\},\{8\}] \quad \mathcal{S}=[\{4,8\}]$
Additionally: List of Portals P.
Given \mathcal{S} and P the lower bound can be estimated.
Solve internal tours.
Compute lower bounds for α, β, γ and δ.
Add costs up and obtain lower bound $\Phi_{\mathcal{S}, P}\left(C_{i}\right)$.

Lower Bound on $\Upsilon\left(T^{*}, C_{i}\right)$ (Sketch)

Idea: Any T induces an ordered partition on every cluster.

Other Possibilities? $\mathcal{S}=[\{4\},\{8\}] \quad \mathcal{S}=[\{4,8\}]$
Additionally: List of Portals P.
Given \mathcal{S} and P the lower bound can be estimated.
Solve internal tours.
Compute lower bounds for α, β, γ and δ.
Add costs up and obtain lower bound $\Phi_{\mathcal{S}, P}\left(C_{i}\right)$.
$\Rightarrow \min \Phi\left(C_{i}\right)_{\mathcal{S}, P}=\Phi\left(C_{i}\right) \leqslant \Upsilon\left(T^{*}, C_{i}\right)$

Lower Bound on $\Upsilon\left(T^{*}, C_{i}\right)$ (Sketch)

Idea: Any T induces an ordered partition on every cluster.

Other Possibilities? $\mathcal{S}=[\{4\},\{8\}] \quad \mathcal{S}=[\{4,8\}]$
Additionally: List of Portals P.
Given \mathcal{S} and P the lower bound can be esti 5227 C
Solve internal tours. 227236 choices
Compute lower bounds for α, β, γ and δ.
Add costs up and obtain lower bound $\Phi_{\mathcal{S}, P}\left(C_{i}\right)$.
$\Rightarrow \min \phi\left(C_{i}\right)_{\mathcal{S}, P}=\Phi\left(C_{i}\right) \leqslant \Upsilon\left(T^{*}, C_{i}\right)$

Lower Bound on $\Upsilon\left(T^{*}, C_{i}\right)$ (Sketch)

Idea: Any T induces an ordered partition on every cluster.

Other Possibilities? $\mathcal{S}=[\{4\},\{8\}] \quad \mathcal{S}=[\{4,8\}]$
Additionally: List of Portals P.
Given \mathcal{S} and P the lower bound can be est 5227 che 6 :
Solve internal tours. 227236 choices
Compute lower bounds for α, β, γ and δ. Practical Limit!
Add costs up and obtain lower bound $\Phi_{\mathcal{S}, P}\left(C_{i}\right)$.
$\Rightarrow \min \Phi\left(C_{i}\right)_{\mathcal{S}, P}=\Phi\left(C_{i}\right) \leqslant \Upsilon\left(T^{*}, C_{i}\right)$

Evaluation

Evaluation

\rightarrow First artificial instances, then realistic instances.

Evaluation

\rightarrow First artificial instances, then realistic instances.

Evaluation

\rightarrow First artificial $\begin{aligned} & \text { for } n=12 \\ & n \text { instances, then realistic instances. }\end{aligned}$

Evaluation

\rightarrow First artificial $\begin{aligned} & \text { for } n=12 \\ & n \text { instances, then realistic instances. }\end{aligned}$

Evaluation

$$
\text { for } n=12
$$

\rightarrow First artificial instances, then realistic instances.

Runtimes:
Exact: 120 s
$\overrightarrow{T^{*}}$-Algorithm: 3 ms
Classifier: 4 s

Evaluation

$$
\text { for } n=12
$$

\rightarrow First artificial instances, then realistic instances.

Runtimes:
Exact: $120 \mathrm{~s} \quad \overrightarrow{T^{*}}$-Algorithm: 3 ms
Classifier: 4 s
Classifier's Accuracy:

Evaluation

$$
\text { for } n=12
$$

\rightarrow First artificial instances, then realistic instances.

Runtimes:
Exact: $120 \mathrm{~s} \quad \overrightarrow{T^{*}}$-Algorithm: 3 ms
Classifier: 4 s
Classifier's Accuracy:

$$
\text { Ratio } T^{*}=\overrightarrow{T^{*}}
$$

Evaluation

$$
\text { for } n=12
$$

\rightarrow First artificial instances, then realistic instances.

