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Zusammenfassung

Definite Clause Grammars (DCGs) stellen eine komfortable Möglichkeit zur Be-
schreibung von Listen in Prolog dar. In dieser Arbeit wird eine Anwendung vor-
gestellt, die Anfragen an diese Grammatiken interaktiv visualisiert.

Hierzu werden zunächst Informationen über die Ausführung von Anfragen benötigt.
Mehrere Möglichkeiten um diese zu erhalten werden diskutiert. Der realisierte Ansatz
nutzt eine modifizierte Expansion von Grammatikregeln, Anfragen an diese werden
anschließend von einem Meta-Interpreter ausgewertet. Dabei werden Informatio-
nen über Ausführungsschritte gespeichert. Diese werden danach zu einem SWI-
Prolog 7 Dict zusammengefasst, welches erfolgte Schritte strukturiert abbildet.

Mithilfe von Pengines, einer Bibliothek die entfernte Zugriffe auf SWI-Prolog über
das Internet ermöglicht, wurde eine Webanwendung erstellt. Diese verwendet die
vom Meta-Interpreter bereitgestellten Daten, visualisiert sie und bietet dem Nutzer
somit die Möglichkeit interaktiv nachzuvollziehen, welche Ausführungsschritte zur
Berechnung eines Ergebnisses durchgeführt wurden. Die Darstellungsweise basiert
auf Parse Trees, erweitert um die Visualisierung von Fehlschlagen und Backtracking.
Die Anwendung ist sowohl zum Lernen der zugrundeliegenden Konzepte, als auch
zum Debuggen von Grammatiken geeignet.





Abstract

Definite Clause Grammars (DCGs) are a convenient way to describe lists in Pro-
log. An application which interactively visualises queries on these grammars is
presented in this thesis.

First of all, information on the execution of queries is required. Several possibilities to
obtain this are discussed. The realised approach uses a modified expansion of gram-
mar rules. Queries on these are then evaluated by a meta-interpreter which traces
the execution and asserts information about each execution step. These steps are
then summarised into a SWI-Prolog 7 dict which represents them in a structured
manner.

A web application based on Pengines, a library that allows remote access to SWI-
Prolog over the internet, was implemented. This makes use of the meta-interpreter,
visualises traced steps and thus offers the user the opportunity to interactively under-
stand which execution steps were performed to calculate a result. The presentation is
based on parse trees, enhanced by the visualisation of failure and backtracking. The
application is suitable both for learning the underlying concepts and for debugging
grammars.
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1 Introduction

1.1 Motivation

The logic programming language Prolog originated in 1972. It was a by-product of
a project whose main subject was to process language [CR96]. Over time, Prolog’s
applications have multiplied, but the ability to describe language and grammar with
declarative rules is still one of its key features. For instance, Prolog is used for
natural language processing in IBM Watson [LF11]. There, using a parser, sentences
are decomposed and further analysed.

Besides employing clauses to express grammars in Prolog, there are also other
options available. For example, it is possible to make use of regular expressions1

or utilising the XML2 schema definition language to validate XML data in SWI-
Prolog [NKS17]. One convenient way to describe lists in Prolog are Definite
Clause Grammars (DCGs). These are an extension of context-free grammars and
were introduced in 1980 by F. Pereira and D. Warren [PW80].

DCGs can be used in a variety of applications: besides the analysis and description of
language, whether natural or formal, general operations on lists, which are essential
in a multitude of programs, can also be described by them [Tri17].

The declarative syntax in logical programming is different from the imperative ap-
proach, whereas the latter is far more widespread. Also, the evaluation of queries in
Prolog, which makes use of backtracking and unification, differs from the execu-
tion with imperative programming paradigms. This is only one reason why learning
logical programming in general can be intimidating and confusing [Tay88, PB87].

The notation of DCGs offers the possibility to express grammars with simple rules.
This makes them a good choice for getting into declarative and logical programming.
If knowledge exists, however, the functionality can be extended by nesting normal
Prolog code.

To illustrate complex processes and thus facilitate learning, tools for visualising are
helpful. Existing tools for Prolog can be utilised to some extent. However, the

1See library pcre, added to SWI-Prolog version 7.6.0-rc1 in September 2017 [Wie17a].
2XML: Extensible Markup Language.
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1 Introduction

representation and available functions often do not suit DCGs well and generate
unnecessary overhead. Therefore, there is a need for an appropriate application.

The goal of this work is to establish an interactive visualisation for DCGs. A visu-
alisation can be useful both for beginners who learn how to work with DCGs, as
well as for experienced users who want to debug their own code.

1.2 Structure of this Work

This thesis starts with an overview of related research in Chapter 2. With these
insights into current possibilities to visualise Prolog and DCGs, the concept of a
visualisation is to be introduced in Chapter 3. Based on a user scenario, relevant
properties are derived. These are incorporated into the presented mock-up.

Subsequently, used technologies are introduced. These Prolog related topics are
presented in Chapter 4. In addition to an introduction to DCGs, tracing in SWI-
Prolog, storing structured data in dicts, and connecting SWI-Prolog to the web
using the library Pengines is discussed.

Within the scope of this thesis, different ways to collect data on the execution of
DCGs are considered. In addition to the usage of DCG’s own capabilities, or other
programming languages than Prolog to analyse the execution of DCGs, an ap-
proach using SWI-Prolog’s built-in tracer to gather data, is discussed in Chapter 5.
Concluding, approaches based on meta-interpreters are introduced there.

In Chapter 6, the implemented approach is presented in detail: This is a meta-
interpreter written in Prolog, which is capable of gathering information on the
execution of queries on a DCG. The following Chapter 7 gives an overview of the
graphical user interface. This is realised as a web application and enables the inter-
active visualisation of DCGs.

The thesis concludes with a summary and an outlook on the continuation of this
work in Chapter 8.
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2 Related Work

In this chapter, an overview of existing work, which relates to visualising Prolog
and DCGs, is given. In addition to tools for natural language analysis, there are al-
ready several approaches for the visualisation of Prolog. These are not specifically
designed for DCGs, but provide an insight into how visualisation of logical programs
can look and what the benefits of these systems are. Finally, selected examples of
visualisations for other programming languages will be briefly presented.

2.1 Language Analysis in Prolog

A grammar kit in Prolog by K. Kahn in 1984 [Kah84] is an environment for natural
language projects. With the help of a dialogue system, it offers children the opportu-
nity to experiment with grammars in Prolog. Queries can be made to a previously
specified grammar. If unknown words are read, the system will ask questions to the
user such as “Is (WORD ’dog’ NOUN) true?”. The answers will expand the dictio-
nary, also an updated view of the current parse tree is provided. One key finding of
this work is “That dynamic graphics is (sic) very valuable as a tool for observing
and debugging complex processes” [Kah84, p. 185].

An extensive graphical environment for natural language processing is HDRUG, de-
veloped by G. Noord and G. Bouma in 1997 [VNB97]. In addition to the graphical
output of different representations of structures and lexical entries, statistical infor-
mation can be displayed as graphs. The extensibility of the system makes it possible
to test different parsers against each other or to define new output formats. A sam-
ple view of a parse tree with additional information about lexical entries is given in
Figure 2.1.

2.2 Visualising the Execution of Prolog

Since the early years of Prolog, there has been research on debuggers and vi-
sualisations. In the extensive survey on logic program analysis and debugging of
M. Ducassé and J. Noyé from 1994 [DN94], an overview of existing approaches at

3



2 Related Work

Figure 2.1: View of a parse tree with additional information in HDRUG [VN]

that time is given. This section of the thesis covers some quite old research as well
as more recent approaches.

The Transparent Prolog Machine, introduced by M. Eisenstadt and M. Brayshaw
in 1988 [EB88], is a Prolog execution model, attached to a graphical debugger.
Besides a fine granular tree of the execution, high-level trees with some abstraction
can be displayed.

GRASP by H. Shinomi from 1989 [Shi89] parses programs to build graphs, repre-
senting the program structure and relations between rules. These are used by a step
execution interpreter for visualising the program flow.

Another approach, which focuses on the SLD resolution3, was proposed by D. Tamir
et al. in 1995 [TAK95]. A step-by-step evaluation, in combination with user-defined
breakpoints, is possible with the help of a visual debugger. In addition to that, the
current SLD resolution tree is displayed. The user can interactively select a path in
the tree for further traversing, manipulating the default program execution order.

S. Mallet and M. Ducassé created MYRTLE in 1999 [MD99] for deductive databases
debugging. This is a meta-interpreter, which runs synchronised with a tracer for
query execution analysis. The gathered data is displayed as an augmented SLD tree
using GML4, a predecessor of GraphML5.

SLD trees for “real world” programs can become very complex and confusing.
Therefore, they are only partially helpful for debugging. G. Kókai et al. intro-
duced a Graphical Interactive Diagnosing, Testing and Slicing System (GIDTS) in

3SLD: Selective Linear Definite clause resolution [KK71].
4GML: Graph Modelling Language.
5GraphML: Graph Markup Language.
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2.2 Visualising the Execution of Prolog

1999 [KNN99] to offer a suitable debugger. An interactive proof tree, which also
contains failing branches, is used as a visualisation.

The textual tree trace (TTT) by C. Taylor et al. (1999) [TdBP99] focuses on text
based tracing instead of a visualisation. It can be sorted between common textual
tracers, like in SWI-Prolog, and graphical interfaces: The TTT notation is purely
text based, but visualises a detailed view of the program flow, including call status
information and current variable binding and unbinding.

To support students in learning Prolog, PrettyProlog was published by A. Stalla
et al. in 2009 [SMM09]. This interpreter is written in Java and capable of showing
the SLD tree, along with other tools for inspecting the program, like a view of the
program stack.

Using puzzle pieces as a metaphor for the multiple subgoals which have to be satisfied
for constructing a proof, L. Mondsheim et al. (2010) [MSL10] proposed an intuitive
visualisation of logical deduction.

A further visualisation of SLD trees, although statically with LATEX, is provided
by SLDNF-Draw from M. Gavanelli (2017) [Gav17]. The tree is computed using a
meta-interpreter. It is available as a SWI-Prolog package.6

The Prolog Visualizer by Z. Lai and A. Warth (2015) [LW15] is a web application
which features an in-depth step-by-step execution of Prolog. In addition to vi-
sualising the chronological order of execution, current variable substitutions, failed
subgoals and backtracking are displayed in an appealing manner. Unfortunately, it
is not possible to use the tool with DCGs since it only supports a rather limited
subset of Prolog.

Using Constraint Handling Rules (CHR), a methodology to visualise the execution
of Prolog is given by N. Sharaf et al. (2017) [SAF17]. It can be used to visualise
intermediate computation steps. For example, in the case of a Sudoku solver, every
change on the board can be displayed, visualising the search strategy and effects of
backtracking when failure occurs.

In addition to the presented research, some Prolog implementations also involve
debugging tools. SWI-Prolog, which is used in this work, features multiple options
for inspecting programs: Besides the textual tracer a graphical tracer, an execution
profiler for retrieving statistical data, a cross referencer for analysing dependencies,
and a navigator for browsing the project structure are available [WSTL12].

