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Zusammenfassung

Der Ubergang zwischen Modellen beliebiger Prazision und tatsdchlicher Reprasentation im Spe-
icher ist ein klassisches Problem der computerbasierten Geometrie. Innerhalb der Graphzeichen-
Gemeinschaft hat sich snap rounding als Losungsansatz etabliert: Graph-Darstellungen werden
vereinfacht, indem End- und Schnittpunkte von Kanten auf ein Gitter gerundet werden (z.B. in
[GY86, GGHT97, GM98, dBHO07, Her13]). Eine wichtige Eigenschaft dieser Darstellungen ist
topologische Ahnlichkeit — zu Gunsten der Rundung diirfen Knoten, Kanten und Facetten zusam-
menfallen. Gerade filir geographische Informationssysteme ist das Vereinfachen von Daten wichtig,
da oft grofle Datenmengen auf limitierten (oft mobilen) Endgeridten verarbeitet werden sollen.

Dabei ist ein Verlust topologischer Informationen oft schwerwiegend.

Motiviert von der Anwendung der geographischen Informationssysteme befassen wir uns in dieser
Arbeit mit der Frage, wie sich planare Graphen runden lassen, ohne die Topologie des Graphen
zu verandern. Wir formalisieren diese Problemstellung unter dem Namen TOPOLOGIALLY SAFE
SNAPPING: wir suchen eine Rundung eines Graphen mit Knoten auf ganzzahligen Koordinaten,
die die gegebene Topologie nicht verdandert und deren Gesamtverschiebung aller Knoten moglichst
gering ist. Als erstes Resultat liefern wir A/P-schwere Beweise fiir TOPOLOGIALLY SAFE SNAPPING
fiir die euclidsche sowie die Manhattan-Distanz. Weiter zeigen wir unter anderem, dass keine
additive Approximation konstanter Giite existieren kann und TOPOLOGIALLY SAFE SNAPPING
nicht in FPTAS liegt.

Als Losungsstrategie prasentieren wir ein Ganzzahliges Programm (integer linear program, ILP)
basierend auf der Arbeit von Néllenburg & Wolff [NW11] um optimale Rundungen von Graphen zu
bestimmen. Obwohl theoretisch funktionsfahig, haben unsere Experimente gezeigt, dass das ILP
sich auf Grund von Laufzeitproblemen nicht fiir grofie Graphen (mehr als 20 Knoten und/oder
grole Ausdehnung) eignet. Das von uns vorgestellte mathematische Modell ldsst sich beliebig
erweitern. Wir demonstrieren dies, indem wir es mit einfachen Mitteln erweitern, und es so zum

Erzeugen von planaren und platzminimalen Zeichnungen benutzen zu koénnen.

Um auch fir groe Graphen einen Losungsansatz prasentieren zu kénnen, haben wir nach ef-
fizienten Heuristiken gesucht. Unser bester Ansatz ist ein Algorithmus, der auf den Facetten des
Eingabegraphen operiert. Dieser kann zwar nicht garantieren, immer alle Knoten des Graphen zu
runden, jedoch wird zu keinem Zeitpunkt der Ausfiihrung die Topologie der Eingabe verletzt. In
Experimenten zeigen wir, dass auch bei dichten Graphen (hohen Knoten/Ausdehnung-Verhéltnis),
der iiberwiegende Teil aller Knoten gerundet werden kann. Damit eignet sich die vorgestellte
Heuristik als Vorverarbeitungsschritt in der Kompression von geographischen Daten, bei denen

topologische Korrektheit im Vordergrund steht.

Offen bleiben somit besonders die Fragen nach anderen Approximationsalgorithmen, einer allge-

meingiiltigen Heuristik und ob sich die Laufzeit des ILP-Ansatzes verbessern lasst.
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1. Introduction

In geographic applications, usually large amounts of data need to be stored and processed. This
data often is given as line segments embedded in the plane, such as road networks or other maps.
Specifically for mobile route planing, the devices in use often are hand-held and have limited
resources: small memory, small screens, low display resolutions or slow CPUs. One way to overcome
this is by getting rid of unnecessary detail. This can be done by reducing coordinate precision:
rounding data points to an underlying grid. We are not the first to try this approach. A formalized
definition of this idea can be taken from Guibas & Marimont [GM98]:

Definition 1.1 (Snap rounding):

Let the euclidean plane be tiled into unit squares called pizels with center on integer coordinates.
Let S be a finite collection of line segments s € S in the plane and let A(S) be the arrangement
of vertices, edges and faces in the plane induced by S. Then snap rounding is the process of
converting the arbitrary precision arrangement A(S) into a fixed-precision representation A*(S*)

with the following properties:
o Fized-precision representation: All vertices of A* are at integer precision coordinates.

o Geometric similarity: For each s € S, the approximation s* lies within the Minkowski sum

of s and a pixel at the origin.

e Topological similarity: A and A* are “topologically equivalent up to the collapsing of fea-
tures”. There is a continuous deformation of the segments in S to their snap-rounded coun-

terparts such that no segment ever passes completely over a vertex in the arrangement.

In the computational geometry community, a process called snap rounding has been proposed (as
in Definition 1.1) and has since become well-established. Designed to overcome problems induced
by working with infinite-precision real arithmetic machines (RAMs) [dBHOO7], this technique can
also be used for limited display resolutions, such as bitmap graphics. There are several algorithms
for computing such a representation that are fast and work well in practice (see Section 1.1). But
by definition, the output of those algorithms is not topologically safe: vertices, edges or even faces

can disappear while rounding.

Motivated by the above geographic information system application and the definition of snap
rounding, the question discussed in this thesis can bluntly be stated as the following: “What

about topological equivalence?” One can not always fulfill the first two properties and topological



Figure 1.1.: Original motivation for snap rounding: (a) instance of four vertices and three edges,
found intersection depicted as white vertex, (b) rounding the white vertex to the
nearest integer grid point produces extraneous intersections.

equivalence at the same time. We will still look for fixed-precision representations of arrangements,
but in order to guarantee equivalence instead of similarity, we have to relax on geometric similarity:
what is the minimum total change on the vertices coordinates needed to produce a topologically-safe
fixed-precision representation? We call this problem TOPOLOGIALLY SAFE SNAPPING — related to

the snapping onto integer grid points.

This thesis is structured as follows: the remainder of this chapter will give an overview on recent
work related to rounding and drawing planar graphs in the plane followed by a summary of our
contributions. Chapter 2 gives a formal definition of and a A/P-hardness proof for TOPOLOGIALLY
SAFE SNAPPING with some results on related variants and approximability. Chapter 3 introduces
an ILP-based approach for TOPOLOGIALLY SAFE SNAPPING (that can also be used for space-
minimal drawings) and provides experiments evaluating the performance of our model and the
applicability on graph drawing tasks. Chapter 4 gives our results on finding a heuristic algorithm
for TOPOLOGIALLY SAFE SNAPPING and discusses its performance. Finally, Chapter 5 gives some

concluding remarks and points to open problems that could not be discussed in this work.

1.1. Related Work

This section subdivides into two fields: efficient snap rounding and drawing planar graphs on
the integer grid. We will discuss each topic in roughly chronological order, starting with results

concerning rounding.

Greene and Yao [GY86] choose the line intersection problem as paradigm because of it’s numerous
applications. Given lines with endpoints on integer coordinates, finding intersection points and
rounding those to integer coordinates can yield bad results. One mayor problem are extraneous
intersections: intersections induced by using rounded values for intersection point coordinates

— see Figure 1.1. Prior to their algorithm, these intersections have been handled by repeatedly



Figure 1.2.: Results of early rounding approaches: (a) Greene & Yao (b) Hobby (tolerance square
in red)

running an intersection detection algorithm (for example the Bentley-Ottmann sweep [BOT79]),
until no new intersections are reported. They stated a list of unwanted results and give an efficient
algorithm for finding and drawing intersections that avoids all of them. While not solving the
problem of extraneous intersections, the algorithm proposed by Greene and Yao finds and rounds
all intersections in one single iteration. An example output of their algorithm can be found in
Figure 1.2 (a).

Hobby [Hob99] introduces tolerance squares — unit square cells with center on an integer grid point.
These cells are created wherever a line segment starts, ends or a crossing event occurs. Everything
inside a tolerance square is snapped to its center (including other lines by subdividing them and
snapping the additional vertex). While this may introduce new incidences, it avoids extraneous

intersections. This can be seen in Figure 1.2 (b).

Guibas & Marimont [GM98] give a boiled down definition of snap rounding, found in Definition 1.1
above. Algorithm design and analysis follow the idea of Hobby, using hot pizels that are very similar
to tolerance squares. They employ vertical cell decompositions, introducing warm pizels related to
the boundaries of the cells. Again, it rounds endpoints and intersections to representable points in a
globally topologically consistent way. The algorithm is dynamic and the runtime depends on several
variables: Let n be the number of unrounded segments, A the complexity of the ideal arrangement,
H the set of hot pixels, |h| the number of unrounded segments intersecting each individual pixel
and C related to the complexity of the cell decomposition. (This notions will be used throughout
this section.) The runtime of their algorithm is in O(nlogn + A+ >, ., |k]* + C).

Goodrich, Guibas, Hershberger & Tanenbaum [GGHT97] simplify the approach above by elim-
inating the need to handle and analyze warm pixels. They give two algorithms: one deter-
ministic, also based on the plane sweep algorithm by Bentley & Ottmann [BO'79]; the other
one randomized using trapezoidal decomposition. Both have a matching runtime of (expected)
O(nlogn + ),y |h|logn) that is truly output-sensitive (the input arrangement A has no influ-

ence on total runtime).