Runtimes:
Exact: $120 \mathrm{~s} \quad \overrightarrow{T^{*}}$-Algorithm: 3 ms
Classifier: 4 s
Classifier's Accuracy:

$$
\text { Ratio } T^{*}=\overrightarrow{T^{*}}
$$

Clusters close together ($\sim 6 \mathrm{~km}$): 59 \%

Evaluation

$$
\text { for } n=12
$$

\rightarrow First artificial instances, then realistic instances.

Runtimes:
Exact: $120 \mathrm{~s} \quad \overrightarrow{T^{*}}$-Algorithm: 3 ms
Classifier: 4 s
Classifier's Accuracy:

$$
\text { Ratio } T^{*}=\overrightarrow{T^{*}}
$$

Clusters close together ($\sim 6 \mathrm{~km}$): far apart ($\geqslant 16 \mathrm{~km}$):

$$
59 \%
$$

100 \%

Evaluation

$$
\text { for } n=12
$$

\rightarrow First artificial instances, then realistic instances.

Runtimes:
Exact: $120 \mathrm{~s} \quad \overrightarrow{T^{*}}$-Algorithm: 3 ms
Classifier: 4 s
Classifier's Accuracy:

$$
\text { Ratio } T^{*}=\overrightarrow{T^{*}}
$$

Clusters close together ($\sim 6 \mathrm{~km}$): far apart ($\geqslant 16 \mathrm{~km}$):
59%
100 \%

Evaluation

$$
\text { for } n=12
$$

\rightarrow First artificial instances, then realistic instances.

Runtimes:
Exact: $120 \mathrm{~s} \quad \overrightarrow{T^{*}}$-Algorithm: 3 ms
Classifier: 4 s
Classifier's Accuracy:

$$
\text { Ratio } T^{*}=\overrightarrow{T^{*}}
$$

Recall
Clusters close together ($\sim 6 \mathrm{~km}$):
59%
0.4
far apart $(\geqslant 16 \mathrm{~km}): \quad 100 \%$

Evaluation

$$
\text { for } n=12
$$

\rightarrow First artificial instances, then realistic instances.

Runtimes:
Exact: $120 \mathrm{~s} \quad \overrightarrow{T^{*}}$-Algorithm: 3 ms
Classifier: 4 s
Classifier's Accuracy:

$$
\text { Ratio } T^{*}=\overrightarrow{T^{*}}
$$

Recall
Clusters close together ($\sim 6 \mathrm{~km}$):
59%
0.4
far apart ($\geqslant 16 \mathrm{~km}$):
100 \%
0.9

Evaluation

$$
\text { for } n=12
$$

\rightarrow First artificial instances, then realistic instances.

Runtimes:
Exact: $120 \mathrm{~s} \quad \overrightarrow{T^{*}}$-Algorithm: 3 ms
Classifier: 4 s
Classifier's Accuracy:

$$
\text { Ratio } T^{*}=\overrightarrow{T^{*}}
$$

Recall
Clusters close together ($\sim 6 \mathrm{~km}$):

$$
59 \%
$$

0.4
far apart ($\geqslant 16 \mathrm{~km}$):
0.9
$\overrightarrow{T^{*}}$-Algorithm as Heuristic:

Evaluation

$$
\text { for } n=12
$$

\rightarrow First artificial instances, then realistic instances.

Exact: $120 \mathrm{~s} \quad \overrightarrow{T^{*}}$-Algorithm: 3 ms
Classifier: 4 s
Classifier's Accuracy:

$$
\begin{equation*}
\text { Ratio } T^{*}=\overrightarrow{T^{*}} \tag{Recall}
\end{equation*}
$$

Clusters close together ($\sim 6 \mathrm{~km}$):

$$
59 \text { \% }
$$

$$
0.4
$$ far apart ($\geqslant 16 \mathrm{~km}$): $\quad 100 \%$

0.9
$\overrightarrow{T^{*}}$-Algorithm as Heuristic:
Approximation Quality (empiric): $\leqslant 1.1$

Topology of Street Networks

Topology of Street Networks

Street Networks often do not meet the assumptions.

Topology of Street Networks

Street Networks often do not meet the assumptions.

Example \#1:
Rural Instance

Topology of Street Networks

Street Networks often do not meet the assumptions.

Example \#1:
Rural Instance

Topology of Street Networks

Street Networks often do not meet the assumptions.

Example \#1:
Rural Instance
T^{*} bypasses a cluster!

Topology of Street Networks

Street Networks often do not meet the assumptions.

