
Master Thesis

1-Planar RAC Drawings with Bends

Johannes Zink

Date of Submission: December 1, 2017
Advisors: Prof. Dr. Alexander Wolff

Dr. Steven Chaplick
Fabian Lipp, M. Sc.

Julius-Maximilians-Universität Würzburg
Lehrstuhl für Informatik I

Algorithmen, Komplexität und wissensbasierte Systeme

Abstract

This thesis concerns the relationships among beyond-planar graphs, which generalize the
planar graphs. In particular, it is about RAC drawings of 1-planar graphs and NIC-planar
graphs in bounded area and with a bounded number of bends per edge. A drawing of a
graph is a mapping of each vertex of the graph to a point on the plane and of each edge
of the graph to a curve on the plane. In a RAC drawing, edges cross only in right angles.
A 1-planar graph can be drawn such that each edge is crossed at most once and for a
NIC-planar graph we require additionally that two crossings have at most one common
vertex.
We contribute three new results, which all apply to the fixed embedding setting. First,

we show that every NIC-planar graph admits a RAC drawing with at most one bend
per edge on a grid of quadratic size. Second, we show that every 1-planar graph admits
a RAC drawing with at most one bend per edge, which was previously known in the
variable embedding setting. Third, we show that every 1-planar graph admits a RAC
drawing with at most two bends per edge on a grid of polynomial size. Our proofs are
constructive and built on prior work regarding straight-line drawings of planar graphs,
in particular, the Shift Algorithm. All introduced algorithms run in linear time.

Zusammenfassung

In dieser Masterarbeit befassen wir uns damit, wie sich bestimmte Graphklassen, die
die planaren Graphen verallgemeinern und auch als beyond-planar graphs bekannt sind,
zueinander verhalten. Im Speziellen geht es um RAC-Zeichnung von 1-planaren Graphen
und NIC-planaren Graphen auf einer asymptotisch begrenzten Zeichenfläche und mit
einer begrenzten Anzahl an Knicken pro Kante. Eine Zeichnung eines Graphen ist eine
Abbildung jedes Knoten des Graphen auf einen Punkt in der Ebene und jeder Kante
des Graphen auf eine Kurve in der Ebene. In einer RAC-Zeichnung kreuzen sich Kanten
nur in rechten Winkeln. Ein 1-planarer Graph ist ein Graph, der so gezeichnet werden
kann, dass jede Kante höchstens einmal gekreuzt wird. Bei einem NIC-planaren Graphen
fordern wir zusätzlich, dass zwei Kreuzungen höchstens einen gemeinsamen Knoten teilen.
Wir stellen drei neue Resultate vor. Erstens zeigen wir, dass jeder NIC-planare Graph

in jeder NIC-planaren Einbettung eine RAC-Zeichnung mit höchstens einem Knick pro
Kante auf einem quadratisch großen Gitter besitzt. Zweitens zeigen wir, dass nicht nur
jeder 1-planare Graph, wie zuvor bekannt, eine RAC-Zeichnung mit höchstens einem

2

Knick pro Kante besitzt, sondern auch jeder 1-planar eingebette Graph. Drittens zeigen
wir, dass jeder 1-planare Graph in jeder 1-planaren Einbettung eine RAC-Zeichnung mit
höchstens zwei Knicken pro Kante auf einem polynomiell großen Gitter besitzt. Unsere
Beweise sind konstruktiv und bauen auf bekannten Verfahren zum geradlinigen Zeichnen
planarer Graphen auf, insbesondere dem Shift-Algorithmus. Alle hierbei vorgestellten
Algorithmen sind Linearzeitalgorithmen.

3

Contents

1. Introduction 6

2. Preliminaries 10
2.1. Basic definitions . 10
2.2. Specific subgraphs . 15
2.3. Known results . 16

2.3.1. Relationships between beyond-planar graph classes and RAC graphs 16
2.3.2. Edge and crossing density . 18

2.4. Known algorithms . 23
2.4.1. Making a graph biconnected . 23
2.4.2. The Shift Algorithm for maximal planar and biconnected graphs . 25

3. Constructing 1-Bend RAC Drawings of NIC-Plane Graphs in Quadratic Area 30
3.1. Algorithm . 30

3.1.1. Preprocessing . 35
3.1.2. Computing the biconnected canonical ordering 35
3.1.3. Reinserting the crossing edges . 38

3.2. Correctness . 41
3.2.1. Computing the biconnected canonical ordering 41
3.2.2. Reinserting the crossing edges . 42
3.2.3. Results . 59

3.3. Running time and grid size . 60
3.4. Proof of the main theorem . 62

4. Constructing 1-Bend RAC Drawings of 1-Plane Graphs 63
4.1. Original algorithm . 63
4.2. Our modifications . 65
4.3. Result . 68

5. Constructing 2-Bend RAC Drawings of 1-Plane Graphs in Polynomial Area 69
5.1. Algorithm . 69

5.1.1. Assignment of edges to axis-parallel half-lines 70
5.1.2. Placement of bend points . 73

5.2. Analysis . 76
5.2.1. Assignment of edges to axis-parallel half-lines 76
5.2.2. Placement of bend points . 78

5.3. Proof of the main theorem . 85

4

6. Conclusion 86

Bibliography 88

A. Appendix 92

5

1. Introduction

Graphs appear in many domains and applications in science and beyond. Whenever
we encounter relations of objects, we may model them as a graph—may it be a social
networks, Internet traffic or a molecule in chemistry. Still, such a graph is an abstract
definition of relations as vertices and edges. A human viewer usually wants to see the
structure of a graph quickly and unambiguously. This can be done with a proper, aes-
thetically nice drawing of the graph. According to some researches, human viewers prefer
drawings with few crossings [Pur00, PCA02, WPCM02], no or few bends per edge [Pur97],
and large crossing angles if edges cross [Hua07, HEH14, HHE08]. Furthermore, we aim
for a good drawing resolution, i.e., no pair of vertices should be placed too close to each
other. We can guarantee some bounded distance by placing every vertex onto a grid point
of a regular integer grid of a specified size [HvKKR14]. We focus on these criteria in this
thesis. In the case of large crossing angles, we restrict to the largest possible crossing
angle, which is 90 degrees. We ignore other criteria like a large angular resolution of the
edges at each vertex.
From a theoretical point of view, there are several classes of graphs that admit drawings

that fulfill these criteria in the best possible way. The maybe most prominent class of
graphs are the planar graphs. This is the set of all graphs that can be drawn on the
plane without any crossing. In terms of bend points per edge and size of the drawing,
it is known that every planar graph can be drawn on a grid of quadratic size (in the
number of vertices) without crossings and with straight lines [dFPP90, Sch90].
There are attempts to generalize the class of planar graphs. In the recent years, the

field of beyond planarity has experienced increasing interest in graph theory and graph
drawing as a generalization of the planar graphs [Lio14, HKKP16]. They include more
graphs than the planar graphs and, therefore, reduce the number of general graphs that
have no drawing with “nice” aesthetic properties that are defined and researched in the
literature. The planar graphs are relatively well studied for many years, but the beyond-
planar graphs are currently investigated in more detail.

Previous work There are several different known classes of beyond-planar graphs. Among
the most important, there are the k-planar graphs. They have a drawing where every
edge crosses at most k other edges. Among them, the class of the 1-planar graphs is the
probably most studied one. Kobourov et al. [KLM17] give an overview about 1-planarity
in their annotated bibliography. In 1965, Ringel [Rin65] introduced the 1-planar graphs
when he considered the problem of coloring vertices and faces.
There are subclasses of the 1-planar graphs that require the crossings to be some kind

of isolated from each other. If each vertex is incident to at most one crossing edge in
a 1-planar drawing, we call this drawing IC-planar, where IC stands for independent

6

(a) B-Configuration. (b) W-Configuration.

Fig. 1.1.: Embedded graph configurations that cannot be drawn with straight lines.

crossings. The graphs that admit an IC-planar drawing are the IC-planar graphs. Al-
bertson [Alb08] uses the concept of IC-planar graphs in 2008. Later, they were further
investigated by, e.g., Král’ and Stacho [KS10], Zhang and Liu [ZL13], and Brandenburg
et al. [BDE+16].

If there is at most one common vertex for each pair of crossings in a 1-planar drawing,
we call this drawing NIC-planar, where NIC stands for near-independent crossings. The
graphs that admit a NIC-planar drawing are the NIC-planar graphs. The NIC-planar
graphs were introduced in 2013 by Zhang [Zha13] and further studied by Czap and
Šugerek [CŠ14] and Bachmaier et al. [BBH+17].
The 1-planar graphs generalize the NIC-planar graphs, which generalize the IC-planar

graphs, which generalize the planar graphs. Other than for the planar graphs, it is
NP-hard to decide whether a given general graph is 1-planar [GB07, KM13], or NIC-
planar [BBH+17], or IC-planar [BDE+16]. In this thesis, we also expect a 1-planar
embedding of a graph to be given when we are supposed to draw 1-planar graphs in
polynomial time. Such an embedded graph is called 1-plane graph.
In terms of drawing these graphs, a similar result as for the planar graphs exists for

IC- and NIC-planar graphs. Any IC-planar graph can be drawn as an IC-planar drawing
on a grid of quadratic size [BDE+16]. More general, any NIC-planar graph can be drawn
as a NIC-planar drawing on a grid of quadratic size [BBH+17]. Given an embedding,
a drawing can be computed in linear time, but the embedding may be changed. This
result does not apply to 1-planar graphs. A 1-plane graph admits a straight-line drawing,
where the embedding is preserved, if and only if it contains no so called B - or W-
configurations [Tho88]. An illustration of a B- and a W-configurations is given in Fig. 1.1.
Straight-line drawings of some of these graphs require exponential area [HELP12]. Using
a bend point to overcome B- and W-configurations, we can obviously draw every 1-plane
graph with at most one bend per edge. Even if we drop the requirement of preserving
the embedding, there are still 1-planar graphs that do not have a 1-planar straight-line
drawing [Did13]. On the positive side, every triconnected 1-planar graph admits a 1-
planar drawing on a grid of quadratic size with every edge being drawn as a straight
line segment except for maybe one edge on the outer face which may have a single
bend [ABK13].
Note that these results apply to drawings with any crossing angle. In this thesis,

we focus on RAC drawings, where the edges of each pair of crossing edges are drawn
orthogonal to each other. RAC stands for right-angle-crossing. Graphs that admit a
RAC drawing are called RAC graphs. E.g., Didimo et al. [DEL11] and Arikushi et

7

al. [AFK+12] studied this class of graphs. They showed that every graph admits a RAC
drawing with at most three bends per edge, but not every graph has a RAC drawing with
two or fewer bends per edge. Given an embedding to a graph that should be preserved,
three bends per edge may not even be enough. Some embedded graphs need quadratically
many bends per edge for any RAC drawing. It is NP-hard to decide whether a graph is
straight-line RAC [ABS12].
For the relation of RAC graphs to IC-, NIC-, and 1-planar graphs, the following is

known. Every IC-planar graph admits a straight-line IC-planar RAC drawing [BDE+16].
Given an embedding, it can be computed in O(n3) time where n is the number of vertices,
but the embedding may be changed. In terms of area consumption, some of these graphs
require exponential area for any straight-line IC-planar RAC drawing. In contrast to this,
the straight-line RAC graphs are incomparable with the NIC-planar graphs [BBH+17]
and with the 1-planar graphs [EL13]. Moreover, it is NP-hard to decide whether a graph
admits a 1-planar RAC drawing even if a rotation system is given [BDL+17].
These results motivate us to examine more closely the cases where bends are allowed.

Bekos et al. [BDL+17] showed that every 1-planar graph has a 1-planar RAC drawing
with at most one bend per edge. Given a 1-plane graph, there is an algorithm that
computes such a drawing in linear time. However, the returned drawing may require
exponential area and the embedding may be changed.

Own contribution and structure of this thesis Bekos et al. [BDL+17] ask if all 1-
planar embeddings can be realized as 1-bend RAC drawings. We positively answer this
question by slightly modifying their algorithm so that the embedding is preserved. This
modification is described in Chapter 4.
They also ask if polynomial area is sufficient for all 1-planar graphs for a 1-planar

1-bend RAC drawing.1 We do not answer this question for 1-planar graphs, but for
NIC-planar graphs, and we answer a relaxed version of this question for 1-planar graphs
when we allow a second bend for every edge. Note that we refer to drawings where every
vertex, every bend point, and every crossing point is placed on a grid point of a grid with
the specified size when we speak of drawing area.
First, we positively answer this question for the class of NIC-planar graphs, a subset

of the 1-planar graphs. We prove in Chapter 3 that any NIC-planar graph admits a
NIC-planar 1-bend RAC drawing on a grid of quadratic size. Given a NIC-plane graph,
we give an algorithm that computes such a drawing in linear time without changing
the embedding. This result immediately improves the result by Liotta and Montecchi-
ani [LM16], who proved that every IC-plane graph has a 2-bend RAC drawing on a grid
of quadratic size, in two respects. On the one hand, we generalize the class of embedded
graphs from IC-plane graphs to NIC-plane graphs, and, on the other hand, we reduce
the number of bends per edge from two to one. This is the main result of this thesis.
Second, we show that polynomial area is sufficient for 1-planar graphs if we allow a

second bend for every edge. We prove in Chapter 5 that any 1-planar graph admits a

1In their paper they ask, the other way round, if exponential area is necessary for some family of
1-planar graphs.

8

1-planar 2-bend RAC drawing on a grid of polynomial size. Given a 1-plane graph, we
give an algorithm that computes such a drawing on a grid of size O(n3)×O(n3) in linear
time without changing the embedding. Here, n is the number of vertices.

Before we show these results, we establish some basic definitions and present some
known facts and techniques in Chapter 2. There, we also give a tabular overview and
a visualization as a containment diagram about RAC drawings with bends and their
relations to graph classes mentioned before. Moreover, we give an example of a fam-
ily of NIC-planar graphs with the maximum number of crossings according to a known
bound by Zhang [Zha13] and by Czap and Šugerek [CŠ14]. This implies that this bound
is tight. We end the main part of this thesis with a conclusion in Chapter 6. In Ap-
pendix A, we give an example for a NIC-planar 1-bend RAC drawing returned by a Java
implementation of our algorithm from Chapter 3.

9

2. Preliminaries

In this chapter we introduce some structures, graph classes and algorithms that are
used in the following chapters. We start with some basic definitions in Section 2.1 and
introduce some specific subgraphs in Section 2.2. Thereafter, we show some known results
in Section 2.3. These results concern the edge and the crossing density in IC-, NIC-, and
1-planar graphs and the relationship between beyond-planar graphs and RAC graphs.
At the end of this chapter, in Section 2.4, we introduce the linear-time algorithm by
Hopcroft and Tarjan [HT73] for making a plane graph biconnected and the linear-time
Shift Algorithm [dFPP90, CP95] and its variant by Harel and Sardas [HS98].

2.1. Basic definitions

In this section, basic terms are defined as they appear in other literature. This thesis is
about graph drawings where the edge direction does not matter. Therefore, we define
graphs with undirected edges.

Definition 2.1 (Graph). A graph G = (V,E) is a pair of a finite set of vertices V and
edges E, where E ⊆

(
V
2

)
. Here,

(
V
2

)
is the set of all subsets of V of size 2.

We refer to the vertices of a graph G also by V [G]. As edges are often seen as a
connection of two vertices, we also say for an edge e = {u, v} that there is an edge e
between the vertices u and v. The vertices u and v are called adjacent if there is an
edge {u, v}. A vertex v is called incident to an edge e and vice versa if v ∈ e. The
set of all adjacent vertices of a vertex v is called Adj[v]. Including v itself, we have
Adj(v) := Adj[v] ∪ {v}. We define the degree of a vertex v as |Adj[v]|.
A graph can be visualized with a drawing.

Definition 2.2 (Drawing of a graph). A mapping Γ is called a drawing of the graph
G = (V,E) if . . .

• for all v ∈ V : Γ(v) ∈ R2,

• for all u, v ∈ V with u 6= v : Γ(u) 6= Γ(v), and

• for all {u, v} ∈ E : Γ({u, v}) = Γ{u,v}([0, 1]), where Γ{u,v}([0, 1]) is a simple open
Jordan curve in R2 with Γ{u,v}(0) = Γ(u) and Γ{u,v}(1) = Γ(v).

For convenience, the simple open Jordan curves that refer to edges are sometimes
simply called edges and the points that refer to vertices are sometimes called vertices.
This is done in cases where it is clear that not the abstract vertices and edges are

10

meant, but their representation in a drawing. In this thesis, we will consider only simple
drawings. In a simple drawing, no edge crosses itself (has a loop) and edges incident to
the same vertex do not cross.
A straight-line drawing is a drawing where the curve of every edge is a line segment.

Observe that, in such a drawing, each edge curve is sufficiently defined by only the
locations of its two incident vertices.
A polyline drawing Γ is a drawing where the curve of every edge is a polygonal chain,

i.e., a connected series of line segments, also known as polyline. The endpoints of a line
segment of a polyline of an edge {u, v} that are not Γ(u) or Γ(v) are called bends or
bend points. Obviously, the number of bend points of a polyline is one less than the
number of line segments of this polyline. E.g., if a polyline consists of four line segments,
it has three bend points. To keep a drawing overseeable it is often better to have only
a few bend points in total and a few bend points per edge. For us, polyline drawings
with a bounded number of bends per edge are of greater interest. For example, we
create polyline drawings with at most one bend per edge (1-bend drawings) in Chapter 3,
and we create polyline drawings with at most two bends per edge (2-bend drawings) in
Chapter 5. Note that every straight-line drawing is also a polyline drawing with at most
0 bends per edge. Observe that, in a polyline drawing, the curve of the edge {u, v} is
sufficiently defined by only the locations of u, v, and all bend points, and the order of
the bend points.
A drawing on the grid of size w × h is a drawing where each vertex has integer coor-

dinates in the range [0, w] × [0, h]. We say that the vertices are placed on grid points.
When we speak of a grid drawing with everything on the grid, we mean that vertices,
bend points, and crossing points have integer coordinates.
Crossing points emerge when edges cross. We formally define them next.

Definition 2.3 (Edge crossing). Let Γ be a drawing of a Graph G = (V,E). The edges
e1 = {v1, v2} ∈ E and e2 = {v3, v4} ∈ E with e1 6= e2 are said to cross each other
(cross pairwise) in Γ if there is a so called crossing point c ∈ R2 with c ∈ Γe1([0, 1]) and
c ∈ Γe2(]0, 1[). The vertices v1, v2, v3 and v4 are called vertices of the crossing.

Note that there can be more than one pairwise edge crossing in the same crossing
point. In such a case, three or more edges intersect in the same point. Thus, there can
be an edge with only one crossing point that is crossed pairwise twice or more often.

Definition 2.4 (Types of drawings). A drawing is called . . .

• . . . crossing-free if there is no crossing of any pair of edges.

• . . . k-planar if every edge is crossed pairwise at most k times.

• . . . IC-planar, where IC stands for independent crossings, if every edge is crossed
pairwise at most once and for each pair of different edge crossings, there is no
common vertex.

• . . . NIC-planar, where NIC stands for near-independent crossings, if every edge is
crossed pairwise at most once and for each pair of different edge crossings, there is
at most one common vertex.

11

(a) Straight-
line planar
drawing.

(b) Straight-
line
1-planar
RAC
drawing.

(c) Straight-
line
IC-planar
drawing.

(d) Straight-
line
NIC-planar
drawing.

(e) Straight-
line
1-planar
drawing.

(f) 1-bend
1-planar
RAC
drawing.

Fig. 2.1.: Examples of different types of drawings. Note that the drawing in Fig. 2.1d is not
IC-planar and the drawing in Fig. 2.1e is not NIC-planar. The drawings in Fig. 2.1e
and Fig. 2.1f are drawings of the same graph. The last drawing equals the example
of a 1-planar 1-bend RAC drawing in the annotated bibliography on 1-planarity by
Kobourov et al. [KLM17].

• . . . RAC, where RAC stands for right-angle-crossing, if it is a polyline drawing and
for each crossing point c, all of the following holds:

– There are at most two edges that cross in c.

– The crossing point c is no bend point.

– The line segments of the edges that cross in c intersect in a right angle.

• . . . k-bend if it is a polyline drawing with at most k bends per edge.

Examples of the introduced types of drawings are given in Fig. 2.1. Based on these
types of drawings we can define some classes of graphs.

Definition 2.5 (Classes of graphs). A graph is called

• . . . planar if it admits a crossing-free drawing.

• . . . k-planar if it admits a k-planar drawing.

• . . . IC-planar if it admits an IC-planar drawing.

• . . . NIC-planar if it admits a NIC-planar drawing.

• . . . RAC if it admits a RAC drawing.

The 0-planar graphs are the planar graphs. For k ≥ 1, the only considered k-planar
graph class here and in most of the literature is the one with k = 1, the 1-planar graphs.
Observe that the IC-planar graphs are a generalization of the planar graphs, the NIC-
planar graphs are a generalization of the IC-planar graphs and the 1-planar graphs are
a generalization of the NIC-planar graphs.
A graph can also be in a class combined of these classes and in a combination with

k-bend. Then it has a drawing that satisfies the requirements of all of the classes. For

12

example, if a graph is 1-planar 1-bend RAC, it has a polyline drawing with at most one
bend per edge where every edge is crossed at most once and at every crossing point, the
edges cross in a right angle. RAC drawings that use an unbounded number of bends per
edge are not considered here—only RAC drawings without bends (straight line RAC)
and with at most one or two bends per edge. We let RACk denote the family of the k-
bend RAC graphs, and we let RACpoly

k denote the family of the k-bend RAC graphs that
admit a k-bend RAC drawing on a grid of polynomial size. Note that the straight-line
RAC graphs are RAC0.

Definition 2.6 (Face of a drawing). Let Γ be a drawing of a graph G. The connected
areas of R2 that are bounded by curves of Γ that refer to edges of G are called faces of Γ.

The face of a drawing that is bounded by the outermost curves of the drawing is
infinitely large. It is called the outer face. The other faces are called inner faces.
For each face f in a crossing-free drawing of a planar graph G = (V,E), we can

also have a boundary list. Assume there is some indexed order of the vertices in V .
Going along the boundary of f in counter-clockwise direction, we encounter curves that
represent edges either on their right or on their left side. Using the order in which we
encounter them, we can define a circular list (a circular sequence). An entry of this
circular list consists of an edge {vi, vj} ∈ E with i < j and an edge side. The edge side
is left if we encounter {vi, vj} from the left side seen from vi and right otherwise. We
call this circular list the boundary list of f . We define the degree of f as the size of its
boundary list.
So, for every crossing-free drawing, there is a set of boundary lists and one of them

is the boundary list of the outer face. Each edge appears exactly twice in this set of
boundary lists. One time in combination with the edge side left and the other time
in combination with the edge side right. This can be in the same boundary list or in
different ones. Implicitly, a boundary list also defines a list of vertices that are corner
points in the face. In each such list, the same vertex can appear many times as a corner
point. There are many crossing-free drawings of the same planar graph with the same
set of boundary lists and the same boundary list of the outer face. These drawings are
similar in dividing the drawing area into faces. We say that they are embedded in the
same way.

Definition 2.7 (Planar embedding). Let G be a planar graph. A planar embedding E(G)
is an equivalence class of crossing-free drawings of G admitting the same set of boundary
lists and having the same boundary list of the outer face.

A boundary list of a (planar) embedding is sometimes also called face. Every crossing-
free drawing can be assigned to exactly one planar embedding, but for each planar
embedding there can be infinitely many crossing-free drawings respecting this planar
embedding. Alternatively, planar embeddings can be defined via a rotation system.

Definition 2.8 (Rotation system). Let G = (V,E) be a graph. A rotation system of G
is a mapping from each v ∈ V to a circular list (circular sequence) of the vertices in
Adj[v]. A drawing Γ of G respects a rotation system R if for each v ∈ V , the order

13

of edges encountered when scanning around v in Γ in counter-clockwise direction is the
same as in the circular list of v in R.

Planar embeddings can also be defined as equivalence class of crossing-free drawings
respecting the same rotation system and having the same boundary list of the outer face.
Since we work with non-planar graphs in this thesis, we extend the concept of planar

embeddings to non-planar graphs next.

Procedure 2.9 (Subdividing an edge). Let G = (V,E) be a graph. Subdividing an edge
e = {u,w} ∈ E via a dummy vertex vdummy /∈ V means that e is replaced by the two
edges {u, vdummy} and {vdummy, w}. With this operation, we obtain a modified graph
G′ = (V ∪ {vdummy}, (E − {e}) ∪ {{u, vdummy}, {vdummy, w}}). We can subdivide more
than one edge via the same dummy vertex.