6SWI-Prolog package sldnfdraw: http://www.swi-prolog.org/pack/list?p=sldnfdraw.
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2 Related Work

2.3 Interactive Visualisations for Other Programming
Languages

A comprehensive overview of interactive visualisations for other languages would
substantially exceed the scope of this work, hence only two examples will be given.

ClickyEvaluation, developed by S. Kögel et al. (2016) [KCT16], is an evaluator for
functional programming in Haskell. Utilising a web application, the user can deter-
mine the order of the evaluation and thus evaluate the query step by step. It also
provides a history of previous steps, with the possibility for returning to any of these
snapshots.

Ohm, “a library and language for building parsers, interpreters, compilers, etc”
[Wpc], is based on Parsing Expression Grammars. The grammar notation is fairly
comparable to DCGs. Besides a tracer on command line level, there is also a graph-
ical visualiser [Ohma, Ohmb] which offers a good overview of which sub strings of
the given input matches against according rules.

6



3 User Scenario

As it can be deduced from the presented overview of related work in Chapter 2, there
is currently no visualisation that suits DCGs well. To change this, an application
for the visualisation of DCGs is described in this chapter. Based on user require-
ments, which are discussed in Section 3.1, application components are introduced in
Section 3.2. The chapter concludes with a summary of the intended application.

3.1 Target User Groups

To determine what features are needed, it is important to assess which requirements
users will have. In the scope of this work, we imagine two potential user groups.
On the one hand, there are beginners, who just start to discover DCGs for the first
time. On the other hand, we assume more experienced users, who want to debug
and fully understand their own programs.

3.1.1 Beginners

Beginners are users who want to get started with DCGs and want to understand
how these are interpreted. Due to the limited knowledge, it can not be taken for
granted, that these users are capable of writing grammars by themselves. Using
existing grammars, they should be aided in comprehending how a DCG is executed
and thereby understand the returned results.

These users are to be supported to understand how Prolog produces the result.
It should be shown how the proof of a solution is gradually built up. Furthermore,
it should be possible to display the execution steps Prolog performed, which later
became void by backtracking.

The visualisation should be as intuitive as possible. For a grammar rule it should be
easy to see which sub-calls were triggered. It should also be clear which parts of the
input are represented by each rule. This applies both to the intermediate steps and
to the presentation of the result.

7



3 User Scenario

3.1.2 Experienced users

We call those experienced users who are able to create DCGs themselves. This could
be advanced novices, as well as long-term Prolog users. One reason to utilise a
visualisation is for debugging when problems are encountered.

A typical problem with Prolog is that failing queries just return false without
further explanation. If a grammar should accept an input, but this is not the case,
this answer is not helpful. Another scenario are queries to a DCG which do not
terminate, due to left-recursion. By visualising the execution steps, the users can
be given the possibility to see how Prolog executed a query and why it behaved
faulty.

Depending on the complexity of the grammar, a comprehensive presentation of all
execution steps at once can become obscure. Therefore, there is a need for a simple
and clear presentation. In addition, it is desirable to let the user decide whether
additional information should be displayed or not.

Advanced grammar components such as embedded Prolog code or semicontext
extend the application possibilities of DCGs. The visualisation should provide the
opportunity to use and visualise these components, or ensure the extensibility to
add corresponding features later.

3.2 Application Mock-up

Based on user requirements and inspired by existing research, a concept of an ap-
plication is presented below. First, the input options for DCGs and queries are
discussed. Subsequently, the basic representation of the execution steps and the in-
teractive features such as additional presentation options and step-by-step execution
are introduced.

3.2.1 Enter Grammars and Run Queries

To execute a query, the user has to specify a corresponding grammar first. If desired,
a sample grammar can be selected from a list of examples. This is then loaded into
the text field and can be modified as desired. Alternatively, grammar rules can be
entered from scratch.

After that, queries can be formulated. For this, three given input fields have to be
filled. Besides the grammar body, an input and remainder list have to be stated.
Since a DCG can also be utilised for the generation of outputs, it should be possible

8



3.2 Application Mock-up

to specify variables as parameters. This can be achieved by using Prolog syntax,
e.g. by beginning the variable identifier with an upper-case letter.

Initiating the execution is handled by two buttons: Run Query for getting the first
result, and Next Solution to retrieve further solutions, if these exist. See Figure 3.1
for a graphical representation of the features described above.

Figure 3.1: Entering a DCG and a query

3.2.2 General Idea of Visualising the Result

In contrast to some of the presented visualisations in Chapter 2, the focus is not on
the representation of SLD trees. Instead, the visualisation is based on parse trees.
In its simplest form, grammar rules can be read as ‘A rule is satisfiable, provided all
elements in the rule’s body can be satisfied’. This leads directly to the representation
by means of a parse tree, in which subgoals lead to the satisfaction of a goal. This has
the advantage that the result can be represented in a clear manner, as in Figure 3.2.

Figure 3.2: Displaying a result

9



3 User Scenario

Instead of using a common tree structure, boxes are used for the visualisation of
the underlying tree. The structure can be read from top to bottom, just like parse
trees: E.g. direct child nodes are displayed side by side below a goal and terminals
are stored in the leaves. The horizontal extent of the boxes also makes it easy to see
which terminals are assigned to a goal, even if the assignment takes place in child
nodes.

In the case of left-recursion, which result in non-terminating executions, an output
should nevertheless be possible. This can be achieved by depth-limiting the execu-
tion, coupled with hints in the visualisation that the given execution reached the
allowed recursion limit.

3.2.3 Integration of Additional Information

The representation of the query’s result as a parse tree hides failing goals. How-
ever, these will be needed to explain failure. For this reason, execution branches,
which have been neglected during backtracking or failed without further alternatives,
should be displayed. The resulting structure is similar to an AND/OR-Tree [PB87],
which also displays alternative computation branches. Here, instead of next to each
other, executed alternatives are displayed one above the other. If unwanted, it should
be possible to hide these discarded execution steps, displaying only the result of a
query as a parse tree.

Another possibility to adjust the visualisation is by showing additional information
about a goal: Details, such as unifications at runtime of the goal and its input and
rest lists or additional information about embedded Prolog code inside a rule, can
be displayed.

(a) Controls (b) Detailed view (c) Failed alter-
natives

Figure 3.3: Toggle additional information

In Figure 3.3 is an example of a detailed view and the visualisation of a failed goal
for which a solution was later found through backtracking. The controls give users
the choice, how much details should be presented. This allows for multiple views of
the result: A quick overview of the results as well as detailed insights into execution

10



3.2 Application Mock-up

steps can be shown. In the current concept of the application, these settings are
global. However, it is conceivable to extend this and enable showing details and
failing branches only for individual goals.

It is possible that only a small part of the execution is of interest, for example if
an error has been localised and is to be tracked. Through provided buttons, it is
possible to zoom in and view a part of the visualisation in detail.

3.2.4 Visualising Execution Order

It is important to show the order in which a result is satisfied. A step-by-step vi-
sualisation can help understand how Prolog executes a query. Gradually, invoked
goals are added. Unsatisfiable goals result in backtracking, visualised by creating al-
ternative branches in the parse tree. For the previous example of a visualised parse
tree (see Figure 3.2), the sequence of fade-in is indicated in Figure 3.4.

In this case, it is desirable to offer the possibility to jump back to earlier points
of the execution. This ensures that difficult parts can be viewed multiple times
directly without having to restart each time from scratch. The desired controls are a
slider, which allows a fast selection of any point in the execution history, buttons for
viewing the execution steps one-by-one, the possibility to get to the last or upcoming
solution with a single click and possibly a continuous play feature, to start or pause
an automatic playback of the execution.

Using colours, the current status of each goal can be indicated. This allows for an
easy distinction whether a goal is currently running, void through backtracking,
succeeded, or failed.

Besides the visualisation of execution steps, it would be handy to see directly, which
rule is currently used for reasoning. This can be achieved by highlighting the corre-
sponding code section for each execution step.

(a) Controls (b) Step-by-step construction of the result

Figure 3.4: Showing an execution step-by-step

11



3 User Scenario

3.3 Summary

An overall view of the intended application, based on the previously introduced
features, is presented in Figure 3.5. The user interface is divided into two main
areas: On the left side, there are user inputs and controls whereas the visualisation
is on the right. The currently evaluated query, including resulting unifications, is
briefly summarised above the actual visualisation. To adjust the zoom level of the
parse tree, there are corresponding buttons.

The application is tailored for an easy to read representation of the execution result,
bundled with interactive features to show its progress. Also, the degree of displayed
details can be controlled by users to fit their needs. Hereby a tool that can be helpful
when handling DCGs, both for beginners and experienced user, is provided.

Figure 3.5: Overview of the intended application

12



4 Technology: Prolog

After a brief look at the history of Prolog and the used implementation, SWI-
Prolog, this chapter covers several Prolog related technologies that are relevant
to this work. First, DCGs are presented. Subsequently, the execution model and
tracing in SWI-Prolog is explained, followed by a presentation of the data struc-
ture dict and the library Pengines.

4.1 Origins of Prolog

In 1970, Alain Colmerauer (b1941, d2017) began working on a project with the aim
to process natural language using a computer. Together with Robert Pasero and
Philippe Roussel, first steps were taken by creating non-deterministic context-free
analysers and a French paraphrase generator. These were implemented in Algol 60
and Q-systems. The latter is a programming language Colmerauer created in earlier
research, aimed at creating a high-level language. It was equipped with rewriting
rules and a limited version of unifications [CR96].

The team was extended by Jean Trudel, who worked on automated theorem prov-
ing. Thus in 1971, a first natural-language communication system emerged. Simple
conversations with the computer in French were possible. After entering some sen-
tences, questions could be asked. Reasoning based on the given data was possible
with a developed prover, as well as an output in French.

One of the researchers who invented the SLD resolution [KK71], Robert Kowalski,
supported the team. After some research, linear resolution with unification only be-
tween the head of clauses was considered as a resolution strategy. Using this, the first
Prolog system was implemented in 1972 in Algol-W. At the same time, the team
developed a man-machine communication system, using Prolog. Also, the language
was given its name, Prolog, which is short for Programmation en Logique. In the
following years, syntax, primitives and the computing method were further refined.
These essential features still form the basis of the current version of Prolog.

In the following years multiple language dialects arose, later Prolog was standard-
ised in 1995 as ISO/IEC 13211-1 [ISO95]. Currently, several implementations are
available. Within this work, SWI-Prolog [WSTL12] is used. This implementation
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was first published in 1987 and is mainly developed by Jan Wielemaker. The current
stable release at the time of writing was utilised, this is version 7.6.0, released in
October 2017. SWI-Prolog provides a rich set of built-in predicates and libraries.
These make it easy to connect Prolog to the web. Since the visualisation is imple-
mented as a web application, this is a good fit.

4.2 Definite Clause Grammars

The idea of Definite Clause Grammars was published in 1980 by Fernando Pereira
and David Warren. They evolved from Colmerauer and Kowalski’s metamorphosis
grammars (1975) [PW80]. DCGs are considered to be included in the ISO Prolog
standard and currently available as a draft [Dod92][Hod15].