Example \#1:
Rural Instance
T^{*} bypasses a cluster!

Yet, no false positive.

Topology of Street Networks

Street Networks often do not meet the assumptions.

Example \#1:
Rural Instance
T^{*} bypasses a cluster!

Yet, no false positive.
\Rightarrow Classifier is robust to some extent.

Topology of Street Networks

Street Networks often do not meet the assumptions.

Example \#2:
Regional Instance

Topology of Street Networks

Street Networks often do not meet the assumptions.

Example \#2:
Regional Instance
Really hard scenario ...

Topology of Street Networks

Street Networks often do not meet the assumptions.

Example \#2:
Regional Instance
Really hard scenario ...

Topology of Street Networks

Street Networks often do not meet the assumptions.

Example \#2:
Regional Instance
Really hard scenario ...
False positives are to be expected in this case.

Conclusion

Conclusion

The Exact Algorithm considers unsensible tours.

Conclusion

The Exact Algorithm considers unsensible tours.

Conclusion

The Exact Algorithm considers unsensible tours.

Conclusion

The Exact Algorithm considers unsensible tours. Intuition yields the \vec{T}^{*}-algorithm.

Conclusion

The Exact Algorithm considers unsensible tours. Intuition yields the \vec{T}^{*}-algorithm.

A classifier decides if the $\overrightarrow{T^{*}}$-algorithm can be used.

Conclusion

The Exact Algorithm considers unsensible tours. Intuition yields the \vec{T}^{*}-algorithm.

A classifier decides if the \vec{T}^{*}-algorithm can be used. If yes, only a fraction of time is needed to get T^{*}.

Conclusion

The Exact Algorithm considers unsensible tours. Intuition yields the \vec{T}^{*}-algorithm.

A classifier decides if the \vec{T}^{*}-algorithm can be used. If yes, only a fraction of time is needed to get T^{*}. If no, virtually no time is wasted.

Conclusion

The Exact Algorithm considers unsensible tours. Intuition yields the \vec{T}^{*}-algorithm.

A classifier decides if the \vec{T}^{*}-algorithm can be used. If yes, only a fraction of time is needed to get T^{*}. If no, virtually no time is wasted.

No false-positives: Optimal route is guaranteed.

Conclusion

The Exact Algorithm considers unsensible tours. Intuition yields the \vec{T}^{*}-algorithm.

A classifier decides if the \vec{T}^{*}-algorithm can be used. If yes, only a fraction of time is needed to get T^{*}. If no, virtually no time is wasted.

No false-positives: Optimal route is guaranteed.

Conclusion

The Exact Algorithm considers unsensible tours. Intuition yields the \vec{T}^{*}-algorithm.

A classifier decides if the \vec{T}^{*}-algorithm can be used. If yes, only a fraction of time is needed to get T^{*}. If no, virtually no time is wasted.

No false-positives: Optimal route is guaranteed.

Attributions

The above icons are made by Freepik from flaticon.com
\leftarrow CC 3.0 BY by Simplelcon from flaticon.com
(c) Map Images from OpenStreetMap (osm.org)

The following slides were abandoned at some point and not officially shown at the presentation. They may contain errors or are incomplete. Maybe they help you nonetheless.

The Objective Function

14/11

The Objective Function

A tour T is a permutation of $[0,2 m-1]$.

The Objective Function

A tour T is a permutation of $[0,2 m-1]$.

The Objective Function

A tour T is a permutation of $[0,2 m-1]$.
T feasible \Leftrightarrow

The Objective Function

A tour T is a permutation of $[0,2 m-1]$.
T feasible $\Leftrightarrow T[1]=0 \& T[2 m]=m$

The Objective Function

A tour T is a permutation of $[0,2 m-1]$.

$$
T \text { feasible } \Leftrightarrow \begin{gathered}
T[1]=0 \& T[2 m]=m \\
\& \text { precedences obeyed }
\end{gathered}
$$

The Objective Function

A tour T is a permutation of $[0,2 m-1]$.

$$
\begin{aligned}
& T \text { feasible } \Leftrightarrow \begin{array}{l}
T[1]=0 \& T[2 m]=m \\
\\
\& \text { precedences obeyed } \\
\& S \text { not violated }
\end{array} \quad T=[0,3,1,5,7,2,6,4]
\end{aligned}
$$

The Objective Function

A tour T is a permutation of $[0,2 m-1]$.