Definition 2.10 (Planarized graph). Let G = (V,E) be a graph. A planar graph G′ is
called planarized graph of G if G′ can be obtained from G by a sequence of operations
in which edges are subdivided. In each such operation, two or more edges of the current
graph are subdivided via the same dummy vertex.

Interpret the subdivided edges as crossed edges and the inserted dummy vertices as
crossing points. Given a graph G and a drawing Γ of G, a planarized graph G′ of G can
easily be obtained by replacing each crossing point in Γ by a dummy vertex (subdivide
the crossing edges via a dummy vertex). The resulting graph G′ is planar because it has
a crossing-free drawing which is Γ with each crossing point being replaced by a dummy
vertex. We will call such a dummy vertex crossing vertex.

Definition 2.11 (Planarized embedding). Let G be a graph. A planarized embed-
ding E(G) is a planar embedding of a planarized graph of G.

A graph G with a given planar or planarized embedding E(G) is called an embedded
graph. We can denote this embedded graph as a pair (G, E(G)) of the graph and its em-
bedding or simply as E(G) if it is clear that the embedding contains also all informations
about the graph. The following definition introduces special types of embedded graphs.

Definition 2.12 (Plane graphs). A plane graph (G, E(G)) is a planar graph G with a
planar embedding E(G) of G. A k-plane graph (G′, E ′(G′)) is a k-planar graph G′ with
a planarized embedding E ′(G′) of a k-planar drawing of G′. Analogously, an IC-plane
graph is an IC-planar graph with a planarized embedding of an IC-planar drawing of this
graph, and a NIC-plane graph is a NIC-planar graph with a planarized embedding of a
NIC-planar drawing of this graph.

We will speak of IC-, NIC-, and 1-planar embeddings when we refer to embeddings
of IC-, NIC-, and 1-planar drawings, respectively. A k-plane graph, an IC-plane graph
and a NIC-plane graph have the set of crossing points (planarized as crossing vertices) as
implicit information. We will speak of a fixed embedding setting if an algorithm preserves
a given embedding of a given graph, and of a variable embedding setting if an algorithm
preserves a given graph, but not necessarily a (possibly) given embedding of this graph.

14

(a) Kite as subgraph with
other vertices and edges
inside.

(b) Empty kite. (c) Divided kite.

(d) Empty quadrangle. (e) Divided quadrangle. (f) Divided quadrangle with a
shift vertex inside.

Fig. 2.2.: Specific embedded (sub)graphs.

We have introduced the concept of dummy vertices in this section. To distinguish them
from the other vertices of a graph, we call the other vertices original vertices. Analogously,
we distinguish dummy edges from original edges. In the figures and drawings of this thesis,
original vertices are drawn as solid circles and dummy vertices as solid squares. Special
dummy vertices like crossing vertices and shift vertices, which we introduce and use in
Chapter 3, are drawn as solid squares as well. If it is irrelevant or unclear if a vertex is
an original vertex or a dummy vertex, we will use solid circles. Bend points are drawn
as non-solid square boxes and projection points as non-solid circles (see, e.g., Fig. 5.4b).

2.2. Specific subgraphs

In the context of the drawing algorithms described in the following chapters, we will use
some specific embedded graphs and subgraphs that we introduce next.

Definition 2.13 (Kite). A kite is a 1-plane graph consisting of the graph K4 (the
complete graph with four vertices) and a planarized embedding of K4 so that every
original vertex is at the outer face and there is a crossing vertex that is not on the outer
face. A kite can also be an embedded subgraph of some larger graph.

An example of a kite as an embedded subgraph of a larger graph is given in Fig. 2.2a.

Definition 2.14 (Empty kite). Let G be a graph and E(G) be a planarized embedding
of G. A kite that is an embedded subgraph of (G, E(G)) is called empty in (G, E(G)) if
the inner faces of the kite are also inner faces of E(G).

15

In other words, no other vertices of G are inside the kite and no other edge of G can
cross an edge of the kite. An example of an empty kite is given in Fig. 2.2b. In contrast
to Fig. 2.2a, there cannot be other edges or vertices of a supergraph inside an inner face
of this kite.

Definition 2.15 (Divided kite). Let G be a graph and E(G) be a planarized embedding
of G. A divided kite is an embedded subgraph of (G, E(G)) that is a 8-cycle on the outer
face and a crossing vertex in its interior. The crossing vertex is adjacent to every second
vertex of the 8-cycle.

An example of a divided kite is given in Fig. 2.2c. Analogously, we define the following
graph structures.

Definition 2.16 (Empty Quadrangle). Let G be a graph and E(G) be a planarized
embedding of G. A 4-cycle Q that is an embedded subgraph of (G, E(G)) is called empty
quadrangle in (G, E(G)) if Q has exactly one inner face and this inner face is also a inner
face of E(G).

An example of an empty quadrangle is given in Fig. 2.2d.

Definition 2.17 (Divided Quadrangle). Let G be a graph and E(G) be a planarized
embedding of G. A 4-cycle Q with a chord (edge between non-consecutive vertices of a
cycle) that is an embedded subgraph of (G, E(G)) is called divided quadrangle in (G, E(G))
if all vertices of Q are on the outer face of Q and Q has exactly two inner faces and these
inner faces are also inner faces of E(G).

A divided quadrangle can also be represented as a pair of triangles. An example of a
divided quadrangle is given in Fig. 2.2e. In Chapter 3, we will insert a dummy vertex
that we call shift vertex into a divided quadrangle. Such a divided quadrangle will look
like the one in Fig. 2.2f. In a drawn graph, we also refer to a drawing of an empty/divided
quadrangle as empty/divided quadrangle.

2.3. Known results

In the Introduction (Chapter 1), we gave an overview about previous works and their
results. This section shall be an extension to this. We visualize some results mentioned
there, and we give some more details from these works. In particular, we revisit the
relationships between beyond-planar graph classes and RAC graph classes in Section 2.3.1
and the relationships between the number of edges and crossings in the IC-/NIC-/1-
planar graphs on the one side and the number of vertices on the other side in Section 2.3.2.

2.3.1. Relationships between beyond-planar graph classes and RAC graphs

We revisit the results presented in the Introduction and relate them to the results from
the next chapters. To better visualize these results, they are collected in Table 2.2. In
this table, n is the number of vertices of each graph. If there is no k-bend RAC drawing

16

Are the graph classes in the rows contained in RACk?

RAC0 RAC1 RAC2 RAC3

IC-
planar

Yes [BDE+16],
required area:
exponential in
n [BDE+16]
sufficient area:
exponential in
n [BDE+16]

Yes (s.
Chapter 3),
required area:
?
sufficient area:
Θ(n2) (s.
Chapter 3)

Yes,
required area:
?
sufficient area:
Θ(n2) [LM16]

Yes,
required area:
?
sufficient area:
Θ(n2)

NIC-
planar

No [BBH+17],
open how
difficult to
decide

Yes (s.
Chapter 3),
required area:
?
sufficient area:
Θ(n2) (s.
Chapter 3)

Yes,
required area:
?
sufficient area:
Θ(n2)

Yes,
required area:
?
sufficient area:
Θ(n2)

1-
planar

No [EL13],
NP-hard to
decide
[BDL+17]

Yes [BDL+17],
required area:
?
sufficient area:
exponential in
n [BDL+17]
(see also
Chapter 4)

Yes (s.
Chapter 5),
required area:
?
sufficient area:
Θ(n6) (s.
Chapter 5)

Yes,
required area:
?
sufficient area:
Θ(n4)

general No [DEL11],
NP-hard to
decide
[ABS12]

No [AFK+12],
open how
difficult to
decide
[DEL11]

No [AFK+12],
open how
difficult to
decide
[DEL11]

Yes [DEL11],
required area:
?
sufficient area:
Θ(n4)
(s. Fig. 2.3)

Tab. 2.2.: Overview about some beyond-planar RAC graph classes with 0–3 bends per edge.

17

Fig. 2.3.: Example from the paper by Didimo et al. [DEL11] for an arbitrary graph which is
drawn with at most three bends per edge as RAC drawing. Using this drawing style,
a grid of size Θ(n2) × Θ(n2) suffices to have each vertex, bend point, and crossing
point on a grid point.

for each graph of a specific class, the cells in this table have gray background color. If
there is a k-bend RAC drawing for each graph of the considered class, the cell is colored.
The color depends on the area that is required or sufficient for such a drawing. There,
“required” means that there is a graph of this class, where any k-bend RAC drawing
requires a grid of the specified size to have each vertex, bend point, and crossing point
on the grid. On the other hand, “sufficient” means there that for all graphs of this class,
there is a k-bend RAC drawing that has every vertex, bend point, and crossing point
on the grid of the specified size. Red background color means that exponential area is
required, green background color that polynomial area is sufficient, i.e., the considered
graph class is a subset of RACpoly

k , and yellow background color that it is unknown.
Beside this table, these relationships between k-bend RAC graphs with polynomially

and arbitrarily sized drawings and beyond-planar graphs is depicted in a containment
diagram in Fig. 2.4.

2.3.2. Edge and crossing density

We present known bounds on the number of edges and the number of crossings in IC-,
NIC-, and 1-planar graphs. We will use some of the following properties later.

Lemma 2.18 ([Zha13, CŠ14, BBH+17]). Any NIC-planar drawing of any NIC-planar
graph with n vertices has at most 18(n− 2)/5 = 3.6n− 7.2 edges. This bound is tight.

Similar results are known for other classes of graphs. Except for the last two, all of
the following bounds are tight. IC-planar graphs have at most 3.25n − 6 edges [ZL13],
1-planar graphs have at most 4n− 8 edges [PT97], straight-line 1-planar graphs have at
most 4n−9 edges [Did13], straight-line RAC graphs have at most 4n−10 edges [DEL11],
1-bend RAC graphs have at most 6.5n − 13 edges [AFK+12], and 2-bend RAC graphs
have at most 74.2n edges [AFK+12].
Next, we give some results on the maximum number of crossings in these drawings rel-

ative to the number of vertices n. Obviously, IC-planar graphs have up to n/4 crossings.
For 1-planar drawings, the following bound in the number of crossings has been proven.

Lemma 2.19 ([CH13]). Any 1-planar drawing of any 1-planar graph with n vertices has
at most n− 2 crossings. This bound is tight.

18

planar

IC-planar

NIC-planar

1-planar

RACpoly
1

RAC1

?

?

?

E ?

E ?

?

?

is contained in (incl. any embedding)

is contained in (unknown if for any embedding)

unknown if contained or incomparable

unknown if contained or containing or incomparable

incomparable

?

RAC0

RACpoly
0

RACpoly
2

RAC2

RACpoly
3 = all graphsE ?

Fig. 2.4.: Relationships between (beyond-)planar graphs and RAC graphs.

19

(a) Given NIC-planar crossing. (b) Way for routing the four non-crossing edges
of the kite along these two crossing edges.

Fig. 2.5.: An example of a way to route missing edges of a kite alongside the crossing edges
without creating new crossings. Used in the proof of Lemma 2.20.

For NIC-planar drawings, an upper bound of (3n− 6)/5 crossings has been proven by
Zhang [Zha13] and by Czap and Šugerek [CŠ14]. They do not explicitly state that this
bound is tight. We give another proof to their result, which is similar, but we argue with
the maximum number of edges in a NIC-planar graph instead of the face–edge ratio in
triangulated graphs. Moreover, we give a series of examples to show that this bound is
tight for infinitely many values of n.

Lemma 2.20 ([Zha13, CŠ14]). Any NIC-planar drawing of any NIC-planar graph G
with n vertices has at most (3n− 6)/5 = 0.6n− 1.2 crossings. This bound is tight.

Proof. Let G be an arbitrary NIC-planar graph with n vertices and m edges, and let Γ be
an arbitrary NIC-planar drawing of G with k crossings. The drawing Γ is not necessarily
maximal NIC-planar. Maximal NIC-planar means that we cannot add an edge without
violating the NIC-planarity. We can make Γ maximal NIC-planar by adding edges. While
there are vertices u and v with no edge {u, v} between them, but a way to insert {u, v}
into the drawing so that the drawing is still NIC-planar, we add the edge {u, v} in this
way. As soon as we cannot add any more edge without violating the NIC-planarity of
the drawing (we always come to this situation since the number of edges is bound in
the number of vertices in a NIC-planar graph and we do not add vertices), we have a
maximal NIC-planar drawing Γ′ of a graph G′ with n vertices and m′ edges. The drawing
Γ′ has k′ crossings.
Because the graph is maximal NIC-planar, we have a kite around every crossing in Γ′.

This kite is not necessarily empty (s. Section 2.2). If one of the four non-crossing edges
of a kite has not been in G, we can always insert it without creating a crossing and thus
never violating the condition for the NIC-planarity. We can insert it since we can route
it along the crossing edges like in Fig. 2.5. Observe that for any pair of kites (A,B) in Γ′,
the sets of edges of A and B are disjoint as otherwise the graph would not be NIC-planar.
Thus, we have at least 6 edges per crossing and can bound the number of crossings k′ in
the number of edges m′:

k′ ≤ m′

6
(2.1)

20

(a) Structure A. Used in the
next drawings in the yel-
low boxes titled with A.

(b) Inner base of the drawing. (c) Outer hull of the drawing.

A

A A

(d) Inner base with the first layer around.

A

A A

A

A

A

(e) Inner base with the first and the second
layer around.

A

A

A

ñ− 1

(f) Inner ñ− 1 layers hidden in green with the
ñ-th layer around.

A

A

A

ñ− 1

(g) Complete drawing Γñ with the outer hull
around the ñ-th layer and the ñ-th layer
around ñ− 1 layers hidden in green.

Fig. 2.6.: Structures that are used to create a series of drawings Γ0,Γ1,Γ2, . . . ,Γñ that have
0.6n− 1.2 crossings each. Here, n is the number of vertices in a graph.

21

We know by Lemma 2.18 that in every NIC-planar graph, there are at most 18(|V |−2)/5
edges where |V | is the number of vertices. Applying this to Inequality 2.1, we get the
following bound:

k′ ≤ 18(n− 2)

5 · 6
=

3n− 6

5
(2.2)

Since we cannot lose a crossing by adding edges, this bound applies also to the initial
drawing Γ of the initial graph G.

k ≤ k′ ≤ 3n− 6

5
(2.3)

After showing that there is no NIC-planar drawing with more than 0.6n− 1.2 crossings,
it remains to show that this bound is tight. We do this by giving an infinitely large
series of examples of NIC-planar drawings Γ0,Γ1,Γ2, . . . that do have exactly 0.6n− 1.2
crossings each. The drawings are built up with structures depicted in Figure 2.6. Every
drawing Γñ with ñ ∈ N0 has three empty kites arranged as in Figure 2.6b as an inner
base in its center. Around it, there are ñ layers of rings that consist of three empty
kites and three times a structure which we call Structure A (it is depicted in Figure 2.6a
and contains five empty kites). In each such ring, the three empty kites and the three
Structures A are rowed in an alternating way as in Figure 2.6d. The inner six and the
outer six vertices of each ring are shared with the previous ring (or the inner base) and
the next ring (or the outer hull). Around the ñ-th ring, three empty kites arranged as
in Figure 2.6c form an outer hull. A layer (ring) is arranged around the previous layer
(ring) such that empty kites and Structures A are alternating (so that empty kites do
not share edges). See Figure 2.6e. It applies to the inner base and the outer hull in the
same way that empty kites do not share edges. See Figure 2.6d and Figure 2.6g. Every
drawing Γñ is obviously NIC-planar.

In Table 2.4, we analyze the number of vertices, edges, and crossings in each such
drawing. Reformulating the entry for the number of vertices in Γñ, we can see how the
drawing index ñ depends on the number of vertices n.

ñ =
n− 12

30
(2.4)

Inserting this into the formula for the number of crossings, we get the number of cross-
ings k in dependency on the number of vertices n:

k = 18ñ + 6 = 18 · n− 12

30
+ 6 =

3n− 6

5
(2.5)

Observe that Γñ is also a NIC-planar drawing with the maximum number of edges:

m = 108ñ + 36 = 108 · n− 12

30
+ 36 = 3.6n− 7.2 (2.6)

Furthermore, note that Γ0 equals examples from other papers [CŠ14, BBH+17, KLM17].
Some of them use it as an example of a NIC-planar graph with the maximum number of
edges.

22

Drawing Number of
vertices n

Number of
edges m

Number of
crossings k

Structure A 12 30 5
Inner Base 9 18 3
Outer Hull 9 18 3
Ring in each
layer

36 108 18

Γ0 12 36 6
Γ1 42 144 24
Γ2 72 252 42
Γñ 30ñ + 12 108ñ + 36 18ñ + 6

Tab. 2.4.: Number of vertices, edges, and crossings of structures and graphs from Fig. 2.6.

2.4. Known algorithms

In this section, we will introduce two widespread algorithms that we will use in this
thesis later. This is, in Section 2.4.1, a framework for the Algorithm by Hopcroft and
Tarjan [HT73] to make a graph biconnected. And this is, in Section 2.4.2, the Shift
Algorithm by de Fraysseix et al. [dFPP90] and Chrobak and Payne [CP95] and its variant
by Harel and Sardas [HS98].

2.4.1. Making a graph biconnected

There are applications like the drawing algorithm by Harel and Sardas [HS98] that require
biconnected graphs. A biconnected graph is a connected graph where we can remove any
vertex and the resulting graph is still connected. If a graph is biconnected, it has no cut
vertex. A cut vertex v of a graph G is a vertex whose removal would increase the number
of connected components, i.e., G[V −{v}] has more connected components than G. As we
work with general planar and beyond-planar graphs that are not necessarily biconnected,
we describe an algorithm that transforms a plane graph in linear time into a biconnected
plane graph and maintains its planarity by only adding dummy edges. The algorithm is
also noted down in Algorithm 1.
Let (G, E(G)) be a given plane graph. In case G is not connected, we first do a

depth-first search to find the connected components. If it is unconnected, we assume
that there is no connected component on an inner face of another component. If there
is more than one connected component, we take a component and connect it with each
other component via a dummy edge. Each such dummy edge connects vertices on the
outer face so that it does not create crossings in the embedded graph. Now, we have
a plane connected graph that is not necessarily biconnected. We use the linear-time
algorithm by Hopcroft and Tarjan [HT73], which is based on a depth-first search, to find
all biconnected components and their cut vertices. We obtain biconnectedness by the

23

Algorithm 1:
makePlaneGraphBiconnected((G, E(G)))
Input : Plane graph (G, E(G))
Output: Biconnected plane graph (G∗, E∗(G)∗)
/* Make the graph connected */

1 (C1, . . . , Cj) := dfsFindConnectedComponents(G) // depth-first search for
finding connected components

2 Let c∗ be a vertex in C1

3 foreach c ∈ C1 do
4 if c is on the outer face of E(G) then
5 c∗ := c

6 foreach C ∈ {C2, . . . , Cj} do
7 foreach c ∈ C do
8 if c is on the outer face of E(G) then
9 Insert the dummy edge {c, c∗} on the outer face

10 break

/* Make the graph biconnected */
11 (B, Vcut) := hopcroftTarjanBiconnectedComponents(G) // The set of the

biconnected components of the graph is B. Presume that we can
query via bc(e) for each edge e in constant time in which
biconnected component e is. The set of the cut vertices is Vcut.

12 foreach v ∈ Vcut do
13 foreach u ∈ Adj[v] in the circular order around v acc. to the embedding do
14 Let w be the predecessor of u in the circular order around v
15 if (bc({v, u}) 6= bc({v, w}) then
16 if v has degree 2 and we inserted {u,w} in the previous step then
17 break // Special case to prevent parallel edges

18 Insert the dummy edge {u,w}
19 Set bc({u,w}) = {bc({v, u})} ∪ {bc({v, w})} // We set bc({u,w})

to two values. Original edges are assigned to only one
biconnected component. When we compare bc({u,w}) with
other values, we check for both assigned biconnected
components if one equals the other value

20 Let (G∗, E∗(G∗)) be the resulting embedded graph
21 return (G∗, E∗(G∗))

24

v

B2

B1

B5

B3

B4

(a) Cut vertex v of the biconnected compo-
nents B1, . . . , B5.

v

B2

B1

B5

B3

B4

(b) Connecting neighbors of v in their circu-
lar order around v if they are in different
biconnected components.

Fig. 2.7.: Connecting five biconnected components around a split vertex v.

following operation. For each cut vertex v, consider the neighbor vertices of v in the
circular order around v. If two consecutive incident edges between v and these neighbor
vertices are in different biconnected components, connect them via a dummy edge. In
case v has degree 2 and is a cut vertex of two biconnected components, we insert only
one such dummy edge since we may not create parallel edges. We give an example of
this step in Fig. 2.7. After applying this to each cut vertex, we return the obtained
biconnected plane graph (G∗, E∗(G∗)).
With this algorithm, we follow the suggestions in the remarks of the paper by Harel

and Sardas [HS98] for making a graph biconnected. Let n be the number of vertices in G
and G∗, and m be the number of edges in G∗. The depth-first search and the algorithm
by Hopcroft and Tarjan [HT73] run in linear time. Regarding the insertion of dummy
edges in the unconnected case, we insert up to n edges and check for up to n vertices if
they are on the outer face. We can do this in linear time. For the insertion of dummy
edges in the non-biconnected case, we handle at most n cut vertices with in total at
most 2m neighbor vertices. Since m ∈ O(n) holds for planar graphs, we can also do this
insertion of dummy edges in linear time. Hence, the algorithm runs in linear time.

2.4.2. The Shift Algorithm for maximal planar and biconnected graphs

In Chapter 3 and Chapter 5, we will employ the algorithm by Harel and Sardas [HS98].
This algorithm is an adaption of the older Shift Algorithm. Due to our intensified use of
this algorithm in this thesis, we give a brief overview of it here.
The Shift Algorithm was introduced in 1990 by de Fraysseix et al. [dFPP90]. They

give an algorithm that takes a planar graph G = (V,E) as input and returns a crossing-
free straight-line drawing Γ of G on a grid of size (2n − 4) × (n − 2) where n := |V |.
The algorithm consists of two steps, and a preprocessing, and a postprocessing. As

25

preprocessing, we compute a planar embedding of G in linear time and triangulate each
face of it via dummy edges in linear time. Let the resulting graph with a triangulated
embedding be G′. The first step is computing a canonical ordering Π of the vertices in G
and the second step is computing a crossing-free straight-line drawing on a grid of size
(2n− 4)× (n− 2) based on Π. We will formally define a canonical ordering hereunder.
As postprocessing, we remove the dummy edges from the drawing. Their algorithm has
a running time of O(n log n). Chrobak and Payne [CP95] present a modification of their
algorithm to achieve linear time.
The classical Shift Algorithm requires triangulated embeddings. Since a plane graph

is in general not triangulated, i.e., not maximal planar, we insert dummy edges, which
we remove later. A graph is maximal planar if adding an edge would make the graph
non-planar. This removal can make a drawing look rather unaesthetic. For this reason,
Harel and Sardas [HS98] give a kind of generalization of the Shift Algorithm so that
it does not require maximal planar graphs but only biconnected planar graphs. For
making a graph biconnected, we usually need fewer dummy edges than for making a
graph maximal planar. They name their adaption of the canonical ordering biconnected
canonical ordering. The drawing algorithm in the second step is almost the same.
Next, we define the canonical ordering and the biconnected canonical ordering and give

a little insight into their computation. Moreover, we describe the drawing phase briefly.

Canonical ordering

First of all, we give a formal definition of the canonical ordering.

Definition 2.21 (Canonical ordering). Let G be a maximal plane graph with n vertices,
and let u, v, w be the vertices on the boundary of its outer face. A canonical ordering Π
is a permutation v1, . . . , vn of the vertices in G such that v1 = u, v2 = v, and vn = w,
and for every 3 ≤ k ≤ n the following conditions hold

• The subgraph Gk−1 of G induced by v1, . . . , vk−1 is biconnected, and the boundary
of its outer face is a cycle Ck−1 containing the edge {v1, v2}.

• The vertex vk is on the outer face of Gk−1, and has at least two neighbors in Gk−1.
Moreover, all of its neighbors in Gk−1 are consecutive on the path Ck−1 − {u, v}.

We call Ck−1 the contour of Gk−1.

De Fraysseix et al. [dFPP90] proof that there is always a canonical ordering for a
maximal plane graph. It can be computed in linear time. Their algorithm for computing
a canonical ordering works iteratively and top-down. It determines vn first, then finds
a suitable vertex that becomes vn−1, then vn−2 and so on until we have a canonical
ordering of the whole graph.

Biconnected canonical ordering

Harel and Sardas [HS98] introduce the biconnected canonical ordering as a generalization
of the canonical ordering. Analog to the canonical ordering, this will be a permutation of

26

Gk

v1 v2

u

v

w′

(a) The vertex w′ has a left support on Ck.