DCGs are grammar rules for describing difference lists. They can be used for tasks
like language processing, both natural or formal. This can be achieved, due to the
fact, that any text is a list of chars. Compared to context-free grammars, they have
multiple extensions:

• Providing context-dependency through the use of additional arguments
on non-terminals.

• Building custom parsing structures while querying a DCG. This is dis-
cussed later in Section 5.1.

• Allowing additional conditions in the grammar rules through embedding
arbitrary Prolog code.

A quick look at the capabilities of these grammars is made in the introductory exam-
ple in Section 4.2.1. After that, the syntax of DCGs is introduced in Section 4.2.2.
DCGs are not directly evaluated, SWI-Prolog does some preprocessing on gram-
mar rules, resulting in normal Prolog clauses. These expansion rules are explained
in Section 4.2.3, followed by an overview of the built-in predicates for querying
DCGs in Section 4.2.4.

4.2.1 Introductory Example

In order to get an initial insight into DCGs, basic grammar components are pre-
sented in the following using an example: A simple grammar for English sentences
is to be defined. The representation of a sentence is a list of atoms, the individual
words. For the sake of simplicity, spaces and punctuation marks are neglected.
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Sentences like

[a, cat, chases, the, mouse] or
[the, mouse, chases, a, mouse]

should be able to be represented with our grammar. In our example, a sentence can
be formed by a noun_phrase, followed by a verb_phrase. This can be formulated
as a DCG rule as follows:

sentence --> noun_phrase, verb_phrase.

Similarly, a noun_phrase is formed by a determiner, followed by a noun. Possible
phrases which are represented by a determiner are the and a.

determiner --> [the].

determiner --> [a].

Together, these rules form a DCG for some basic sentences. The entire example
DCG is given in Listing 4.1.

Listing 4.1: DCG for a subset of the English language
1 % structure

2 sentence --> noun_phrase, verb_phrase.

3 noun_phrase --> determiner, noun.

4 verb_phrase --> verb, noun_phrase.

5

6 % vocabulary

7 determiner --> [the].

8 determiner --> [a].

9 noun --> [cat].

10 noun --> [mouse].

11 verb --> [chases].

The basic form of a grammar rule is

Head --> Body.

This means, the rule named Head can be rewritten by its grammar body Body.
A call of a grammar rule succeeds, if a provided list unifies with the concatenated
lists from its body items.

Valid with respect to sentence are lists like

[a, cat, chases, the, mouse],
[the, mouse, chases, a, cat], or
[the, mouse, chases, the, mouse].
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An example for a list which is not accepted by the grammar is given below:

[the, dog, likes, the, cat]

This is invalid, since dog is no valid noun and only chases is allowed as a verb. In
order to accept this list as well, one would have to extend the defined vocabulary
accordingly.

As usual in Prolog, grammar rules can be queried with unbound variables, or lists
of arbitrary values. This allows the usage of a DCG as a generator of valid outputs,
as well as a way to check, whether a given query is allowed in the scope of a grammar
rule.

The DCG from Listing 4.1 is very limited in its capabilities of representing English
sentences, e.g. it lacks the support of plural. One way of adding this feature is to
add an attribute to each of the rules which describes the grammatical number and
extend the vocabulary by plural forms of the words [Fla94, p. 139]. The adjusted
DCG is given in Listing 4.2.

Listing 4.2: Modified English grammar with grammatical number
1 % structure with grammatical numbers

2 sentence(N) --> noun_phrase(N), verb_phrase(N).

3 noun_phrase(N) --> determiner(N), noun(N).

4 verb_phrase(N) --> verb(N), noun_phrase(_).

5

6 % vocabulary

7 determiner(_) --> [the].

8 determiner(singular) --> [a].

9 determiner(plural) --> [].

10

11 noun(singular) --> [cat].

12 noun(plural) --> [cats].

13 noun(singular) --> [mouse].

14 noun(plural) --> [mice].

15

16 verb(singular) --> [chases].

17 verb(plural) --> [chase].

Now, there are singular and plural forms of each word in the vocabulary. These can be
distinguished by the attribute which was added to each non-terminal. Accordingly,
rules which describe the structure of sentences are altered. For instance, a sentence is
still a noun_phrase, followed by a verb_phrase, but now with the same grammatical
number. This is ensured by the shared variable.
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This extends the scope of the grammar, so sentence accepts also lists like

[cats, chase, mice] or
[the, mice, chase, the, cat].

Utilising the basic grammar rule components presented here, it is already possible
to formulate comprehensive grammars. In addition, there are other features which
can be used to describe grammars. This is presented in the next section.

4.2.2 Syntax of DCGs

DCGs are not limited to the syntax and functionalities shown in Section 4.2.1.
A full overview is given in this section.

One way to specify the syntax of DCGs is to use the grammar rules itself. A
corresponding grammar is given in Listing 4.3. This informal definition of DCGs
is based on [CM03, p. 230], but extended to match the current ISO Prolog draft
of definitive clause grammar rules [Hod15]. To ensure easy readability of the rules,
here, white-space characters between these building blocks are skipped in the rule
definition. These have no syntactic meaning and can be used as desired, just like in
regular Prolog code.

Listing 4.3: Syntax of DCGs
1 definite_clause_grammar --> grammar_rule.

2 definite_clause_grammar --> grammar_rule, definite_clause_grammar.

3

4 grammar_rule --> grammar_head, [’-->’], grammar_body, [’.’].

5

6 grammar_head --> nonterminal.

7 grammar_head --> nonterminal, [’,’], semicontext.

8 semicontext --> terminal.

9

10 grammar_body --> grammar_body, [’,’], grammar_body.

11 grammar_body --> grammar_body, [’;’], grammar_body.

12 grammar_body --> grammar_body, [’->’], grammar_body.

13 grammar_body --> grammar_body, [’|’], grammar_body.

14 grammar_body --> [’\+’], grammar_body.

15 grammar_body --> grammar_body_item.

16 grammar_body --> [’(’], grammar_body, [’)’].

17

18 grammar_body_item --> nonterminal.

19 grammar_body_item --> terminal.
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20 grammar_body_item --> [’!’].

21 grammar_body_item --> [’{’], prolog_code, [’}’].

22

23 % terminal: List

24 % nonterminal: A//N

25 % prolog_code: Arbitrary prolog code

A definite clause grammar is a set of multiple grammar rules, each with the form:

Head --> Body.

The rule’s head is either a non-terminal or a non-terminal followed by a semicontext.
The semicontext, sometimes also referred to as pushback list, is a list, which is
prefixed to the remaining terminal list after successfully evaluating the grammar’s
body [Hod15].

Non-terminals are callable terms which reference to a grammar rule. For indication,
the non-terminal indicator A//N can be used. A is an atom, the name of the rule,
and N is a non-negative integer which states its arity.

Terminals are Prolog lists. The individual list items can be of any type, including
variables. Internally, strings are handled as lists of chars, so strings can also be used
instead of explicit lists. There is no short form as -->/1 for an empty body. However,
a rule which describes an empty string can be built by an empty list:

Head --> [].

Inside the rules body, there can be various grammar body items, such as terminals,
non-terminals, the cut !/0, or normal Prolog code surrounded by curly brack-
ets {..}.

Also, the Prolog control predicates for conjunction ,/2, disjunction ;/2, If-Then/-
Else ->/2, disjunction (deprecated form) |/2, and not \+/1 can be used to express
relationships between grammar body items. These control predicates behave as in
regular Prolog. Parentheses ( .. ) can be utilised as usual.

4.2.3 DCG Expansion in SWI-Prolog

The DCG specification defines only syntax and semantics, but no concrete imple-
mentation. Although there is a reference implementation available [MD10], using it
is not mandatory. Diverse approaches are conceivable: For instance the interpreta-
tion of the -->/2 operator at runtime, or a translation of the DCG rules in normal
Prolog code, prior to execution. The latter is used by SWI-Prolog [WSTL12]
and is therefore presented here.
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When loading code into SWI-Prolog, the compiler calls expand_term/2 on each
term read from the input. This leads to four preprocessing steps:

1. Handling of conditional compilation directives.
See documentation [Wie17b, pp 95–96] for more information.

2. term_expansion/2: Execution of user-defined term-expansions.

3. dcg_translate_rule/2: Translation of a grammar rule into a normal Prolog
clause.

4. expand_goal/2: Call expansion on terms which appeared in the output of the
previous steps. This applies expansions until there are no more changes.

During the expansion of grammar rules, non-terminals are extended with two addi-
tional arguments. These build a difference list and are appended to possibly already
existing arguments. The first added argument represents the input list, the second
is the remaining list after a rule has been executed. Similarly, a terminal [T] is ex-
panded to Input = [T|Rest]. Successive, grammar body items are linked together,
e.g. the remainder of one item becomes the input of the following.

By viewing a listing, these expanded rules can be inspected. Grammar rules from
Listing 4.1 are converted by SWI-Prolog as follows:

?- listing(sentence//0).

sentence(A, C) :-

noun_phrase(A, B),

verb_phrase(B, C).

?- listing(determiner//0).

determiner([the|A], A).

determiner([a|A], A).

Note, that SWI-Prolog does slightly optimise the DCG: For instance, instead of
expanding the first rule of determiner//0 to

determinder(A, B) :-

A = [the|B].

it is asserted as a fact, nesting the functionality inside the predicates head. This
allows for faster execution due to SWI-Prolog’s rule indexing capabilities. Clauses
whose arguments can not be unified with a query are not considered as candidates
in the execution [Wie17b, p. 58].
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Prolog code, inside curly brackets, is copied as is, followed by an unification of the
predecessors remaining list with the successors input list:

?- dcg_translate_rule((rule --> {any}), Translated).

Translated = (rule(A, B) :- any, A=B).

Also, according to the semantics, a given semicontext is prefixed to the remainder
before terminating the goal:

?- dcg_translate_rule((rule, [semicont] --> [rulebody]), Translated).

Translated = (rule([rulebody|A], [semicont|B]) :- true).

Control structures, which can be used inside a grammar body, are adopted in the
same way as stated in the grammar rule.

The aim of this work is to visualise DCGs. Within SWI-Prolog, however, by de-
fault, only the expanded form is available. Therefore, some approaches to analyse the
execution of DCGs in Chapter 5 are based on the interpretation of this translated
form.

4.2.4 Querying DCGs

There are two built-in predicates in the ISO Prolog draft which can be used
for calling DCGs: phrase/2 and phrase/3 [Hod15]. The latter accepts three argu-
ments:

phrase(:DCGBody, ?Input, ?Rest).

The DCGBody is usually only a non-terminal, but is not restricted to this and could
make use of the language features for grammar_body as stated in Section 4.2.2. Input
is the list, which is handed to the grammar body, while Rest is the remainder after
calling the grammar body with given input.

As an example, querying the DCG from Listing 4.1, the noun_phrase//0 corre-
sponds to [the, cat] from the input list, the remaining list is unified with the
third argument of phrase/3.