(a) (b) (c)

Figure 1.3.: Motivation for iterated snap rounding: (a) input segments (e; does not intersect red
pixel), (b) after snap rounding, e; intersects red pixel, (c) result after iterated snap
rounding (e; subdivided).

To this point, the focus was on coordinate precision. But in geometric applications, other mea-
surements may require high- to infinite-precision representations as well. Consider Figure 1.3 (a)
and (b). While the precision of vertex coordinates and vertex-to-vertex distances are bounded by
grid resolution, for nonincident vertex-edge pairs vertex-to-edge distances can still be arbitrarily

small and thus require higher degrees of precision.

Halperin & Packer [HP02] augment the classic snap rounding procedure. The presented iterated
snap rounding gives an output that is equivalent to that of repeatedly applying the known hot
pixel-based rounding process until any vertex and every nonincident edge are separated by at
least half the width of a pixel. An example result can be found in Figure 1.3 from left (input)
to right (final result after two iterations). As the output gets degenerated even further, iterated
snap rounding may only be useful for some applications. Packer [Pac06] later extends this idea
by adding a user-specified parameter to bound any drift on segments, that may be induced by

consecutively intersecting other hot pixels.

De Berg, Halperin & Overmars [dBHO07] extend the list of properties desired in a snap rounding
output by non-redundancy: any degree 2 vertex of the output has to correspond with a segment
endpoint (an example can be found in Figure 1.4). They give an algorithm based on two vertical
sweeps that produces a snap rounding and eliminates any redundant degree 2 vertices and takes

O((n + I)logn) time (I being the number of intersections).

Hershberger [Her13] divides the set of hot pixels into two groups and gives individual rules for both
of them. This approach is called stable snap rounding — stable in the sense that re-applying the
procedure to its output does not induce new changes — and can be applied to augment different

existing snap rounding algorithms: as extension of Hobby’s algorithm [Hob99] runtime changes to



(a) (b)

Figure 1.4.: Example for non-redundancy: (a) input segments (redundant intersection marked as
white vertex), (b) output with degree 2 vertex that is not a segment endpoint (white
vertex).

Figure 1.5.: Nested triangles graph on n = 12 vertices

O(JA(S)|logn + > ),c i |h]); algorithms computing bundled representations (as in de Berg et al.
[dBHOOT]) can be augmented to be stable with O(|H|logn) additional runtime.

This concludes or overview on snap rounding in two dimensions. Other results (for rounding on
the sphere, in higher dimensions, of structures with special properties (like Voronoi diagrams), and

others) can be found, but will not be covered here.

From a graph-drawing perspective, restricting to the grid has a (relatively) long history. Fary
[F4ar48] (among others) shows that every planar graph has a planar straight line embedding with
vertices as points on the plane (also known as Fdry embedding). Tutte [Tut63] introduces the
barycenter method for drawing planar graphs. It yields drawings that need precision linear in the

size of the graph.

Dolev, Leighton & Trickey [DLT83] give a family of planar graphs called nested triangles graphs —
see Figure 1.5. They use these to prove an asymptotical area lower bound of (2n/3—1) x (2n/3—1)

for straight line drawings on the integer grid.



Motivated by these results, Schnyder [Sch90] and, independently, de Fraysseix, Pach & Pollack
[dFPP90] have shown that any planar graph with n vertices admits a straight-line drawing on a
grid of size O(n) x O(n). This is asymptotically optimal in the worst case [dFPP90]. Chrobak &
Nakano [CN98] have investigated drawing planar graphs on grids of smaller width, at the expense

of a larger height.

Krug & Wagner [KWO08] give a reduction from 3-PARTITION to show that minimizing the area
needed for straight line grid drawings is NP-hard. They also give an iterative algorithm that, for

a given plane graph, computes a more compact drawing.

Noéllenburg & Wolff [NW11] give a mixed integer program for octilinear metro-map drawings with
station labels. They establish sets of hard and soft constraints to create a visually pleasant map
drawing that is useful for navigational questions. This drawing is not intended to preserve real-
world distances or travel times. While solving a very special problem, the constraints used to do

so can be adapted for other geometric tasks (and in fact, we will do so in Section 3.1).

Biedl, Blisius, Niedermann, Nollenburg, Prutkin & Rutter [BBNT13] propose a generic ILP model
for various grid-based layout problems, such as pathwidth, optimum st-orientation or bar k-

visibility representations.

Again other results on more specialized problems, like orthogonal drawings or drawings for special

maps, can be found, but will not be discussed here.

1.2. Our Contribution

We introduce a novel problem we call TOPOLOGIALLY SAFE SNAPPING and show that it is NP-
hard. Our reduction uses graphs with vertices at half-integer precision; rounding these graphs
implies a compression of a single bit on both coordinates simultaneously. We take two common
distance functions — namely Fuclidean- and Manhattan distance — and show AN/P-hardness of finding
exact solutions for both. We also provide some hardness results for finding approximate solutions
for variants of TOPOLOGIALLY SAFE SNAPPING.

We also give an integer linear program (ILP) for optimal TOPOLOGIALLY SAFE SNAPPING —
generalizing the mixed integer program for Metro-Map Layout [NW11] — and discuss it in detail.
Our program has polynomially many variables and constraints, but is practically very large, limiting
its usefulness. The model can be adapted to produce straight line drawings with minimum area
or other tasks and we provide some ideas to do so. This is interesting even for small graphs,
since minimum area drawings can be useful for validating (counter)examples in graph drawing
theory. We back the power of our program by providing experimental results that cover roundings
preserving topology as well as minimum area drawings and creating planar drawings from non-

planar sketches.

10



In addition, we introduce a rounding heuristic that can be used to round graphs to the grid
efficiently. We provide pseudo-code for the algorithm and use a proof-of-concept implementation
to demonstrate performance. While success-rate for rounding every vertex of a graph is well below
100%, it can still be used to reduce precision requirements (and thus safe storage space) for a
reasonable amount of vertices. We demonstrate this on randomly generated planar graphs and

compare induced vertex movement to optimal results provided by the ILP approach.
Parts of this thesis — namely the A/P-hardness proof of Section 2.2 and the ILP formulation of

Section 3.1 — have been accepted as a short paper [LvDW16] at the 26th International Symposium
on Graph Drawing.

11



2. NP-Hardness

As stated in Section 1.1, there are several efficient approaches for snap-rounding planar graphs
that do not violate planarity while rounding, but are only “topologically similar”: equivalence up

to the collapsing of features, a goal stated by Guibas and Marimont [GM98].

This leads to the question if there can also be an efficient algorithm that solves the problem of
rounding to integer coordinates in an optimal and topologically safe fashion. In this chapter, we will

evaluate the computational complexity of the problem we call TOPOLOGIALLY SAFE SNAPPING.

Problem 2.1 (Topologically Safe Snapping):
Input: Planar graph G = (V, E) with Féry embedding,
bounding box [0, Ximax] X [0, Yinax]-

Output: Rounding of G’s vertices to integer coordinates with minimal total

movement, that does not alter the topology.

To measure movement of a vertex v, we consider the starting position P, = (X,,Y,) in the Fary
embedding and the integer coordinates p, = (,, ¥, ) it is rounded to. Then the movement m(v) is

calculated using the Manhattan distance function dp; for points in the plane:
m(v) = dM(p’LHP’U) = |xv - X’u‘ + |yv - YUl

The total movement of a graph now is the sum over all individual vertex movements:

We will show that Problem 2.1 is A/P-hard. In the following sections we first give the definition of
another NP-complete problem, PLANAR MONOTONE 3SAT, then give a Karp reduction to prove
Theorem 2.1 and consider hardness of other variants related to TOPOLOGIALLY SAFE SNAPPING.
Finally we have a look at the approximability of TOPOLOGIALLY SAFE SNAPPING.

12
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Figure 2.1.: (a) Formula B in PLANAR MONOTONE 3SAT, (b) corresponding graph H(B).

2.1. Planar monotone 3SAT

In this section, we describe the problem known as PLANAR MONOTONE 3SAT. This is the NP-

complete problem we will give a Karp reduction from.

The Boolean Satisfiability Problem (SAT) is well known as the following: Given a boolean formula
B, is there a consistent valuation of its variables with either TRUE or FALSE such that B evaluates

to TRUE? If such an valuation exists, B is called satisfiable. Otherwise B is called unsatisfiable.

The problem 3SAT is a variant of the Satisfiability Problem, where B is in 3 CONJUNCTIVE
NorMAL ForM (3CNF). A formula B is in 3CNF, if B is a conjunction of all of its clauses,

where every clause is a disjunction of at most 3 variables.

For a formula B in 3CNF, H(B) = (V, E) is the induced graph with V being divided into vertices
for variables and clauses. There is an edge between a variable-vertex v, and a clause-vertex v,
if and only if variable v occurs in clause ¢. PLANAR 3SAT is the decision problem, whether a
formula B in 3CNF with planar graph H(B) is satisfiable or not. PLANAR 3SAT is known to be
NP-complete as shown by Lichtenstein in 1982 [Lic82].

A formula in PLANAR 3SAT is called monotone if and only if in each clause all occurrences of

variables are either all negated or all unnegated. This gives us the following problem definition:

Problem 2.2 (Planar Monotone 3SAT):

Input: A formula B in 3CNF that is monotone and planar.
Output: Is B satisfiable?

Problem 2.2 has been shown to be A/P-complete. A proof can be found in the appendix of [dBK12].
For a formula B in PLANAR MONOTONE 3SAT, the graph H(B) can be drawn as follows: Variable
vertices are aligned on a straight horizontal line. Vertices for negated clauses are drawn atop the
variables, vertices for unnegated clauses are drawn below. Edges consist of horizontal and vertical

line segments with at most one bend per edge. An illustration can be found in Figure 2.1.