Gk

v1 v2

u

v

w

(b) The vertex w has a right support on Ck.

Fig. 2.8.: Schematic example of a legal support of a vertex on the induced subgraph Gk.

the vertices in a given embedded graph, where the first k vertices induce a subgraph Gk.
The boundary list Ck of the outer face of Gk is called contour of Gk. We will also refer
to the vertex list derived from this boundary list as contour. For their definition, they
use the concept of a left/right support and a legal support. A vertex w on the outer face
of Gk has a right support on Ck if both of the following conditions are fulfilled.

• There are vertices u and v that are neighbors on the contour of Gk, i.e., Ck and u
immediately precedes v in Ck.

• w is adjacent to u.

• v immediately precedes w in the counter-clockwise circular order around u.

Analogously, we define a left support. We say a vertex has a legal support on Ck if it
has a right or a left support on Gk. An example of a vertex with a left and a vertex with
a right support is given in Fig. 2.8.

Definition 2.22 (Biconnected canonical ordering). Let G be a biconnected plane graph
with n vertices, and let {u, v} be an edge that has its right side on the boundary list
of the outer face of G. A biconnected canonical ordering Π is a permutation v1, . . . , vn
of the vertices in G such that v1 = u, v2 = v, and for every 2 ≤ k ≤ n the following
conditions hold:

• The subgraph Gk of G induced by v1, . . . , vk is connected, and Ck contains the
right side of the edge {v1, v2}.

• All vertices in G−Gk lie within the outer face of Gk.

• For k > 2, the vertex vk has one or more neighbors in Gk−1. If vk has exactly one
neighbor in Gk−1, then it has a legal support on Ck.

They also give a linear-time algorithm for computing a biconnected canonical ordering
of a biconnected plane graph. Like the algorithm for computing the canonical ordering,

27

it works iteratively and in linear time. Unlike the algorithm for computing the canonical
ordering, it works bottom-up. It determines v1 and v2 first, then finds a suitable vertex
that becomes v3, then v4 and so on until we have a canonical ordering of the whole
graph. The algorithm maintains three arrays during the computation. These are A,
N , and F . Before the k-th step of the algorithm is executed, they save the following
information. The array A is indexed by the faces and contains the number of edges of
each face that are in Gk−1. The array N is indexed by the vertices and contains the
number of neighboring vertices of each vertex that are in Gk−1. The array F is indexed
by the vertices and contains the number of ready faces of which each vertex is the only
missing vertex outside Gk−1. They say a face f is ready in Gk−1 if all but one vertex
of f is in Gk−1. At the end of each iteration, these arrays are updated according to the
choice of vk. This algorithm is noted down in Algorithm 2. Note that the array A is
queried only for updating the array F .

Algorithm 2: Compute a biconnected canonical ordering according to Harel
and Sardas [HS98]
Input : Biconnected plane graph (G, E(G)) with n vertices
Output: Biconnected canonical ordering Π of (G, E(G))
/* Initialization */

1 Initialize all three arrays A, N , and F to 0
2 Take as {v1, v2} any edge of the outer face
3 Set A(f) to 1 for f , the left face of {v1, v2}
4 If f is a triangle with vertices v1, v2, v3, set F (v3) to 1, since f is ready
/* Iterative computation of vk */

5 for k = 3 to n do
6 if there is a vertex v /∈ V [Gk−1] with N(v) ≥ 2 and N(v) = F (v) + 1 then
7 vk := v
8 else
9 Find a v /∈ V [Gk−1] with a legal support on Ck−1 and N(v) = 1

10 vk := v

11 Update the data structures A, N , F for vk
12 return Π := (v1, v2, . . . , vn)

Drawing phase

Chrobak and Payne [CP95] present a linear time algorithm for the drawing phase of
the Shift Algorithm. The algorithm takes an embedded maximal planar graph with n
vertices and a canonical ordering (v1, . . . , vn) of it as input and returns a crossing-free
straight-line drawing on a grid of size (2n− 4)× (n− 2). It works iteratively.
Initially, it places v1, v2, and v3 on a triangle. Namely, it places v1 onto (0, 0), v2

onto (2, 0), and v3 onto (1, 1). Thereafter, it adds iteratively each vertex vk with k > 3
to the drawing. It maintains an invariant that is fulfilled at the beginning and at the end

28

v1 v2

w1

wm

w2

wm−1
Gk−1

(a) Drawing before iteration k.

. . .

w2

wm−1

v1 v2

w1

wm

vk

Gk−1

(b) Drawing after iteration k.

Fig. 2.9.: Example of an iteration of the drawing phase of the Shift Algorithm. Here, vertex vk
is added to the drawing.

of each iteration. This invariant guarantees that the contour consists of line segments
with only slope +1 and −1 except for the line segment of the edge {v1, v2} which is drawn
as horizontal line segment on the bottom of the drawing. This makes the drawing look
like a mountainous landscape. When we add vk, it is adjacent to a consecutive sequence
w1, . . . , wm of vertices on the contour. We shift w1 and everything beneath it and every-
thing to the left of it to the left by one unit and we shift wm and everything beneath it
and everything to the right of it to the right by one unit relative to w2, . . . , wm−1. Now,
we place vk on the intersection point of the line with slope 1 through w1 and the line
with slope −1 through wm. We can show that this intersection point is also a grid point.
Now, after the k-th step, w1, vk, and wm are consecutive on the contour of the current
drawing, while w2, . . . , wm−1 is beneath vk. We say that the vertices w2, . . . , wm−1 are
covered by vk or that they are in the underset of vk. They are not moved relative to vk
later on (they are shifted in the same direction and by the same value if they are shifted).
By the maintenance of the invariant, we can show that such a drawing is a crossing free
grid drawing. For an illustration of such a step, see Fig. 2.9.
The drawing phase of the Shift Algorithm that uses a biconnected canonical ordering

instead of a canonical ordering differs only slightly. In the case where we add a vertex vk
with a legal support, we proceed as if there was the edge between vk and the vertex via
which vk has a legal support. In this thesis, we let shiftDrawHS((G, E(G)), Π) denote
the drawing phase of the Shift Algorithm for a biconnected plane graph (G, E(G)) and a
biconnected canonical ordering Π.

29

3. Constructing 1-Bend RAC Drawings
of NIC-Plane Graphs in Quadratic
Area

In this chapter, we will show that every NIC-plane graph with n vertices admits a RAC
drawing on a grid of size O(n) × O(n) with at most one bend per edge. “On a grid”
means here that every vertex, every bend point, and every crossing point is drawn on a
grid point of a regular integer grid of the specified size. Because every IC-plane graph is
also a NIC-plane graph, this holds for IC-plane graphs as well. The proof is constructive.
We describe an efficient algorithm that takes a NIC-plane graph as input and returns a
1-bend RAC drawing of this graph on a grid of size at most (16n − 32) × (8n − 16) as
output.
This leads us to the main result of this chapter:

Theorem 3.1. Every NIC-planar graph G = (V,E) admits a NIC-planar 1-bend RAC
drawing with vertices, bend points, and crossing points on a grid of size at most (16n −
32)×(8n−16), where n := |V |. Given a NIC-planar embedding E(G) of G, such a drawing
can be computed in O(n) time. The returned drawing preserves the given embedding E(G).

To prove this theorem, we will draw an augmentation of the given NIC-plane graph.
An essential ingredient of our proof is the construction of a specialized canonical ordering
of this augmented graph.
We will present an algorithm in Section 3.1 with the previously described properties.

We will show the correctness of this algorithm in Section 3.2. In Section 3.3, we will show
that this algorithm runs in linear time and everything in the output drawing is on a grid
of quadratic size. Putting this together, we will finally proof Theorem 3.1 in Section 3.4.
We have also implemented the algorithm in Java. An example of an output drawing is
given in Appendix A.

3.1. Algorithm

This section describes how we produce the desired 1-bend RAC drawings. The high-level
structure of the presented algorithm is as follows. It is also written down in pseudocode
in Algorithm 3.

• Make the graph biconnected and replace each pair of crossing edges by a divided
quadrangle. Let the resulting graph be G′. We describe this step in more detail in
Section 3.1.1 and have it in pseudocode in Algorithm 4.

30

• Generate a biconnected canonical ordering Π̂ of an augmentation Ĝ of G′. For this
step, see Section 3.1.2 and Algorithm 5.

• Draw Ĝ according to Π̂ using the algorithm by Harel and Sardas [HS98]. Let the
resulting drawing be Γ̂.

• Scale up Γ̂ by a factor of 2 in each dimension and obtain Γ̂×2.

• In Γ̂×2, replace each divided quadrangle by an empty quadrangle and insert the
original edges with one bend per edge inside the empty quadrangles so that they
cross in a right angle. Let the resulting drawing be Γ∗. In more detail, this step is
described in Section 3.1.3 and in Algorithm 6.

• Remove all previously inserted dummy edges and make the remaining dummy ver-
tices bend points. The resulting drawing Γ is the final drawing.

Algorithm 3: Drawing a NIC-plane graph on a grid of a size that is quadratic
in the number of vertices
Input : NIC-plane graph (G = (V,E), E(G))
Output: 1-bend RAC drawing of G according to E(G)
/* Modify the graph via the preprocessing. Afterwards, Q is a list

of empty quadrangles marking the original crossings. */
1 ((G′, E ′(G′)), Q) := preprocessNICPlaneGraph((G, E(G)))
/* Compute the biconnected canonical ordering. In this step the

embedded graph (G′, E ′(G′)) is slightly modified. The resulting
embedded graph is (Ĝ, Ê(Ĝ)). Π̂ is the biconnected canonical
ordering of the vertices in this embedded graph. */

2 ((Ĝ, Ê(Ĝ)), Π̂) := modifiedBiconnectedCanonicalOrdering((G′, E ′(G′)), Q)
/* Draw according to the computed biconnected canonical ordering

using the drawing step of the Shift Algorithm. See Section 2.4.2
*/

3 . Γ̂ := shiftDrawHS((Ĝ, Ê(Ĝ)), Π̂)
/* Refining by a factor of 2 means here, scaling up both coordinates

of each vertex by a factor of 2 */
4 Γ̂×2 := Γ̂ after refining its grid by a factor of 2
/* Reinsert the crossing edges into the quadrangles saved in Q with

a bend as RAC crossings. */
5 Γ∗ := reinsertCrossingEdges(Γ̂×2, Q)
6 Γ := Γ∗ after removing all dummy edges and replacing each dummy vertex by a

bend point
7 return Γ

31

Algorithm 4: [Subroutine of Algorithm 3]
preprocessNICPlaneGraph((G, E(G)))
Input : NIC-plane graph (G, E(G))
Output: (Biconnected plane graph (G′, E ′(G′)),

list of empty quadrangles Q)
1 Let Q be an empty list
2 foreach crossing c ∈ E(G) do
3 if there is no empty kite around c then
4 Insert dummy edges D so that there is an empty kite around c
5 foreach d ∈ D do
6 if there is a parallel edge e to d in G then
7 Subdivide the edge e via a dummy vertex

8 Remove the two edges crossing in c from the graph and the embedding
9 Add the remaining empty quadrangle to Q

10 Let the resulting plane graph be (G+, E+(G+))
11 (G′, E ′(G′)) := makePlaneGraphBiconnected((G+, E+(G+))) // call Algo. 1
12 return ((G′, E ′(G′)), Q)

(a) Crossing as it initially ap-
pears.

vdummy

(b) Empty kite with subdi-
vided original edge.

(c) Empty quadrangle.

Fig. 3.1.: Modifying an edge crossing in the preprocessing step (s. Section 3.1.1). At a crossing,
we build an empty kite and remove the crossing edges afterwards to obtain an empty
quadrangle.

32

Algorithm 5: [Subroutine of Algorithm 3]
modifiedBiconnectedCanonicalOrdering((G′, E ′(G′)), Q)
Input : Biconnected plane graph (G′, E ′(G′)),

list Q of empty quadrangles in G′

Output: (Biconnected plane graph (Ĝ, Ê(Ĝ)),
biconnected canonical ordering Π̂ of the vertices in Ĝ)

1 Do the same initialization as in the algorithm by Harel and Sardas [HS98]
2 Define index(v1) := 1 and index(v2) := 2
3 for k = 1 to n do
4 if k ≥ 3 then

// v1 and v2 have been determined in the initialization
5 Compute vk as in the algorithm by Harel and Sardas
6 Define index(vk) := k

7 foreach empty or divided quadrangle q = (vk, a, b, c) ∈ Q containing vk do
8 if vk is the first vertex of q encountered yet then
9 Add a dummy edge from vk to b // q was an empty quadrangle and

is a divided quadrangle now

10 if vk is the last vertex of q encountered and b is not the first vertex
encountered in q then

11 if b is in the underset of a or c then
// We are in Case 2

12 Insert a subdivided dummy edge {a, c} into the face (vk, a, c)
13 Let the dummy vertex of this subdivision be vshift
14 Insert vshift into the biconnected canonical ordering before vk
15 else

// We are in Case 3

16 vlowest :=

{
a, if index(a) < index(c)

c, otherwise
17 Subdivide the edge {vlowest, b} by vdummy
18 Insert vdummy into the biconnected canonical ordering before b
19 Add a new dummy edge {vlowest, b} as bounding edge for q

20 Update the data structures for computing the biconnected canonical
ordering by including the new edges and faces

21 Let the modified plane graph be (Ĝ, Ê(Ĝ))

22 Let the resulting biconnected canonical ordering be Π̂

23 return ((Ĝ, Ê(Ĝ)), Π̂)

33

Algorithm 6: [Subroutine of Algorithm 3]
reinsertCrossingEdges(Γ̂×2, Q)

Input : Planar drawing Γ̂×2 of the graph Ĝ,
list Q of divided quadrangles in Γ̂×2 where RAC crossings will be
inserted

Output: 1-bend RAC drawing of Ĝ
1 foreach divided quadrangle (t1, t2) = ((a, b, c), (a, c, d)) in Q with

index(a) < index(vi) for each i ∈ {b, c, d} do
2 Remove the dummy edge {a, c}
3 Remove a shift vertex vshift and its incident dummy edges if present

// We have now an empty quadrangle (a, b, c, d)
// Insert the original crossing edges in three cases

4 vlower :=

{
b, if y(b) < y(d)

d, otherwise
5 if index(c) > index(vi) for each i ∈ {b, d} then

// Case 1
6 Insert the edge {a, c} with a bend point at (x(a), y(vlower) + 1)

7 xbend :=

{
x(a)− 1, if vlower = b

x(a) + 1, otherwise
8 Insert the edge {b, d} with a bend point at (xbend, y(vlower))

9 else
10 if vlower is in the underset of c then

// Case 2
11 if vlower = b then
12 xcross := 0.5(x(c)− y(c) + x(vlower) + y(vlower))
13 ycross := 0.5(−x(c) + y(c) + x(vlower) + y(vlower))
14 Insert the edge {a, c} with a bend point at (xcross − 1, ycross − 1)
15 Insert the edge {b, d} with a bend point at (xcross − 1, ycross + 1)

16 else
17 x′cross := 0.5(x(c) + y(c) + x(vlower)− y(vlower))
18 y′cross := 0.5(x(c) + y(c)− x(vlower) + y(vlower))
19 Insert the edge {a, c} with a bend point at (x′cross + 1, y′cross − 1)
20 Insert the edge {b, d} with a bend point at (x′cross + 1, y′cross + 1)

21 else
// Case 3

22 Insert the edge {a, c} with a bend point at (x(c), y(vlower)− 1)

23 xbend :=

{
x(c)− (y(c)− y(b)), if vlower = b

x(c) + (y(c)− y(d)), otherwise
24 Insert the edge {b, d} with a bend point at (xbend, y(vlower))

25 return the modified drawing

34

3.1.1. Preprocessing

In this step, we aim to make the given graph planar and biconnected so that we can
apply the algorithm of Harel and Sardas [HS98] to it. We make it planar by replacing
each pair of crossing edges by an empty quadrangle. We save each such quadrangle in a
list Q so that we can reinsert the crossing edges at the right spot later. This step of our
algorithm is formulated in pseudocode in Algorithm 4 and described in detail below.
At each crossing, we first create empty kites and then remove the two crossing edges so

that empty quadrangles remain. To accomplish this, we consider each crossing and add
dummy edges where necessary so that each crossing induces an empty kite. If adding
such a dummy edge leads to parallel edges because this edge is already present in a
different position in the planarized embedding, we instead subdivide this original edge
using a dummy vertex and add the dummy edge afterwards. In Procedure 2.9, we define
how to subdivide an edge. After creating empty kites, we remove the two crossing edges.
We save each emerging empty quadrangle in a list Q in order to remember where to
reinsert the crossings in the reinsertion step of this algorithm. This reinsertion step is
described in Section 3.1.3. An example of applying this preprocessing step to a crossing
is given in Fig. 3.1. After this, we have a plane graph (G+, E+(G+)).
In the last step of the preprocessing, we make the graph biconnected via the algo-

rithm described in Section 2.4.1. Let the resulting biconnected plane graph be (G′ =
(V ′, E′), E ′(G′)).

3.1.2. Computing the biconnected canonical ordering

The idea of this step is computing a biconnected canonical ordering of the vertices of
the plane graph (G′ = (V ′, E′), E ′(G′)) while the graph is modified. The modification is
here an insertion of edges into the empty quadrangles so that we get divided quadrangles.
This step is described in pseudocode in Algorithm 5. The biconnected canonical ordering
was first introduced by Harel and Sardas [HS98]. We describe it in Section 2.4.2. We do
the same initialization as they do. We also compute the ordering from the lower ordering
numbers (vertices with them are drawn earlier) to the higher ordering numbers (drawn
later). We use the term index for the position of a vertex in the biconnected canonical
ordering. The computation of each index itself is not changed. Instead, some additional
work is performed after the next vertex is determined.
Let the recently computed vertex index be k and let it have been assigned to vk. The

vertex vk may be a vertex of one or more empty or divided quadrangles from Q. We
consider each quadrangle q = (vk, a, b, c) containing vk and we modify the graph in the
following three situations.
First, if vk is the first of the four vertices of q to be encountered, insert a dummy

edge from vk to the opposing vertex b. We say b is the opposing vertex of vk in the
quadrangle q if they are different vertices and not adjacent to each other in the empty
quadrangle (obtained from) q. Inserting this diagonal into the empty quadrangle makes
it a divided quadrangle. The list Q now also contains divided quadrangles. An example
of a quadrangle after this insertion is given in Fig. 3.2a.

35

vk

a

b

c

(a) Divided quadrangle.
A quadrangle of Case 1
of the reinsertion step (s.
Section 3.1.3) would be
like this.

vk

a

b

c

vshift

(b) Divided quadrangle where
a shift vertex vshift has
been inserted below vk.
This is a quadrangle of
Case 2 of the reinsertion
step (s. Section 3.1.3).

vk

a

b

c

vdummy

(c) Divided quadrangle where
{a, b} has been subdivided
and another edge {a, b}
has been inserted. This
is a quadrangle of Case 3
of the reinsertion step (s.
Section 3.1.3).

Fig. 3.2.: Modifications of quadrangles that emerge while the modified biconnected canonical
ordering is computed.

Second, we continue if . . .

• vk has the largest index among the vertices in q,

• b does not have the smallest index among the vertices in q, and

• b is in the underset of a or c.

If this is fulfilled, q matches Case 2 of the reinsertion step (s. Section 3.1.3). For the edge
reinsertion, we will need an extra shift in the drawing phase that shifts the first vertex
of the quadrangle away from the third vertex. To accomplish this, we insert a dummy
vertex adjacent to a and c that will assure that we shift c away from a by 2 units when we
draw the graph. We will refer to such a dummy vertex as shift vertex. Shifting vertices
away from each other is its only purpose and we will remove it and its two incident
dummy edges before we reinsert the crossing edges. In the embedding, we insert this
vertex vshift into the face (vk, a, c) and in the biconnected canonical ordering, we insert
it before vk. An example of a quadrangle after this insertion is given in Fig. 3.2b. We
sill consider q as divided quadrangle, although it contains a shift vertex and two incident
dummy edges now. An example of the effect of a shift vertex in the drawing phase is
given in Fig. 3.3. The shift vertices and incident dummy edges are colored in red there.
Note that vk can be the last vertex of several quadrangles in Case 2 like in this example.
Third, we perform an additional insertion if q matches Case 3 of the reinsertion step

(s. Section 3.1.3) and vk is drawn on the top of q. Namely, we continue if . . .

• vk has the largest index among the vertices in q,

• b does not have the smallest index among the vertices in q, and

• b is not in the underset of a or c.

36

(a) After three vertices of three divided quadrangles but no shift vertices have been drawn.

(b) After the shift vertices have been drawn.

(c) The last vertex of the three divided quadrangles is added with a regular shift of the Shift
Algorithm.

Fig. 3.3.: Example of a vertex vk that is the last vertex of more than one quadrangle in Case 2.
Shift vertices and incident edges are colored in red.

37

If these three conditions are all true, subdivide the edge between the vertex with the
lowest index vlowest in q, which is a or c, and b via a dummy vertex vdummy. In this
quadrangle, b has the second lowest index. Insert vdummy into the biconnected canonical
ordering before b. After this, add a dummy edge {vlowest, b} to the embedded graph so
that it is a bounding edge of this divided quadrangle. It may seem to be pointless to first
subdivide this edge and then reinsert it, but we need both of them for the step in which
the crossing edges are reinserted, and if {vlowest, b} is an original edge, we will draw it
with a bend. An example of a quadrangle after this insertion is given in Fig. 3.2c.
After each insertion of dummy vertices and dummy edges, we update the data struc-

tures that are maintained for the computation of the biconnected canonical ordering.
After the computation of this ordering has been completed, we have a biconnected
canonical ordering Π̂ of the resulting plane graph (Ĝ, Ê(Ĝ)) that is based on the plane
graph (G′, E ′(G′)).
Using the computed biconnected canonical ordering, we draw the graph Ĝ according

to Ê(Ĝ) with the adaption of the Shift Algorithm by Harel and Sardas [HS98]. We obtain
the drawing Γ̂ and we scale up this drawing by a constant factor of 2 in both dimensions.
This is equivalent to refining the underlying grid by a factor of 2 in both dimensions. We
call the resulting drawing Γ̂×2.

3.1.3. Reinserting the crossing edges

Currently, we have a drawing Γ̂×2 of Ĝ that is derived from the original graph G. Com-
pared to G, it has some extra edges and vertices but also one edge per crossing missing.
This makes the embedded graph plane and not only NIC-plane. In this step, we reinsert
every missing edge that crosses another edge of the graph. The procedure described here
is formulated in pseudocode in Algorithm 6. Our goal is a 1-bend RAC drawing, i.e.,
each crossing forms a right angle and each edge consist of at most two straight segments.
We consider each divided quadrangle q of the list Q—these induce the crossings in

the original drawing. Currently, q is a quadrangle with a diagonal in its interior. We
remove the diagonal (an edge between two opposing vertices of the divided quadrangle)
and a possibly present shift vertex including its two incident dummy edges. Thereafter,
we have an empty quadrangle q = (a, b, c, d) where a has the lowest index in Π̂ and
(a, b, c, d) is a cycle in counter-clockwise vertex order in the drawing. Observe that a has
a smaller y-coordinate than the other vertices in q because it has a lower index in Π̂ and
is adjacent to b, c, and d. Moreover, we define vlower as b if y(b) < y(d) and otherwise we
define vlower as d.
In the following, we use x(v) and y(v) to describe the x- and y-coordinate of v, respec-

tively. We distinguish three cases for each quadrangle that we consider. In this chapter,
we will refer to the bend point of the edge {a, c} as e{a,c} and to the bend point of the
edge {b, d} as e{b,d} in any case.

Case 1 In this case, c has the largest index among the four vertices of q in Π̂. An
example of such a quadrangle is given in Fig. 3.4a. We will have a crossing point of the
inserted edges at (x(a), y(vlower)). To accomplish this, we insert the edge {a, c} with a

38

a

b

c

d

(a) Divided quadrangle in Case 1.
a

b

c

d

e{a,c}

e{b,d}

(b) Case 1 after inserting the crossing edges.

a

b

c

d

vshift

(c) Divided quadrangle in Case 2.
The vertex b is covered by c.

a

b

c

d

e{b,d}
e{a,c}

pcross

(d) Case 2 after inserting the crossing edges.

a

b

c

d

vdummy

(e) Divided quadrangle and the neighboring
path (a, vdummy, vlower = b) in Case 3.
The vertex b is not covered by c.

a

b

c

d

vdummy

e{b,d}

e{a,c}

∆y

∆y

(f) Case 3 after inserting the crossing edges.