?- Input = [the, cat, chases, a, mouse],

phrase(noun_phrase, Input, Rest).

Input = [the, cat, chases, a, mouse],

Rest = [chases, a, mouse] .
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The short form phrase/2 expects an empty remaining list and therefore can easily
be expressed as a call of phrase/3:

Listing 4.4: Declaration of phrase/2
1 phrase(DCGBody, S) :-

2 phrase(DCGBody, S, []).

Of course, calling a DCG is not limited to already instantiated lists. Both input and
rest list can contain or be uninstantiated variables. This makes it possible to use a
DCG for both verification and generation of lists with these predicates.

4.3 Tracing in SWI-Prolog

Since the standard does not specify, there can be differences in the execution model
depending on the Prolog implementation. The common 4-port Byrd Box model,
introduced by L. Byrd [Byr80], is extended by several additional ports in the SWI-
Prolog execution model [WSTL12, p. 27]. In the following, first the model is dis-
cussed, succeeded by an overview of the command line tracer and a way of inter-
cepting the tracer.

4.3.1 Execution Model

In the 6-port box model, the control flow of a Prolog program can be imagined
using boxes which are linked together. Each box represents a goal. The events during
the execution are handled by the given ports. These are also the connections between
goals and visualise the control flow. The graphical representation of a single goal is
displayed in Figure 4.1.

Figure 4.1: The 6-port execution model

Through the two additional ports in SWI-Prolog, unify and exception, there is
a total of six ports and their corresponding events. The meaning of these events is
described in the following list.
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• call
A goal is called and Prolog starts trying to satisfy it.

• unify
Link between head-matching progress and invoking the rule’s body. After call-
ing a goal or invoking a redo, Prolog unifies the goal with the next appro-
priate clause’s head in the database. Then its body is executed.

• exit
Goal has been satisfied. Linked to the port call of the next pending goal. If
there is no pending goal, the execution is successfully finished.

• redo
Try finding an alternative solution to goal. Invoked if a goal failed or a further
solution is searched and there are left choice points in this goal.

• fail
Goal could not be satisfied. If possible a redo is initiated on this, or a preceding
goal with left choice points.

• exception
An exception is raised. This port is activated on each preceding goal until the
exception is caught.

Subgoals, which are called within a clause’s body, can be imagined as nested inside
its corresponding parent box. These have to be satisfied in order to satisfy their
parent goal.

4.3.2 Command Line Tracing

SWI-Prolog features a command line tracer for debugging purposes. It can be
enabled by calling the built-in predicate trace/0. Until disabling the debugging
mode, e.g. by calling nodebug/0, SWI-Prolog will trace goals: Occurring events
are written to the command line.

By default, all visible ports are leashed ports. This means, after printing the current
port, the user is prompted for an action. This gives the user the opportunity, amongst
others, to step (creep) into the next goal, or skip the tracing of subgoals. Leashing
can be adjusted using the built-in leash/1.

As an example, the output of the execution of a query on a previously introduced
DCG (see Listing 4.1) is given below. Each line represents one traced execution step
naming the current port, the recursion level, and the current goal. This is followed
by the user prompt, here, each answered with creep to show the full execution.
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[trace] ?- phrase(noun_phrase, NP).

Call: (11) noun_phrase(_6874, []) ? creep

Call: (12) determiner(_6874, _7148) ? creep

Exit: (12) determiner([the|_7134], _7134) ? creep

Call: (12) noun(_7134, []) ? creep

Exit: (12) noun([cat], []) ? creep

Exit: (11) noun_phrase([the, cat], []) ? creep

NP = [the, cat] ;

Redo: (12) noun(_7134, []) ? creep

Exit: (12) noun([mouse], []) ? creep

Exit: (11) noun_phrase([the, mouse], []) ? creep

NP = [the, mouse] ;

% ...

By default, all ports introduced in Section 4.3.1, except of the port unify, are visible
by the tracer. Using visible/1, the visibility of them can be adjusted. This has
been done in the subsequent example. Now, the difference between the first and
second call of noun//0 can be distinguished throughout the execution, not just by
comparing the results. Using a listing inside the tracer (invoked by the command L)
the current clause is listed. This is followed by another prompt of the current goal
waiting for further user commands.

[trace] ?- visible(+unify), leash(+unify).

true.

[trace] ?- phrase(noun, N).

Call: (11) noun(_2780, []) ? creep

Unify: (11) noun([cat], []) ? Listing noun([cat], []).

Unify: (11) noun([cat], []) ? creep

Exit: (11) noun([cat], []) ? creep

N = [cat] ;

Redo: (11) noun(_2780, []) ? creep

Unify: (11) noun([mouse], []) ? Listing noun([mouse], []).

Unify: (11) noun([mouse], []) ? creep

Exit: (11) noun([mouse], []) ? creep

N = [mouse].

The tracer provides a detailed insight into the execution of a query. However, the
textual presentation quickly becomes confusing in the case of extensive queries. In
addition to the command line tracer, SWI-Prolog also offers a graphical tracer. Al-
though this is also not specifically optimised for use with DCGs, it offers additional
possibilities, such as a view of the call stack.
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4.3.3 Intercepting the Tracer

The output of the tracer shown in Section 4.3.2 is human-readable, but not especially
suited for further program based analysis. However, SWI-Prolog offers the possi-
bility to redefine the tracer itself. The predicate prolog_trace_interception/4 is
a built-in hook which serves this purpose. If this predicate has been defined by the
consulted program, it is called from the SWI-Prolog debugger before writing the
trace statements to the command line. Provided it succeeds, the built-in text-based
tracer is intercepted [Wie17b, pp. 512–516].

The predicate prolog_trace_interception(+Port, +Frame, +Choice, -Action)

has the following arguments:

• Port Is the current port with which the tracer was called, as introduced in
Section 4.3.1. There are also some additional ports for handling breakpoints
and the invocation of a cut: break, cut_call and cut_exit.

• Frame Represents a reference to the current stack frame. The associated con-
text can be analysed using the predicate prolog_frame_attribute/3.

• Choice Is a reference to the current choice point. There is also a corre-
sponding predicate for further analyses of the context of the current choice,
prolog_choice_attribute/3.

• Action Specifies how the execution should proceed. Similar to the command
line tracer there are several possibilities, like continue which is equivalent to
showing each execution step on the command line, or skip which executes the
current goal without tracing.

Both the reference to the current frame and choice point can be used to get additional
context information. A variety of information can be output utilising the predicate
prolog_frame_attribute(+Frame, +Key, :Value). This overview of possible val-
ues for Key and their associated Value is limited to those used later in Section 5.3.
A comprehensive list can be found inside the documentation [Wie17b, pp. 512–
513].

• goal The current goal. If the module of the current predicate differs from the
calling context, it is represented as module:goal.

• clause A reference to the currently executed clause. There are several built-in
predicates which can make use of this reference, like clause/3, for retrieving
the clauses head and body, or clause_property/2 which provides properties
like the line number of a clause.
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• level The recursion level of the frame.

• parent A reference to the parent local stack frame.

Using the predicate prolog_choice_attribute(+ChoicePoint, +Key, -Value),
it is possible to retrieve information about the current choice point. Again, there are
several possible values for Key:

• parent A reference to the first older choice point.

• frame A reference to the corresponding frame of the provided choice point.

• type Further information about the type of the choice point. There are several
possible types like clause if there are alternative clauses, or jump for in-clause
choice point.

Using the predicates presented, it is possible to build a tracer which can be adapted
to fit application-specific requirements. This is discussed in Section 5.3.

4.4 Dicts

There are several ways to represent structured data in Prolog. Besides the possi-
bility of describing a structure using arbitrary terms there are also more advanced
options available. One advantage of utilising already existing approaches is that ad-
ditional functions for working with these data structures are usually provided. For
example, there is a designated representation for RDF triples [WSTL12] or the field
notation (Seipel et al. [Sei02]) which provides declarative querying mechanisms.

An approach for describing abstract objects with a modern syntax for various uses
are dicts. These were added to SWI-Prolog in Version 7 (2014) [Wie14]. A dict is
a term with the following syntax:

Tag{KeyA:ValueA, KeyB:ValueB, ...}

The Tag is either a variable or an atom, it can be used to name the type of the
dict. Inside the curly brackets can be an arbitrary amount of key-value pairs. Each
Key is either an atom or an integer and has to be unique within the dict. The
associated value can be any valid SWI-Prolog term. Thus, a value could also be
a variable or another dict. This allows for nesting dicts inside each other. The order
of these key-value pairs is without significance, internally, the dict is transformed
into a representation which does not respect order. Dicts can be unified as normal
terms. However, the order of the key-value pairs inside these dicts also makes no
difference.
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Using the infix operator dot ./2, it is possible to obtain values from a dict:

?- Value = point{x:3, y:5}.Key.

Value = 3,

Key = x ;

Value = 5,

Key = y.

The dot operator can also be used to call functions7 on a dict. Predefined are func-
tions for getting and setting values. It is possible to declare additional functions.
These are normal Prolog predicates and can be defined by using the :=/2 opera-
tor. An example is given in Listing 4.5.

Listing 4.5: User-defined functions on dicts
1 P.move(X, Y) := point{x:X0, y:Y0} :-

2 X0 is P.x + X,

3 Y0 is P.y + Y.

4

5 P.distance() := D :-

6 D is sqrt(P.x**2 + P.y**2).

Now, these functions can be executed on a given dict:

?- N = point{x:2, y:3}.move(4,1).

N = point{x:6, y:4}.

?- D = point{x:3, y:4}.distance().

D = 5.0.

As shown, functions can be defined in a way that they return dicts themselves
as well as functions that return arbitrary terms. With this universal extensibility
of functionality and the appealing syntax, they are suitable for numerous appli-
cations. In the case that an application needs to exchange data between Prolog
and JavaScript, the library http/json contains predicates for translating dicts into
JSON8. This allows an almost seamless integration of dicts in web applications.

7SWI-Prolog 7 introduced some new features that are not ISO Prolog compatible, which lead
to controversial discussions [Wie, Neu15]. Dicts are only one of those extensions. These reassign
the meaning of the ./2 operator. Also unusual in the context of Prolog, predicates that use
the ./2 operator on dicts are actually called functions [Wie17b, p. 246].

8JSON: JavaScript Object Notation.
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4.5 Pengines

Pengines (T. Lager, J. Wielemaker 2014 [LW14]) offers the possibility to use logical
programming in web-based projects. It is used to connect SWI-Prolog to the
visualisation, which was realised as a web application. It is based on SWI-Prologs
libraries for threads, HTTP clients and server to implement an universally applicable
high-level interface between SWI-Prolog and clients.

For the exchange of data between Prolog and JavaScript there are also alternatives.
In the case of SWI-Prolog, several approaches are conceivable. It features libraries
for handling web protocols [WHVDM08] which could be used to create a server with
a JSON API9. Alternatively, there are packages available [KSS+, Laa] which make
using SWI-Prolog possible within a Node.js environment.