13



2.2. Hardness Proof

In this section, we will show that Problem 2.1 is A/P-hard. To do so, we consider the decision-
variant of TOPOLOGIALLY SAFE SNAPPING and show that it is N/P-complete, a standard technique
that can be found in [GJ79, page 114]!.

Problem 2.3 (Cost-Bounded Topologically Safe Snapping):

Input: Instance I of TOPOLOGIALLY SAFE SNAPPING with graph G =
(V. E),
Cost bound cpin.

Output: Is there a solution for I with total movement m(V) < cpin?

Theorem 2.1:
Cost-Bounded TOPOLOGIALLY SAFE SNAPPING is AN/P-complete.

Proof. Consider an instance of Problem 2.2 for a formula F. From F we construct a cost bound
Cmin and a plane graph G with vertices at half-integer coordinates that resembles the structure of
Figure 2.1 (b). This structure can also be recognized in various other proofs regarding hardness for
problems on planar graphs, for example see [Wol07] or [Cab06]. The optimal total vertex movement
for G induced by rounding to integer coordinates is exactly ¢y if and only if F' is satisfiable. To
achieve this, we introduce gadgets for the elements of H(F') — variable- and clause-vertices, edges

and bends — and construct G and ¢, in polynomial time.
For exposition, we consider two types of vertices in G:

e Black vertices start on integer grid points and do not need to be rounded. Moving a black
vertex to another integer grid point is allowed, but we will show that this is not optimal if
F is satisfiable.

e White vertices Viyr C V(G) start at grid cell centers and thus will always move at least 1 by

rounding. (Recall we use Manhattan distance to measure vertex movement.)
Now we give the construction of the various gadgets.

First, we introduce the line and bend gadgets. These are used to ensure consistency of the rounding
between the the variable and the clause gadgets. Every segment of the line gadget consists of four
black vertices and two edges forming a tunnel. Inside the tunnel, there is a single white vertex
connected to right (or top) endpoints. The white vertex can be rounded most cheaply to exactly
two possible integer grid points, depicted by the red and blue arrows in Figure 2.2 (top-center).

By rounding a white vertex in one direction, we prohibit the neighbor in that direction to go

L “Whenever we show that a polynomial time algorithm for the search problem could be used to solve the corre-
sponding decision problem in polynomial time, we are actually giving a Turing reduction between them, and
hence an NP-completeness result for the decision problem can be translated into an NP-hardness result for the
search problem.”

14



Figure 2.2.: Line and bend gadgets: (top-center) Idea behind pushes, (bottom-left) pushes around
corners, (bottom-center) synchronization from end to end.

Figure 2.3.: Variable gadget with one negated and three unnegated occurrence.

the opposite way — as both vertices would end up on the same integer grid point (which violates
topological safety). If a white vertex is forced to go in one direction (as the other direction may be
blocked), we say it is pushed. As seen in Figure 2.1 (b), lines may have up to one orthogonal bend.
Similar to line gadgets, bend gadgets — Figure 2.2 (bottom-left) — can also be rounded most cheaply
in two ways. This is used to transmit pushes through orthogonal bends. If the white vertex at one
end of a combination of continuous line and bend gadgets is pushed, topological safety makes sure

that the white vertex at the other end also receives a synchronous push — the push is transmitted.

Next, consider the variable gadget depicted in Figure 2.3. It has tunnels for vertical line gadgets
for every negated and unnegated occurrence at the top and bottom respectively. At the center of
this gadget, there is a white vertex that is connected to the gadget’s walls by two triangles. Call
this the assignment vertex. It can be rounded up or down, making the edges of the triangles block

all integer grid points on either line. As the white vertices at the openings of the tunnels only

15
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Figure 2.4.: Clause gadgets for all-negated clauses: (a) 3 variables, (b) 2 variables, (c) 1 variable.

have one remaining grid point to be rounded to, pushes are generated and connected line and bend
gadgets are forced to transmit them. If F' is satisfiable, a truth assignment can be extracted by
looking at the new positions of all assignment vertices — rounded down equals TRUE and rounded

up equals FALSE.

Finally, the clause gadget is shown in Figure 2.4. We give descriptions for the all-negated versions;
all-unnegated versions can be constructed similarly by flipping horizontally. At the gadgets’ center,
there is a white satisfaction vertex (the degree 1 vertex). All possible roundings for this vertex are
depicted by colored arrows pointing to grid points that belong to connected tunnels. These grid
points are only available if the tunnel does not transmit a push. Then the satisfaction vertex can

be rounded at cost 1 if and only if there is one tunnel that does not transmit a push.

The bounding box for the constructed instance of TOPOLOGIALLY SAFE SNAPPING can be picked

according to the size of G.

The rounding cost of G is bounded from below by ¢min = |[Viv|, since every white vertex must be
rounded at cost at least 1. If F' is satisfiable, there is a rounding that achieves this, because then
we can round the assignment vertices such that the satisfaction vertices can be rounded at cost
1. In the other direction, a satisfying assignment can be read off from the assignment vertices if

rounding occurred at cost Cpin-

If no candidate grid point is available for the satisfaction vertex, a topologically correct rounding
must move a black vertex associated with that clause (of either the clause itself, the connected
variables or the edges and bends connecting them); we say, a jump-out occurs for that clause. This
adds at least 1 to the rounding cost without reducing the movement of any white vertex and thus
such solutions cost strictly more than c¢y;,. An example for this can be found in Figure 2.5. That
is, if cmin is exceeded, then F' is unsatisfiable: any rounding corresponding to a satisfying truth

assignment is cheaper. This concludes our Karp reduction and the claim follows. O

16



Figure 2.5.: Unsatisfiable clause F = (X) A (Y) A (X VY) with additional rounding cost of 1.
Every white vertex is rounded at cost 1, plus the additional cost of 1 for the jump-out
(moving one black vertex, depicted as purple arrow).

Theorem 2.2 (Topologically Safe Snapping):
TOPOLOGIALLY SAFE SNAPPING is A/P-hard.

Proof. Given an instance I of TOPOLOGIALLY SAFE SNAPPING with graph G. If we could produce
a topologically-safe rounding (or see if there is none) for G at a given cost bound ¢ in polynomial

time, we could search for the minimum cost ¢’ also in polynomial time.

Under the assumption that P # NP, Theorem 2.1 states that no such algorithm can exist. Thus
it concludes, that TOPOLOGIALLY SAFE SNAPPING is A/P-hard. O

This result — using Manhattan distance dj; for measurements — raises the question about other

metrics. Using the Fuclidean distance to measure, we get the following:

mE(U) = dE(pvv Pv) = \/(va - Xv)2 + (yv - Yv)2

Corollary 2.3 (Euclidean Topologically Safe Snapping):
TOPOLOGIALLY SAFE SNAPPING is N/P-hard when using Euclidean distance.

17



Proof. Gadgets and general structure of the proof given above remain. For cp;, consider the
following: ¢min = V/0.52 + 0.52 - |[Viy|. Every white vertex still needs to be rounded, the rest of the

proof goes through as above. O

While the proof may be very simple, Corollary 2.3 is noteworthy, as Fuclidean distance is commonly
used in geometric applications. Now instead of considering the sum of all vertex movements,

another measure may be the maximum of all rounding movements:
Mmax (V) = max{mg() |v e V}

Corollary 2.4 (Euclidean Min-Topologically Safe Snapping):
Consider an instance of Euclidean TOPOLOGIALLY SAFE SNAPPING with graph G = (V, E). Min-
imizing Mmmayx (V) is also NP-hard.

Proof. Again follow the idea of the proof for Theorem 2.1. Any white vertex vy € Vi has the
rounding cost mp(vy) > v/0.52 + 0.52 ~ 0.707. For any black vertex v € V \ Viy, the rounding
cost is either mpg(v) = 0 (not moving at all) or at least 1 (moving to the next grid point or even
further).

If the clause is satisfiable, then for every white vertex mg(vw) = v/0.5%2 4+ 0.52 holds and no
black vertex needs to be moved and thus mpax(V) = v/0.52 + 0.52. If otherwise the clause is

unsatisfiable, at least one black vertex needs to be moved and 80 Mpax(V) > 1.

Then for a formula F' with graph H(F) = (V,E), any efficient algorithm that could tell if
Mmax(V) < 1 could be used to decide if F is satisfiable. Under the assumption P # AP, no

such algorithm can exist. O

Theorem 2.5:
TOPOLOGIALLY SAFE SNAPPING is MP-hard in the strong sense.

Proof. The only numerical variables in an instance of TOPOLOGIALLY SAFE SNAPPING are vertex
coordinates. In the proof of Theorem 2.1 the constructed instances have a bounding box of poly-
nomial size and thus coordinate values are limited polynomially as well. Thus runtime remains

exponential in input size when unary representations are used. O

2.3. Approximability

After having shown A/P-hardness of TOPOLOGIALLY SAFE SNAPPING and several variants, we give
an overview on results concerning approximability. First we will show that TOPOLOGIALLY SAFE

SNAPPING is in NPO, the class of non-deterministic polynomial-time optimization problems.
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Definition 2.1 (NPO):
An optimization problem is in NPO, if

(1) the set of instances can be recognized in polynomial time;

(2) there is a monotone non-decreasing polynomial ¢ such that for any instance x and any feasible

solution y the following holds: |y| < ¢(|z]);
(3) a solution with size bounded by ¢ can be checked for feasibility in polynomial time;

(4) there is a monotone non-decreasing polynomial r, such that the objective function can be

computed in r(|z|, |y|) time for any instance-feasible solution pair.

Lemma 2.6:

TOPOLOGIALLY SAFE SNAPPING is in NPO.