Fig. 3.4.: Examples for the three cases appearing in Algorithm 6. Lines for orientation with
slope 1 or −1 are dashed and colored in violet.

39

bend point at (x(a), y(vlower) + 1) and we insert the edge {b, d} with a bend point at
e{a,c} = (x(a)− 1, y(b)) if vlower = b or with a bend point at (x(a) + 1, y(d)) if vlower = d.
Observe that the subcase vlower = b is the same as vlower = d if we mirror the quadrangle q
across a vertical axis. An application of this reinsertion operation to Fig. 3.4a is given
in Fig. 3.4b.
If c does not have the largest index among the four vertices of q in Π̂, we distinguish

two more cases.

Case 2 In this case, b or d has the largest index among the four vertices in q in Π̂
and the other one, i.e., vlower is in the underset of c. An example of such a quadrangle
is given in Fig. 3.4c. We assume that we are in subcase vlower = b. We define the
crossing point pcross = (xcross, ycross) as the intersection point of the lines with slope
1 and −1 through c and b, respectively. The coordinates of this crossing point are
xcross := 0.5(x(c) − y(c) + x(b) + y(b)) and ycross := 0.5(−x(c) + y(c) + x(b) + y(b)).
Despite multiplying each coordinate by a factor of 0.5, both coordinates are integer
values since we have refined the grid by a factor of 2. We place the two bend points onto
the same lines on the grid points that are next to pcross. In other words, we insert the
edge {a, c} with a bend point at (xcross− 1, ycross− 1) and we insert the edge {b, d} with
a bend point at (xcross − 1, ycross + 1). An application of this operation to Fig. 3.4c is
given in Fig. 3.4d.
Again, the subcase vlower = d is symmetric and can be obtained by mirroring the

quadrangle q across a vertical axis. For completeness, we give the coordinates of pcross,
e{a,c}, and e{b,d} here as well. The ones of pcross are x′cross = 0.5(x(c)+y(c)+x(d)−y(d))
and y′cross = 0.5(x(c)+y(c)−x(d)+y(d)). The edge {a, c} is bent at at (xcross+1, ycross−1)
and the edge {b, d} is bent at (xcross + 1, ycross + 1).

Case 3 In this case, b or d has the largest index among the four vertices of q in Π̂ and
the other one, i.e., vlower is not in the underset of c. Note, that the edge {a, vlower} is a
dummy edge, that we inserted during the computation of Π̂, and next to this edge in the
embedding and between the same two vertices, we have a path of length 2. This path
has been the former edge {a, vlower} when we had empty kites around each edge crossing.
Hence, it is either a subdivided original edge or two dummy edges and a dummy vertex.
An example of such a quadrangle is given in Fig. 3.4e. We will have a crossing point of
the inserted edges at (x(c), y(vlower)). We assume that we are in subcase vlower = b.
For the edge reinsertion, we proceed as follows. First, we remove the dummy edge {a, b}.

We bend the edge {b, d} on the line with slope 1 through c at y = y(b) because from this
point we always “see” d inside q. So, we define ∆y = (y(c)−y(b)) and xbend := x(c)−∆y.
Second, we insert the edge {a, c} with a bend point at (x(c), y(b)− 1) and we insert the
edge {b, d} with a bend point at (xbend, y(b)). For the symmetric subcase vlower = d, the
x-coordinate of e{b,d} is x′bend = x(c) + (y(c)− y(d)). An application of this operation to
Fig. 3.4e is given in Fig. 3.4f.

40

3.2. Correctness

In this section, we analyze our algorithm. We make sure that we get a NIC-planar 1-
bend RAC drawing in any case. To this end, we establish some Lemmas which form
the foundation of our proof of Theorem 3.1. These Lemmas are subdivided into three
subsections. In Section 3.2.1, we show that the biconnected canonical ordering which we
compute is valid, although we modify the graph during the computation. In Section 3.2.2,
we show that the reinserted crossing edges cross each other in a right angle, but cross no
other edge. In Section 3.2.3, we show some properties about the finally returned drawing.

3.2.1. Computing the biconnected canonical ordering

The graph is modified while we compute the biconnected canonical ordering. We state
and show that this provides a valid biconnected canonical ordering of the modified graph.

Lemma 3.2. The computation of the biconnected canonical ordering in Algorithm 5
yields a valid biconnected canonical ordering Π̂ of the resulting graph Ĝ.

Proof. The graph is modified in two ways in Algorithm 5:

1. Adding an edge as a diagonal for each quadrangle of Q.

2. Adding a vertex and two incident edges for each quadrangle in Q that fulfills the
conditions of Case 2 and Case 3. In Case 2 we add a shift vertex vshift, and in
Case 3 we add a dummy vertex vdummy.

Our argument for the first modification is that Algorithm 2, which computes a bicon-
nected canonical ordering, would return the same biconnected canonical ordering as we
do if it had the modified graph with all diagonals inserted as input. The reason is that
we change by modification 1 only areas of the graph that the algorithm has not reached
yet. To show this, we have a closer look on the data structures maintained during the
computation. The algorithm of Harel and Sardas [HS98] maintains the three arrays A,
N , and F during the computation. For a description of them and the algorithm for
computing a biconnected canonical ordering, see Section 2.4.2.
Consider a quadrangle q ∈ Q into which we insert an edge as diagonal when we

encounter the first vertex of q in step k. Regardless of whether this edge is present or
not, after step k − 1 every array would contain the same values. An additional edge as
a diagonal does not increase the number of neighboring vertices in Ĝk−1 for any vertex
of q in N because after step k− 1, no vertex of q is in Ĝk−1. Analogously, no additional
faces will be considered ready since neither the complete quadrangular face (without
diagonal) nor the two triangular faces (with diagonal) are ready after step k − 1. The
set of faces differs depending on whether we have this diagonal or not. But the value of
the complete quadrangular face (without diagonal) would be 0 in A as well as the value
of both triangular faces (with diagonal) since no vertex of q (and therefore also no edge)
is in Ĝk−1. So, we do the same computation as if we initially had the graph with all
diagonals being inserted.

41

For the second modification, we distinguish Case 2 and Case 3. In Case 2, vshift can
always be inserted into the biconnected canonical ordering before the top vertex vtop of
a divided quadrangle q = (a, b, c, vtop) ∈ Q. Assume that vshift is the k-th vertex in Π̂
and that the conditions of Definition 2.22 are fulfilled for k − 1. In particular, note that
if vshift was not within the outer face of Ĝk−1, vtop would not be there either. Since
vshift has two adjacent neighbors in Ĝk−1, i.e., a and c, the graph Ĝk is connected. The
face (a, c, vshift) does not contain a vertex. Hence, all vertices in Ĝ − Ĝk lie within the
outer face of Ĝk.
In Case 3, we can argue similarly. Without loss of generality, assume that vdummy

was inserted next to a quadrangle q = (vlowest, vlower, c, vtop) and is adjacent to vlowest
and vlower. Among the vertices in q, vlowest has the lowest index in Π̂ and vlower the
second lowest. Since vdummy is inserted into Π̂ before vlower, the index of vdummy in Π̂ is
in between the indices of vlowest and vlower. Analogously, we assume that vdummy is the k-
th vertex in the biconnected canonical ordering and that the conditions of Definition 2.22
are fulfilled for k−1. Since vdummy is adjacent to vlowest, which is in Ĝk−1, Ĝk is connected
as well. Clearly, all vertices of Ĝ− Ĝk lie within the outer face of Ĝk. The vertex vdummy

has exactly one neighbor in Ĝk−1. Now, we show that it has a legal support. Observe that
vlower does not have a legal support inside q, since its opposing vertex vtop is added later.
So, either vlower is the last vertex in Π̂ of other faces (these faces are ready immediately
before vlower is added) or it has a legal support outside q. In both cases, the new vertex
vdummy can be added with a legal support to one of the edges of the ready faces or the
support edge of vlower as vdummy is inserted into Π̂ immediately before vlower. Thereafter,
the vertex vlower, which has index k + 1 in Π̂, is adjacent to at least two vertices in Ĝk,
i.e., vlowest and vshift, and, therefore, does not need a support edge.

Note that modification 1 is similar to the modification by Brandenburg et al. [BDE+16].
In their algorithm, they keep one of the crossing edges in a quadrangle (they have a
divided quadrangle). Then, they compute the canonical ordering top down (starting
with the largest index). When they encounter the first vertex of such a quadrangle, they
check if the edge from this vertex to the opposing one has been kept in, and if not, they
insert it and remove the other one.

3.2.2. Reinserting the crossing edges

In this section, we show that a reinsertion of the crossing edges into an empty quadrangle
q = (a, b, c, d) is always possible so that it fulfills our requirements. The cycle (a, b, c, d) is
drawn in counter-clockwise order and a has the lowest index in the biconnected canonical
ordering Π̂ among the vertices in q. Furthermore, let vlower denote the vertex with the
second lowest y-coordinate among the vertices in q. Note that vlower can be b or d, but
not c. This is because c is adjacent to a, b, and d and has a greater index in Π̂ than
either b or d because c has no legal support on a contour containing only a. Moreover,
note that in Case 2 and Case 3, vlower is also the vertex with the second lowest index
among the vertices in q since c is adjacent to b and d, and c is not drawn secondly by
the previous observation and not drawn last by definition. Therefore, its y-coordinate is

42

in between the y-coordinates of b and d. We define vtop as the vertex with the largest
index in Π̂ among the vertices in q.
We introduce a notation for lines defined by points. The line with slope m through a

point p is denoted by lmp and the line through different points p and q is denoted by lp,q.

Case 1: vtop equals c

Lemma 3.3. Given a divided quadrangle q = (a, b, c, d) in Case 1 of the reinsertion
step, the two reinserted edges {a, c} and {b, d} cross exactly once in a right angle at
(x(a), y(vlower)).

Proof. We only describe the case when vlower = d because the other case vlower = b is
symmetric. An illustration of q before and after the insertion in this case is given in
Fig. 3.4a and Fig. 3.4b. The bend points e{a,c} and e{b,d} of the edges {a, c} and {b, d},
respectively, are placed as follows.

e{a,c} = (x(a), y(d) + 1) (3.1)

e{b,d} = (x(a) + 1, y(d)) (3.2)

We make sure these two edges cross exactly once and in a right angle. Both edges together
consist of four line segments. These four line segments are:

ae{a,c} = {(x, y) | x = x(a) and y ∈ [y(a), y(d) + 1]} (3.3)

e{a,c}c =


{(x, y) | y = y(c)−(y(d)+1)

x(c)−x(a) (x− x(a)) + (y(d) + 1)

and y ∈ [y(d) + 1, y(c)]} , if x(c) 6= x(a)

{(x, y) | x = x(a) and y ∈ [y(d) + 1, y(c)]} , otherwise

(3.4)

de{b,d} = {(x, y) | y = y(d) and x ∈ [x(d), x(a) + 1]} (3.5)

e{b,d}b = {(x, y) | y =
y(b)− y(d)

x(b)− (x(a) + 1)
(x− (x(a) + 1)) + y(d)

and x ∈ [x(a) + 1, x(b)]} (3.6)

The line segments ae{a,c} and e{a,c}c and the line segments de{b,d} and e{b,d}b intersect
in the bend points e{a,c} and e{b,d}, respectively. This is exactly where they should
intersect since both pairs form an edge that is bent at this bend point. If both line
segments of the same edge lie on the same line, the complete edge will be drawn as
straight line segment in the resulting drawing.
The line segments ae{a,c} and de{b,d} intersect in (x(a), y(d)) in a right angle. Clearly,

the line segments ae{a,c} and e{b,d}b and the line segments de{b,d} and e{a,c}c do not
intersect each other since both cover non-overlapping x- and y-ranges, respectively.
The line segments e{a,c}c and e{b,d}b do not intersect since we can separate both line

segments via the line le{a,c},b. The bend point e{b,d} is below this line because x(e{b,d}) is
between x(e{a,c}) and x(b), and y(e{b,d}) is less than y(e{a,c}) and at most y(b) (y(e{b,d})
is at most y(b) since vlower = d). The vertex c is above this line. Since y(c) is greater

43

a

d

c

e{a,c}

1

h

t

t + 2 + s r

∆y

Fig. 3.5.: Situation in Case 1 of the edge reinsertion step. We assume for a contradiction proof
that the inserted bend point e{a,c} lies on or above the edge {c, d} (here: on it). We
show that this leads to a contradiction and the bend point e{a,c} is below the line lc,d.

than y(e{a,c}) and y(b), it lies above le{a,c},b if x(c) is less than or equal to x(b). If x(c)
is greater than x(b), x(c) will cover x(b). Therefore, the slope of lb,c is greater than 1,
whereas the slope of le{a,c},b is less than 1. Hence, c is above le{a,c},b. Putting these things
together, the line segment e{a,c}c is above the line le{a,c},b except for an endpoint on this
line and e{b,d}b is below this line except for a different endpoint on this line. Thus, these
line segments do not intersect.

Lemma 3.4. Given a divided quadrangle q = (a, b, c, d) in Case 1 of the reinsertion step,
the two reinserted edges {a, c} and {b, d} are inside the quadrangle q, i.e., they do not
cross edges of the quadrangle q or other edges of the graph.

Proof. We only describe the case when vlower = d because the other case vlower = b is
symmetric. The quadrangle q = (a, b, c, d) is drawn as a convex polygon because every
internal angle is less than 180 degrees. We show for each of the four internal angles at
the vertices of q that they are less than 180 degrees.

• The internal angle at a is less than 180 degrees because a has the lowest index of
the quadrangle in Π̂ and is adjacent to the other three vertices. Namely, y(b), y(d),
and y(c) are all greater than y(a) and as such ∠dab is less than 180 degrees.

• The internal angle at c is less than 180 degrees. We can argue analogously to the
internal angle at a because c has the largest index among the vertices of q in Π̂ and
the largest y-coordinate.

• The internal angles at b and d are less than 180 degrees because they are angles of
the non-degenerate triangles (b, c, a) and (d, a, c), respectively. These two triangles
appear as faces in the drawing returned by the Shift Algorithm.

We have shown that this quadrangle is drawn as a convex polygon. Thus, the line seg-
ments between any vertex of this polygon and any point inside the polygon lie completely

44

inside the polygon. In our case, this means that if the two bend points lie strictly inside
the quadrangle, the four line segments (two 1-bend edges) between vertices of the poly-
gon and the bend points will be completely inside the quadrangle as well. Hence, the two
inserted edges do not cross edges of the empty quadrangle or other edges of the drawn
graph. In particular, by Lemma 3.3 they would form a right-angle crossing as needed.
We will show next that e{a,c} and e{b,d} are inside q using the property that a point is
inside a convex polygon if it is inside every half-plane spanned by its bounding edges.
At a half-plane spanned by a bounding edge, inside means the side of the bounding line
where the rest of the convex polygon is. In our case, this means above la,b and la,d, and
below lb,c and lc,d.

First, consider e{a,c}. It is placed at (x(a), y(d) + 1). Beside this, we know that
x(d) < x(a) < x(b) because, while the graph is drawn, d, a, and b are on the contour
when c is added (c is adjacent to all of them in this order and vertices that lie on the
contour have strictly increasing x-coordinates). Assume for contradiction that e{a,c} lies
outside or on the border of the convex quadrangle q. Then, it lies outside or on the
border of at least one of the half planes that are spanned by the lines through the edges
of the quadrangle. The line la,b is:

la,b : y =
y(b)− y(a)

x(b)− x(a)
(x− x(a)) + y(a) (3.7)

The point e{a,c} has the x-coordinate x(a). At this x-value, la,b is y(a). We know that
y(a) < y(d) and y(d) + 1 is the y-coordinate of e{a,c}. Thus, e{a,c} lies above la,b. We
can use the same argument analogously for the half plane spanned by the line la,d. It is
this line:

la,d : y =
y(d)− y(a)

x(d)− x(a)
(x− x(a)) + y(a) (3.8)

Again, e{a,c} lies above the line.
Thus, e{a,c} lies outside the half planes spanned by lb,c and lc,d. In other words, e{a,c}

lies above or on lb,c or lc,d. If x(e{a,c}) is less than x(c), e{a,c} lies above or on lc,d and
otherwise it lies above or on lb,d. In detail, we consider only the case that x(e{a,c}) is
less than x(c) because the other one is symmetrically almost the same. This situation
is depicted in Fig. 3.5. We know that the difference between y(e{a,c}) and y(d) is 1 by
definition. We let the difference between y(c) and y(d) be h. Because c was drawn later
than d and both are adjacent to each other, c has a y-coordinate that is greater than
the one of d on the coarser grid. Since the grid has been refined by factor of 2 in each
dimension, this means that:

h ≥ 2 (3.9)

This implies that c is to the right side of e{a,c} (it has a greater x-coordinate) because the
y-coordinate of the line segment from d to c has only been increased by at most 1 unit at
x = x(e{a,c}) compared to its y-value at x = x(d). Thus, dc has a slope with an absolute
value being less than 1 and, therefore, d cannot be in the underset of c as it would have
a slope with an absolute value greater than 1 then. We let the difference between x(a)
and x(c) be r and it holds that:

r > 0 (3.10)

45

Before c was added to the drawing, a and d were on the outer face and there was a slope
of −1 between them. Let t denote their x- and y-difference at this time of the drawing
phase. Then, c was added and d was shifted to the left (relative to a) by 1 unit. On the
refined grid, this is 2 units. This increases the x-difference between d and a by 2 units
and we add another summand s which is the additional x-difference that we got in total
when d was shifted to the left further times in the Shift Algorithm. We can bound t by
1 unit of the coarser grid, it is 2 units on the refined grid.

t ≥ 2 (3.11)

And we cannot shift d towards a, so we know:

s ≥ 0 (3.12)

We know, when c was added, the slope of the line through d and c was 1 because both
were neighbors on the outer face. This leads to the following equation.

1 =
h

t + 2 + r
(3.13)

Solving this for r provides:
r = h− t− 2 (3.14)

We let ∆y denote the increase of the y-coordinate of the line segment dc at x = x(e{a,c})
compared to its y-value at x = x(d). We know:

0 < ∆y ≤ 1 (3.15)

In Fig. 3.5 it is ∆y = 1. Furthermore, we know that dc has the same slope between d
and the point (x(e{a,c}), y(d) + ∆y) and between the point (x(e{a,c}), y(d) + ∆y) and c.
It is:

∆y

t + 2 + s
=

h−∆y

r
(3.16)

We multiply with both denominators and get:

∆yr = ht + 2h + hs−∆yt− 2∆y −∆ys (3.17)

Now we use Equation 3.14 to replace r:

∆yh−∆yt− 2∆y = ht + 2h + hs−∆yt− 2∆y −∆ys (3.18)

We can simplify this to:
∆yh = ht + 2h + hs−∆ys (3.19)

And reformulate it:
0 = ht + (2−∆y)h + (h−∆y)s (3.20)

That ht + (2 −∆y)h + (h −∆y)s becomes 0, contradicts the Equations 3.9, 3.11, 3.12,
and 3.15 because they force the first two summands to be greater than 0 and the last

46

one to be greater or equal to 0. Note that (2 − ∆y) and (h − ∆y) are greater than 0
since ∆y has an upper bound of 1 and h a lower bound of 2. Thus, our assumption was
wrong in the case that x(e{a,c}) is less than x(c) because e{a,c} is inside all half-planes
spanned by edges of q and, therefore, is inside q. The same holds also in the case that
x(e{a,c}) is not less than x(c). Then, e{a,c} could only be outside the half-plane spanned
by lb,c, but this case is symmetric for the worst-case where y(b) = y(d). For y(b) > y(d),
e{a,c} is clearly inside since y(b) is greater than y(e{a,c}) then. Hence, e{a,c} is inside q.
Now, consider the bend point e{b,d}. It is placed at (x(a)+1, y(d)). We can use almost

the same arguments as for e{a,c} if we just switch the x- and y-coordinates. The difference
is that x(a) is not necessarily less than x(c) unlike the case for e{a,c}, where y(d) was less
than y(b) since we had vlower = d. So, we are fine with arguing analogously as for the bend
point e{a,c} if x(a) ≤ x(c). If x(a) > x(c), we can argue analogously as for e{a,c} for the
half planes spanned by lc,d, la,d, and la,b. We know that x(c) < x(a)+1 = x(e{b,d}) < x(b)
and y(c) > y(b) ≥ y(e{b,d}). Thus, lc,b has for x ∈ (x(c), x(b)) y-values that are greater
than y(b) and greater than y(e{b,d}). Therefore, e{b,d} is also inside the remaining half
plane spanned lb,c.
So, both bend points are strictly inside the convex polygon and the line segments

between them and a, b, c, and d are inside this polygon as well. Thus, the two edges
that are represented by these four line segments do not cross other edges.

Case 2: vtop equals b or d and vlower is in the underset of c

Lemma 3.5. Given a divided quadrangle q = (a, b, c, d) in Case 2 of the reinsertion step,
the two reinserted edges {a, c} and {b, d} cross in a right angle at pcross = (xcross, ycross).
The crossing point pcross is a point of integer coordinates.

Proof. We only describe the case when vlower = b because the other case vlower = d is
symmetric. An illustration of q before and after the insertion in this case is given in
Fig. 3.4c and Fig. 3.4d.
First of all, we show that the two line segments ce{a,c} and be{b,d} cross each other

in pcross. The coordinates of pcross are defined as follows:

xcross = 0.5(x(c)− y(c) + x(b) + y(b)) (3.21)
ycross = 0.5(−x(c) + y(c) + x(b) + y(b)) (3.22)

The two crossing line segments are:

ce{a,c} = {(x, y) | y =
(ycross − 1)− y(c)

(xcross − 1)− x(c)
(x− x(c)) + y(c) and x ∈ [xcross − 1, x(c)]}

(3.23)

be{b,d} = {(x, y) | y =
(ycross + 1)− y(b)

(xcross − 1)− x(b)
(x− x(b)) + y(b) and x ∈ [xcross − 1, x(b)]}

(3.24)

We show that the slopes of these two line segments are 1 and −1. Hence, they cross in
a right angle if they cross each other.

47

The slope of ce{a,c} is:

(ycross − 1)− y(c)

(xcross − 1)− x(c)
=

(0.5(−x(c) + y(c) + x(b) + y(b))− 1)− y(c)

(0.5(x(c)− y(c) + x(b) + y(b))− 1)− x(c)

=
−0.5x(c)− 0.5y(c) + 0.5x(b) + 0.5y(b)− 1

−0.5x(c)− 0.5y(c) + 0.5x(b) + 0.5y(b)− 1

= 1 (3.25)

The slope of be{b,d} is:

(ycross + 1)− y(b)

(xcross − 1)− x(b)
=

(0.5(−x(c) + y(c) + x(b) + y(b)) + 1)− y(b)

(0.5(x(c)− y(c) + x(b) + y(b))− 1)− x(b)

=
−0.5x(c) + 0.5y(c) + 0.5x(b)− 0.5y(b) + 1

0.5x(c)− 0.5y(c)− 0.5x(b) + 0.5y(b)− 1

= −1 (3.26)

We insert x = xcross into the line equation of Equation 3.23 and we use the result from
Equation 3.25:

y =
(ycross − 1)− y(c)

(xcross − 1)− x(c)
(xcross − x(c)) + y(c)

= (xcross − x(c)) + y(c)

= 0.5x(c)− 0.5y(c) + 0.5x(b) + 0.5y(b)− x(c) + y(c)

= −0.5x(c) + 0.5y(c) + 0.5x(b) + 0.5y(b)

= ycross (3.27)

And into the line equation of Equation 3.24. Here, we use the result from Equation 3.26:

y =
(ycross + 1)− y(b)

(xcross − 1)− x(b)
(xcross − x(b)) + y(b)

= −(xcross − x(b)) + y(b)

= −0.5x(c) + 0.5y(c)− 0.5x(b)− 0.5y(b) + x(b) + y(b)

= −0.5x(c) + 0.5y(c) + 0.5x(b) + 0.5y(b)

= ycross (3.28)

So, the lines lce{a,c} and lbe{b,d} intersect in the point pcross. It remains to show that
this point is on the interior of the segments ce{a,c} and be{b,d}. This is true if and only if
xcross−1 < xcross < x(c) and xcross−1 < xcross < x(b). It is trivial that xcross−1 < xcross,
but it remains to show the other two bounds.
To this end, we use the property that b is in the underset of c by definition. Thus,

the absolute value of the slope of the line lb,c is greater than 1. In other words, we can
bound the reciprocal of the slope of lb,c by −1 and 1, i.e.:

− 1 <
x(c)− x(b)

y(c)− y(b)
< 1 (3.29)

48

Since y(c) is greater than y(b), we can derive the following inequalities from Inequal-
ity 3.29.

x(b) + y(b) < x(c) + y(c) (3.30)
x(c) < y(c)− y(b) + x(b) (3.31)

Using Inequality 3.30 and Inequality 3.31, we can bound xcross:

xcross = 0.5x(c)− 0.5y(c) + 0.5x(b) + 0.5y(b)

< 0.5x(c)− 0.5y(c) + 0.5x(c) + 0.5y(c)

= x(c) (3.32)
xcross = 0.5x(c)− 0.5y(c) + 0.5x(b) + 0.5y(b)

< 0.5y(c)− 0.5y(b) + 0.5x(b)− 0.5y(c) + 0.5x(b) + 0.5y(b)

= x(b) (3.33)

So, we have shown that the line segments ce{a,c} and be{b,d} intersect in pcross in a
right angle. Thus, the edges {a, c} and {b, d} cross at this point in a right angle. The
point pcross has only integer coordinates because x(c), y(c), x(b), and y(b) are integer
coordinates of the coarser grid and, therefore, multiples of 2 on the finer grid. After
multiplying them with a factor of 0.5, they are still integer coordinates.