Here, we choose Pengines, as it has been designed to fit the requirements of multi-
user scenarios as a web application. An overview of structure and functionality of
Pengines is given in Section 4.5.1. This is followed by a discussion of built-in security
features in Pengines.

4.5.1 Usage of Pengines

A Pengine (Prolog Engine) is a thread on a Pengines Server. On the server, li-
braries and predicates can be provided which are accessible for each Pengine. When
a Pengine is created, Prolog code can be passed, which then can be used within
it for querying. Each Pengine lives inside its own thread and module. Thus, several
Pengines can exist concurrently with individual available clauses on the server.

The creation and access of a Pengine is possible using a client or SWI-Prolog itself.
Currently, an implementation of a client library is only available for JavaScript and
SWI-Prolog, the implementation for other languages is pending.

The communication between the client and server takes place by means of queries
formulated in Prolog. When using the JavaScript client, results are transferred by
default in JSON format. Although a Pengine can also be used for multiple queries,
the default life cycle is stateless. Immediately after creation, a request is made, one
or more results are fetched, and then this Pengine is destroyed.

A minimal working example of the client side of a Pengine is given in Listing 4.6.
To use Pengines, pengines.js provides an API. This requires jQuery, so this is
also loaded. Subsequently, a Prolog program is given in a script tag with the type
"text/x-prolog". In principle, any code can be stated which then can be used

9API: Application Programming Interface.
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within the Pengine. To query Prolog, a new Pengines object is created. Using the
attribute ask, a query is specified which is handed to the Pengine after creation.
Event handlers can be defined for events such as creation and deletion of a Pengine,
input and output operations and handling success, failure and exceptions of a query.
Here, only a success handler is used. The obtained JSON contains an object data,
which holds resulting unifications, besides further information about the Pengine.
This is converted into plain text and inserted in the document’s body. In our case,
the following output is given:

[{"H":"Hello World"}]

After that, the Pengine is automatically destroyed and associated resources are freed
after successfully returning the result. However, if specified it is also possible to keep
the Pengine alive on the server and perform several queries on it.

Pengines are not limited to our use case. In addition to the communication between
Prolog and JavaScript, they can also be utilised to realise remote procedure calls.
These execute a query with the help of multiple Prolog systems. This allows for
requests which involve remote servers, but behave just as a local system [LW14, p.
543].

Listing 4.6: Using Pengines with JavaScript
1 <!DOCTYPE html>

2 <html>

3 <head>

4 <title>Hello Pengines</title>

5 <script src="jquery/jquery-3.2.1.js"></script>

6 <script src="/pengine/pengines.js"></script>

7 <script type="text/x-prolog">

8 hello(H) :- H = ’Hello World’.

9 </script>

10 <script>

11 var pengine = new Pengine({

12 ask: ’hello(H)’,

13 onsuccess: function() {

14 $(’body’).text( JSON.stringify(this.data) )

15 }

16 });

17 </script>

18 </head>

19 <body></body>

20 </html>
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4.5.2 Built-In Security Features

Since Prolog has full access to the file system, it is important to control what
actions can be performed by a remote pengine. The SWI-Prolog library sandbox
provides the predicate safe_goal/1. It evaluates the given goal abstractly and ei-
ther succeeds or throws an error, if it is not considered safe. To be considered safe,
the call-graph must be fully expandable. Unresolvable meta-predicates are not al-
lowed, also every predicate used in the call-graph has to be white-listed. By default,
only built-in predicates, which can be considered safe, are white-listed. It is possi-
ble to add additional entries utilising the multi-file predicates safe_primitive/1

and safe_meta/2. When utilising Pengines, all goals are validated by safe_goal/1

automatically prior execution.

Pengines provides a basic protection against denial of service (DoS) attacks. The
number of concurrently running Pengines can be restricted. In addition, the execu-
tion can be aborted after a given time limit and inactive Pengines will be destroyed
after a set time.

By providing these features, Pengines suit the usage in web application well. Espe-
cially compared to other available approaches, a lot of useful features are already
built-in.
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In order to implement the targeted visualisation from Chapter 3, some information
related to a grammar has to be gathered. Due to recursive rules, the complete lan-
guage space of a grammar can easily be infinite. To avoid handling and visualising
infinite trees, our approach is not based on only a grammar itself, but on the execu-
tion of a query using a DCG. The main goal is to produce a parse tree for a given
query. This allows the basic visualisation of the result. For visualising failure, this
parse tree needs to be expanded by failing goals. In addition, one way of deriving
the order of execution is important to be able to visualise this later accordingly.

There are diverse approaches to analyse the execution of DCGs, several were con-
sidered within the scope of this work and are presented here. First, the ability to
generate a parse tree using DCGs is discussed in Section 5.1. A quick glimpse on the
analysis using other programming languages is given in Section 5.2, followed by an
approach using SWI-Prolog’s built-in tracer (Section 5.3). Finally, the approach of
using a meta-interpreter, which the actual implementation (see Chapter 6) is based
on, is presented in Section 5.4.

5.1 Generating Parse Trees with DCGs

It is possible to retrieve a parse tree by extending a DCG. This displays the structure
of a difference list which results from a query. Only few modifications have to be
done to an already given DCG to achieve this functionality. In our example, the
structure of the parse tree should be the following:

• The leave nodes of the tree are holding the terminals.

• The root node and the internal nodes represent the non-terminals.

• The non-terminal nodes should be named after itself, the relationships between
the nodes should represent the structure of the DCG.

To achieve this functionality, the grammar rules have to be expanded by an addi-
tional argument, which describes the corresponding tree structure.

31



5 Approaches to Analyse the DCG Execution

To realise this, a grammar rule like

determiner –> [the].

would be expanded to

determiner(determiner(the)) –> [the].

This modification does not alter the core semantic of this rule, it still only accepts
the terminal the. The additional argument unifies with the requested tree. In this
case, the root node determiner with its leaf the. Rules with non-terminals, like

sentence –> noun_phrase, verb_phrase.

can be modified to

sentence(sentence(NP,VP)) –> noun_phrase(NP), verb_phrase(VP).

Here, the resulting tree has the root sentence. The trees from noun_phrase//1 and
verb_phrase//1 are inserted as its child nodes. The complete modified DCG, based
on Listing 4.1, looks like this:

Listing 5.1: Grammar which generates a parse tree
1 % structure with parse tree

2 sentence(sentence(NP,VP)) --> noun_phrase(NP), verb_phrase(VP).

3 noun_phrase(noun_phrase(D,N)) --> determiner(D), noun(N).

4 verb_phrase(verb_phrase(V,NP)) --> verb(V), noun_phrase(NP).

5

6 % vocabulary

7 determiner(determiner(the)) --> [the].

8 determiner(determiner(a)) --> [a].

9 noun(noun(cat)) --> [cat].

10 noun(noun(mouse)) --> [mouse].

11 verb(verb(chases)) --> [chases].

When querying this grammar, the added argument provides the proof tree. This
works independently of the given input, whether an already defined list or with un-
bound variables for generating outputs. An example query on this grammar is given
below. Additionally to the list S, the variable T is unified with the corresponding
parse tree.

?- phrase(sentence(T), S, []).

T = sentence(noun_phrase(determiner(the), noun(cat)), verb_phrase(

verb(chases), noun_phrase(determiner(the), noun(cat)))),

S = [the, cat, chases, the, cat] .
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This parse tree can be displayed graphical, as in Figure 5.1. Restricted to the case,
that the failing branches should not be displayed, a visualisation using this data
could be realised. The sequence of the execution can be read from the tree structure,
depth-first, from left to right. An augmentation of the tree is possible in principle
for storing additional information. However, this approach has the disadvantage that
the DCG has to be modified. Although this can be done automatically via a term-
expansion, the changed DCG can no longer be used as the original one if desired.

Figure 5.1: Example of a parse tree

DCGs which supply a parse tree are useful when the task is not only to accept
or generate lists, but retrieve information about its structure. They do not offer
information on backtracking and failed goals, but rather only display the structure
at the end of execution, or none if the query failed. However, these intermediate
execution steps should be shown in the visualisation. Thus, this approach does not
provide sufficient information for the goal of this work.

5.2 Using other Programming Languages than Prolog

Another approach to retrieve information about a DCG is, instead of running a
query in an existing Prolog implementation, analysing it in another program en-
vironment. This is used in some of the existing research, which was presented in
Chapter 2. For instance, PrettyProlog [SMM09] utilises an interpreter written in
Java, while the Prolog Visualizer [LW15] makes use of a JavaScript environment.

In the case of the Prolog Visualizer, however, the major drawback of this approach
can quickly be recognised: While given sample programs work, the support of built-
in ISO predicates is missing. Thus, for example, neither arithmetic evaluation using
the predicate is/2, nor the use of negation, or predicates which provide direct access
to the Prolog database such as assert/1 or clause/2 are usable. Also, it lacks
support of term-expansions and therefore DCGs are not supported.
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Since normal Prolog code can be embedded in DCGs, this problem applies both to
the analysis of Prolog and to DCGs. In order to analyse not only simple examples,
but also real-world programs, this approach leads to implementing a comprehensive
Prolog runtime environment with tracing capabilities from scratch. Since there
are already existing Prolog implementations with extensive tracing facilities, this
effort is avoidable.

5.3 Using the Built-In Tracer

SWI-Prolog provides, as introduced in Section 4.3, a command line tracer with
the possibility to modify its functionality to fit the needs of a specific application.
One of the advantages of this approach is that the execution of a query is performed
directly by SWI-Prolog. This ensures that the derivation of the result is done
correctly without the need of re-implementing any logic. In addition, this offers the
advantage that built-in predicates can be evaluated without additional efforts.

5.3.1 Customising the Tracer

The interception of the command line tracer can be accomplished using the predicate
prolog_trace_interception/4. If declared, each execution step in which the tracer
is invoked, is handled by this predicate. This can be used to determine information
about the current execution context. If these are stored, it is possible to process
them in a subsequent step to retrieve a structured representation of the execution.
An excerpt of a custom tracer is given in Listing 5.2.

Listing 5.2: Collecting execution information using the intercepted tracer
1 prolog_trace_interception(Port, Frame, Choice, continue) :-

2 get_counter(N),

3 prolog_frame_attribute(Frame, goal, Goal),

4 % ..

5 prolog_frame_attribute(Frame, parent, Parent),

6 % ...

7 prolog_choice_attribute(Choice, frame, ChoiceFrame),

8 % ...

9 assert(step(N, Port, Frame, Goal, ClauseReference, Parent,

ParentGoal, RecursionLevel, Choice, ChoiceFrame, ChoiceParent,

ChoiceParentFrame)).
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Each time the tracer is invoked, a fact step/13 is asserted. This stores, besides a
counter which numbers the individual steps, information about the current frame.
These are a reference to the current frame, the associated goal and if the goal has
already been unified, a reference to the currently used clause. In addition, a reference
to the parent frame and its goal is stored, followed by the recursion level. The last
four values provide a reference to the current choice point, its parent choice point,
and its frame.