Proof. We will consider the items in the same order as given in Definition 2.1:
(1) Planarity of a given graph can be checked in polynomial time.

(2) The size of any feasible solution is polynomially bounded by the bounding box for the corre-

sponding instance.

(3) Any rounded graph can be checked for planarity and equivalence of topology in polynomial

time. Verifying every vertex is at integer-precision coordinates can be done in O(|V]).

(4) The objective function is calculated by comparing old and new position for every vertex. This

are O(]V|)-many distance calculations, also possible in polynomial time.

While fairly obvious, this result is useful later on. Consider the following definition, taken from

Van Leeuwen & Van Leeuwen [vLvL11]:

Definition 2.2 (Approximation with constant absolute error):

Let P be a problem and z be an instance of P. Let OPT(z) be the value of an optimal solution
for . P can be approximated within a constant absolute error if there exists an algorithm A and
a constant ¢ > 0 such that for any instance z of P, A(z) has runtime polynomial in the size of x

and produces a feasible solution with

|A(z) — OPT(z)| < c.
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Lemma 2.7:
TOPOLOGIALLY SAFE SNAPPING cannot be approximated with constant absolute error in polyno-
mial time unless P=NP.

Proof. Let G be a graph with vertices either on a grid point or at the center of a grid cell — similar
to the gadgets used in the proofs above. Let z be an instance of TOPOLOGIALLY SAFE SNAPPING
for G with optimal value OPT(x) and let ¢ > 0 be a constant. Suppose for contradiction that A
is a polynomial time algorithm for TOPOLOGIALLY SAFE SNAPPING with constant absolute error
of ¢, so

|A(z) — OPT (z)| < c.

Using algorithm A, we construct the following algorithm:

Name: A.;1(z)

G’ + (c+1) copies of G in the plane with non-overlapping corresponding bounding boxes.
2’ < Instance of TSS with graph G’ and unified bounding box.

return A(z')/(c+1)

The algorithm A, takes the drawing of the input graph, makes (¢ + 1) copies and places them
in the plane with a polynomial amount of space in between. (Recall G being given at half-integer
precision.) These copies can be produced in polynomial time, as well as the evaluation of A(x’)

(by assumption). So A.41 also is a polynomial time algorithm.

By definition of A.;; and construction of z’, we get the following equations:

|A(z") — OPT(2")| < ¢

& A(2') - OPT(2') <c

< (c+1) - (Aes1(z) —OPT(z)) < c
< Acr1(x) — OPT(2) < c+ D)

We know that A(z) > OPT(x). From ¢ > 0 we get e < 1 and by construction of G we know
Acq1(z) € N and OPT(z) € N. For A(x) — OPT(x) < 1, the difference has to be 0. So by
using A, we could construct a polynomial time algorithm that computes an optimal solution — a

contradiction as long as P # NP and no such polynomial time algorithm A can exist. O
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The definitions listed below are as well taken from Van Leeuwen & Van Leeuwen [vLvL11]:

Definition 2.3 (FPTAS, FIPTAS, optimum-asymptotic schemes):
Let P € NPO be a problem, x be an instance of P, n be the size of x and let A be an algorithm.

o Ais a fully polynomial-time approzimation scheme (fptas) for P, if A(z) runsin O(p(e~1,n))
time for some polynomial function p and the output of A(x) has approximation ratio (1 £e¢).
If P has an fptas, we say P € FPTAS.

e A is an fully input-polynomial-time approximation scheme (fiptas) for P, if A(x) runs in
O(p(n)) time for some polynomial function p and the output of A(x) has approximation
ratio (1 £¢). If P has an fiptas, we say P € FIPTAS.

e An approximation scheme S for P is optimum-asymptotic, if there is a computalbe threshold
function b : Q>1 — N and an associated constant e, with the property that b(1/e) < 1
for each € > €, such that for any € > 0 and any x the solution S(x) is feasible and if
OPT(z) > b(1/¢e), then S(x) is an (1+¢) approximation. Optimum-asymptotic schemes and

oo

classes are marked with an superscript.

Optimum-asymptotic approximation schemes guarantee to deliver good results if the input instance

is large enough. This leads to the definition of FIPT'AS® in a natural way.

Garey & Johnson [GJ79] discuss the connection between AMP-hardness and approximability. They

describe a pair of functions length(I) and maxz(I):

e length maps the size of an instance I (the number of symbols used to describe I under some

reasonable encoding) to an integer value;
e max maps an instance I to an integer value that corresponds to the largest number in I.
We have the following Corollary (from [GJ79, page 141]):
Corollary 2.8:

Let IT be an integer-valued optimization problem. If there exists a polynomial ¢ in two variables

and any instance I of II satisfy the hypothesis

OPT(I) < q(length(I), max(I))
and if II is AP-hard in the strong sense, then II does not have an fptas unless P=NP.
This leads to the following theorem:

Theorem 2.9:
TOPOLOGIALLY SAFE SNAPPING does not admit an fptas unless P=AP.
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Proof. The instances considered in the proof for Theorem 2.1 have integer-valued optimal solutions;
let I be such an instance. From 2.5 we know that TOPOLOGIALLY SAFE SNAPPING is A/P-hard
in the strong sense. Let the value of max correspond to the size of the bounding box of I and let
length be a function proportional to the number of white vertices present in the graph of I. For
any instance with a satisfiable formula, OPT(I) is bounded by the number of white vertices. For
any instance with an unsatisfiable formula, OPT(I) is bounded by the number of white vertices
plus the cost for all jump-outs. The number of jump-outs necessary is bounded by the number
of clauses and the total size of all jump-outs is bounded by the size of the bounding box. The

polynomial ¢ can be constructed accordingly. O
Theorem 2.10:

A problem P can be approximated in polynomial time within constant absolute error if and only
if it has a fipas®™ with a threshold function b that is bounded by a linear function.

Proof. See [vLvL11, Theorem 5.10]. O

Corollary 2.11:
TOPOLOGIALLY SAFE SNAPPING does not have a fifas® with a linear-bounded threshold function.

Proof. By Lemma 2.7 we know no approximation with constant absolute error exists. The claim

follows from Theorem 2.10 immediately. O

Finally we reconsider Fuclidean min-TOPOLOGIALLY SAFE SNAPPING (Corollary 2.4).

Corollary 2.12:
FEuclidean min-TOPOLOGIALLY SAFE SNAPPING is APX-hard.

Proof. Again we look at half-integer precision instances. As in the proof for Corollary 2.4, the
rounding cost for white vertices is v/0.52 + 0.52. In contrast, the cost for black vertices is at least
1. O

This concludes our discussion on approximability of TOPOLOGIALLY SAFE SNAPPING and related

variants.
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3. Integer Linear Program

In this chapter, we give an integer linear program (ILP) to solve TOPOLOGIALLY SAFE SNAPPING.
At first, we describe the mathematical model in use. Then we give an IBM OPL implementation
and some discussion on why to convert this into a JAVA application. The last section of this chapter
is dedicated to experimental evaluations: we compare the results of snap rounding algorithms to
optimal and topologically safe results of our approach; we also use our ILP to produce space-
minimal drawings of graphs and compare those to classic graph drawing algorithms. The examples

given will demonstrate the usefulness and limitations of our ILP.

3.1. Basic Model

We will follow the the naming conventions introduced in Chapter 2 with the following extension:
variables that are constants will be in uppercase; decision variables will be in lowercase. (For
some vertex v, recall X,, being the unrounded z-coordinate and z, the corresponding rounded

coordinate.)
The input for our ILP will be a graph G = (V, E) with embedding given as follows:

e A set of tuples representing the vertices v € V, consisting of an ID given as integer, z- and
y-coordinates X,,Y, with double precision and a list of vertex-IDs N(v) representing the
embedding ordered counter clockwise around that vertex.

e A array of edges, given as sets of two vertex-IDs.

We also give Xyax and Yiax as coordinates for the upper right corner of the bounding box (as-
suming non-negative vertex coordinates). In addition there is a set of two strings “X” and “Y”
and two integers telling the number of vertices and edges in the graph. Those are used for looping
through both collections and provide for better code readability. A simple example can be found
in figure 3.1.

Using Manhattan distance, the objective function is derived from Problem 2.1 in the natural way:

MINIMIZE Z |zy — Xl + yo — Yo (3.1)
veV
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. 1| coords = {"X","Y"};
3 } 2| vertexCount = 4;
! 3| edgeCount = 4;
5 | 4|nodes = {<1, 1.1, 1.1, {2, 3}>,
“ | 5 <2, 2.9, 1.1, {3, 1}>,
I 6 <3, 2.3, 2.7, {1, 4, 2}>,
} 7 <4, 2.1, 1.7, {3 };
1 ] I I 8
1 1 1 9|edges = [ {1, 2}, {2, 3},
| | | | | 10 3, 1}, {3, 4 5
e 11 xMax=3'{ A r
0 1 2 3 4 12| yMax = 3;

(a) (b)

Figure 3.1.: Example for ILP input: (a) a simple planar graph, (b) its representation as ILP input.

Note that this function is not linear but can be transformed to be using standard techniques (for
example, see [MS97]). The domain for the two sets of coordinate variables to optimize are defined

in a natural way:

YveV:
0 S Ty S Xmax (32)

0 < Yo < Ymax

Without any further constraints, this would just move every vertex to the nearest integer grid point.
While this is the minimum movement needed to have every vertex rounded to integer coordinates,

several problems concerning planarity and embedding come up.

First of all, several vertices could be rounded to the same grid point, creating new incidences. This
can easily be prevented by adding the constraints of Equation 3.3. It states that every pair of

vertices, they have to differ in either z- or y-coordinate.