Lemma 3.6. Given a divided quadrangle q = (a, b, c, d) in Case 2 of the reinsertion step,
the two reinserted edges {a, c} and {b, d} are inside the quadrangle q, i.e., they do not
cross edges of the quadrangle q or other edges of the graph. They also do not cross more
than once.

Proof. We only describe the case when vlower = b because the other case vlower = d is
symmetric. The bend points e{a,c} and e{b,d} of the edges {a, c} and {b, d}, respectively,
are placed as follows.

e{a,c} = (xcross − 1, ycross − 1) (3.34)

e{b,d} = (xcross − 1, ycross + 1) (3.35)

We will use the following relations of the x- and y-coordinates of the vertices a, b, c,
and d. The vertex a has the lowest index in the biconnected canonical ordering Π̂ and
is adjacent to the three other vertices. Therefore, it has the lowest y-coordinate of these
vertices. The opposite vertex c cannot have a lower index than b and d because it is
adjacent to both and would not have a left or a right support before b or d is there. So,
vlower = b occurs before c in Π̂. Because c is adjacent to b and is added later, y(c) is
greater than y(b). Analogously, because vtop = d is adjacent to c and is added later, y(d)
is greater than y(c). The crossing point has a y-coordinate between y(b) and y(c). The
bend points are 1 unit above and below this crossing point, i.e., half a grid square length
on the coarser grid. Thus, they are in the y-range [y(b), y(c)]. Putting this together, we
get:

y(a) < y(b) ≤ y(e{a,c}) < y(e{b,d}) ≤ y(c) < y(d) (3.36)

49

c

b

a

c

b

(a) Vertices a, b, and c before d is added. Be-
fore d is added, c and b (since b is in the
underset of c) are shifted away from a by 2
units via a shift vertex. The situation be-
fore the shift is colored in red. There, the
slope of la,c was 1. It is dashed in dark or-
ange. The line l+1

c after the shift is dashed
in green.

a

c

b

d

(b) The divided quadrangle directly after ver-
tex d was added. Consider the left-
uppermost and right-uppermost incident
edge to d. They have slopes of 1 and −1
because they are part of the contour now.
Here, the vertices a and c are covered by
d, but in general one or both could also
still be on the contour (then they would
be on the outer line segments with slope
+1 or −1).

a

c

b

d

(c) Situation after the grid has been refined by
a factor of 2 in both dimensions and the
crossing edges have been reinserted.

a

c

b

d

e{a,c}

e{b,d}

(d) Illustration of the minimum distances be-
tween the lines with slope 1 through the
vertices. The line l+1

a has a minimum
Manhattan distance of 2 to the line l+1

e{b,d}

(dashed in violet). The line l+1
d (dashed

in turquoise) has a minimum Manhattan
distance of 4 to l+1

e{b,d}
.

Fig. 3.6.: Example of the edge reinsertion in Case 2.

50

For the x-coordinates, we know that before c was added, a and b were on the contour
on a line with slope 1. Therefore, we have x(a) < x(b). Furthermore, we know by
the position of the crossing and the bend points that both bend points have the same
x-coordinate. This x-coordinate x(e{a,c}) = x(e{b,d}) is less than x(b) and x(c).
Consider the edge {b, d}. It is bent at e{b,d}. We show that its two line segments do

not intersect any of the edges of the quadrangle q. First, we show that be{b,d} intersects
none of the four bounding edges of q:

• The line segments be{b,d} and ab do not intersect because both cover non-overlapping
y-ranges except for the common endpoint.

• The line segments be{b,d} and bc do not intersect because both have the same
endpoint, but different slopes. The line segment be{b,d} has a slope of −1. If bc had
the same slope, b would not be in the underset of c.

• The line segments be{b,d} and cd do not intersect because both cover non-overlapping
y-ranges except for possibly at y = y(e{b,d}), but because x(e{b,d}) is less than x(c),
they do not intersect.

• The line segments be{b,d} and ad do not intersect because the line l+1
e{b,d}

separates
both line segments from each other. Recall that we shifted a and c away from
each other by 2 units by the insertion of a shift vertex before d was added. Hence,
l+1
a and l+1

c have a minimum distance of x = 2 or one diagonal of a grid square
on the coarser grid. This is a Manhattan distance of 2 on the coarser grid and a
Manhattan distance of 4 on the refined grid. For an illustration of this situation,
see Fig. 3.6a. The distance may be greater if a and c were shifted apart from each
other further times. The line l+1

d has a Manhattan distance of at least 3 on the
coarser grid and at least 6 on the refined grid to l+1

c because another shift was
performed when d was added. See Fig. 3.6b. Later on, the crossing edges are
reinserted as in Fig. 3.6c. Now, Consider l+1

e{a,c}
and l+1

e{b,d}
. An illustration of them

is given in Fig. 3.6d. As shown in the proof of Lemma 3.5, the line segment ce{a,c}
has a slope of 1. Thus, c, e{a,c}, and pcross lie on the same line with slope 1 (dashed
in green in Fig. 3.6). By definition, e{b,d} lies one diagonal of a grid square above
the crossing point. This means that l+1

e{b,d}
has a Manhattan distance of exactly 2 to

l+1
c and is above this line. Therefore, l+1

a and l+1
d are above l+1

e{b,d}
with a Manhattan

distance of at least 2 and 4, respectively. So, the line segment be{b,d}, which is on
and below l+1

e{b,d}
, cannot intersect the line segment ad, which is above l+1

e{b,d}
.

Second, we show that e{b,d}d intersects none of the four bounding edges of q:

• The line segments e{b,d}d and ab do not intersect because both cover non-overlapping
y-ranges.

• The line segments e{b,d}d and bc do not intersect because the line l+1
e{b,d}

separates
d and e{b,d} from b and c.

51

• The line segments e{b,d}d and cd do not intersect because both have the same
endpoint, but different slopes. Consider l+1

d , l+1
e{b,d}

, and l+1
c . Since the l+1

e{b,d}
is

in between the other two, e{b,d} would be a point of the interior of cd if both line
segments had the same slope. If e{b,d} was a point of the interior of cd, y(e{b,d})
would be greater than y(c). However, y(e{b,d}) ≤ y(c). Thus, e{b,d} is no point of
the interior of cd.

• The line segments e{b,d}d and ad do not intersect because both have the same
endpoint, but different slopes or they are separated by a line. Consider l+1

d , l+1
a ,

and l+1
e{b,d}

. If l+1
a is above or identical to l+1

d , then l+1
d separates both line segments

from each other except for the common endpoint d. Otherwise l+1
a is in between l+1

d

and l+1
e{b,d}

. Then a would be a point of the interior of e{b,d}d if both line segments
had the same slope. If a was a point of the interior of e{b,d}d, y(a) would be greater
than y(e{b,d}). However, y(a) < y(e{b,d}). Thus, a is no point of the interior of
e{b,d}d.

Now, consider the edge {a, c}. It is bent at e{a,c}. It remains to show that none of its
two line segments intersects an edge of q. First, we show that ae{a,c} intersects none of
the four bounding edges of q:

• The line segments ae{a,c} and ab do not intersect because both have the same
endpoint, but different slopes because x(e{a,c}) < x(b) and y(e{a,c}) ≥ y(b).

• The line segments ae{a,c} and bc do not intersect because both cover non-overlapping
x-ranges.

• The line segments ae{a,c} and cd do not intersect because both cover non-overlapping
y-ranges.

• The line segments ae{a,c} and ad do not intersect because both have the same
endpoint, but different slopes. Observe that e{a,c} lies below l+1

e{b,d}
(the dashed

violet line in Fig. 3.6d), whereas ad lies above. So, if both line segments had the
same slope, ad would be shorter than ae{a,c} and, therefore, y(d) < y(e{a,c}). This
contradicts y(e{a,c}) < y(d).

Second, we show that e{a,c}c intersects none of the four bounding edges of q:

• The line segments e{a,c}c and ab do not intersect because both cover non-overlapping
y-ranges except for possibly at y = y(e{a,c}), but because x(e{a,c}) < x(b), they do
not intersect.

• The line segments e{a,c}c and bc do not intersect because both have the same
endpoint, but different slopes. The line segment e{a,c}c has a slope of 1, but bc has
a slope with an absolute value greater than 1 because otherwise b would not be in
the underset of c.

52

• The line segments e{a,c}c and cd do not intersect because both cover non-overlapping
y-ranges except for the common endpoint.

• The line segments e{a,c}c and ad do not intersect because the line l+1
e{b,d}

separates
both line segments from each other.

The line segments of the crossing edges do not intersect each other more often than the
one time described before. The line segments ae{a,c} and e{b,d}d cover non-overlapping
y-ranges. The line segments ae{a,c} and be{b,d} cover non-overlapping x-ranges except
for at x = x(e{a,c}) = x(e{b,d}), but there their y-coordinates differ. The line segments
e{a,c}c and e{b,d}d are separated by the line l+1

e{b,d}
as described before.

In Lemma 3.5 and here, we have shown that the edges {a, c} and {b, d} cross once and
in a right angle. They do not cross edges of the quadrangle. Thus, these crossing edges
are either completely inside the quadrangle (a, b, c, d) or completely outside. If one of the
two bend points is inside the quadrangle, the crossing edges are completely inside. We
can easily see that e{a,c} is inside the triangle (a, b, c), which is inside (a, b, c, d) since d is
not inside (a, b, c). Therefore, the crossing edges {a, c} and {b, d} are completely inside
the quadrangle (a, b, c, d).

Case 3: vtop equals b or d and vlower is not in the underset of c

Lemma 3.7. Given a divided quadrangle q = (a, b, c, d) in Case 3 of the reinsertion step,
the following conditions hold. The two reinserted edges {a, c} and {b, d} cross exactly
once inside the quadrangle q in a right angle at (x(c), y(vlower)). They do not cross edges
of q or other edges of the graph.

Proof. We only describe the case when vlower = b because the other case vlower = d is
symmetric. In this case, we have the quadrangle q = (a, b, c, d) and, as a neighboring face,
a face of degree 3 which is formed by a, b, and a dummy vertex vdummy. An illustration
of q before and after the insertion in this case is given in Fig. 3.4e and Fig. 3.4f. The
bend points e{a,c} and e{b,d} of the edges {a, c} and {b, d}, respectively, are placed as
follows.

e{a,c} = (x(c), y(b)− 1) (3.37)

e{b,d} = (x(c)− (y(c)− y(b)), y(b)) (3.38)

First, we establish some relations of the x- and the y-coordinates of the points appear-
ing in Case 3. The vertex a has the lowest index in the biconnected canonical ordering Π̂
among the vertices in q and also a lower index than vdummy. It is adjacent to all vertices
in q and to vdummy. Therefore, it has the lowest y-coordinate of these vertices. Like in
Case 2, the opposite vertex c cannot have a lower index than b and d. So, vlower = b is
the second vertex of q in Π̂ and occurs directly after vdummy. Again as in Case 2, y(c) is
greater than y(b), and y(d) is greater than y(c). By definition, y(e{b,d}) equals y(b). The
other bend point, e{a,c} has a y-coordinate of y(b) − 1. Thus, y(e{a,c}) is greater than

53

c
b

a

vdummy

(a) Situation after c was added to the drawing
and before d is added to the drawing. This
base situation is the same for all of the four
following cases.

c
b

a

vdummy

e{b,d}

d

(b) Case that a and c are both covered by d.
The bend point e{b,d} behaves as if it was
a vertex on the contour before and is also
covered. Thus, it can also see d.

c
b

vdummy

e{b,d}

d

a

(c) Case that c is covered by d, but a is not
covered by d. Again, the bend point e{b,d}
behaves as if it was a vertex on the contour
before and is also covered. Thus, it can also
see d. Moving a to the left does not change
this.

c
b

vdummy

e{b,d}

d

a

(d) Case that a is covered by d, but c is not
covered by d. The bend point e{b,d} be-
haves as if it was covered and then moved
one unit to the right, i.e., further away
from the edge {a, d}. Thus, it can also
see d.

d

c
b

vdummy

e{b,d}

a

(e) Case as in Fig. 3.7d, but with c being
shifted another time to the right. With the
same argument as before, e{b,d} can still
see d as it was moved by another unit to
the right side. The same applies for more
shifts.

d

a

c
b

vdummy

e{b,d}

(f) Case that a and c are both not covered
by d. The bend point e{b,d} behaves as
if it was covered and then moved one
unit to the right, i.e., further away from
the edge {a, d}. Like in Fig. 3.7d and
Fig. 3.7e, e{b,d} can see d and further shifts
of c (and with it e{b,d}) to the right do not
change this.

Fig. 3.7.: Examples for the position of the bend point e{b,d} of the edge {b, d} relative to the
pentagonal face (a, vdummy, b, c, d) in Case 3 of the reinsertion step with vlower = b.
The examples differ in whether a and c are covered by d.

54

y(vdummy) because vdummy is on a grid point of the coarser grid, i.e., vdummy is at least 2
units below b on the finer grid. So, we have this relation of the y-coordinates:

y(a) < y(vdummy) < y(e{a,c}) < y(b) = y(e{b,d}) < y(c) < y(d) (3.39)

Another observation is that x(a), x(b), and x(c) are pairwise different values because
x(c) adjacent to the other both but covers neither of them. Vertex b is not covered by c
by definition and a cannot be covered by c since it is adjacent to d which is added after c.
We obtain the following relation of x-coordinates:

x(a) < x(c) = x(e{a,c}) < x(b) (3.40)

Now, we analyze the course of the two inserted edges. They consist of two line segments
each. These line segments are:

ae{a,c} = {(x, y) | y =
y(b)− 1− y(a)

x(c)− x(a)
(x− x(a)) + y(a) and x ∈ [x(a), x(c)]} (3.41)

e{a,c}c = {(x, y) | x = x(c) and y ∈ [y(b)− 1, y(c)]} (3.42)

be{b,d} = {(x, y) | y = y(b) and x ∈ [x(c)− (y(c)− y(b)), x(b)]} (3.43)

e{b,d}d =


{(x, y) | y = y(d)−y(b)

x(d)−x(c)+y(c)−y(b)(x− x(d)) + y(d) and

x ∈ [min{x(d), x(c)− (y(c)− y(b))},
max{x(d), x(c)− (y(c)− y(b))}] }, if x(d) 6= x(c)− (y(c)− y(b))

{(x, y) | x = x(d) and y ∈ [y(b), y(d)]} , otherwise
(3.44)

The line segments e{a,c}c and be{b,d} are vertical and horizontal line segments, respec-
tively. So, they intersect in a right angle if they intersect. Obviously, they intersect in
(x(c), y(b)) since (y(c)− y(b)) is greater than 0 and x(c) is smaller than x(b). Thus, the
edges {a, c} and {b, d} intersect at least once in a right angle. They do not cross another
time. The line segments ae{a,c} and e{b,d}d, and the line segments ae{a,c} and be{b,d}
cover non-overlapping y-ranges since y(a) < y(e{a,c}) < y(e{b,d}) = y(b) < y(d). The line
segments e{a,c}c and e{b,d}d do not intersect either since e{a,c}c lies on or below the line
l+1
c and e{b,d}d lies on or above this line. This line is:

l+1
c : y = x− x(c) + y(c) (3.45)

The upper endpoint of e{a,c}c, i.e., c lies obviously on this line. In the following equation,
we insert the x-coordinate of the lower endpoint of e{b,d}d, i.e., e{b,d} into the line equation
of l+1

c .
l+1
c (x(e{b,d})) = x(c)− (y(c)− y(b))− x(c) + y(c) = y(b) (3.46)

So, this line also runs through e{b,d} and, since e{b,d} differs from c, these line segments
also do not intersect. Therefore, {a, c} and {b, d} cross exactly once in a right angle.
Now, we show that the edges {a, c} and {b, d} do not cross any other edge of the graph.

We do that by showing that the four line segments of these two edges do not intersect

55

any line segment of an edge of the bounding pentagon (a, vdummy, b, c, d) and that they
are inside this pentagonal face. We start with the two line segments of {a, c}. First,
we show that ae{a,c} intersects none of the five bounding edges of the pentagonal face
(a, vdummy, b, c, d):

• The line segments ae{a,c} and vdummyb do not intersect because the line l+1
b sepa-

rates the endpoints of these two line segments. The bend point e{a,c} lies above l+1
b

because e{a,c} is to the left of b and the slope of the line le{a,c},b is less than 1 since
there is a x-distance of at least 2 between them, but only a y-distance of 1. The
x-distance of at least 2 follows from the fact that c and b were grid points on the
coarser grid and x(e{a,c}) = x(c). The vertex a lies above this line because the
slope of the line la,b is less than 1 and a is to the left of b. The slope is less than 1
because, before c was added, the line through a and b had a slope of 1, and then a
and b were shifted apart from each other in the x-dimension. The vertex b lies
on l+1

b . The dummy vertex vdummy lies below this line because if it was to the left
of b, it would be covered by b (otherwise it would conflict with a) and lvdummy,b has
a slope greater than 1 then. If vdummy is to the right of b, lvdummy,b has a negative
slope and vdummy lies below l+1

b as well.

• The line segments ae{a,c} and avdummy do not intersect because both have the
same endpoint, but different slopes. If they had the same slope, vdummy would be
on ae{a,c} since y(a) < y(vdummy) < y(e{a,c}). Because x(a) < x(e{a,c}), it follows
that x(a) < x(vdummy) < x(e{a,c}) < x(b). The line la,e{a,c} has a slope that is less
than 1 because, before d was added, the line through a and c (c is vertically above
e{a,c}) already had a slope of 1 and these vertices were possibly moved even further
apart from each other later. From the argumentation why ae{a,c} and vdummyb do
not intersect, we know that the slope of le{a,c},b is also less than 1. This means that
the slope of lvdummy,b is also less than 1. This contradicts the fact from before that
lvdummy,b has a slope greater than 1.

• The line segments ae{a,c} and bc do not intersect because both cover non-overlapping
y-ranges.

• The line segments ae{a,c} and cd do not intersect because both cover non-overlapping
y-ranges.

• The line segments ae{a,c} and ad do not intersect because both have the same
endpoint, but different slopes. If they had the same slope, e{a,c} would be on the
line la,d. Then, c and the edge {c, d} would be above this line because c has the same
x-coordinate as e{a,c}, but a greater y-coordinate and we know that x(a) < x(c).
This contradicts our definition of the face bounded by the cycle (a, b, c, d), where
the edge {c, d} precedes the edge {d, a} in counter-clockwise order and not the
other way around.

Second, we show that the line segment e{a,c}c intersects none of the five bounding
edges of the pentagonal face (a, vdummy, b, c, d):

56

• The line segments e{a,c}c and avdummy do not intersect because both cover non-
overlapping y-ranges.

• The line segments e{a,c}c and vdummyb do not intersect because the line l+1
b separates

the endpoints of these two line segments. Compare with the argumentation that
the line segments ae{a,c} and vdummyb do not intersect. According to this, vdummy

and b are below or on l+1
b and eac is above. Then, c is also above l+1

b since it has
the same x-coordinate as e{a,c}.

• The line segments e{a,c}c and bc do not intersect because both have the same
endpoint, but different slopes. The line segment e{a,c}c is a vertical segment, while
the x-coordinates of b and c differ.

• The line segments e{a,c}c and cd do not intersect because both cover non-overlapping
y-ranges except for the common endpoint.

• The line segments e{a,c}c and ad do not intersect because c and e{a,c} are both below
the line la,d. The vertex c is below la,d because it has a smaller y-coordinate than
d and the definition of the vertices in the cycle (a, b, c, d) is in counter-clockwise
order in the drawing. Since e{a,c} has the same x-coordinate as c but a smaller
y-coordinate, it is also below la,d.

Now, we consider the two line segments of the edge {b, d}. First, we show that the
line segment be{b,d} intersects none of the five bounding edges of the pentagonal face
(a, vdummy, b, c, d):

• The line segments be{b,d} and avdummy do not intersect because both cover non-
overlapping y-ranges.

• The line segments be{b,d} and vdummyb do not intersect because both have the same
endpoint, but different slopes. The line segment be{b,d} is horizontal, while vdummy
and b differ in the y-coordinate.

• The line segments be{b,d} and bc do not intersect because both have the same
endpoint, but different slopes. The line segment be{b,d} is horizontal, while b and c
differ in the y-coordinate.

• The line segments be{b,d} and cd do not intersect because both cover non-overlapping
y-ranges.

• The line segments be{b,d} and ad do not intersect because the line l+1
c separates

the two line segments. First of all, observe that e{b,d} lies on the line l+1
c as the y-

difference between them is y(c)−y(b), and exactly by this value, e{b,d} is shifted to
the left of c in x-dimension. Observe that d is above this line because d is adjacent
to c (and added to the drawing later), but c is not its left uncovered child. It cannot
to be the left uncovered child of d because a has a smaller x-coordinate than c and
is adjacent to d as well. Since a and c were on the contour on the same line with

57

slope 1 before d was added, the vertex a is also on l+1
c if a and c are both covered

by d (compare with Fig. 3.7b) or above this line otherwise (compare with the other
cases in Fig. 3.7). The vertex b is below l+1

c since it has the same y-coordinate as
e{b,d}, but a greater x-coordinate. So, l+1

c separates be{b,d} from ad. Both have up
to one point on this line but these points differ (the y-coordinate of e{b,d} is greater
than the one of a).

Second, we show that the line segment e{b,d}d intersects none of the five bounding
edges of the pentagonal face (a, vdummy, b, c, d):

• The line segments e{b,d}d and avdummy do not intersect because both cover non-
overlapping y-ranges.

• The line segments e{b,d}d and vdummyb do not intersect because both cover non-
overlapping y-ranges except for at y = y(b) = y(e{b,d}), but there their x-coordinates
differ.

• The line segments e{b,d}d and bc do not intersect because the line l+1
c separates

both line segments. We have shown before that be{b,d} and ad do not intersect.
There, we have argued that d is above l+1

c , b is below l+1
c , and e{b,d} is on l+1

c .
Since c is also on l+1

c and the points c and e{b,d} are different points, l+1
c separates

e{b,d}d from bc.

• The line segments e{b,d}d and cd do not intersect because both have the same
endpoint, but different slopes. If they had the same slope, the three points c, d,
and e{b,d} would be on the same line. The line lc,e{b,d} has a slope of 1 as shown
before. So, d would be on this line as well, but we have shown before that it is
above this line. Thus, they are not on the same line and these two line segments
have different slopes.

• The line segments e{b,d}d and ad do not intersect because both have the same end-
point, but different slopes. Assume that they have the same slope. Then, e{b,d} is
a point of the line segment ad since y(a) < y(e{b,d}) < y(d). From the argumen-
tation that be{b,d} and ad do not intersect, we know that e{b,d} is on l+1

c , but d is
above l+1

c . So, ad can also not be on l+1
c . To have e{b,d} on ad, one vertex of a and

d is above l+1
c and the other one below. We have also shown before that both are

on or above this line, which is a contradiction. So, e{b,d}d and ad do not have the
same slope.

We have shown now that neither the edge {a, c} nor the edge {b, d} crosses an edge of
the pentagonal face (a, vdummy, b, c, d). It remains to show that {a, c} and {b, d} are both
inside this face. Here, it is enough to show that a point of one of these two edges is inside
this face since both are connected (they cross each other). Going along the boundary of
this face in counter-clockwise direction, we have the interior of the face to our left hand
side. There, we reach vdummy immediately before b and b immediately before c. Since
we go upwards when we are between these vertices, a line segment that starts at b and

58

runs horizontally to the left is (at least partially) inside this face. Such a line segment
is be{b,d}.

3.2.3. Results

Lemma 3.8. The drawing returned by Algorithm 3 is a 1-bend drawing.