The fourth argument of the predicate prolog_trace_interception/4 specifies how
the execution is continued. Here, the value is continue, which equals creep in the
command line tracer, so every execution step is handled by the tracer. It is also
possible to skip the tracing of goals, using skip. This is handy, if some goals should
be viewed as a black box, for example the execution of built-in predicates.

The usage of this tracer is identical to starting the normal tracer. In this example,
the port unify was also made visible.

?- visible(+unify), trace, phrase(noun_phrase, NP), nodebug.

NP = [the, cat] .

Since the command line tracer has been replaced, there is no output to the command
line and no user interaction. Only the result and the unifications that have taken
place are shown. However, corresponding facts have been asserted, which can now
be further analysed. A listing of step/13 leads to the following output (shortened,
variable names and clause references simplified):

?- listing(step).

% ...

step(3, unify, 235, noun_phrase(A,[]), <c1>,

209, $dcg:call_dcg(noun_phrase,A,[]), <c0>, 1,

246, 235, 121, 105).

step(4, call, 255, determiner(A,B), _,

235, noun_phrase(A,[]), <c1>, 2,

246, 235, 121, 105).

step(5, unify, 255, determiner([the|B],B), <c2>,

235, noun_phrase([the|B],[]), <c1>, 2,

266, 255, 121, 105).

step(6, exit, 255, determiner([the|B],B), <c2>,

235, noun_phrase([the|B],[]), <c1>, 2,

266, 255, 121, 105).

% ...
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This example shows four asserted execution steps: First, the unification of the goal
noun_phrase(A, []) with a corresponding clause, followed by the execution steps
required for satisfying determiner//0, which is the first grammar body item in
noun_phrase//0’s grammar rule body. In the not shown steps at the beginning,
phrase/3 is called, which leads to the call of $dcg:call_dcg/3, the parent goal of
step 3. The order of the events, which have taken place, can be readout from the
first argument: After the unification in step 3, determiner//0 is called in step 4.
Using the reference to the parent’s frame and goal, the relationship between both
events can be derived. In step 5, the goal is unified to a specific clause, which results
in the unification of the goal’s arguments with the clause’s head. Also, a new choice
point is created. The last step shown is the exit of the execution of determiner//0.
Since this clause does not have any grammar body elements, this step takes place
immediately after step 5.

5.3.2 Problems Encountered

In principle, it is possible with this asserted data to obtain comprehensive infor-
mation on the execution of a query. However, some difficulties arose during the
implementation, which is why this approach was not realised.

The main problem encountered is that the number of a frame is no unique identifier.
This was assumed in the first place and is important in order to establish a connec-
tion between the individual execution steps. Though, there are cases in which the
same frame reference is used by several different goals. This has been observed in
the context of deterministic goals, for example, in the case of terminals. Probably
execution frames which can not generate further solutions are removed from the
execution stack and their frame reference is released. However, this is in contrast to
the fact that last-call optimisation is disabled in debug mode [Wie17b, p. 37].

Whether this is limited to these observed cases can not be said with certainty.
Unfortunately no documentation could be found which contains detailed information
on how frames relate to each other, or why frame references are used multiple times.
Despite extensive attempts to understand what information can be obtained from
the tracer, it was not possible to create a working prototype.

However, it is definitely possible to use prolog_trace_interception/4 to show the
execution of Prolog. The built-in graphical debugger gets the required execution
context information using these predicates [Wie17b, p. 75].
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5.4 Using Meta-Interpreters

Since it is possible in Prolog to access clauses directly, it is relatively easy to write
your own interpreter. An interpreter for the language in which it was written is
called a meta-interpreter (MI). Instead of directly calling a goal, this is passed to
the meta-interpreter and evaluated.

As explained in Section 4.2.3, SWI-Prolog expands grammar rules to regular Pro-
log code. Therefore, the meta-interpreters presented here interpret this translated
form of DCGs. So these meta-interpreters are not just suited for DCGs. Only slight
adjustments are required for the analysis of normal Prolog programs.

In the following, the general idea is to be shown. For sake of simplicity, this is
limited to a simple form of rules: The head of a grammar rule is a non-terminal,
the body consists of arbitrary terminals and non-terminals. Only conjunction ,/2 is
implemented as a control structure. Of course, it is possible to evaluate other allowed
structures and components as well, but this would make the meta-interpreters shown
here unnecessarily extensive. The DCG which is used for sample queries inside this
section was already introduced earlier, see Listing 4.1.

5.4.1 Vanilla Meta-Interpreter

One of the most basic meta-interpreters for pure Prolog is the so-called Vanilla
Meta-Interpreter [Tri17][SS94, pp. 323–324]. This does not add any additional fea-
tures, it only allows the execution of a goal. Since terminals of a DCG are translated
into unifications, our Vanilla MI is slightly modified to accomplish this.

The MI is amazingly compact. Only a few lines of code are necessary to cover all
possible cases: If a goal is literally true, it succeeds. Goals which are compound
terms using a conjunction succeed if the first and second argument are satisfiable.
Unifications should succeed or fail just like in normal Prolog. For all other cases, a
grammar rule whose head matches the current goal is determined. This is achieved by
using the built-in predicate clause(Head, Body). If a grammar rule was translated
into a fact without body elements, Body gets unified with true, otherwise with its
translated grammar body. Subsequently, the body is evaluated. The goal succeeds if
its body does. If a goal cannot be satisfied with the current clause, clause/3 provides
alternative clauses on backtracking. Written in Prolog, this can be expressed as in
Listing 5.3.
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Listing 5.3: Vanilla meta-interpreter suitable for DCGs
1 vanilla(true).

2 vanilla((A, B)) :-

3 vanilla(A),

4 vanilla(B).

5 vanilla((A = B)) :-

6 A = B.

7 vanilla(A) :-

8 A \= (_, _),

9 A \= (_ = _),

10 A \= true,

11 clause(A, B),

12 vanilla(B).

This interpreter has to be queried with the expanded form of grammar bodies. So
the formulation of a query differs compared to the predicate phrase/3. Using the
arguments added during translation, input and rest lists can be specified. Then, the
results are the same as when utilising phrase/3. The resulting unifications are as
expected and through Prolog’s backtracking features, the Vanilla MI is capable of
finding all alternative answers:

?- vanilla(sentence(In, [])).

In = [the, cat, chases, the, cat] ;

In = [the, cat, chases, the, mouse] ;

% ...

Of course, this MI has no practical benefit, except showing off the concept. However,
it can be adjusted to fit specific needs. For instance, it is possible to replace the
standard search strategy of Prolog with a MI. Handling left-recursive grammars
or limiting the depth of the search tree are only two examples, which can be achieved
with modified MIs [Tri17]. Another possibility is to use MIs to output information
about the execution. Especially the latter is relevant in our case, the analysis of the
DCG execution.

5.4.2 Generating a Parse Tree

Comparable with the expansion of a DCG by an additional parameter for outputting
a parse tree (see Section 5.1), it is also possible to adapt a MI accordingly. This has
the advantage that the DCG has not to be modified while the MI can be used for
arbitrary DCGs. A simple customised MI is given in Listing 5.4.
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Listing 5.4: Meta-interpreter with tree output
1 mi_proof(true, true).

2 mi_proof((A, B), (TA, TB)) :-

3 mi_proof(A, TA),

4 mi_proof(B, TB).

5 mi_proof((A = B), (A = B)) :-

6 A = B.

7 mi_proof(A,(A:T)) :-

8 A \= (_, _),

9 A \= (_ = _),

10 A \= true,

11 clause(A, B),

12 mi_proof(B, T).

This meta-interpreter succeeds when a solution for the query has been found and
the second argument has been unified with the parse tree. The representation used
here slightly differs from the modified DCG in Section 5.1. For example, the parent-
child node relationship is expressed using the operator :/2. On the left side, there
is the parent goal, on the right, a comma separated list of its child nodes. Also, the
terminals are provided differently as in the structure generated by the DCG. By de-
termining the difference between the input and remainder lists of a non-terminal
these can be read out. In this representation, only a rule’s arguments and no further
tree traversal is needed for determining the list it represents.

When querying this MI, additionally to the expected result, T is unified with the
parse tree which could be further examined:

?- mi_proof(verb_phrase(In, []), T).

In = [chases, the, cat],

T = verb_phrase([chases, the, cat], []):(

verb([chases, the, cat], [the, cat]):true,

noun_phrase([the, cat], []):(

determiner([the, cat], [cat]):true,

noun([cat], []):true

)

) ;

% ...

However, this MI does not extend the information which is gathered during the
execution compared to the modified DCGs from Section 5.1. The biggest drawback
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with respect to our use case is still, that failing execution branches are neglected
during backtracking and therefore not represented in the tree.

5.4.3 Picture Backtracking

Both the Vanilla MI and the MI which displays a parse tree, use Prologs built-
in backtracking mechanisms. This is obvious since the functionality is already given
and easily implementable, but results in discarding gathered information when back-
tracking occurs.

To picture backtracking, one approach is to re-implement its logic. For instance, this
was done in a meta-interpreter by D. Bowen [Bow84] for generating AND/OR trees.
This approach requires far-reaching changes to our simple vanilla meta-interpreter.
Not only have already gathered data and pending goals to be passed within the MI,
even basic mechanisms such as unification can no longer be utilised. Instantiated
variables can be made unbound during backtracking and re-instantiated later, de-
pendent on the current choice. This can not be easily achieved with normal variables.
In the case of the AND/OR meta-interpreter, uninstantiated variables get converted
into terms using numbervars/3. These are then used to associate actual values to a
variable. This is both complex as well as error-prone and generates many additional
computing steps.

Another approach is to store information during execution in a way that it is not
affected by backtracking. This has the advantage that Prolog functionality, such
as backtracking and unification, can be used as usual. In addition to writing to a
stream like the command line, storing facts in dynamic predicates or the recorded
database is a possibility. These actions are not reverted during backtracking. In this
way, the MI can utilise backtracking and unification mechanisms, and still obtain
information about failed execution steps. This kind of meta-interpreter can be used
to build customised tracers [Bra12, pp 609–610].

5.4.4 Tracing Meta-Interpreter

In the following, a meta-interpreter is presented, which also displays failing rules.
This is achieved by writing statements to the command line during execution. The
tracing meta-interpreter is given in Listing 5.6.

Compared to the Vanilla MI, it is modified in various ways: Extended by one ar-
gument, the current recursion level is stored for an indentation while writing to
the command line [SS94, p. 328]. Operations which could fail but are of interest,
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like the unification of two values, are executed inside the condition of an If-Then-
Else statement. Thus, in the case of a failure, the Else-branch is executed instead
of backtracking. This can be used to output a message of failure to the command
line, followed by an explicit invocation of backtracking using the built-in predicate
fail/0. With the help of the built-in nth_clause/3 a candidate clause, with an
index number and unique signature, is found. To determine a clause’s corresponding
body, clause/3 is used. After incrementing the recursion level, it is evaluated.