Yo,w e Vw # v :

(3.3)
(0 # Tw) N (Yo # Yu)

We are looking for a topologically-safe rounding and thus for planar input, we require the output
to be planar as well. To prohibit edge crossings, we follow the idea given by Néllenburg & Wolff
[NW11]. For every edge of the input graph has some D,y;, neighborhood that only incident edges
are allowed to intersect. This neighborhood is an extension of the edge by Dy, in every considered
direction D. Applying visual guidelines, Nollenburg & Wolff could restrict their program to only
consider the set D of eight compass-rose direction vectors and some fixed Dy,;,. An illustration of

this separation principle can be found in Figure 3.2.
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Figure 3.2.: Illustration of octilinear separation with D,;, = 0.5 and three edges. Any edge inter-
secting the green area risks intersecting the corresponding edge as well.

1/1

Fi: 0 1 /
i Dl 2?3
1/2

FQ: %7 %a% 1/3
0/1

. o 1 1 2 1
Fs: 1,325 1

(a) (b) (c)

Figure 3.3.: Relationship between Farey sequence and grid points: (a) The first three elements of
the Farey sequence. (b) Vectors with origin (0,0) and endpoint (1, f), f € F3. (c)
The extension of the vectors of (b) to the 3 x 3 grid cover all integer grid points in
that plane octant.

For arbitrary planar graphs those visual guidelines do not apply in general. To generalize this
approach, we have to construct some D,,;, and some set of directions D to suite the input graph.
In our set of directions we want to have an element corresponding to every unique slope an edge
inside the bounding box (connecting integer grid points) can have. These elements will be some
finite set of endpoints D of vectors oD (with O = (0,0)), as in Equation 3.4. To construct this

set, consider Definition 3.1.

D ={D = (D,,D,) | ¥ has origin (0,0) and endpoint D} (3.4)
Definition 3.1 (Farey sequence [GKP94]):
The Farey sequence of order n is the sequence of completely reduced fractions between 0 and 1
which, when in lowest terms, have denominators less or equal than n, arranged in the order of
increasing size.
The input bounding box covers only one quadrant of the plane, so the area we need to consider

is A = [— Xmaxs Xmax] X [—Ymax, Ymax|.- For k = max{Xax, Ymax}, the area K = [k, k] x [—k, k]
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Figure 3.4.: Direction vector endpoint coordinates for every plane octant. Note that f € Fj with
k = max{Xax, Ymax}- These endpoints can easily be generated in counter clockwise
order around the origin.

Figure 3.5.: Example for minimum edge distance on integer coordinates. As vy moves further to
the right, the distance between (v1,v2) and vs decreases.

covers 4. The number of direction vectors in I is related to the fractions of the k-th element of the
Farey sequence, as illustrated in Figure 3.3. We know that |D| € ©(k?) and in fact, the fractions
can be used to directly construct all possible direction vectors by creating vector endpoints for every
fraction with respect to the corresponding plane octant (see Figure 3.4). For a given bounding box,
this gives us all possible directions, in which a separation can occur. Note that D is ordered around
the origin (starting at the positive z-axis) and thus allows for comparison between directions by

position in D.

For two vertices v1 and vq, distance is at least dys(v1,v2) > 1, but distances between vertices and
edges can still be arbitrarily small (with respect to the size of the bounding box). An extreme
case is illustrated in Figure 3.5. To find a suitable D,,;,, we have to consider the most extreme
slopes of edges that can be present inside the bounding box. It suffices to choose Dy, according

to Equation 3.5.

1
maX{Xma)n Ymax} +1

Dmin =
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() (b)

Figure 3.6.: Problems related to incident edges. If rounded without care: (a) both edges overlap;
(b) the ordering of N(v1) changes.

Now we can introduce a binary decision variable 7 for every pair of nonincident edges e1,es € E
and every direction d € D. These variables indicate, whether the edges are are separated in that

direction. For every such pair of edges, we require one  to be set to 1 (see Equation 3.6).

Vei,eo € END € D :
VD(elaGQ) € {Oa 1}

Ve, ey € ELeq, eo nonincident : (3.6)
> Apler,en) =1
DeD
With these tools, we can formulate the planarity constraints for nonincident edges as follows:
VD € DVey = (v1,v2),ea = (v3,v4) € E, €1, €2 nonincident :
Df : (3:113 ‘rvl) + Dy ! (yv;; - yvl) (1 - 'YD(61762)) L’y Z Dmin
D, - (xvs - LUW) + Dy (yvg yvz) (1 - 'YD(elv 62)) : Lw > Diin (37)
DZ : (xU4 - xvl) + D’u (yv4 - yv1) (1 - ’YD(elveQ)) . L’y Z Dmin
D, - (xm - xvg) + Dy (yv4 yvg) (1 - 7D(el7 62)) : L'y > Dumin

The large constant L, = 2 - max{Xmax, Ymax} + 1 is introduced to apply the Big M method for
sets of constraints as follows: The value L. is chosen to dominate the sum of all other addends.
For every pair of nonincident edges one ~ is set to 1, indicating the direction in which the edges

are separated. If otherwise «y is 0, the constraints of Equation 3.7 are trivially satisfied.
Nonincident edges are only problematic if they intersect after rounding. Incident edges however

embrace two different problems that can not be solved by separating them (as they intentionally

cross on an endpoint). Incident edges could overlap (the endpoint of one edge ending on the other
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edge) or the ordering of the neighbors around one vertex could change (altering topology). Both
problems are displayed in Figure 3.6. To overcome both problems, we compare the slopes of edges
around one vertex by looking at its neighbors. We introduce a set of binary decision variables «
as described in Equation 3.8 and make sure that for every vertex-neighbor pair exactly one « is
set to 1.

YveVV¥ne Nw)VD €D
ap(v,n) € {0,1}
Vo € Vin € N(v) : (3.8)

Z ap(v,n) =1

DeD

Recall the construction of D from vectors. The slopes of these vectors represent all slopes possible
inside the bounding box. For an edge (v,w) € F, we want to find the direction D with the same

slope as vector vt (with same orientation). To do so, consider Equation 3.9.

Dy_OZ Yw — Yo
D, —0 x4, —x

(:)mw-Dy—xU~Dy—|—yp~Dg;ZDx'Z/w (39)

Note that Equation 3.9 is in fact linear. The idea behind this is depicted on the left side of figure
3.7. It can be used to give a set of constraints for every edge as in Equation 3.10. The first two
inequalities of Equation 3.10 form an equality that could otherwise not be formulated in an ILP.
However, for every edge, there are two possible directions D and D’ with D’ = (—D,, —D,) (the
exact opposite direction). This can be filtered out by comparing signs of coordinates, as done in
line 3 of Equation 3.10. Again, we employ the Big M method by introducing the large constant
L, =2 - max{Xmax, Ymax + L.

YveVV¥n e Nv)VD € D :

Tn Dy + Yy Dy — 2y Dy + (1 —ap(v,n)) - Lo > yn - Dy (3.10)
Tn Dy +yy Dy —ay-Dy— (1 —ap(v,n)) Lo <yn- Dy .

(1_aD(Uan))'La+(xn_xv)'Dm+(yn_yv)'Dy 20

Note that for an edge (v,w) € E, the direction is reversed considering the other orientation:
ap(v,w) = ap(w,v). We now give a set of constraints for both problems stated above, following
this idea: for any vertex v € V two neighbors nj,ne € N(v) must have ap,(v,n1) =1 and
ap,(v,n2) =1 for some directions Dy, Dy € D. As D is ordered, we can require for n; to be before
ng in counter clockwise orientation, that D; is before Dy in D. This holds for all neighbors but
the last. We introduce a binary decision variable [ for every vertex-neighbor pair and requiring

one S to be set to 1 for every such pair (see Equation 3.11).
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(a) (b)

Figure 3.7.: Vertex-neighbor direction determination. (a) The relation between the two red lines
connecting (0,0) with helper node vp are the same as for the blue lines connecting v;
with vy, thus the direction from vy to vy is D. (b) Helper node vp and its opposite
direction helper node vps with same ratio.

Yo e VVw eV :
Bv,w) € {0,1}
Vv e V,degv >1: (3.11)

Z Blu,n) =1

neN (v)

For a vertex v and some neighbor n € N(v), assigning (v, n) = 1 means that n is the last neighbor
for v and thus is allowed to violate our constraints. Putting things together, we get the constraints

of Equation 3.12 below.

VD, € DYv € V,N(v) ={nq,ng,...,np}(k =degv > 1) :

ap, (Uanl) Sﬂ(v7nl) + Z Oan(’U,TLQ)
D,e€D:D,,>D;

ap, (v,n2) <B(v,n2) + > ap,(v,ns)

(3.12)
D, €D:D,,>D;

ap, (U,le) Sﬁ(’l),nk) + Z O‘Dn(v7nl)
D, €D:D,>D;

This covers all parts of the model for the ILP and leads to the following theorem:

Theorem 3.1:
The above ILP solves TOPOLOGIALLY SAFE SNAPPING.
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(a) (b) (c)

Figure 3.8.: Impact of choice for isolated vertices: (a) input graph with isolated vertex (white
vertex) and two possible connection edges (red and blue); (b) result using red edge
with cost 0.7; (c) result using blue edge with cost 0.3.

A complete implementation of the model given above can be found in Appendix A.1. Note that
this model copes with disconnected graphs, but does not handle isolated vertices (without any
neighbor). These vertices are moved to valid integer grid points but do not necessarily stay in the
same face as in the input. For rounding those instances, connect those vertices to any vertex of
the same face (in a planar way) and delete the additional edge from the output graph. This choice

has to be made with caution as it may result in non-optimal roundings — see Figure 3.8.