$$
\begin{gathered}
T \text { feasible } \Leftrightarrow \begin{array}{l}
T[1]=0 \& T[2 m]=m \\
\\
\& \text { precedences obeyed } \\
\& S \text { not violated }
\end{array} \\
T=[0,3,1,5,7,2,6,4]
\end{gathered}
$$

The Objective Function

A tour T is a permutation of $[0,2 m-1]$.
T feasible $\Leftrightarrow T[1]=0 \& T[2 m]=m$ \& precedences obeyed \& S not violated

Objective:

$$
\min _{T \text { feasible }} \sum_{i=2}^{2 m} k(i-1) \cdot d[T[i-1], T[i]]
$$

The Objective Function

A tour T is a permutation of $[0,2 m-1]$.
T feasible $\Leftrightarrow T[1]=0 \& T[2 m]=m$ \& precedences obeyed \& S not violated

Objective:

$$
\min _{T \text { feasible }} \sum_{i=2}^{2 m} k(i-1) \cdot d[T[i-1], T[i]]
$$

$k(j)$ is the number of persons after step j of T.

An Exact Algorithm

An Exact Algorithm

An Exact Algorithm

Find a tour with 6 steps:

An Exact Algorithm

Find a tour with 6 steps:
1
2
3
4
5

An Exact Algorithm

Find a tour with 6 steps:

An Exact Algorithm

Find a tour with 6 steps:

An Exact Algorithm

Find a tour with 6 steps:

4

An Exact Algorithm

Find a tour with 6 steps:

4

An Exact Algorithm

Find a tour with 6 steps:

An Exact Algorithm

Find a tour with 6 steps:

An Exact Algorithm

Find a tour with 6 steps:

An Exact Algorithm

Find a tour with 6 steps:

An Exact Algorithm

Find a tour with 6 steps:

An Exact Algorithm

Find a tour with 6 steps:

An Exact Algorithm

Find a tour with 6 steps:

An Exact Algorithm

Find a tour with 6 steps:

An Exact Algorithm

Find a tour with 6 steps:

\rightarrow Generalizes to an algorithm with exchangeable objective

An Exact Algorithm

Find a tour with 6 steps:

\rightarrow Generalizes to an algorithm with exchangeable objective
\rightarrow DFS-like traversal also possible [Psaraftis 1980]

An Exact Algorithm

Find a tour with 6 steps:

\rightarrow Generalizes to an algorithm with exchangeable objective
\rightarrow DFS-like traversal also possible [Psaraftis 1980]
\rightarrow BFS-like traversal can save storage

Running Time and Partial Execution

Running Time and Partial Execution

At every step, a rider can have three steps: wait, travel, finish.

Running Time and Partial Execution

At every step, a rider can have three steps: wait, travel, finish.
\Rightarrow for a fixed location $\notin\{0, m\}$ there are 3^{n-1} states.

Running Time and Partial Execution

At every step, a rider can have three steps: wait, travel, finish.
\Rightarrow for a fixed location $\notin\{0, m\}$ there are 3^{n-1} states.

Running Time and Partial Execution

At every step, a rider can have three steps: wait, travel, finish.
\Rightarrow for a fixed location $\notin\{0, m\}$ there are 3^{n-1} states.
$\Rightarrow 2 n 3^{n-1}+2$ vertices, which yields $O^{*}\left(3^{n-1}\right)$ running time.

Running Time and Partial Execution

At every step, a rider can have three steps: wait, travel, finish.
\Rightarrow for a fixed location $\notin\{0, m\}$ there are 3^{n-1} states.
$\Rightarrow 2 n 3^{n-1}+2$ vertices, which yields $O^{*}\left(3^{n-1}\right)$ running time.
Given S and S^{\prime}, the instance can be solved partially.

Running Time and Partial Execution

At every step, a rider can have three steps: wait, travel, finish.
\Rightarrow for a fixed location $\notin\{0, m\}$ there are 3^{n-1} states.
$\Rightarrow 2 n 3^{n-1}+2$ vertices, which yields $O^{*}\left(3^{n-1}\right)$ running time.
Given S and S^{\prime}, the instance can be solved partially.

Running Time and Partial Execution

At every step, a rider can have three steps: wait, travel, finish.
\Rightarrow for a fixed location $\notin\{0, m\}$ there are 3^{n-1} states.
$\Rightarrow 2 n 3^{n-1}+2$ vertices, which yields $O^{*}\left(3^{n-1}\right)$ running time.
Given S and S^{\prime}, the instance can be solved partially.