To express an If-Then-Else statement, SWI-Prolog offers several options: The most
obvious choice is the operator ->/2. However, utilising this operator, if a solution for
the condition has been found, choice points for it are destroyed. Thus, this does not fit
our needs. As an alternative, there is also the operator *->/2 in SWI-Prolog, which
implements a soft-cut. With this operator, Prolog will backtrack over multiple
solutions of the condition. The Else-branch is only called if the condition cannot
be satisfied at all. If a solution was found and then additional are searched via
backtracking, the Else-branch will not be executed in case of failure. In our case, the
Else-branch should also be called in these cases for displaying these failing execution
steps. For this, the operator ~>/2 (see Listing 5.5) has been defined, which provides
the required functionality.

Listing 5.5: Handling If-Then-Else statements
1 :- op(1150, xfy, ~>).

2 Goal ~> Then ; _Else :- Goal, Then.

3 _Goal ~> _Then ; Else :- !, Else.

Listing 5.6: Meta-interpreter with output of failure
1 mi_print(true, _Level).

2 mi_print((A, B), L) :-

3 mi_print(A, L), mi_print(B, L).

4 mi_print((A = B), L) :-

5 (A = B ~>

6 print_indented((A = B):exit, L)

7 ;

8 print_indented((A = B):fail, L),

9 fail

10 ).

11 mi_print(A, L) :-

12 A \= (_,_), A \= (_=_), A \= true,

13 print_indented(A:call, L),

14 nth_clause(A, Index, Sign),

15 L1 is L + 1,
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16 (clause(A, B, Sign), mi_print(B, L1) ~>

17 print_indented(A:Index:exit, L)

18 ;

19 print_indented(A:Index:fail, L),

20 fail

21 ).

22

23 print_indented(A, L) :-

24 Indent is 2*L, tab(Indent), writeln(A).

When querying a DCG, the resulting structure is displayed as a sideways tree, child
elements are further indented. The single lines use the format <goal>(:<index>):
<call | exit | fail>, respectively in the case of unifications <unification>:

<exit | fail>. Failing clauses are also printed, before calling available alternatives.
Thus, output is also possible if a query fails, as shown in the example below:

?- mi_print(verb_phrase([chases, a, dog], []), 0).

verb_phrase([chases,a,dog],[]):call

verb([chases,a,dog],_6966):call

verb([chases,a,dog],[a,dog]):1:exit

noun_phrase([a,dog],[]):call

determiner([a,dog],_7198):call

determiner([a,dog],_7198):1:fail

determiner([a,dog],[dog]):2:exit

noun([dog],[]):call

noun([dog],[]):1:fail

noun([dog],[]):2:fail

determiner([a,dog],_7198):2:fail

noun_phrase([a,dog],[]):1:fail

verb([chases,a,dog],_6966):1:fail

verb_phrase([chases,a,dog],[]):1:fail

false.

Similar to the command line tracer, each performed execution step is printed. This
meta-interpreter performs the following execution steps, while trying to satisfy the
goal: The predicate verb_phrase//0 has only one clause, its grammar body is
formed by a verb//0, followed by a noun_phrase//0. To prove the goal, first
verb_phrase//0 is called and a matching verb//0 for its first grammar body item is
found. Since SWI-Prolog has moved the unification of the terminal into the rule’s
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head during the translation of the grammar, this is done directly without further uni-
fication steps. Then it is tried to describe the remaining list with a noun_phrase//0.
The second clause of determiner//0 fits the query. However, since [dog] is no valid
noun//0 in the scope of our grammar, this fails. Then, the meta-interpreter tries
to find alternatives using backtracking. Thus, previously succeeding goals are re-
tried. Since neither determiner//0, verb//0, nor verb_phrase//0 have further
open choice points, these fail and the correct result, false, is returned.

If, instead of writing to the command line, individual execution steps are stored
as facts, it is possible to generate an augmented parse tree with failing branches
from these in a further step. In order to be able to assign the facts later correctly,
an appropriate way of identifying the nodes has to be added. For example, when
backtracking occurred, it is currently not always clear what the parent of a goal
is. The carried recursion level and the numbering of alternative clauses is only a
first direction. The extended MI, which is used in the implementation, is presented
in-detail in Chapter 6.
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A tracing meta-interpreter for DCGs in SWI-Prolog is introduced in this chapter.
This provides the necessary information which is required for the visualisation.

6.1 Concept

The way the program works is structured as shown in Figure 6.1: A given DCG
is first translated into normal Prolog code with the help of a modified term-
expansion. Subsequently, this can be used for queries. These are evaluated by the
meta-interpreter, information about each relevant execution step is temporarily
stored as individual facts. Then, these are summarised in a dict, which represents
the entire execution.

Figure 6.1: Overview of the structure of DCG Tracer

6.2 Modified DCG Translation

As explained in Section 4.2.3, SWI-Prolog translates DCGs into normal Prolog
code and performs some optimisations on them. For instance, if the first grammar
body item is a terminal, it is moved inside the translated rule’s head. Even if this
does not change the result of a query, it changes which clauses are invoked during
execution [Wie17b, p. 58]. It is to be assumed that this optimisation can lead to
confusion when visualising an execution since some rules which fail immediately are
not even invoked and therefore not displayed.
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Within the built-in predicate dcg_translate_rule/210, these optimisations are ex-
ecuted as a final translation step. Since user-defined term-expansions are executed
before SWI-Prolog’s DCG translation, it is possible to bypass any optimisations
by directly calling the system predicates used for translating DCGs, excluding the
final optimisations.

By default, terminals are translated into a unification of lists. After executing unifi-
cations on them, it is not possible to directly distinguish the input, rest and terminal
list any more. To fix this, we add an additional wrapper. Each terminal is replaced
by a call of the non-terminal ’T’//1, with the terminal as argument. Thus, by the
translation in normal Prolog code, this becomes a call of the predicate ’T’/3.11

This predicate performs the unification between the terminal, input and rest list.
These three lists are clearly separated from each other while providing the expected
behaviour. The definition of ’T’/3 is given in Listing 6.1.

Listing 6.1: Definition of ’T’/3
1 ’T’(Terminal, In, Rest) :-

2 append(Terminal, Rest, In).

Similarly, normal Prolog code in grammar bodys, which is nested between curly
brackets {..}, can be wrapped. For this purpose, the meta-predicate ’P’/3 is de-
fined which calls its first parameter and unifies the handled input and rest lists.
This allows the distinction between non-terminals and normal Prolog code inside
a grammar body. Depending on whether the normal Prolog code is to be handled
as a black box or not, the wrapper can either be applied to the complete content
inside the brackets at once or to each individual element. The implementation treats
nested Prolog code as a black box, showing only the result while hiding performed
execution steps. Cuts !/0 can not be used at the moment. If these are to be in-
terpreted, it should be noted that these must not be wrapped inside ’P’//1 since
meta-calls are opaque to the cut [Wie17b, p. 108]. Otherwise the cut would only
have an effect within the predicate ’P’/3, but not in the corresponding grammar
rule.

To illustrate the differences between the normal DCG translation by SWI-Prolog
and this modified translation, a DCG for palindromes, consisting of the letters
a,b,c, is given in Listing 6.2.

10See dcg_translate_rule/2 in module ’$dcg’: http://www.swi-prolog.org/pldoc/doc/_SWI_
/boot/dcg.pl?show=src#dcg_translate_rule/2.

11This should not be confused with the predicate ’C’/3, which is used in some implementations
for expressing terminals. Although the use case is similar, the order of arguments differs [CM03,
289–294].
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6.2 Modified DCG Translation

Listing 6.2: DCG for palindromes
1 palin --> [].

2 palin --> letter(_).

3 palin --> letter(X),

4 palin,

5 letter(X).

6 letter(X) --> [X],

7 { member(X, [a,b,c]) }.

By default, this DCG is translated by the built-in predicates into the following
clauses:

% SWI’s default translation of grammar rules

?- listing(palin), listing(letter).

palin(A, A).

palin(A, B) :- letter(_, A, B).

palin(A, E) :-

letter(C, A, B),

palin(B, D),

letter(C, D, E).

letter(A, [A|C], B) :-

member(A, [a, b, c]),

B=C.

During the translation of the first rule, the empty terminal was moved in the clause’s
head, thus resulting in an empty clause’s body. This is also the case with the clause
corresponding to letter//1. In addition, the nested Prolog code is inserted, fol-
lowed by the unification of the input and rest list. It is not clear any more, whether
member/2 is a translated non-terminal, or results from normal Prolog code inside
a grammar rule. Our modified DCG translation provides clauses which look closer
to the original grammar rules:

% Modified translation of grammar rules

?- listing(palin), listing(letter).

palin(A, B) :- ’T’([], A, B).

palin(A, B) :- letter(_, A, B).

palin(A, E) :-

letter(C, A, B),

palin(B, D),

letter(C, D, E).
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letter(A, B, D) :-

’T’([A], B, C),

’P’(member(A, [a, b, c]), C, D).

Now each grammar body item is still clearly identifiable as such a one. Also, both
terminals and Prolog code are in the same place as in the grammar rules. No
unifications are moved inside a clause’s head. Querying the DCG using the built-
in predicates like phrase/3 is still possible, since the predicates ’T’/3 and ’P’/3

offer the required functionality. Of course, this program performs some additional
computation steps, since additional calls are necessary and rule indexing is bypassed.
However, the executed steps are closer related to the initial formulated DCG. Since
DCGs, not the expanded rules, are to be visualised, this is a desirable property of
the translated clauses.

6.3 Tracing Meta-Interpreter

The provided meta-interpreter is based on the idea presented in Section 5.4.4. Han-
dled code is executed, while gathering information about the execution. This ap-
proach is modified to match the application needs:

• Handling of the modified translation of DCGs
Instead of handling explicit unification, the MI evaluates the predicate ’T’/3.
Furthermore, nested Prolog code is handled by the predicate ’P’/3.

• Visible Ports
This meta-interpreter traces the ports unify, exit and fail.

• Asserting Facts
Each execution step is asserted as a fact. Due to the stored context, a distinct
assignment of related steps to one another is possible. An overview of the
structure and an example of these facts is given in Section 6.4

• Numbering execution steps
Each step has a unique identifier, which also represents the order of execution.

• Depth limit
A depth limit has been added to intercept too extensive queries and left-hand
recursion. This is represented by the additional event depth.

The meta-interpreter is given in Listing 6.3. Further predicates are used in the
code which are not shown in more detail. On the one hand, this is the predi-
cate save_step/9. This evaluates the given arguments and saves them as a fact.
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6.3 Tracing Meta-Interpreter

The first two arguments are optional, the first one numbers execution steps, the sec-
ond argument is the value of a redo counter, which indicates how often backtracking
was used so far. The other predicate is current_counter/3 which increments a
counter value. In this section, only the meta-interpreter is shown. An example of
the resulting facts when using this meta-interpreter is given in the subsequent Sec-
tion 6.4.

The actual interpreter consists of four clauses: mi/1 serves for initialisation pur-
poses and calls the actual interpretation. The three clauses of mi/2 evaluate a goal,
generate the calls to store events, and call subgoals.