The model presented above is rather general and thus can be adapted for various other tasks.
Adjusting bounding box size gives a tool for checking if a graph has a drawing of that size — and if
so, produces that drawing. For space-minimal drawings of graphs (without fixing the outer face),

consider the objective function of Equation 3.13 and give a bounding box of size [V| x |V].

MINIMIZE max{{z, |v € V} U{y, |v € V}} (3.13)

Adding constraints on one coordinate and modifying the objective function to minimize the other
coordinate can be used to minimize space consumption in one dimension. An example can be
found in Equation 3.14.

MiINIMIZE max{{y, | v € V}}

SUBJECT TO:
(3.14)
YoeV i, <c

30



3.2. Implementation

In this section, we give some details on the implementation of the model given above. As stated
above, an IBM OPL implementation can be found in the appendix. While being rather short
and readable, using IBM OPL has some drawbacks. The model itself also is straight forward to
understand but due to its size hard to solve in practice. To overcome both limitations at once,
the implementation in use differs from that of the appendix. First we give a list of drawbacks
we encountered while implementing and testing the ILP. Then we outline how these have been
handled.

The main disadvantage of our ILP is its limited usability because of its prohibitive runtime. The
reason for this is the rapidly growing number of constraints for larger graphs (with more vertices or
on larger bounding boxes). For an ILP instance, size can be measured considering two parameters:
Columns gives the number of variables to be considered while Rows gives the number of equations
to be solved. IBM CPLEX uses a presolver and an aggregator for preprocessing to automatically
reduce instance size. Figure 3.9 shows the growth of these numbers for nested triangle graphs (with
tight bounding boxes) after the automated preprocessing steps. This observation can be backed
considering the decision variables. Again, let k¥ = max{Xmnax, Ymax}. From the definition of the

model we have the following:

D] € O(K?)
{ap(v,w) | D € D,v,w € V}| € Ok“|V|) (3.15)
{B(v,w) |v,w € V}| € O(V[?)
(

|{7D(i7j) | D e Dvivj € E}‘ €0 k2|E|2)

During our experiments (see Section 3.3), we observed prohibitive runtime on most small planar
graphs (|V| < 20), which leads to the conclusion that the number of directions is the limiting factor.
Reducing the number of directions — limiting them in any way without losing general optimality —

remains an open problem.

For most input graphs, a large percentage of the constraints will trivially be satisfied by most
solutions: edges that are far apart in the plane will not intersect after rounding; for many ver-
tices, rounding to the nearest integer grid point will not introduce new incidences; the ordering of

neighbors around one vertex will most likely not change while rounding. A standard approach to

reduce instance size is the row generation paradigm (see [Chi08]):
1. Select some set of constraints, build an instance without this set and solve it.
2. Examine the solution and check for errors.
3. Add those constraints to the instance that would have prevented these errors and resolve it.

4. Repeat this procedure until no errors are reported.
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Nested triangles graphs on n vertices:

Count (log;q-scale) ¢ Rows e Columns
10° n=3 246 99
- n==6 7260 2016

4 n=9 54585 14064
v n =12 205422 52062
10° n =15 550779 138762
. n=18 1269600 318900

3 6 9 1‘2 15 18 '

(a) (b)

Figure 3.9.: Growth of ILP instances: (a) semi-logarithmic plot of ILP size parameters, (b) legend
and numbers (after CPLEX presolve steps).

We want use this paradigm to generate most of our constraints. The OPL language however does
not allow for delayed constraint generation. IBM suggests switching to some high-level program-
ming language (such as C# or Java) and use the provided bindings to generate models. Following
this suggestion, we implemented a component-based Java framework using the OPL Java bindings,
JGraphT! and JTS Topology Suite? to handle planar graphs. Our framework also includes inter-
faces for general vertex-rounding algorithms along with components for importing and exporting
graphs and various configuration options. We implemented a simple topology checker (for planarity
and embedding-preservation) that is able to report any edges and vertices involved in topological
inconsistencies. The topology checkers’ output can be used to generate constraints as needed. We
observed that several iterations of solving, checking and adding of constraints were considerably
faster on most input graphs than solving the full model in the first place. This will be discussed

in the following section.

3.3. Experimental Evaluation

3.3.1. Rounding

In the following, we will discuss performance of both of our implementations of the above ILP (full
model and row generation) on graphs different in vertex count, size of bounding box and number
of “difficult” parts. The main goal of this section is to give an intuition of what is actually difficult.
We provide hand-picked examples to demonstrate the influence of the individual sets of constraints

on total runtime.

Thttp://jgrapht.org/
2https://sourceforge.net/projects/jts-topo-suite/
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Input Output

Full model Row generation
first optimal optimal
Time 3.2s 90.6s 29.2s

Figure 3.10.: Graph 1: |V|=9,|E| =10

The figures of this section are structured as follows: left hand side is the input graph on an
underlying grid representing the bounding box size; right hand side is the output, white vertices
representing the initial positions with the red arrows indicating actual vertex movement. Below is
a table giving actual runtimes in wall clock time. In any field, “}” means that within 10 minutes
of computation no result could be obtained. In the following, full model is used for executions of
the above ILP without row generation. The column first gives the time until any feasible integer
solution (not necessarily optimal) is reported by the integer solver. In both cases, optimal gives
the time until the solver reports an optimal solution. We ran experiments on a Linux machine
with 16 cores (2666 Mhz and 4 MB cache each), 16 GB memory and 20 GB swap space and using
the Java bindings for CPLEX as described above.

We start with a rather small graph (Figure 3.10). Because of its size, building the model and
finding the solution is quick. However, its vertices are positioned so that many constraints are not

trivially satisfied and significant effort is required even by the row generation approach.

In the graph of Figure 3.11, the by far most expensive constraint is for checking the embedding of
the central node. Any other constraint is easily satisfiable. There is not a big difference between
finding the first solution and closing the integrality gap time wise. Notice that every vertex has
one preferred integer grid point that is not preferred by any other vertex, so just rounding to the
nearest grid point already gives an optimal solution. This solution is found by the first run of the
row generation approach almost immediately. (Note that the 0.5 second runtime includes setting
up the Java environment, calling the CPlex solver and checking topology.) The difference between
the full model and the row generation approach becomes even more important when the size of the

bounding box increases. Consider the graph of Figure 3.12. While still easy to round in the same
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Figure 3.11.: Graph 2: |V| =11,|E| =15
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Figure 3.12.: Graph 3: |[V|=13,|E| =25
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Figure 3.13.: Graph 4: |V| =26, |E| =34

sense as above, as size of the bounding box increases, so does the time for building and solving
the full model. However, this has no impact on solving time for the row generation approach for

“easy” graphs.

Consider the graph of Figure 3.13. While too large to round with the full model approach in the
allotted time of 10 minutes, the row generation only has to add one constraint from Equation 3.3
for two vertices of the upper-right corner. Rebuilding the model and solving with this constraint
runs in reasonable time (compared to the full model). Notice that this constraint does not involve
the direction set D.

When rounding graphs with vertices starting in close proximity (like in Figure 3.14) several things
can be noticed. First of all, small bounding boxes result in small and easy-to-solve models (as there
are few possible directions). The size of the bounding box has extreme impact on the runtime (for
comparison see Figure 3.10, which has only two more vertices but a much larger bounding box).
Second, when many constraints are violated during the row generation processes, iteratively adding

the constraints results in runtimes exceeding the time for solving the full model in the first place.

We end this section with two rather small examples (Figures 3.15 and 3.16). Both have a high
number of vertices compared to the size of the bounding box and are designed to include many
“difficult” parts. The row generation approach clearly outperforms the full model (while still being

infeasible in practice).
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Figure 3.16.: Graph 7: |V| =20, |E| =25

3.3.2. Drawing

The way we define TOPOLOGIALLY SAFE SNAPPING, rounding is closely related to drawing planar
graphs (with additional requirements on vertex placement). As described above, our model can be
used — directly or with modifications — to produce fixed precision drawings of graphs that fulfill

given properties, as being close to an original draft or minimizing space requirements.

In the following, we will give a survey on drawing tasks we managed to solve using the ILP given
above. If required, we also give the modifications necessary to compute the drawings presented
here. The figures presenting the results will follow the same style as above. Also, as we are looking

at extreme or unusual cases, any execution of the ILP was done using the full model approach.

Reconsider the edge separation constraints of Equation 3.7. Given two nonincident edges, the idea
is the following: those edges are separated in the input and thus must be separated in the output
as well. But the actual constraints to do so don’t use the initial separation but just force the
construction of a separated output. Provided the existence of a planar drawing, our model can be
used as follows: dismiss any constraints preserving the embedding and use the drawing as input,
it can construct a crossing free drawing. For a positive example, see Figure 3.17. Running any
planarity-checker beforehand is highly recommended if one would use the ILP in such way. While
in theory being able to identify nonplanar graphs (by returning “infeasible”), the experiment we

ran on the K52 did not terminate after several hours of computation.

3The complete graph on 5 vertices, one of the two Kuratowski graphs.
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(a) (b)

Figure 3.17.: Graph with non-planar drawing and planar ILP output: (a) Input graph on 6 vertices
and 3 edges with drawing that exhibits 3 unwanted crossings. (b) Crossing-free
drawing of the same graph, computed in 46.5s.