Proof. The drawing Γ̂, which was drawn by the Shift Algorithm, is a straight-line draw-
ing. All edges that are inserted in the reinsertion step have at most one bend. This
makes Γ∗ a 1-bend drawing. After this, some dummy vertices are transformed to bend
points. We show next that this does not create edges with two or more bend points.
There are two types of dummy vertices transformed to bend point. First, these are
original edges that were subdivided during the creation of empty kites. They cannot be
crossed by other edges because this would violate the NIC-planarity. Therefore, they do
not have bends in Γ∗ and this one new bend per edge does not make an edge have two
or more bends. Second, these are the dummy vertices added during the computation of
the biconnected canonical ordering Π̂. They are added as subdividing vertices to edges
of the divided quadrangles. These edges do not cross other edges and cannot be subdi-
vided in the step of creating empty kites because then they would be outside an empty
kite or divided quadrangle. So, the dummy vertices that become bend points are never
adjacent to each other and the drawing Γ is a polyline drawing with at most one bend
per edge.

Lemma 3.9. The drawing Γ returned by Algorithm 3 is a RAC drawing of the NIC-plane
input graph (G, E(G)). The embedding E(G) is preserved.

Proof. In the preprocessing step, there are vertices and edges added to the embedded
graph. The dummy vertices that become bend points at the end do not change the
embedding if we interpret them also initially as bend points. Dummy vertices and edges
that are removed at the end of the algorithm are added inside of the faces. This does not
change the original embedding (we have the original embedding if we ignore these dummy
vertices and edges). We change the embedding when the crossing edges are removed. If
we remember them and their spot in the given NIC-planar embedding, we can reinsert
them later and restore the given original embedded graph. This is done with the data
structure Q.
After this, we compute a biconnected canonical ordering Π̂ of the resulting planar

embedded graph. The dummy vertices that may be added while we compute Π̂, become
bend points in the end or they are shift vertices that are removed in the step when we
reinsert the crossing edges. Like the dummy vertices from the preprocessing, they do not
change the embedding if we interpret them as bend points. Beside these dummy vertices,
we insert dummy edges into some faces of the embedded graph. They do not change the
embedding if we ignore them as they are removed later. The drawing returned by the
Shift Algorithm respects the given embedding and is crossing-free.
In the reinsertion step, we insert the crossing edges at their original positions which we

have saved in Q. By Lemma 3.3, Lemma 3.4, Lemma 3.5, Lemma 3.6, and Lemma 3.7,

59

we have shown that in any case the reinserted edges cross no other edge but each other
in a right angle within its reserved spot, its quadrangle from Q.

3.3. Running time and grid size

In this section, we describe the running time of our algorithm and the size of the grid
onto which the resulting drawing is placed. In Lemma 3.10, we show that the number
of vertices that we add during our augmentation of the given NIC-planar is bounded
in the number of vertices of the input graph by a constant factor. In Lemma 3.11, we
show the linear running time, and in Lemma 3.12, we show that the graph is drawn on
a quadratically sized grid.

Lemma 3.10. Let G be the input graph, G′ be the graph after the preprocessing, and
Ĝ be the graph after the computation of the biconnected canonical ordering. Let n, n′,
and n̂ be the number of vertices in G, G′, and Ĝ, respectively. It holds that n′ ≤ 3.4n−4.8
and n̂ ≤ 4n− 6.

Proof. In the first step of the preprocessing, we create empty kites around every crossing.
By creating the empty kites for every crossing, there are edges added to the graph (but
we do not count edges here) and there are edges subdivided. When we subdivide an edge,
we add a new vertex. There are at most four edges per crossing that are subdivided.
The number k of crossings in the given NIC-planar embedding is bounded by 0.6n− 1.2
according to Lemma 2.20. Using this, we can bound the number nsubdivide of vertices
that are added in this step to:

nsubdivide ≤ 4k ≤ 2.4n− 4.8 (3.47)

In the second step of the preprocessing, we make the graph biconnected. To accomplish
this, we only insert edges and the number of vertices is not increased. So, the number n′

of vertices of the graph G′ is:

n′ = n + nsubdivide ≤ 3.4n− 4.8 (3.48)

While computing the biconnected canonical ordering Π̂, at most one dummy vertex is
added per crossing—either as shift vertex in Case 2 or as dummy vertex in Case 3. So
the number nΠ̂ of vertices added there is:

nΠ̂ ≤ k ≤ 0.6n− 1.2 (3.49)

And in total:
n̂ = n′ + nΠ̂ ≤ (3.4n− 4.8) + (0.6n− 1.2) = 4n− 6 (3.50)

So, we have shown that there are only linearly many new vertices when constructing G′

from G and Ĝ from G′.

60

Lemma 3.11. The algorithm presented in this chapter, i.e., Algorithm 3 runs in time
O(n) where n is the number of vertices in the input graph.

Proof. To determine the required running time of our algorithm, we analyze the time
complexity of each of its steps. Let k denote the number of crossings in the given NIC-
planar embedding. The steps of the preprocessing are:

• Transform each crossing first into an empty kite and then into an empty quadrangle.
Inserting up to four edges and deleting two edges can be done in linear time.
Querying if parallel edges, which will be subdivided, exist can be done in linear
time in total. If we query an edge, we check the incident edges of the vertex with
the lower degree. Only sufficiently few of these vertices can have a high degree since
NIC-planar graphs are sparse according to Lemma 2.18. Therefore, we perform this
step in O(k + n) time, which is in O(n) according to Lemma 2.20.

• We make the graph biconnected using the linear time algorithm given in Algo-
rithm 1.

So, the preprocessing can be done in O(n) time.
In the original paper, the computation of the biconnected canonical ordering is per-

formed in time linear in the size of the input graph. Here, this would be O(n′) time. It
remains to determine the extra time needed for the additional work. For each vertex v,
we can initialize a list of the empty quadrangles from Q which contain v. Then, we
can access the list of empty/divided quadrangles incident to a vertex in constant time.
Each quadrangle is accessed exactly four times (once from each of its vertices) and the
work performed in such an access can be completed in constant time. Namely, this work
consist of adding a dummy edge or subdividing an edge. The data structures can also be
updated in constant time since only the values of up to two faces and up to one vertex
are adjusted. So, this step can be performed in O(n′+ k) time, i.e., O(n) time according
to Lemma 3.10 and Lemma 2.20.
Drawing a graph using the Shift Algorithm can be done in time linear in the size of the

input graph. Here, this is O(n̂) time, which is in O(n) time according to Lemma 3.10.
In the next step, the crossing edges are reinserted. It is easy to see that each divided

quadrangle can be processed in constant time. Thus, the edge reinsertion step runs in
O(k) time, which is also in O(n) time.
In the last step, the dummy edges are removed and dummy vertices are transformed to

bend points. If we save a collection of all dummy objects added throughout the execution
of the algorithm, we can remove or transform each of them in constant time. Following
the previous argumentation, we have added only O(n) many objects and, therefore, we
can do this step in O(n) time.
Since these steps are processed sequentially and not done multiple times, we need O(n)

time in total.

Lemma 3.12. Every vertex, bend point and crossing point of the drawing returned by
Algorithm 3 is a grid point of a grid of size at most (16n− 32)× (8n− 16)

61

Proof. The Shift Algorithm places every vertex of the graph Ĝ = (V̂ , Ê) onto a grid
point of a grid of size (2n̂ − 4) × (n̂ − 2). By the upper bound on n̂ from Lemma 3.10,
we get the following grid size:

coarser grid size ≤ (2(4n− 6)− 4)× ((4n− 6)− 2)

= (8n− 16)× (4n− 8) (3.51)

This grid is later refined by a factor of 2 in both dimensions. This bounds the size of the
grid as follow:

total grid size ≤ (2(8n− 16))× (2(4n− 8))

= (16n− 32)× (8n− 16) (3.52)

We insert bend points onto inner faces only. So, the total size of the drawing and its
underlying grid is not increased when we add them.

3.4. Proof of the main theorem

We plug the results of the previous analysis together in order to prove the main result of
this chapter.

Theorem 3.1. Every NIC-planar graph G = (V,E) admits a NIC-planar 1-bend RAC
drawing with vertices, bend points, and crossing points on a grid of size at most (16n −
32)×(8n−16), where n := |V |. Given a NIC-planar embedding E(G) of G, such a drawing
can be computed in O(n) time. The returned drawing preserves the given embedding E(G).

Proof. By definition, there is a NIC-planar drawing for every NIC-planar graphG = (V,E).
Using the embedding of this drawing, we can assume, without loss of generality, that
we have a given NIC-plane graph (G, E(G)). Use this NIC-plane graph as input for
Algorithm 3. According to Lemma 3.9 the returned drawing Γ is a RAC drawing of
(G, E(G)), thus it preserves the given embedding. Moreover, Γ is a 1-bend drawing ac-
cording to Lemma 3.8 with vertices, bend points and crossing points on a grid of size
(16n−32)×(8n−16) according to Lemma 3.12. Algorithm 3 runs in time O(n) according
to Lemma 3.11.

The same holds for every IC-planar and IC-plane graph because the IC-planar graphs
are a subset of the NIC-planar graphs and an IC-planar embedding is preserved as such
by our algorithm.

62

4. Constructing 1-Bend RAC Drawings
of 1-Plane Graphs

This algorithm is a modification of the algorithm presented by Bekos et al. [BDL+17].
In the same paper, they ask if there are 1-planar embeddings that cannot be realized
as 1-bend RAC drawings. We negatively answer their question. Indeed, every 1-planar
embedding can be realized as 1-bend RAC drawing. We constructively show this by
slightly modifying their algorithm to preserve the given embedding of the 1-plane graph.
The algorithm still returns a 1-planar 1-bend RAC drawing, but it does not change the
embedding.
In this chapter, we first describe the original algorithm by Bekos et al. [BDL+17] in

Section 4.1, then our modifications of it in Section 4.2, and last we formulate the improved
result obtained by our modification in Section 4.3.

4.1. Original algorithm

We give a short overview about the original algorithm by Bekos et al. [BDL+17] for
computing a 1-planar 1-bend RAC drawing of a given 1-plane graph (G, E(G)) in the
variable embedding setting, i.e., the returned drawing is possibly not embedded according
to E(G), but according to another 1-planar embedding. The whole algorithm runs in
linear time. The resulting drawings may have exponential area.

Augmentation In the augmentation step, they transform (G, E(G)) into a triangulated
1-plane multigraph (G+, E+(G+)). In a multigraph, there can be parallel edges, i.e.,
more than one edge between the same pair of vertices. The embeddings E and E+ may
be different. They insert dummy edges around each pair of crossing edges to induce
empty kites. Thereby parallel edges can arise. They remove the original edge from each
set of parallel edges, and for each face of degree two, i.e., a face bounded by two parallel
edges, they remove one of the edges. There can still be parallel dummy edges. The
last operation in the augmentation step is star-triangulating every face that has degree
greater than 3. If we star-triangulate an embedded graph, we insert a dummy vertex
into each face and connect it via a dummy edge with each vertex on the boundary of the
face. This may also create parallel edges. The resulting embedded 1-plane multigraph is
(G+, E+(G+)).

Hierarchical contraction For each set of parallel edges in (G+, E+(G+)) incident to
a separation pair of vertices, they isolate the subgraphs between each neighboring pair

63

Fig. 4.1.: Figure taken from Bekos et al. [BDL+17]. Example for a recursive drawing of their
algorithm. Thick edges are drawn as thick segments in red. Dummy vertices from the
star-triangulation are drawn as white square boxes. The top-level graph H∗ from (a)
is drawn in (b) and the crossing edges are reinserted in (c). In (d), (e), (f), (g), and (h),
the subgraphs saved at the thick edges are extracted, drawn, and the crossing edges
are reinserted. The drawing of the subgraph from (i) is inserted into the pink face
in (h).

64

of parallel edges and then contract all parallel edges and everything inside to a thick
edge. For every thick edge, they save the information of the subgraphs. This operation is
applied hierarchically to all subgraphs and their subgraphs and so on until there are no
parallel edges in the graph or any subgraph. Now, each such graph is simple, 1-planar,
3-connected, and triangulated. The top-level graph after this step is (G∗, E∗(G∗)).

Drawing In this step, the thick edges are recursively extracted, i.e., their subgraphs
are drawn and inserted into a face next to the line segments of the thick edges. An
example of the drawing step is given as illustration in Fig. 4.1. Before they draw the
top-level graph (G∗, E∗(G∗)) or some lower-level graph, they remove the crossing edges
and draw the obtained plane 3-connected graph with an algorithm that delivers strictly
convex straight-line drawings where the outer face is a prescribed convex polygon. The
linear-time algorithm by Chiba et al. [CYN84] fulfills these requirements. They pass
as prescribed polygon a trapezoid if the outer face has degree 4 (then there has been
a crossing on the outer face which was removed at the beginning of the drawing step)
and a triangle otherwise. Next, they manually reinsert the crossing edges. For the inner
convex faces, they draw one edge straight-line and the other edge with a bend so that it
crosses the first edge in a right angle. For the outer faces, they bend both edges once as
in Fig. 4.1i. Since they can prescribe the outer face of each subgraph, they can always
pass a shape that fits into the free space next to a thick edge.
After this step, they have a drawing of G+. They remove every dummy vertex and

every dummy edge and a 1-planar 1-bend RAC drawing of G remains.

4.2. Our modifications

In this section we give an overview about our modifications to the algorithm described
briefly in Section 4.1. We also show the correctness of our changes here.

Augmentation As described, they remove from each set of parallel edges the original
edge. Our modification is to keep the original edges that are not part of a crossing.
But like them, we remove the parallel original edges that cross another edge. When we
remove such a crossing edge, let it be e, an empty kite becomes a divided quadrangle
(see Fig. 4.2). The edge e′ crossed e before the removal. The edge e′ cannot have parallel
dummy edges because these would have crossed with either e or with parallel dummy
edges of e, but, as written in the paper, no inserted dummy edge can cause a new crossing
or be part of a crossing and a crossing with e would violate the 1-planarity. We remember
where we removed these edges because we will reinsert them later.

Hierarchical contraction We do not modify this step, but we save the order of the
subgraphs contracted at each separation pair to a thick edge and mark the original edge.

Drawing This step is almost the same as in the original algorithm, but we make sure
that we draw the inner graphs that were contracted at a separation pair (u, v) in the

65

e

e′

.

. . .

(a) After the insertion of dummy edges to ob-
tain empty kites. The empty kite contain-
ing the crossing edges e and e′ is high-
lighted.

e′

.

. . .

(b) After the removal of the original edge e.
By this removal, the empty kite becomes a
divided quadrangle containing e′ as inner
edge.

Fig. 4.2.: Removal of an original edge that has parallel edges and is part of a crossing.

original order. We distinguish two cases.

Case 1 In this case, we have kept the original edge {u, v} in the set of parallel edges
between u and v. In the original paper, they insert inner graphs stacked on one side
(or they do not care on which side) of the straight line between u and v. We insert the
original edge {u, v} as the straight line segment uv and then draw the subgraphs that
have been to the left side of this edge in the original embedding, on the left side of this
straight line segment in their original internal order. Analogously, we proceed with the
subgraphs on the right side of {u, v}.

Case 2 In this case, we have removed the original edge {u, v} from the set of parallel
edges between u and v. Again, we draw all subgraphs of the separation pair {u, v} in
their original internal order, but now, we do not have the original edge {u, v} as the
straight-line segment uv. We are free to draw the inner graphs on one side or on both
sides of the straight line as long as we do it in the correct order.
We do not insert an edge along the straight line between u and v. Instead, we reinsert

the original edge at its original place in the embedding, i.e., into the divided quadrangle,
in a post processing. In this divided quadrangle, one face has the two endpoints of e′ (let
these be a and b) and u as corner points and the other face has a, b, v as corner points
(see Fig. 4.3a). To obtain a 1-bend RAC drawing, we reinsert e in the way described
next.
We remove the straight line drawing of e′ so that we obtain the empty quadran-

gle (a, v, b, u). Choose some point c on the Thales’ circle around {a, u} or {b, u} that
lies strictly inside the triangle (a, b, u) (see Fig. 4.3b). Such a point exists. Assume for

66

a

b

v

u

e′

(a) The divided quadrangle as returned by the
Shift Algorithm.

a

b

v

u

c

(b) Thales’ circles onto which we can place the
later crossing point c.

a

b

v

u

c

e

e′

(c) Crossing point c and the first parts of the
crossing edges {a, b} and {u, v} up to their
bend points.

a

b

v

u

c

e

e′

(d) Reinserted 1-bend edges {a, b} and {u, v}
that cross in a right angle inside the quad-
rangle (a, v, b, u).

Fig. 4.3.: Reinserting the original edge e = {u, v}, which crosses the edge e′ = {a, b} in a right
angle.

67

contradiction that it does not exist. Then, b lies inside the Thales’ circle around {a, u}.
Therefore, the angle ∠abu is greater than 90 degrees. Analogously to b, a must lie inside
the Thales’ circle around {b, u}. Therefore, the angle ∠uab is also greater than 90 degrees
and the triangle (a, b, u) has a sum of internal angles that exceeds 180 degrees. This is
a contradiction and, thus, there is a point on one of these two Thales’ circles inside the
triangle (a, b, u).
The chosen point c will be our crossing point. We can draw the first part of e and e′ as

straight line segments from the points to which the chosen Thales’ circle belongs to to c.
Now, we can lengthen the straight line of e′ a little so that we are still inside (a, b, u)
(see Fig. 4.3c). With e′ we can reach a or b because this vertex is a corner point of the
triangle we are currently in and we have already passed e. We can see it and reach it with
another straight-line segment, using the current endpoint as a bend point. We can also
lengthen the straight line segment of e through c until it reaches the other triangle, i.e.,
(a, v, b), but does not pass or touch the border of the whole face of the empty quadrangle.
At such a point, we place a bend point for e and connect it with v. Since the bend point
is inside the triangle (a, v, b) we can see v from the bend point (see Fig. 4.3d). This way,
we can manually reinsert the crossing edges so that we obtain right-angle crossings.

4.3. Result

Observe that our modifications do not require more than linear time. Therefore, the
total running time remains linear. We immediately showed the feasibility of our modifi-
cations. Hence, we obtain the following result which improves the theorem by Bekos et
al. [BDL+17] in preserving a given embedding.

Theorem 4.1. Let (G, E(G)) be a 1-plane graph with n vertices. Then G admits a
1-planar RAC drawing Γ with at most one bend per edge that respects the given embed-
ding E(G). We can compute Γ in O(n) time.

Like the base algorithm by Bekos et al. [BDL+17], the adapted version also only bends
edges that participate in a crossing. Edges that are not crossed are drawn as straight-line
segments.

68

5. Constructing 2-Bend RAC Drawings
of 1-Plane Graphs in Polynomial Area

We show that every 1-plane graph (G, E(G)) admits a 1-planar 2-bend RAC drawing
with vertices, crossing points and bend points on a grid of size (8n′3 − 48n′2 + 96n′ −
64)× (4n′3− 24n′2 + 48n′− 32). Here, n′ is the number of vertices of G plus 5 times the
number of edge crossings in E(G). Note that, by Lemma 2.19, the number of crossings is
at most n−2, where n is the number of vertices in G. The algorithm does not change the
embedding. If we ignore the position of the bend points, we will have a 1-planar 2-bend
RAC drawing with vertices and crossing points on a grid of size (2n′− 4)× (n′− 2), i.e.,
quadratic size.
The main result of this chapter is:

Theorem 5.1. Every 1-planar graph G = (V,E) with n vertices admits a 1-planar
2-bend RAC drawing with vertices, bend points, and crossing points on a grid of size
O(n3) × O(n3), where the bends occur only on edges participating in a crossing. Given
a 1-planar embedding E(G) of G, such a drawing can be computed in O(n) time. The
returned drawing preserves the given embedding E(G) and is placed on a grid of size
(8n′3− 48n′2 + 96n′− 64)× (4n′3− 24n′2 + 48n′− 32), where n′ is the number of vertices
of G plus 5 times the number of crossings in E(G). It holds that n′ ≤ 6n− 10.

Our proof to this theorem is constructive. We give an Algorithm to compute such a
drawing in linear time in Section 5.1. In Section 5.2, we show its correctness to finally
prove this main theorem in Section 5.3.

5.1. Algorithm

Our algorithm gets a 1-plane graph (G, E(G)) as input. First, we planarize G by replacing
the crossing points by crossing vertices. Second, we enclose each crossing vertex by a
divided kite. We use divided kites instead of empty kites so that we do not change the
embedding and do not add parallel edges. This step is visualized in Fig. 5.1. Third,
we make the graph biconnected using Algorithm 1. After these three steps, we have
an embedded planar graph (G′, E ′(G′)). We draw (G′, E ′(G′)) by using the algorithm of
Harel and Sardas [HS98]. This algorithm returns a crossing-free straight line drawing Γ′

with the vertices lying on a grid of size (2n′ − 4) × (n′ − 2) and without changing the
embedding. Here, n′ is the number of vertices of G′.
For each vertex c in G′ that corresponds to a crossing point in (G, E(G)), there are four

incident edges. They correspond to two edges of G. In the circular order around c, the
first and the third incident edge in (G′, E ′(G′)) correspond to the same edge in (G, E(G)).

69

a1

a2

a3

a4

c

(a) Planarized crossing which became a cross-
ing vertex c.

a1

a2

a3

a4

c

d1

d2

d3d4

(b) Enclosing the crossing vertex c by a di-
vided kite.

Fig. 5.1.: A crossing point in G is replaced by a crossing vertex c in G′ and we insert four
2-paths of two dummy edges and a dummy vertex to induce a divided kite at each
crossing. The vertices a1, a2, a3, and a4 are original vertices, while d1, d2, d3, and d4
are dummy vertices.

Similarly, the second and fourth edges correspond to the other edge of the crossing. So, Γ′

can be seen as a 1-bend drawing of G where every bend point is also a crossing point. To
obtain a RAC drawing from this, each of the four line segments of the edges around c is
replaced by two line segments. An edge {a, c} that is drawn as straight line segment ac
will then be drawn as 1-bend segment—one segment from c to a point b on a axis-parallel
line through c and the other segment from b to a. Observe that we can obtain a RAC
crossing at c if we bijectively place the four bend points on the four axis-parallel half-
lines (rays) originating in c. For an example of a crossing in Γ′ see Fig. 5.3a, and for its
replacement in the final drawing see Fig. 5.3f. There, the crossing point c is drawn in
the center. The four axis-parallel half-lines originating in c are drawn as dotted lines.
Around c, there is the divided kite with vertices as filled black circles and dummy vertices
as filled black squares (boxes). To create a 2-bend RAC grid drawing from this, we will
determine . . .

• a mapping (assignment) of the four incident edges at c to the four half-lines (see
Section 5.1.1 and Algorithm 7).

• points with integer coordinates on these four half-lines that become the new bend
points (see Section 5.1.2).

This choice will not create new crossing points.

5.1.1. Assignment of edges to axis-parallel half-lines

In the step described in Section 5.1.2, we will redraw the two edges crossing in c so
that they have line segments on the two axis-parallel lines through c at c. To this end,

70

Algorithm 7: Find an assignment of edges to axis-parallel half-lines for each
crossing
Input : Graph G′ = (V ′, E′),

drawing Γ′ of G′,
independent set of degree-4 crossing vertices C ⊆ V ′

Output: Assignment a : E′ → {null, r↑, r←, r↓, r→}
1 Set left(q↗) = r↑, left(q↖) = r←, left(q↙) = r↓, left(q↘) = r→
2 Set right(q↗) = r→, right(q↖) = r↑, right(q↙) = r←, right(q↘) = r↓
3 Initialize a map a
4 foreach e ∈ E′ do
5 Set a(e) := null

6 foreach c ∈ C do
7 if each of the four quadrants around c contains an incident edge of c then
8 findAssignmentInCase1()
9 else

10 Let q be an empty quadrant around c
11 if both neighboring quadrants of q contain an incident edge of c then
12 findAssignmentInCase2()
13 else
14 findAssignmentInCase3()

15 return a

Algorithm 8: [Subroutine of Algo. 7, which can read and write all its variables]
findAssignmentInCase1()

1 foreach Quadrant q around c do
// Note: If edges lie on the axis-parellel half-lines, they lie

in two quadrants. Thus, there might be more edges in q, but
according to the “if”-clause, every edge can be assigned to
exactly one quadrant. Use this bijection here.