Running Time and Partial Execution

At every step, a rider can have three steps: wait, travel, finish.
\Rightarrow for a fixed location $\notin\{0, m\}$ there are 3^{n-1} states.
$\Rightarrow 2 n 3^{n-1}+2$ vertices, which yields $O^{*}\left(3^{n-1}\right)$ running time.
Given S and S^{\prime}, the instance can be solved partially.

Running Time and Partial Execution

At every step, a rider can have three steps: wait, travel, finish.
\Rightarrow for a fixed location $\notin\{0, m\}$ there are 3^{n-1} states.
$\Rightarrow 2 n 3^{n-1}+2$ vertices, which yields $O^{*}\left(3^{n-1}\right)$ running time.
Given S and S^{\prime}, the instance can be solved partially.

Evalution of Realistic Examples

Evalution of Realistic Examples

Rural Scenario

Evalution of Realistic Examples

Rural Scenario

Regional Scenario

Evalution of Realistic Examples

Rural Scenario

Regional Scenario

Intercity Scenario

Evalution of Realistic Examples

Rural Scenario

Six small villages with $\varnothing 1.2 \mathrm{~km}$ distance.

Regional Scenario

Intercity Scenario

Evalution of Realistic Examples

Rural Scenario

Six small villages with $\varnothing 1.2 \mathrm{~km}$ distance.

Regional Scenario

Six small towns with $\varnothing 7.2 \mathrm{~km}$ distance.

Intercity Scenario

Evalution of Realistic Examples

Rural Scenario

Six small villages with $\varnothing 1.2 \mathrm{~km}$ distance.

Regional Scenario

Six small towns with $\varnothing 7.2 \mathrm{~km}$ distance.

Intercity Scenario

Six major german cities with $\varnothing 129 \mathrm{~km}$ distance.

Evalution of Realistic Examples

Rural Scenario

Six small villages with $\varnothing 1.2 \mathrm{~km}$ distance.

Regional Scenario

Six small towns with $\varnothing 7.2 \mathrm{~km}$ distance.

Intercity Scenario
Six major german cities with $\varnothing 129 \mathrm{~km}$ distance. All optimal tours are unidirectional, recall >0.9.

Evalution of Realistic Examples

Rural Scenario

Six small villages with $\varnothing 1.2 \mathrm{~km}$ distance.
$>70 \%$ optimal tours unidirectional, recall <0.1.

Regional Scenario

Six small towns with $\varnothing 7.2 \mathrm{~km}$ distance.

Intercity Scenario
Six major german cities with $\varnothing 129 \mathrm{~km}$ distance. All optimal tours are unidirectional, recall >0.9.

Evalution of Realistic Examples

Rural Scenario

Six small villages with $\varnothing 1.2 \mathrm{~km}$ distance.
$>70 \%$ optimal tours unidirectional, recall <0.1.
Bad, distances are too small.

Regional Scenario

Six small towns with $\varnothing 7.2 \mathrm{~km}$ distance.

Intercity Scenario
Six major german cities with $\varnothing 129 \mathrm{~km}$ distance. All optimal tours are unidirectional, recall >0.9.

Evalution of Realistic Examples

Rural Scenario

Six small villages with $\varnothing 1.2 \mathrm{~km}$ distance.
$>70 \%$ optimal tours unidirectional, recall <0.1.
Bad, distances are too small.

Regional Scenario

Six small towns with $\varnothing 7.2 \mathrm{~km}$ distance.
$>50 \%$ optimal tours unidir., recall >0.55, precision 0.61 .

Intercity Scenario
Six major german cities with $\varnothing 129 \mathrm{~km}$ distance. All optimal tours are unidirectional, recall >0.9.

Evalution of Realistic Examples

Rural Scenario

Six small villages with $\varnothing 1.2 \mathrm{~km}$ distance.
$>70 \%$ optimal tours unidirectional, recall <0.1.
Bad, distances are too small.

Regional Scenario

Six small towns with $\varnothing 7.2 \mathrm{~km}$ distance.
$>50 \%$ optimal tours unidir., recall >0.55, precision 0.61 .
Wait . . .What?!

Intercity Scenario
Six major german cities with $\varnothing 129 \mathrm{~km}$ distance.
All optimal tours are unidirectional, recall >0.9.