(a) (b) (c)

Figure 3.18.: Space-minimal drawings of the nested triangles graph on n = 6 vertices: (a) the input
graph placed completely in one grid cell; (b) the ouput using the rounding objective
(computation time 3h 25min); (c) the ouput using the objective of Equation 3.14
and limiting the z-coordinate to 3 (computation time 10 min 31s).
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Another task that has a long history in the graph drawing community is producing space-minimal
planar drawings. While Krug & Wagner [KWO08] did provide a proof for NP-hardness, we do not
know of any tool for computing optimal solutions. Given a planar graph with planar drawing, trying
to produce space-minimal drawings subdivides into two cases: fixing the outer [DLT83, dFPP90]
face or not. The latter was recently studied by Frati & Patrignani [FP07]. Our model does not
include constraints directly working on the faces of a graph. Thus, without including new face-
based constraints, we can only compute drawings of the latter as well. Using the complete set
of constraints and a drawing of of the nested triangles graph on n = 6 vertices, we were able to

produce the drawings of Figure 3.18.
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4. Heuristic Approach

As seen in Section 3.3, the prohibitive runtime of our ILP approach raises the question about an
efficient heuristic. In this chapter, we give a heuristic based on the faces of a graph. We will
compare its results and applicability to those of the ILP and we also discuss its performance as a

compression algorithm for vertex coordinates of graphs.

4.1. Face-based Rounding

While researching the topic of TOPOLOGIALLY SAFE SNAPPING, we came up with several sketches
for efficient topologically safe rounding heuristics. We present the most promising among them:

Face-based Rounding.

The idea is the following: For graph G = (V, E)) consider every vertex v € V' once and in specified
order. For v consider only integer grid points inside any face adjacent to v. Choose the nearest

legal grid point among them and round v to it. We suggest the following algorithm:

Algorithm 1: Face-based Rounding

Data: Planar graph G = (V, E) with straight line embedding.
Result: Topologically safe rounding of G to integer coordinates.
v1 < vertex closest to the origin
Sort V' according to order of breadth-first search discovery starting at vy
for v € V do
C <+ Set of legal integer grid points
¢ < grid point of C' closest to v
Round v to ¢
Update faces of G

return GG

To determine if a grid point is legal, proceed as follows: Consider G’ deduced from G by removing
v and any edge incident to v. Following the Art Gallery Problem-terminology [dBvKOS00], place
a camera on every former neighbor of v. A grid point is legal if and only if every camera can
see it. This guarantees that rounding v to a legal grid point does not introduce new crossings or
incidences caused by edges connected to v. This way, planarity is ensured after every rounding
step and thus in the output. Considering only grid points in adjacent faces ensures topological

safety in a similar way.
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(a) (b)

Figure 4.1.: Graph that Algorithm 1 fails to round: (a) input graph; (b) vertex v remains un-
rounded, as no legal grid point was available when trying to round it.

Unfortunately, the problem with this approach is rather obvious: We can not guarantee that the
set C' of legal grid points is non-empty for every vertex v. Also iteratively making locally optimal
decisions may result in grid points becoming unavailable. However, not rounding some vertex v
does not violate other desired properties of the output. Before trying to round v, the graph G
has been planar and topologically safe and will only be modified in a safe way. If in one step not

modifying G, we simply did not find an easy way to reduce required precision for v.

One could consider some shifting technique as used in the drawing algorithm by de Fraysseix, Pach
& Pollack [dFPP90]. Given the complete drawing of a graph, we can not restrict the slopes of
edges in a way similar way and thus we can not provide a reasonable shift distance that ensures
planarity. (The need for arbitrarily large shifts has been present in all of our iterative rounding

heuristics.)

To further explore this problem, in the following Section we evaluate performance of Algorithm 1

on the instances used in Section 3.3.1 and on sets of randomly generated planar graphs.

4.2. Comparison to ILP Approach

We start this section with instances of Section 3.3.1: first we consider those instances where both
the ILP and Algorithm 1 managed to round all vertices followed by those where results differ. Asthe
limitations of Algorithm 1 are rather obvious, we only did a proof-of-concept implementation using
simple variants of some components (planarity-checking and computation of grid point visibility)
that hardly are optimal considering asymptotic runtime. Therefore, we will not provide detailed

comparison on wall-clock runtime of both approach unless a major difference can be noticed.

Consider the graph presented in Figure 3.11. Being the most easy instance we did test our ILP

on, unsurprisingly Algorithm 1 did perform exactly the same. Induced movement on vertices is
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(a) (b)

Figure 4.2.: Comparison on Graph 4 (Figure 3.13). (a) ILP output, (b) output of Algorithm 1.

equal to an optimal solution. (Notice that classical snap-rounding also yields the same result on

this graph.) The same observations can be made on the graph of Figure 3.12.

The result of classical snap-rounding algorithms on the graph found in Figure 3.15 would not be
topologically safe. Concerning induced movement, both the ILP and Algorithm 1 give the same
result. The ILP computation took more than 20 seconds, while our proof-of-concept implementa-
tion of Algorithm 1 finished in under one second (and implementing it more carefully will certainly

reduce runtime).

Differences on output can be noticed comparing the upper-right corners of Figure 4.2 (a) and (b).
The output of Algorithm 1 is completely rounded and topologically safe. However, locally optimal
decisions based on a fixed order of vertices can lead to non-optimal global results (as one would
expect, considering the problem is A/P-hard). This becomes even more apparent comparing the

right parts of the drawings in Figure 4.3.

We conclude this section with two examples that show cases where Algorithm 1 fails. Consider
Figure 4.4 (a). The unrounded vertex is adjacent to the outer face, but the graphs special structure
prohibits rounding it to any grid point as non of them is visible to all neighbors. In Figure 4.4
(b), two vertices are inside the same face that only contains only one integer grid point. Locally
optimal decisions prevent the extension of the face that would be needed to round both inside

vertices in a topologically safe way.
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(b)

(a)

Figure 4.3.: Comparison on Graph 7 (Figure 3.16). (a) ILP output, (b) output of Algorithm 1.

(a)

(a) Output of

Algorithm 1 with input graph from Figure 3.14. (b) Output of Algorithm 1 with input

Figure 4.4.: Graphs Algorithm 1 fails on. Unrounded vertices depicted in white.
graph from Figure 3.10.
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Figure 4.5.: Success rate of Algorithm 1 on the [0, 9] x [0, 9] integer grid (100 possible vertex loca-
tions). Measurements gathered over 1000 runs on random graphs each. The row with
“% avg.” gives the average percentage of vertices that were rounded successfully. The
row with “# of 100%” gives the number of graphs that have completely been rounded.

4.3. Evaluation

As discussed above, examples where Algorithm 1 fails to round every vertex of a graph are easy
to find. This however raises the questions of how common these examples are and how many
vertices of a graph we can expect to be rounded by Algorithm 1. Reconsider the GIS applications
that gave the motivation to work on TOPOLOGIALLY SAFE SNAPPING. Efficiently reducing the
precision requirement of some vertices is beneficial concerning memory consumption, even if other

vertices remain unrounded.

We implemented a simple generator for random planar graphs. Given a grid size and a number
of vertices, we use Delaunay Triangulations of random point sets of given size on the given grid
to generate connected planar graphs. To characterize these graphs, we consider a measure we
call density. The density d of a graph G = (V| E) is the ratio of vertices to be rounded and the

total number of grid points inside the bounding box — density d(G) = o _H‘)V (lYmax e Three
randomly generated graphs and the corresponding output of Algorithm 1 can be found in Figure

4.6.

For taking measurements, we choose the [0, 9] x [0, 9] integer grid (100 grid points). On this grid,
we did construct sets of 1000 random graphs, each set with density between 0.1 and 1. Every
graph of these sets then has been rounded using Algorithm 1. For the outputs, we did consider
the percentage of rounded vertices and if the graph was completely rounded. The data gathered
in this process is listed and illustrated in Figure 4.5. Examining the findings, two things are to be
noticed. As density goes up, the number of graphs that could completely be rounded drops to zero
rapidly. However, the percentage of successfully rounded vertices decreases only linearly. Even
at density 1 (one vertex per grid point), an average of 64.4% of all vertices could be rounded to
integer coordinates. This demonstrates the usefulness of Algorithm 1 for compressing coordinate

precision on some vertices of a given planar graph.
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Figure 4.6.: Random graphs of varied density: (top row) random graph with density 0.1 and 100%
success; (middle row) random graph with density 0.5 and 80% success; (bottom
row) random graph with density 0.9 and 67.8% success. (left column) original
graph; (right column) output of Algorithm 1 with unrounded vertices in white.
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Reconsider graphs that Algorithm 1 did round completely. These roundings can be compared to
roundings produced by the ILP approach of Chapter 3. To do so, we randomly constructed graphs
on the [0,4] x [0,3] integer grid (20 grid points) with density 0.35 (7 vertices per graph) until
we had a total of 150 graphs that could completely be rounded by Algorithm 1. We found these
instances to be dense enough for the heuristic to be challenging and small enough for the ILP to
actually compute a solution in reasonable time. On an overall average, we did observe that for a
graph total rounding cost of the heuristic solution was 3.68% higher than that of the ILP solution.
On 104 instances, ILP and heuristic did produce a solution of equal costs. (Which is unsurprising,
as low-density graphs tend to be easy.) Considering the 46 graphs that did show a difference, on
average, the solutions of Algorithm 1 where 12.02% more expensive (with a maximum of 61.5%

difference on one instance).
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5. Conclusion

In this thesis, we introduced and investigated the problem of TOPOLOGIALLY SAFE SNAPPING —
rounding graphs to an underlying integer grid while ensuring topological equivalence. We have
shown that it is in fact A/P-hard and also provided similar results for related variants. To solve
TOPOLOGIALLY SAFE SNAPPING, we decided to use integer linear programming. Our model in
use has been described in detail and its usefulness and limitations have been evaluated empirically.
However, while our set of constraints works as intended, there may be more sophisticated formu-
lations that could decrease overall ILP runtime. One could also consider using advanced speedup
methods on our model. We have shown in Section 2.3 that we can not provide a fully polynomial-
time approximation scheme and no constant additive approximation, the question about general

approximability of TOPOLOGIALLY SAFE SNAPPING remains open.