2 Let e be the only edge in q
3 Set a(e) := left(q)

71

Algorithm 9: [Subroutine of Algo. 7, which can read and write all its variables]
findAssignmentInCase2()

1 Let ql and qr be the neighboring quadrants of q so that right(ql) = left(q) and
left(qr) = right(q)

2 Let el and er be the closest edges to q in ql and qr, respectively
3 Set a(el) := left(q) and a(er) := right(q)
4 Let e3 and e4 be the remaining two incident edges of c so that el, e3, e4, er is the

counter-clockwise ordering of these edges around c in Γ′

5 Let qopposite be the only quadrant around c that is no neighbor of q
6 Set a(e3) := right(qopposite) and a(e4) := left(qopposite)

Algorithm 10: [Subroutine of Algo. 7, which can read and write all its variables]
findAssignmentInCase3()

1 if q has a neighboring quadrant containing two or more edges then
2 Set q∗ := q
3 else
4 Let q∗ be an empty neighboring quadrant of q that has another neighboring

quadrant with two or more edges // Exists, because q and its
neighbors are already three of four quadrants and the four
incident edges of c are in at least one quadrant

5 Let e1 and e2 be two edges in one neighboring quadrant of q∗ that are closest to
q∗ and e1 comes before e2 in the counter-clockwise ordering around c

6 Set a(e1) := right(q∗) and a(e2) := left(q∗)
7 Let e3 and e4 be the remaining two incident edges of c so that e3 comes before e4

is the counter-clockwise ordering around c in Γ′

8 Let q∗opposite be the only quadrant around c that is no neighbor of q∗

9 Set a(e3) := right(q∗opposite) and a(e4) := left(q∗opposite)

c

(a) Case 1.

c

q

(b) Case 2.

c

q∗

(c) Case 3.

Fig. 5.2.: Examples for the three cases of Algorithm 7.

72

we assign each of the four edges incident to c to one of the four axis-parallel half-lines
originating in c.
For the assignment step, we introduce some abbreviations. Consider a crossing vertex c.

The four axis-parallel half-lines (rays) originating in c are called r↑, r←, r↓, and r→,
where r↑ is the half-line parallel to the y-axis going against +∞ and r←, r↓, and r→
follow in the counter-clockwise order around c. These half-lines separate the drawing
area into four sectors called quadrants in the following. The quadrant between r↑ and
r← is q↖, and the following quadrants in counter-clockwise order around c are q↙, q↘
and q↗. The points on the axis-parallel half-lines belong to both incident quadrants.

In Algorithms 7–10, we give a procedure that assigns the four edges to the four half-
lines at each crossing vertex c. We distinguish three cases to assign them. If there
is one incident edge per quadrant around c, we assign each edge to the half-line that
bounds its quadrant from the left (left means here in counter-clockwise direction). For
an illustration, see Fig. 5.2a. We will refer to this case as Case 1.

Otherwise, there is a quadrant q that contains none of the four edges that are incident
to c. If the two neighboring quadrants of q contain at least one edge incident to c each,
take the edge from each of these two quadrants that are closest to q and assign them to
the two half-lines bounding q—each of the two edges to the half-line that bounds also the
quadrant it is in. Assign the remaining two incident edges to the remaining two half-lines
in the same counter-clockwise order as both appear around c. For an illustration, see the
example in Fig. 5.2b. We will refer to this case as Case 2.
If q has a neighboring quadrant that contains no edge incident to c, we define q∗ as q

if q has a neighboring quadrant with at least two edges, and q∗ as an empty neighboring
quadrant of q otherwise. Now, q∗ has a neighboring quadrant with two or more edges.
Assign these two edges that are closest to q∗ to the half-lines bounding q∗ in the same
counter-clockwise order as both appear around c. Assign the remaining two incident
edges to the remaining two half-lines in the same counter-clockwise order as both appear
around c. For an illustration, see the example in Fig. 5.2c. We will refer to this case as
Case 3.

5.1.2. Placement of bend points

Interpreting the crossing vertices in Γ′ as crossing points, we have a 1-bend drawing of the
input graph G with some additional dummy edges and dummy vertices for the divided
kites and an assignment of edges to half-lines. To make this a 2-bend RAC drawing, we
redraw the crossing edges inside the divided quadrangles.
Therefore, consider in Γ′ for each crossing vertex c each edge {a, c}. We will replace

this straight line edge by a 1-bend edge by placing a bend point b on the assigned axis-
parallel half-line so that the new edge crosses no other redrawn edge or other edge.
First, we determine the available region into which we can put this 1-bend edge (two
line segments). We consider only the area inside the divided kite and only the area on
this side of {a, c} that points towards the assigned half-line. This region between {a, c}
and its assigned half-line inside the divided kite defines a polygon. An example of these
polygonal available areas is given in Fig. 5.3b and Fig. 5.4a. Note that these areas might

73

c

a4

a3

a2

a1

(a) A divided kite as obtained from the algo-
rithm by Harel and Sardas [HS98].

c

a4

a3

a2

a1

(b) Polygons of available area for each pair of
edge and assigned half-line.

c

a4

a3

a2

a1

(c) Triangles for valid edge placing.

c

a4

a3

a2

b1

b3

b4

a1

(d) After the insertion of the three bend points
that do not depend on the drawing of other
bent edges.

c

a4

a3

a2

b1

b3

b4

a1

(e) Polygon of available area and triangle for
valid edge placing for the edge {a2, c}
which depends on the drawing of the edge
{a1, c}.

c

a4

a3

a2

b1

b2

b3

b4

a1

(f) After the insertion of the bend point b2.

Fig. 5.3.: Example of the postprocessing step for transforming a planarized crossing to a 2-bend
RAC crossing.

74

c

a

(a) Polygon of available area.

c

a

p

q

(b) Triangle for valid edge placing with points
p and q.

Fig. 5.4.: Example of a polygon of available area in which we determine the points p and q and
with them the triangle for valid edge placing and the line segment cq.

overlap (as they do once in the example).
Observe that there is only a triangle inside this polygon in which the new line seg-

ment ab can be placed. These valid triangles for placing edges are depicted in Fig. 5.3c
and Fig. 5.4b. Again, they might overlap. Such a triangle covers the angular region
around a where we can place this line segment. This angle cannot become arbitrarily
small because every determining point lies on a grid point. The triangle is determined
by a, c and a corner point p of the polygon of the available area. The point p is the corner
point (excluding a and c) for which the angle between ac and ap inside the polygon is the
smallest. Let q be the intersection point of the line through ap and the axis-parallel half-
line to which {a, c} was assigned. One can see q as the projection of p onto the assigned
half-line of a seen from a. An example is given in Fig. 5.4a and Fig. 5.4b. Note that we
have a degenerated case if a already is on the assigned half-line. Then, the polygon of
available area has degree two. It is a line segment with endpoints a and c. In this case
let a = p = q. Moreover, note that p can be equal to q, because the intersection of the
assigned axis-parallel half-line and an edge e of the divided kite is also a corner point of
this polygon. This is the only case where p may not be a grid point (We ignore overlap-
ping polygons of available area for the moment). In this case, we name the endpoint of e
that is inside the polygon of available area p′in and the endpoint that is outside p′out.
We will place the bend point b onto the line segment cq. We proceed in two steps.

Let Γ′ be drawn on a grid of size ñ× ñ.
First, we consider only the edges that are assigned to half-lines so that their assignment

does not depend on the assignment of other edges to half-lines. In Fig. 5.3c, this would
be {a1, c}, {a3, c}, and {a4, c}, but not {a2, c}, which depends on the course of {a1, c}.
We refine the grid by a factor of ñ in each dimension. Now, the interior of the line

75

segment qc contains at least one grid point (we show this later in Lemma 5.4). Pick any
of them and place b on it. Remove the line segment ac from the drawing and insert the
two line segments ab and bc instead. We will refer to the resulting drawing as Γ′′.

Second, we consider the other edges with an assignment to half-lines that depends on
the assignment of edges drawn in the step before. Again, we refine the grid by a factor of
ñ in each dimension. Now, we have a grid of size ñ3 × ñ3. For edges considered now, we
compute new polygons of available area and triangles for valid edge placing since we need
to take the 1-bend edges into account that were inserted in the previous step. Again, we
have a line segment qc and its interior contains at least one grid point now (we show this
later in Lemma 5.5). Pick any of them and place b on it. Remove the line segment ac
from the drawing and insert the two line segments ab and bc instead.
After these two steps, we have replaced each straight-line edge by a 1-bend edge because

the depth of dependencies of assigned edges to half-lines is at most one. We will show
this by Corollary 5.3.
Finally, remove the dummy edges and dummy vertices that bound the empty kites and

interpret the crossing vertices as crossing points. Let the resulting 2-bend RAC drawing
be Γ and return Γ.

5.2. Analysis

In this section, we analyze our algorithm presented in this chapter to prove Theorem 5.1.
We focus on the two main steps of the algorithm in Section 5.1. We show that we obtain
a valid assignment of the edges to half-lines in Section 5.2.1 and that we place the bend
points properly so that they are on a refined grid and their placement does not cause
new edge crossings in Section 5.2.2.

5.2.1. Assignment of edges to axis-parallel half-lines

For our purposes, we require a found assignment of the four incident edges of a crossing
vertex c to the four axis-parallel half-lines originating at c to be valid. We call an
assignment valid if there is a way of redrawing each of the four assigned edges as a 1-
bend edge with the second part running along its assigned half-line so that it does not
conflict with (touch) another redrawn or original edge and for each of these four half-lines
per crossing point there is exactly one assigned edge (the assignment of the four incident
edges to the four axis-parallel half-lines is bijective at each crossing point).
We want to find sufficient conditions to have a valid assignment. Assume we have an

assignment a : E′ → {null, r↑, r←, r↓, r→}. Consider an edge e = {v, c} incident to a
crossing point c. If e lies on one of these four half-lines, it must not be assigned to the
opposite half-line o because otherwise it would conflict with c when we bend it somewhere
on o.
Excluding this case for every edge, the assigned half line h := a(e) of e is either to

the right or to the left of e seen from c to v or h contains e. This way, we can define an
angular sector from e to h (or the other way round) at c that is less than 180 degrees. If
no other axis-parallel half-line of c and no other incident edge of c lies within this sector,

76

obviously this assigned edge does not cause a conflict. If there is another incident edge e′

inside this sector, a conflict can be avoided if h′ := a(e′) lies outside this sector and h′

lies to the right of e′ if and only if h lies to the right of e. This is because the redrawn
edge e′, bent at h′, intersects h then. This intersection point can be arbitrarily close
to c, but never reach c. Thus, the part of h from c to this intersection point can still be
used to place a bend point of the redrawn edge e on. In the following, we say in such
a case that the assignment of e depends on the assignment of e′. The other way round,
the angular sector between e and h contains another axis-parallel half-line h′ of c, but
no other incident edge. This does not cause a conflict if h′ is to the right of its edge e′ if
and only if h is to the right of e. Then, the assignment of e′ depends on the assignment
of e. Observe that a assignment that fulfills this has at most a dependency-depth of one,
i.e., two assigned edges where the assignment of one of them depends on the other one
because otherwise there would be an angular sector that contains in its interior an edge
and a half-line. In other words, if the assignment of an edge e depends on the assignment
of a second edge e′, the assignment of e′ cannot depend on the assignment of a third
edge e′′. Using these sufficient criteria for a valid assignment, we obtain the following
Lemma.

Lemma 5.2. Algorithm 7 finds a valid assignment of edges to axis-parallel half-lines
for G′, Γ′, and its set of crossing vertices C in O(|E′|+ |C|) time.

Proof. To prove this, we ensure that in all of the three cases in which the algorithm
assigns the edges to half-lines for a crossing point c, the assignment is valid. Clearly,
there is in every case at every crossing point for every axis-parallel half line of c an
incident edge assigned to it.
In Case 1, if each quadrant of c contains an edge incident to c, each incident edge is

assigned to its direct left neighbor. This means that no incident edge is assigned to an
opposite half-line and no angular sector contains any other axis-parallel half line or any
other incident edge of c. Thus, this assignment is valid.
In Case 2, if for an empty quadrant q of c both neighboring quadrants of q contain an

incident edge of c, the two closest edges are assigned to the bounding axis-parallel half
lines of q. Because they are direct neighbors, there is no other half-line and no other
incident edge in these two angular sectors and they are not on opposite sides with respect
to c. It remains to show that the assignment of the two remaining incident edges does
not cause a conflict. They cannot be assigned to opposite half-lines because then they
would have been in q. Assume for contradiction that an angular sector from an edge e to
an axis-parallel half-line h contains both: The other considered incident edge e′ and its
assigned half line h′. This cannot happen because then e would either come before e′ in
the counter-clockwise ordering around c while h′ comes before h or come after e′ in the
counter-clockwise ordering around c while h′ comes after h. In both cases the algorithm
would have assigned e to h′ and e′ to h and both angular sectors would be empty then.
Furthermore, assume for contradiction that, without loss of generality, the angular sector
from an incident edge e to its assigned half line h contains an incident edge e′ that has
its assigned half line h′ at its left while h is to the right of e. Hence, the edge e comes
before e′ in the counter-clockwise order around c. But again, then the algorithm would

77

have assigned e to h′ and e′ to h and the angular sectors would be empty. Thus, this
assignment is valid as well.
In Case 3, an empty quadrant q∗ of c has a neighboring quadrant q′ that contains at

least two incident edges of c. The two edges in q′ that are closest to q∗ are assigned to the
bounding half lines of q∗. The one of these two edges that is closest to q∗, let it be e, is
assigned to the more distant bounding half line of q∗. Thus, the angular sector between
both contains the axis-parallel half-line to which the other considered incident edge e′ is
assigned. The sector between e′ and this closer axis-parallel half-line contains the edge e.
So, the assignment of e′ depends on the assignment of e. Because both edges have their
assigned half lines on the same side (left or right), this still fulfills the sufficient criteria
for a valid assignment. It remains to show that the assignment of the two remaining
incident edges does not cause a conflict. As the assignment of these two is the same as
in Case 2, the argumentation for the remaining two edges holds here as well. Therefore,
in any case the assignment returned by Algorithm 7 is valid.
Initializing the map a with null-values for each edge needs a running time of O(|E′|).

The “foreach c ∈ C”–loop is run |C| times. In each run, the if-checks and the assignments
can be done in constant time because in any case there are checked and processed at
most four quadrants and four incident edges per crossing point. Thus, the algorithm
runs in O(|E′|+ |C|) time.

Corollary 5.3. The assignment found by Algorithm 7 has a dependency-depth of at
most one. This means that if the assignment of an edge e depends on the assignment
of a second edge e′, the assignment of e′ cannot depend on the assignment of a third
edge e′′.

Proof. Algorithm 7 fulfills the sufficient criteria for a valid assignment described above.
Obviously, no longer sequences of dependencies are possible, because in every angular
sector between an edge and its assigned half line, there can only either be another incident
edge of the respective crossing point or another axis-parallel half line through this crossing
point, but not both.

5.2.2. Placement of bend points

In our algorithm, we bend each each edge {a, c} that is incident to a crossing vertex c
via a point b on the the assigned half-line, or more precisely on the interior of the
line segment qc. For the definition of p and q, see the description of the algorithm in
Section 5.1. To place the bend points on a grid point, we need at least one grid point on
this line segment. Using the current grid of size O(ñ)× O(ñ) onto which the algorithm
by Harel and Sardas placed the vertices is not enough. In the following, the x- and
y-coordinate of a point p is denoted by x(p) and y(p), respectively.

Lemma 5.4. Let Γ′ be drawn on a ñ × ñ sized grid. With the previous naming, the
interior of each line segment qc contains at least one grid point of the refined ñ2 × ñ2

grid.

78

a

c

p
h

q

(a) Case A1.
a

c

p

h

q

(b) Case A4.

a

c

p′in

q

p′outh

(c) Case B.

Fig. 5.5.: Different situation for the analysis of the value of h. Here, h is the length of the line
segment cq.

79

Proof. Without loss of generality, we can assume that qc is parallel to the y-axis (a
vertical line segment). If the x-coordinate of a is equal to the x-coordinate of q and c,
we have the degenerated case where q = a . We do not need to bend the edge {a, c}
in our algorithm, but, for the completeness of the proof, we can easily see that there
are at least ñ − 1 grid points on the refined ñ2 × ñ2 grid because c and q = a are grid
points of the coarser ñ × ñ grid. So, without loss of generality, we can assume that
x(a) < x(q) = x(c), because mirroring the drawing across the line through qc does not
change the structure of the drawing. We can also assume that a has coordinates (0, 0).
Without loss of generality, we can assume that y(c) ≥ 0. If y(c) = 0, we can furthermore
assume y(q) > 0 (both by the argument of mirroring across the x-axis). If y(c) > 0 and
y(q) < 0, we are fine because c and (x(c), 0) are both grid points of the coarser grid.
Between them, there is more than one grid point of the finer grid. So, we continue with
y(c) ≥ 0 and y(q) ≥ 0. For convenience, we will work with coordinates on the coarser
O(ñ) × O(ñ) grid in the following case distinction. Moreover, observe that c cannot be
a vertex on the upper- or lowermost row of the grid or a vertex on the left- or rightmost
column of the grid since it is enclosed by the dummy edges of a divided quadrangle.
Therefore, we know that the difference in the x- and in the y-coordinate of a and another
vertex of the drawing is less than ñ. In particular, we know:

x(p)− x(a) = x(p) ≤ x(q) < ñ (5.1)

Now, we distinguish two cases.

Case A The point p is a grid point. The points a, p and q are collinear in any case.
Clearly, a is the leftmost point of them. For x(p) ≥ y(p) and x(c) ≥ y(c), the slopes of
ap and ac are values of the Farey sequence of order ñ− 1. The Farey sequence of order
ñ−1 is the sequence of all reduced fractions from 0 to 1 with numerator and denominator
being positive integers ≤ ñ− 1 [SF07]. The slopes are y(p)

x(p) and y(c)
x(c) . One can imagine all

these possible slopes going out from a as rays. Without loss of generality, we can assume
that the reduced fractions of y(p)

x(p) and y(c)
x(c) are neighbored fractions in the Farey sequence

and neighbored rays in the picture of the rays going out from a. We also assume that
y(p)
x(p) and y(c)

x(c) are reduced fractions because for a multiple of one of the Farey numbers,
the line segment qc could only be longer and have more grid points of the finer grid on
it but not fewer.
We distinguish more subcases:

Case A1 y(q) ≥ y(c), and y(p)
x(p) and y(c)

x(c) are neighbors in the Farey sequence. A sketch
is given in Fig. 5.5a.
Then, we have:

h = ‖qc‖ = y(q)− y(c) (5.2)

y(q) =
y(p)

x(p)
· x(c) (5.3)

80

Putting this together, we get:

h =
y(p)

x(p)
· x(c)− y(c) = x(c) ·

(
y(p)

x(p)
− y(c)

x(c)

)
(5.4)

One property of neighboring numbers in the Farey sequence a
b and c

d with a
b < c

d is:

c

d
− a

b
=

1

bd
(5.5)

Because of y(q) ≥ y(c), we know that y(p)
x(p) > y(c)

x(c) . Applying this leads to:

h = x(c) ·
(
y(p)

x(p)
− y(c)

x(c)

)
= x(c) · 1

x(c) · x(p)
=

1

x(p)
>

1

ñ
(5.6)

Case A2 y(q) ≤ y(c), and y(p)
x(p) and y(c)

x(c) are neighbors in the Farey sequence.
This this almost the same as case A1, only multiplied with −1 because now we have
y(p)
x(p) < y(c)

x(c) . Precisely, we have:

h = y(c)− y(q)

= y(c)− y(p)

x(p)
· x(c)

= x(c) ·
(
y(c)

x(c)
− y(p)

x(p)

)
= x(c) · 1

x(c) · x(p)
=

1

x(p)
>

1

ñ
(5.7)

Case A3 y(q) ≥ y(c), and y(p)
x(p) and y(c)

x(c) are not numbers of the Farey sequence because
their numerator is greater than their denominator. Their reciprocals are neighbors in
the Farey sequence. These numbers can be seen as part of an extension of the Farey
sequence from 1 to +∞.
This case is also similar to A1. Equations 5.2-5.4 still hold, but we need to be more
careful with Equation 5.6 because y(p)

x(p) and y(c)
x(c) are not numbers of the Farey sequence.

An implication from Equation 5.5 is the following (Naming as in Equation 5.5):

c

d
− a

b
=

bc− ad

bd
=

1

bd
⇒ bc− ad = 1 (5.8)

Plugging in the Farey numbers x(p)
y(p) and x(c)

y(c) , where we know x(p)
y(p) < x(c)

y(c) , we get:

y(p) · x(c)− x(p) · y(c) = 1 (5.9)

81

Using this, we can continue with Equation 5.4:

h = x(c) ·
(
y(p)

x(p)
− y(c)

x(c)

)
= x(c) · y(p) · x(c)− x(p) · y(c)

x(c) · x(p)

= x(c) · 1

x(c) · x(p)

=
1

x(p)
>

1

ñ
(5.10)

Case A4 y(q) ≤ y(c), and y(p)
x(p) and y(c)

x(c) are not numbers of the Farey sequence because
their numerator is greater than their denominator. Their reciprocals are neighbors in the
Farey sequence. A sketch is given in Fig. 5.5b.
This case is analog to Case A3 like the analogy of Case A2 to Case A1. Again, we can
multiply with −1 or alternatively swap all occurrences of p and c.

Case B The point p is no grid point. This situation may only occur if p = q. It is the
situation described earlier where we have vertices p′in and p′out as depicted in Fig. 5.5c.
Clearly, we have a similar situation as in Case A. Here, p′in is in the position as is a in
Case A and p′out is in a similar position as is p in Case A. The points p′in and p′out are
vertices of G′ and, thus, also grid points of the ñ× ñ grid. The only difference is the order
of the points a, p, q and p′in, q, p

′
out on each common line. Observe that the formulas

given in Case A still hold if q is in between p′in and p′out instead of being to the right of
both. Therefore, by doing the same analysis as in case A with exchanged a and p, we
get the same result.
So, for both cases and each subcase, we get the result that the line segment qc has

length strictly greater than 1
ñ . By refining the ñ×ñ grid by a factor of ñ in each dimension

as we do in our algorithm, we get a ñ2 × ñ2 grid where each grid point of the coarser
grid is also a grid point of the finer grid. Each crossing point c is a grid point of both
grids. Going towards the q of each of the four half-lines, we reach the next grid point
after a distance of 1

ñ because we are on a axis-parallel line with integer coordinates on
the coarser grid. This cannot be q because qc is longer. Therefore, the interior of the
line segment qc contains at least one grid point.

If we did not have overlapping triangles for valid edge placing, we would have shown
now that every 1-plane graph admits a 2-bend RAC drawing with everything on a grid
of size O(n2) × O(n2). But since we have overlaps of these triangles, we do a second
step in our algorithm by refining the grid again by a factor of ñ in each dimension and
computing a bend point for the remaining edges that depend on the redrawing of other
edges.
In the example of Fig. 5.3d, the placement of the bend point b2 of the edge {a2, c}

depends on the placement of the bend point b1 of the edge {a1, c}. The placement

82

c

â

b̂

q′
a

Fig. 5.6.: The bend point of the edge {a, c} is placed on a grid point of the interior of the line
segment cq′. The point q′ depends on the placement of b̂, which is the bend point of
the edge {â, c}.

of b1 does not depend on any other placement of a bend point. A circular sequence of
dependencies is not possible since the dependency depth is at most one (see Corollary 5.3).
Consider the edges that are redrawn in this second step. For each such edge, we have

computed a polygon of available area and a triangle for valid edge placing in Γ. There,
we have determined the points p and q. This polygon and this triangle may change
when we take the redrawn edge into account on which this edge placement depends. The
intersection point of the assigned half-line and the line through the already placed bend
point and its vertex may become a new relevant point (what has been p and q above).
If this intersection point becomes such a relevant point for the recomputed triangle (it
makes it smaller), let this point be q′. If this intersection point does not affect this
triangle, set q′ = q with q being the corner point of the triangle computed in first step.
Now, we show that refining the grid again by a factor of ñ in both dimensions is enough

to have also these depending bend points on grid points.

Lemma 5.5. Let Γ′′ be drawn on a ñ2 × ñ2 sized grid. Consider only edges for which
the placement of the bend point depends on the redrawing of another edge in Γ′′. With
the previous naming, the interior of each line segment q′c contains at least one grid point
of the refined ñ3 × ñ3 grid.

Proof. All of the following coordinates are relative to the grid of size ñ2 × ñ2 that has
been refined once. Let the placement of the bend point of the edge {a, c} depend on the
bend point b̂ of the edge {â, c}. If the triangle for valid edge placing of {a, c} was not
shrunk after placing b̂, then q′ equals q and the analysis of Lemma 5.4 holds here as well.
This means that the the interior of q′c contains a grid point of the ñ2 × ñ2 sized grid
and, thus, also of the ñ3 × ñ3 sized grid.

Otherwise, we can assume, without loss of generality, that x(â) = 0 and y(â) = 0.
Furthermore, we can assume that x(c) ≥ 0 and y(c) ≥ 0 because mirroring across some
axis-parallel line does not change the structure of the drawing. We assume, without loss
of generality, that b̂ lies on the half-line originating at c and running to positive infinity in

83

the x-dimension because âb̂ crosses some other axis-parallel half-line (here: the one going
to negative infinity in y-dimension) and, again, mirroring does not change the structure
of the drawing. This implies y(c) > y(â). Our current situation is depicted in Fig. 5.6.
Now, we analyze how short the line segment q′c can become in the worst case.
It will become shorter if . . .

• the x-distance x(b̂)− x(c) becomes smaller or

• the y-distance y(c)− y(â) becomes smaller or

• the x-distance x(c)− x(â) becomes greater.

So, q′c will be shortest if we assume the most extremes of these values. They are:

• x-distance x(b̂)− x(c) = 1, and

• y-distance y(c) − y(â) = ñ (it cannot become smaller because both are points of
the coarser ñ× ñ grid and y(c) > y(â)), and

• x-distance x(c) − x(â) = (ñ − 1) · ñ (This is because both are grid points on the
coarser ñ × ñ grid. Since b̂ is on the right side of both, they cannot both be
outermost grid points and, thus, they can only have a distance of ñ − 1 on the
initial coarser grid and (ñ− 1) · ñ on the refined grid of Γ′′.)

Plugging this together, we get as slope m of âb̂:

m =
ñ

ñ2 − ñ + 1
(5.11)

Following this, we determine y(q′):

y(q′) =
(
ñ2 − ñ

)
·m =

(
ñ2 − ñ

)
· ñ

ñ2 − ñ + 1
=

ñ3 − ñ2

ñ2 − ñ + 1
(5.12)

Now, we can compute the length of the line segment q′c this way:

y(c)− y(q′) = ñ− ñ3 − ñ2

ñ2 − ñ + 1
=

ñ3 − ñ2 + ñ− ñ3 + ñ2

ñ2 − ñ + 1

=
ñ

ñ2 − ñ + 1
=

1

ñ− 1 + 1
ñ

>
1

ñ
(for ñ > 1) (5.13)

With the same argumentation as in Lemma 5.4, we can see that the interior of q′, c
contains always at least a grid point of the refined ñ3 × ñ3 grid.

84

5.3. Proof of the main theorem

Now, we prove the Theorem from the beginning of this chapter using our previous anal-
ysis.

Theorem 5.1. Every 1-planar graph G = (V,E) with n vertices admits a 1-planar
2-bend RAC drawing with vertices, bend points, and crossing points on a grid of size
O(n3) × O(n3), where the bends occur only on edges participating in a crossing. Given
a 1-planar embedding E(G) of G, such a drawing can be computed in O(n) time. The
returned drawing preserves the given embedding E(G) and is placed on a grid of size
(8n′3− 48n′2 + 96n′− 64)× (4n′3− 24n′2 + 48n′− 32), where n′ is the number of vertices
of G plus 5 times the number of crossings in E(G). It holds that n′ ≤ 6n− 10.

Proof. By definition, there is a 1-planar drawing for every 1-planar graph G = (V,E).
Using the embedding of this drawing, we can assume, without loss of generality, that
we have a given 1-plane graph (G, E(G)) with n vertices and k crossings. According to
Lemma 2.19, k is less than or equal to n − 2. Use this 1-plane graph as input for the
algorithm presented in Section 5.1.
In linear time, we obtain a biconnected planarized graph from (G, E(G)), where each

crossing is replaced by a divided kite. This graph has n′ = n+k+ 4k ≤ 6n− 10 vertices.
The algorithm by Harel and Sardas [HS98] yields a straight line drawing of the pla-

narized graph in linear time. This drawing is crossing-free and has each original vertex
and each crossing vertex on a grid of size (2n′ − 4)× (n′ − 2).
In a postprocessing, we replace the straight-line edges incident to the crossing vertices

by 1-bend edges. While we do this, we refine the grid by a factor of (2n′ − 4)2 in both
dimension. By placing the 1-bend edges inside the triangles for valid edge placement,
which contain no other edge, we obtain a crossing-free 1-bend drawing with crossing
vertices. Lemma 5.2 assures that this is always possible. The refinement of the grid
can be done in linear time (recomputing the coordinates of linear many objects). Each
divided kite around each crossing vertex has constant complexity. Therefore, we can
compute the polygons, triangles and positions for bend points in constant time for linear
many crossing vertices. Removing the dummy edges and dummy vertices of the divided
kite and the crossing vertices can be done in linear time as well. Thus, the algorithm
runs in linear time, i.e., O(n) time.
By Lemma 5.4 and Lemma 5.5, the bend points are grid points of the grid with size

(2n′−4)·(2n′−4)2×(n′−2)·(2n′−4)2 = (8n′3−48n′2+96n′−64)×(4n′3−24n′2+48n′−32).
The crossings in the returned drawing are RAC since the crossing edges are on hor-

izontal and vertical lines around the points they cross. As both 1-bend edges in the
planarized graph that belong to the same edge in the original graph reach c on the same
line, merging these 1-bend edges does not result in 3-bend edges, but in 2-bend edges.
Since no other edges are bent, the resulting drawing is a 2-bend drawing.

By this theorem, we have shown that we can draw any 1-planar graph as 1-planar
2-bend RAC drawing on a grid of polynomial size, a bit more precisely, a grid of size
O(n3)×O(n3).

85

6. Conclusion

In this thesis we have shown the following results.

• The NIC-plane graphs are in RACpoly
1 (s. Chapter 3). In particular, every NIC-

plane graph—and, therefore, also every IC-plane graph— admits a drawing on a
grid of quadratic size with at most one bend per edge and only right-angle crossings.
Previously, it was known for straight-line RAC drawings of IC- and NIC-planar
graphs that some cannot be drawn on a grid of polynomial size [BDE+16, BBH+17].

• The 1-plane graphs are in RAC1 (s. Chapter 4). Previously, Bekos et al. [BDL+17]
showed this in the variable embedding setting, i.e., the 1-planar graphs are in
RAC1. They asked whether it holds in the fixed embedding setting, i.e., for every
1-plane graph as well. We answer their question positively and show this by a small
modification of their algorithm.

• The 1-plane graphs are in RACpoly
2 (s. Chapter 5). In particular, every 1-plane

graph admits a drawing on an O(n3) × O(n3) grid with at most two bends per
edge and only right-angle crossings. Previously, it was known that every 1-planar
graph admits a RAC drawings with at most one bend per edge in exponential
area [BDL+17]. Since it is unknown if every 1-planar graph admits a drawing on
a grid of polynomial size with one bend per edge and right-angle crossings, we set
an upper bound in the number of bends per edge required for drawing a 1-planar
graph as polyline RAC drawing in polynomial area.

In the field of polyline RAC drawings of 1-planar graphs and subclasses, there remain
some open questions. In particular, this concerns the relationships labeled with a question
mark in Fig. 2.4. We ask the following questions.

• In Chapter 5, we have shown that every 1-plane graph admits a 2-bend RAC
drawing with vertices, crossing points and bend points on a grid of size O(n6),
where n is the number of vertices in the input graph. Can we improve this grid
size to maybe quadratic size?

• Are the 1-planar graphs in RACpoly
1 ? This question may be answered in the variable

or in the fixed embedding setting.

• In Chapter 3, we give an algorithm for drawing NIC-planar graphs and an example
for a drawing generated by this algorithm is given in Appendix A. Can we improve
the aesthetics of these drawing by maybe replacing bent edges by (Bézier) curves?

86

• Are the IC-plane graphs in RAC0? So far, it is known that this is true for the IC-
planar graphs in the variable embedding setting [BDE+16]. We also have concrete
ideas how their algorithm can be modified to maintain the given embedding. This
will positively answer this question.

• Are RAC0 and RACpoly
1 incomparable or is RAC0 a subset of RACpoly

1 ?

• Are RAC0 and RACpoly
2 incomparable or is RAC0 a subset of RACpoly

2 ?

• What is the relationship between RAC1 and RACpoly
2 ?

87

Bibliography

[ABK13] Md. Jawaherul Alam, Franz J. Brandenburg, and Stephen G. Kobourov:
Straight-line grid drawings of 3-connected 1-planar graphs. In Stephen
K. Wismath and Alexander Wolff (editors): Graph Drawing - 21st Inter-
national Symposium, GD 2013, volume 8242 of Lecture Notes in Com-
puter Science, pages 83–94. Springer, 2013. https://doi.org/10.1007/
978-3-319-03841-4_8.

[ABS12] Evmorfia N. Argyriou, Michael A. Bekos, and Antonios Symvonis: The
straight-line RAC drawing problem is NP-hard. J. Graph Algorithms Appl.,
16(2):569–597, 2012. https://doi.org/10.7155/jgaa.00274.

[AFK+12] Karin Arikushi, Radoslav Fulek, Balázs Keszegh, Filip Moric, and Csaba
D. Tóth: Graphs that admit right angle crossing drawings. Comput. Geom.,
45(4):169–177, 2012. https://doi.org/10.1016/j.comgeo.2011.11.008.

[Alb08] Michael O. Albertson: Chromatic number, independence ratio, and crossing
number. Ars Mathematica Contemporena, 1(1):1–6, 2008.

[BBH+17] Christian Bachmaier, Franz J. Brandenburg, Kathrin Hanauer, Daniel
Neuwirth, and Josef Reislhuber: NIC-planar graphs. arXiv, 2017. http:
//arxiv.org/abs/1701.04375.

[BDE+16] Franz J. Brandenburg, Walter Didimo, William S. Evans, Philipp Kin-
dermann, Giuseppe Liotta, and Fabrizio Montecchiani: Recognizing and
drawing IC-planar graphs. Theor. Comput. Sci., 636:1–16, 2016. https:
//doi.org/10.1016/j.tcs.2016.04.026.

[BDL+17] Michael A. Bekos, Walter Didimo, Giuseppe Liotta, Saeed Mehrabi, and
Fabrizio Montecchiani: On RAC drawings of 1-planar graphs. Theor. Com-
put. Sci., 689:48–57, 2017. https://doi.org/10.1016/j.tcs.2017.05.
039.

[CH13] Július Czap and Dávid Hudák: On drawings and decompositions of 1-planar
graphs. Electr. J. Comb., 20(2):P54, 2013. http://www.combinatorics.
org/ojs/index.php/eljc/article/view/v20i2p54.

[CP95] Marek Chrobak and T. H. Payne: A linear-time algorithm for drawing a
planar graph on a grid. Inf. Process. Lett., 54(4):241–246, 1995. https:
//doi.org/10.1016/0020-0190(95)00020-D.

88

https://doi.org/10.1007/978-3-319-03841-4_8
https://doi.org/10.1007/978-3-319-03841-4_8
https://doi.org/10.7155/jgaa.00274
https://doi.org/10.1016/j.comgeo.2011.11.008
http://arxiv.org/abs/1701.04375
http://arxiv.org/abs/1701.04375
https://doi.org/10.1016/j.tcs.2016.04.026
https://doi.org/10.1016/j.tcs.2016.04.026
https://doi.org/10.1016/j.tcs.2017.05.039
https://doi.org/10.1016/j.tcs.2017.05.039
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i2p54
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v20i2p54
https://doi.org/10.1016/0020-0190(95)00020-D
https://doi.org/10.1016/0020-0190(95)00020-D

[CŠ14] Július Czap and Peter Šugerek: Three classes of 1-planar graphs. arXiv,
2014. https://arxiv.org/abs/1404.1222.

[CYN84] Norishige Chiba, Tadashi Yamanouchi, and Takao Nishizeki: Linear algo-
rithms for convex drawings of planar graphs. In J. Bondy and U. S. R.
Murty (editors): Progress in graph theory, page 153–173. Academic Press,
Toronto, 1984.

[DEL11] Walter Didimo, Peter Eades, and Giuseppe Liotta: Drawing graphs with
right angle crossings. Theor. Comput. Sci., 412(39):5156–5166, 2011. https:
//doi.org/10.1016/j.tcs.2011.05.025.

[dFPP90] Hubert de Fraysseix, János Pach, and Richard Pollack: How to draw a planar
graph on a grid. Combinatorica, 10(1):41–51, 1990. https://doi.org/10.
1007/BF02122694.

[Did13] Walter Didimo: Density of straight-line 1-planar graph drawings. Inf. Pro-
cess. Lett., 113(7):236–240, 2013. https://doi.org/10.1016/j.ipl.2013.
01.013.

[EL13] Peter Eades and Giuseppe Liotta: Right angle crossing graphs and 1-
planarity. Discrete Appl. Math., 161(7-8):961–969, 2013. https://doi.
org/10.1016/j.dam.2012.11.019.

[GB07] Alexander Grigoriev and Hans L. Bodlaender: Algorithms for graphs em-
beddable with few crossings per edge. Algorithmica, 49(1):1–11, 2007.
https://doi.org/10.1007/s00453-007-0010-x.

[HEH14] Weidong Huang, Peter Eades, and Seok-Hee Hong: Larger crossing angles
make graphs easier to read. J. Vis. Lang. Comput., 25(4):452–465, 2014.
https://doi.org/10.1016/j.jvlc.2014.03.001.

[HELP12] Seok-Hee Hong, Peter Eades, Giuseppe Liotta, and Sheung-Hung Poon:
Fáry’s theorem for 1-planar graphs. In Joachim Gudmundsson, Julián
Mestre, and Taso Viglas (editors): Computing and Combinatorics - 18th
Annual International Conference, COCOON 2012, volume 7434 of Lec-
ture Notes in Computer Science, pages 335–346. Springer, 2012. https:
//doi.org/10.1007/978-3-642-32241-9_29.

[HHE08] Weidong Huang, Seok-Hee Hong, and Peter Eades: Effects of crossing angles.
In IEEE VGTC Pacific Visualization Symposium 2008, PacificVis 2008,
pages 41–46. IEEE Computer Society, 2008. https://doi.org/10.1109/
PACIFICVIS.2008.4475457.

[HKKP16] Seok-Hee Hong, Michael Kaufmann, Stephen G. Kobourov, and János Pach:
Beyond-planar graphs: Algorithmics and combinatorics (Dagstuhl Seminar
16452). Dagstuhl Reports, 6(11):35–62, 2016. https://doi.org/10.4230/
DagRep.6.11.35.

89

https://arxiv.org/abs/1404.1222
https://doi.org/10.1016/j.tcs.2011.05.025
https://doi.org/10.1016/j.tcs.2011.05.025
https://doi.org/10.1007/BF02122694
https://doi.org/10.1007/BF02122694
https://doi.org/10.1016/j.ipl.2013.01.013
https://doi.org/10.1016/j.ipl.2013.01.013
https://doi.org/10.1016/j.dam.2012.11.019
https://doi.org/10.1016/j.dam.2012.11.019
https://doi.org/10.1007/s00453-007-0010-x
https://doi.org/10.1016/j.jvlc.2014.03.001
https://doi.org/10.1007/978-3-642-32241-9_29
https://doi.org/10.1007/978-3-642-32241-9_29
https://doi.org/10.1109/PACIFICVIS.2008.4475457
https://doi.org/10.1109/PACIFICVIS.2008.4475457
https://doi.org/10.4230/DagRep.6.11.35
https://doi.org/10.4230/DagRep.6.11.35

[HS98] David Harel and Meir Sardas: An algorithm for straight-line drawing of
planar graphs. Algorithmica, 20(2):119–135, 1998. https://doi.org/10.
1007/PL00009189.

[HT73] John E. Hopcroft and Robert Endre Tarjan: Efficient algorithms for graph
manipulation (algorithm 447). Commun. ACM, 16(6):372–378, 1973. http:
//doi.acm.org/10.1145/362248.362272.

[Hua07] Weidong Huang: Using eye tracking to investigate graph layout effects. In
Seok-Hee Hong and Kwan-Liu Ma (editors): APVIS 2007, 6th International
Asia-Pacific Symposium on Visualization 2007, pages 97–100. IEEE Com-
puter Society, 2007. https://doi.org/10.1109/APVIS.2007.329282.

[HvKKR14] Michael Hoffmann, Marc J. van Kreveld, Vincent Kusters, and Günter
Rote: Quality ratios of measures for graph drawing styles. In Proceed-
ings of the 26th Canadian Conference on Computational Geometry, CCCG
2014. Carleton University, Ottawa, Canada, 2014. http://www.cccg.ca/
proceedings/2014/papers/paper05.pdf.

[KLM17] Stephen G. Kobourov, Giuseppe Liotta, and Fabrizio Montecchiani: An an-
notated bibliography on 1-planarity. Computer Science Review, 25:49–67,
2017. https://doi.org/10.1016/j.cosrev.2017.06.002.

[KM13] Vladimir P. Korzhik and Bojan Mohar: Minimal obstructions for 1-
immersions and hardness of 1-planarity testing. Journal of Graph Theory,
72(1):30–71, 2013. https://doi.org/10.1002/jgt.21630.

[KS10] Daniel Král’ and Ladislav Stacho: Coloring plane graphs with independent
crossings. Journal of Graph Theory, 64(3):184–205, 2010. https://doi.
org/10.1002/jgt.20448.

[Lio14] Giuseppe Liotta: Graph drawing beyond planarity: some results and open
problems. In Stefano Bistarelli and Andrea Formisano (editors): Proceed-
ings of the 15th Italian Conference on Theoretical Computer Science 2014,
volume 1231 of CEUR Workshop Proceedings, pages 3–8. CEUR-WS.org,
2014. http://ceur-ws.org/Vol-1231/invited2.pdf.

[LM16] Giuseppe Liotta and Fabrizio Montecchiani: L-visibility drawings of IC-
planar graphs. Inf. Process. Lett., 116(3):217–222, 2016. https://doi.
org/10.1016/j.ipl.2015.11.011.

[PCA02] Helen C. Purchase, David A. Carrington, and Jo-Anne Allder: Empirical
evaluation of aesthetics-based graph layout. Empirical Software Engineer-
ing, 7(3):233–255, 2002.

[PT97] János Pach and Géza Tóth: Graphs drawn with few crossings per edge. Com-
binatorica, 17(3):427–439, 1997. https://doi.org/10.1007/BF01215922.

90

https://doi.org/10.1007/PL00009189
https://doi.org/10.1007/PL00009189
http://doi.acm.org/10.1145/362248.362272
http://doi.acm.org/10.1145/362248.362272
https://doi.org/10.1109/APVIS.2007.329282
http://www.cccg.ca/proceedings/2014/papers/paper05.pdf
http://www.cccg.ca/proceedings/2014/papers/paper05.pdf
https://doi.org/10.1016/j.cosrev.2017.06.002
https://doi.org/10.1002/jgt.21630
https://doi.org/10.1002/jgt.20448
https://doi.org/10.1002/jgt.20448
http://ceur-ws.org/Vol-1231/invited2.pdf
https://doi.org/10.1016/j.ipl.2015.11.011
https://doi.org/10.1016/j.ipl.2015.11.011
https://doi.org/10.1007/BF01215922

[Pur97] Helen C. Purchase: Which aesthetic has the greatest effect on human un-
derstanding? In Giuseppe Di Battista (editor): Graph Drawing, 5th In-
ternational Symposium, GD 1997, volume 1353 of Lecture Notes in Com-
puter Science, pages 248–261. Springer, 1997. https://doi.org/10.1007/
3-540-63938-1_67.

[Pur00] Helen C. Purchase: Effective information visualisation: a study of graph
drawing aesthetics and algorithms. Interacting with Computers, 13(2):147–
162, 2000. https://doi.org/10.1016/S0953-5438(00)00032-1.

[Rin65] Gerhard Ringel: Ein Sechsfarbenproblem auf der Kugel. Abhandlungen aus
dem Mathematischen Seminar der Universität Hamburg, 29(1-2):107–117,
1965.

[Sch90] Walter Schnyder: Embedding planar graphs on the grid. In David S.
Johnson (editor): Proceedings of the First Annual ACM-SIAM Sympo-
sium on Discrete Algorithms 1990, pages 138–148. SIAM, 1990. http:
//dl.acm.org/citation.cfm?id=320176.320191.

[SF07] Harald Scheid and Andreas Frommer: Zahlentheorie (4. Aufl.). Elsevier
Spektrum Akadem. Verl., 2007, ISBN 978-3-8274-1692-6.

[Tho88] Carsten Thomassen: Rectilinear drawings of graphs. Journal of Graph The-
ory, 12(3):335–341, 1988. https://doi.org/10.1002/jgt.3190120306.

[WPCM02] Colin Ware, Helen C. Purchase, Linda Colpoys, and Matthew McGill:
Cognitive measurements of graph aesthetics. Information Visualization,
1(2):103–110, 2002. https://doi.org/10.1057/palgrave.ivs.9500013.

[Zha13] Xin Zhang: Drawing complete multipartite graphs on the plane with restric-
tions on crossings. arXiv, 2013. http://arxiv.org/abs/1311.1994.

[ZL13] Xin Zhang and Guizhen Liu: The structure of plane graphs with indepen-
dent crossings and its applications to coloring problems. Central European
Journal of Mathematics, 11:308–321, February 2013.

91

https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1007/3-540-63938-1_67
https://doi.org/10.1016/S0953-5438(00)00032-1
http://dl.acm.org/citation.cfm?id=320176.320191
http://dl.acm.org/citation.cfm?id=320176.320191
https://doi.org/10.1002/jgt.3190120306
https://doi.org/10.1057/palgrave.ivs.9500013
http://arxiv.org/abs/1311.1994

A. Appendix

In the appendix, we give an example of a NIC-plane graph drawn with the algorithm
presented in Chapter 3 as NIC-planar 1-bend RAC drawing. It is the output of an
implementation of this algorithm in Java. There are three pictures of the same graph
turned by 90 degrees. The given embedded graph has four crossings. Fig. A.1 shows the
graph after it was drawn by the algorithm by Harel and Sardas [HS98]. The edges of the
divided quadrangles in Q (and related edges like the edges incident to a shift vertex) are
highlighted. Observe that there are some vertices drawn as squares. These are dummy
vertices that occurred by splitting an edge and one is a shift vertex. Fig. A.2 shows
the graph after the crossing edges were reinserted. Bend points are drawn as non-solid
square boxes. Note that one divided quadrangle fulfilled the conditions for Case 1, one
for Case 2, and two for Case 3. Fig. A.3 shows the final graph drawing after the dummy
edges that were inserted for obtaining empty kites were removed and the remaining
dummy vertices were transformed to bend points. Note that the top left corner point is
a bend point that emerged by splitting an original edge when empty kites were built.

92

Fig. A.1.: Graph before the reinsertion of crossing edges.

93

Fig. A.2.: Graph after the reinsertion of crossing edges.

94

Fig. A.3.: Final NIC-planar 1-bend RAC drawing after the removal of dummy edges and ver-
tices.

95

Erklärung

Hiermit versichere ich die vorliegende Abschlussarbeit selbstständig verfasst zu haben,
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt zu haben, und die
Arbeit bisher oder gleichzeitig keiner anderen Prüfungsbehörde unter Erlangung eines
akademischen Grades vorgelegt zu haben.

Würzburg, den 1. Dezember 2017

· ·
Johannes Zink

96

	Title Page
	Abstract
	Contents
	1 Introduction
	2 Preliminaries
	2.1 Basic definitions
	2.2 Specific subgraphs
	2.3 Known results
	2.3.1 Relationships between beyond-planar graph classes and RAC graphs
	2.3.2 Edge and crossing density

	2.4 Known algorithms
	2.4.1 Making a graph biconnected
	2.4.2 The Shift Algorithm for maximal planar and biconnected graphs

	3 Constructing 1-Bend RAC Drawings of NIC-Plane Graphs in Quadratic Area
	3.1 Algorithm
	3.1.1 Preprocessing
	3.1.2 Computing the biconnected canonical ordering
	3.1.3 Reinserting the crossing edges

	3.2 Correctness
	3.2.1 Computing the biconnected canonical ordering
	3.2.2 Reinserting the crossing edges
	3.2.3 Results

	3.3 Running time and grid size
	3.4 Proof of the main theorem

	4 Constructing 1-Bend RAC Drawings of 1-Plane Graphs
	4.1 Original algorithm
	4.2 Our modifications
	4.3 Result

	5 Constructing 2-Bend RAC Drawings of 1-Plane Graphs in Polynomial Area
	5.1 Algorithm
	5.1.1 Assignment of edges to axis-parallel half-lines
	5.1.2 Placement of bend points

	5.2 Analysis
	5.2.1 Assignment of edges to axis-parallel half-lines
	5.2.2 Placement of bend points

	5.3 Proof of the main theorem

	6 Conclusion
	Bibliography
	A Appendix
	Erklärung