One motivation for working on this problem was using it to produce topologically correct maps.
The experiments we ran in Section 3.3 show that our model is not suitable to do so on reasonably
sized data sets. Still it may be a possible tool for any cartographer. For maps where large portions
can easily be represented on an underlying grid, we propose the following workflow: extract the
difficult but hopefully small parts and use the ILP to solve them locally optimal. The obtained
result may then carefully be integrated into the drawing. We do not have an automated procedure

to perform this workflow.

Another motivation was reducing the amount of data needed to store planar graphs by reducing
coordinate precision. To do so, we designed a rounding heuristic based on the graphs faces. While
not able to round every vertex of any planar graph, we did use random planar graphs to demonstrate
the capability to reduce required coordinate precision for a considerable amount of vertices. More

sophisticated algorithms may be able to increase the expected percentage of rounded vertices.

To our knowledge, we are the first to consider TOPOLOGIALLY SAFE SNAPPING. This yields several
topics to be considered. Future work could be dedicated to designing better heuristics. On the
practical side, implementing a user-driven tool to realize the workflow proposed above may be of
interest to anyone working with maps. Other practical applications for topologically safe rounding
are to be found. For us, the most interesting topic would be providing (or disproving the existence

of) an approximation algorithm.
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A. Appendix

A.1. OPL Code for ILP

Here we give the complete code of an implementation of the model presented in Section 3.1 using
the IBM ILOG CPLEX Optimization Studio OPL Language. A reference manual can be found

here: OPL language reference! There also is an offline version of this file on the disk handed in

© 00O Ui W

with this thesis.

Full.mod

/3K Kk K ok ok ok ok ok ok ok ok ok ok ok ok K K 3 ok ok K K K ok ok ok K ok ok ok K sk ok ok Kk ok ok
* OPL 12.6.2.0 Model
* Author: andre

*%

* Creation Date: Feb 23, 2016 at 12:11:29 PM
stk ok ko ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok koK koK Kk Kk Kk Kk ok ok kR ok okok ok /

{string} coords = ...; // X & Y

int vertexCount = ...; // no. of vertexCount
int edgeCount = ...; // no. of edgeCount

int xMax = ...;

int yMax = ...;

int m = maxl(xMax,yMax) ;

int LC_alpha mx*x 2 + 1;
int LC_gamma = m * 2 + 1;
float minimumDistance = -1/(m + 1);

tuple IndexedDirection {
key int id;
float xPer;
float yPer;

}

tuple Node {
key int id;
float X;
float Y;
{int} embedding;
}

sorted {float} slopes; //helper-set for creating ...

{IndexedDirection} orderedDirections;

{Node} nodes = ...;
{int} edges[1..edgeCount] = ...;

dvar int round[1..vertexCount] [coords] in O.

1http://www.ibm.com/support/knowledgecenter/SSSASP_12.6.2/ilog.odms.studio.help/pdf/opl_langref.pdf

.vertexCount;

o1


http://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.2/ilog.odms.studio.help/pdf/opl_langref.pdf
http://www.ibm.com/support/knowledgecenter/SSSA5P_12.6.2/ilog.odms.studio.help/pdf/opl_langref.pdf

dvar int inDirectionOf[n1 in 1..vertexCount][n2 in 1..vertexCount][d in
orderedDirections] in 0..1; // aka.: alpha

dvar int betal[n in 1..vertexCount][1..vertexCount] in 0..1;

dvar int gammal[l..edgeCount] [d in orderedDirections] [1..edgeCount] in 0..1;

/% Kkkokokok ok ok ok ok K ok ok ok ok ok ok K Kok KKKk KK
* START PREPROCESSING BLOCK
®okokok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok Kk ok ok /

execute {

for (var den = 1 ; den <= m ; den++) {

for (var num = 0 ; num <= den ; num++) {
var slope = num/den;
slopes.add(slope);

}

}

var id = 1;

for (var i = 0 ; i < slopes.size ; i++){ //right-top
var s = Opl.item(slopes, 1i);
orderedDirections.add(id++, 1, s);

}

for (var i = slopes.size-2 ; i >= 0 ; i--){ //top-right
var s = Opl.item(slopes, 1i);
orderedDirections.add(id++, s, 1);

}

for (var i = 1 ; i < slopes.size ; i++){ //top-left
var s = Opl.item(slopes, i);
orderedDirections.add(id++, -s, 1);

}

for (var i = slopes.size-2 ; i >= 0 ; i--){ //left-top
var s = Opl.item(slopes, 1i);
orderedDirections.add(id++, -1, s);

}

for (var i = 1 ; i < slopes.size ; i++){ //left-bottom
var s = Opl.item(slopes, 1i);
orderedDirections.add(id++, -1, -s);

}

for (var i = slopes.size-2 ; i >= 0 ; i--){ //bottom-left
var s = Opl.item(slopes, i);
orderedDirections.add(id++, -s, -1);

}

for (var i = 1 ; i < slopes.size ; i++){ //bottom-right
var s = Opl.item(slopes, i);
orderedDirections.add(id++, s, -1);

}

for (var i = slopes.size-2 ; i >= 1 ; i--){ //right-bottom
var s = Opl.item(slopes, 1i);
orderedDirections.add(id++, 1, -s);

}

}
[% KEFEFA A A A KK A AR A KKK A KA KKK KA KKK

* END PREPROCESSING BLOCK
s skokokokokokskokskokoskskskskskok sk sk sk ok ok sk ok sk ok sk sk sk sk ok ok ok /

//minimize for all vertices the movement in Manhattan-distance
minimize
sum (v in nodes)
(abs(round[v.id] ["X"] - v.X) + abs(round[v.id]["Y"] - v.Y));

subject to {
// for every pair of nodes, exactly one inDirectionOf variable has to be 1
forall (v in 1..vertexCount)
forall(w in item(nodes,v-1).embedding)
sum (d in orderedDirections)
inDirectionOf [v] [w] [d] == 1;

forall (nl1 in 1..vertexCount)
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forall (n2 in item(nodes,nl-1).embedding)
forall (d in orderedDirections) {
- (1 - inDirectionOf [n1] [n2] [d])#*LC_alpha +
round [n2] ["X"]*d.yPer + round[nl1] ["Y"]*d.xPer - round[n1]["X"]*d.yPer
<= round[n2] ["Y"]*d.xPer;

(1 - inDirectionOf [n1] [n2] [d])+*LC_alpha +
round [n2] ["X"]*d.yPer + round[nl1] ["Y"]*d.xPer - round[n1]["X"]*d.yPer
>= round[n2] ["Y"]*d.xPer;

(1 - inDirectionOf [n1] [n2] [d])*LC_alpha
+ (round[n2] ["X"]-round[n1] ["X"])*d.xPer
+ (round[n2] ["Y"] - round[n1]["Y"])*d.yPer
>= 0;
}

forall (n in nodes)
forall (d in orderedDirections)
inDirectionOf [n.id] [n.id] [d] == 0;

forall (d in orderedDirections) {
forall (v in nodes) {
forall (a in v.embedding){
inDirectionOf [v.id] [a] [d]
<= (sum (dd in orderedDirections : dd.id > d.id )
inDirectionOf [v.id] [nextc(v.embedding,a)] [dd])
+ betalv.id] [a];
}
}
}

// for all nodes with deg >= 2, the sum over all betas must be exactly one
forall (n in nodes)
sum (a in n.embedding)
betal[n.id] [a] == 1;

//for incident edges, there should be no seperation, so gamma ==
forall (el in 1..edgeCount)
forall (d in orderedDirections)
forall (e2 in 1..edgeCount)
if ( card(edges[el] union edges[e2]) != 4 )
gamma[e1] [d] [e2] == O;

//no nodes end on the same grid point
forall (v in nodes)
forall (w in nodes)
if (v.id != w.id) // ignore v == w
! ((round[v.id] ["X"] == round[w.id] ["X"]) && (round[v.id]["Y"] ==
round[w.id] ["Y"1));

// every pair of edgeCount has to be seperated at least once
forall (el in 1..edgeCount)
forall (e2 in 1..edgeCount)
if ( card(edges[el] union edges[e2]) == 4 ) // ignore gamma_d_el_el
sum (d in orderedDirections)
gamma [e1] [d] [e2]
>=1;

// determine relative positions of edgeCount
forall (d in orderedDirections)
forall (el in 1..edgeCount)
forall (e2 in 1..edgeCount)
forall (i in 0..1)
forall (j in 0..1)
if ( card(edges[el] union edges[e2]) == 4 ){
(d.xPer * round[item(edges[e2],i)]["X"] + d.yPer *
round[item(edges[e2],1)]["Y"])
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168

169
170
171
172
173
174
175
176
177

178
179
180

181
182

- (d.xPer * round[item(edges[el],j)I["X"] + d.yPer *
round[item(edges[el] ,j)I1["Y"])
- (1 - gammale1] [d] [e2])*LC_gamma
<= minimumDistance;
}
¥

// output designed for TikZ-code generation
execute {
for (var i = 1; i <= vertexCount ; i++) {
writeln("\\draw [move] ("+round[i]["X"] + ","+round[i]["Y"] +
")node[blacknode] (o"+i+"){} to ("+0pl.item(nodes, i-1).X + ","+0pl.item(nodes,
i-1).Y + ")node[whitenode] (i"+i+"){};");
}
for (var j = 1; j <= edgeCount ; j++) {
writeln("\\draw [dashed]
(i"+0pl.item(edges[j],0)+")--(i"+0pl.item(edges[j],1)+");\\draw
(o"+0pl.item(edges[j]1,0)+")--(o"+0pl.item(edges[j1,1)+");");
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