Initialisation

The MI is called with the predicate mi/1. Instead of a DCGBody, as is the case of
the built-in phrase/3, a DCGBody which was translated into normal Prolog is
expected as an argument. As mentioned before, this translated form also contains
the input and rest lists, so these can be instantiated.

First, a step with the type unify is stored, which represents the root of the query.
Then the actual MI is called. As introduced in Section 5.4.4, this is done inside a
custom If-Then-Else statement. mi/2 requires two arguments: the current goal and
a compound. The latter specifies the recursion level, a reference to the parent goal,
a numbering of its subgoals, and a reference to the module which holds the called
DCG. If the request is successful, an event exit is saved, otherwise an event fail.
Finally, the counter redo is increased, in order to provide the correct counter value
if backtracking is triggered to find further solutions.

Handling Conjunction

Conjunctions are treated in a similar way as in the meta-interpreters already pre-
sented in Section 5.4. Here, the second goal is called with an incremented value of
the in-clause position Pos.

Handling Terminals and Prolog Code

Since the modified DCGs from Section 6.2 are interpreted, no unifications using
the predicate =/2 are present. Instead, calls of ’T’/3 for terminals and ’P’/3 for
Prolog code have to be evaluated.

First, it is checked for a given goal if it has a corresponding functor and arity. If this
succeeds, a step unify is stored and the goal is evaluated. After that, the result of
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6 DCG Tracer

the goal is stored. If the goal does not succeed, the counter redo is increased and
backtracking is invoked by calling fail/0.

Handling Non-Terminals

Non-terminals are handled by the third clause of mi/2. Using clause/3, a matching
clause, with its body and a reference to this clause, is determined. Subsequently,
this unification, with a reference to the current clause, is stored.

The recursion level is incremented, then the body is executed by the meta-interpreter
and the result is stored. The value of step from the previous unification of this clause
is used as the parent step for this call.

Due to the modified DCG translation, there are no rules that result in facts. There-
fore, a rule that evaluates an empty clause’s body is not needed, compared to the
meta-interpreters from Section 5.4.

Depth-Limiting

The predicate save_step/9 (not included in the listing) checks the reached recursion
level prior to the assertion of a step. If a predefined limit has been reached, the step
is stored as an event depth, followed by a call of fail/0, to stop further execution.
This ensures that executions which reached the maximum depth are terminated.
This intercepts both left-recursive calls and too extensive requests.
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Listing 6.3: Tracing meta-interpreter for DCGs
1 % Initialisation

2 mi(Module:Expanded) :-

3 save_step(unify, N, 1, 0, -1, 1, Expanded, ’DCGBody’, Module),

4 (mi(Expanded, 1:N:1:Module) ~>

5 save_step(exit, _, _, 0, -1, 1, Expanded, ’DCGBody’, Module)

6 ;

7 save_step(fail, _, _, 0, -1, 1, Expanded, ’DCGBody’, Module),

8 fail

9 ),

10 update_counter(redo, _, Module).

11 % Conjunction

12 mi((A, B), Lvl:Par:Pos:Module) :-

13 Pos1 is Pos + 1,

14 mi(A, Lvl:Par:Pos:Module), mi(B, Lvl:Par:Pos1:Module).

15 % Terminals & Prolog Code

16 mi(A, Lvl:Par:Pos:Module) :-

17 functor(A, F, 3), (F = ’T’ ; F = ’P’),

18 save_step(unify, _, _, Lvl, Par, Pos, A, F, Module),

19 (call(A) ~>

20 save_step(exit, _, _, Lvl, Par, Pos, A, F, Module)

21 ;

22 save_step(fail, _, _, Lvl, Par, Pos, A, F, Module),

23 update_counter(redo, _, Module),

24 fail

25 ).

26 % Non-Terminals

27 mi(A, Lvl:Par:Pos:Module) :-

28 A \= (_,_), A \= ’T’(_,_,_), A \= ’P’(_,_,_),

29 clause(Module:A, B, ClauseRef),

30 save_step(unify, N0, _, Lvl, Par, Pos, A, ClauseRef, Module),

31 L1 is L + 1,

32 (mi(B, L1:N0:1:Module) ~>

33 save_step(exit, _, _, Lvl, Par, Pos, A, ClauseRef, Module)

34 ;

35 save_step(fail, _, _, Lvl, Par, Pos, A, ClauseRef, Module),

36 update_counter(redo, _, Module),

37 fail

38 ).
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6.4 Representing the Execution as Facts

During the execution of a query, facts are asserted to the Prolog database. Each
fact represents a single event in the 6-port execution model (see Section 4.3.1). The
ports unify, exit and fail are traced. Instead of displaying the port redo like
in the command line tracer, it is replaced by a counter which holds the number of
occurred redos. The port call is skipped in favour of the port unify. This port is
enabled when a clause is found which matches a goal. Since the clauses’ heads do
not contain unifications of terminals due to the modified DCG translation, this port
differs from the port call only by the selection of a corresponding clause. Exceptions
are not further handled by the interpreter. In addition to the visible events from the
6-port model, there is the event depth which marks the aborted execution of goals
due to a previously reached depth limit.

Each step is represented by a single fact step/8 with the following arguments:

• Port
Stored event, this is a member of unify, exit, fail and depth.

• Step
Current execution step. This is used both for determining the sequence of
execution as well as uniquely identify each event.

• Redo
Counts the redos that occurred prior this step. Each time when a execution
step fails and alternative solutions are searched using backtracking as well as
when requesting further solutions, this value is increased.

• Level
The recursion level of the event. The toplevel has the level 0, calls within a
rule’s body lead to an incremented recursion level.

• Parent
A reference to the step of its parent goal.

• Position
For each grammar rule, grammar body items are numbered. The position rep-
resents the in-term position of the current goal inside its parent goal.

• Goal
A snapshot of the goal with its current variable bindings. Since uninstantiated
variables are no longer distinguishable when they are stored as a fact, the goal
is converted to a string beforehand.
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• ClauseRef
After calling a goal, it is unified with the head of an appropriate clause.
In SWI-Prolog, each clause has a reference which can be obtained using
the predicates clause/3 or nth_clause/3. For each non-terminal, the can-
didate clause used in the current step is referenced. A ’T’ respectively ’P’

marks terminals and embedded Prolog code. The toplevel query, which is
not a non-terminal but a grammar body, gets the value ’DCGBody’ assigned.

When using the meta-interpreter, steps are asserted by the predicate save_step/9.
Except for step and redo, argument values are provided by the meta-interpreter. In
addition, the module in which the fact is to be stored is stated as a parameter.12 To
count the execution steps and redos, an interface for simple counters is provided. For
each named counter, a dynamic fact counter/2 is created which holds the current
value. These counter values are not affected by backtracking.

As an example, using the meta-interpreter with a sample query results in the fol-
lowing facts (variable names and clause references simplified):

?- mi(noun_phrase(A,[])), listing(step).

% step(Port, Step, Redo, Lvl, Par, Pos, Goal, ClauseRef)

step(unify, 1, 1, 0,-1, 1, "noun_phrase(A, [])", ’DCGBody’).

step(unify, 2, 1, 1, 1, 1, "noun_phrase(A, [])", <c1>).

step(unify, 3, 1, 2, 2, 1, "determiner(A, B)", <c2>).

step(unify, 4, 1, 3, 3, 1, "’T’([the], A, B)", ’T’).

step(exit, 5, 1, 3, 3, 1, "’T’([the], [the|B], B)", ’T’).

step(exit, 6, 1, 2, 2, 1, "determiner([the|B], B)", <c2>).

step(unify, 7, 1, 2, 2, 2, "noun(B, [])", <c3>).

step(unify, 8, 1, 3, 7, 1, "’T’([cat], B, [])", ’T’).

step(exit, 9, 1, 3, 7, 1, "’T’([cat], [cat], [])", ’T’).

step(exit, 10, 1, 2, 2, 2, "noun([cat], [])", <c3>).

step(exit, 11, 1, 1, 1, 1, "noun_phrase([the, cat], [])", <c1>).

step(exit, 12, 1, 0,-1, 1, "noun_phrase([the, cat], [])", ’DCGBody’).

A = [the, cat] ;

step(fail, 13, 2, 3, 7, 1, "’T’([cat], B, [])", ’T’).

step(fail, 14, 3, 2, 2, 2, "noun(B, [])", <c3>).

step(unify,15, 4, 2, 2, 2, "noun(B, [])", <c4>).

step(unify,16, 4, 3,15, 1, "’T’([mouse], B, [])", ’T’).

step(exit, 17, 4, 3,15, 1, "’T’([mouse], [mouse], [])", ’T’).

12This allows for asserting the facts inside the current user’s Pengine. Since a Pengine is destroyed
when not needed anymore or after a given time limit, this prevents the accumulation of un-
necessary facts inside the meta-interpreter’s module. Also it enables concurrent requests to the
module by multiple Pengines.
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step(exit, 18, 4, 2, 2, 2, "noun([mouse], [])", <c4>).

step(exit, 19, 4, 1, 1, 1, "noun_phrase([the, mouse],[])", <c1>).

step(exit, 20, 4, 0,-1, 1, "noun_phrase([the, mouse],[])",’DCGBody’).

A = [the, mouse] .

The example utilises the DCG from Listing 4.1. The first step initialises the execu-
tion and represents the query. Here, this is solely the non-terminal noun_phrase//0.
However, an arbitrary translated DCG body could also be queried instead. The re-
cursion level of this step is 0, and it has no parent goal, indicated by -1. Then, the
first, and in our case also the only, grammar body item is executed. The queried
noun_phrase//0 has two subgoals: determiner//0 and noun//0. The events that
occur for each goal are displayed. For instance, after invoking noun_phrase//0,
determiner//0 is unified with its first clause in step 3. After finding a solution for
its subgoal in steps 4–5, which is only a single terminal, the exit port is enabled in
step 6. The relationship between these two goals can be seen from the arguments
Step, Parent and Position: The goal in step 4 is the first subgoal of step 3. Also,
the recursion level is increased by one. The exit of determiner//0 leads to call-
ing the next subgoal of noun_phrase//0, noun//0, whose unification is executed in
step 7. This is followed by the execution of its subgoal in step 8–9. The execution
finishes with exiting the queried DCG body.

Since the given query does not contain any failing goals, the redo counter value is
1 up to step 12. In the case of backtracking, each attempt to find an alternative
leads to an incrementation of this value. This can be observed when searching for
the next solution of noun_phrase//0. Since there are no other choices for unifying
the terminal or inside the current clause of noun//0, both fail in steps 13–14. Then
an alternative clause for noun//0 is determined, this contains the terminal [mouse],
which leads to the second solution of the query.

In principle, this data is comparable to what the tracer, presented in Section 5.4,
provides. However, here it is ensured that distinct assignments of the steps to one
another are possible. Using the Parent and Position arguments as a key, each goal in
the box model is uniquely identifiable. Subgoals refer to the corresponding unification
step of its parent goal. Thus, a clear distinction of alternatives is possible.

6.5 Representing the Execution as a Dict

After creating individual facts by the meta-interpreter, they are summarised in a
single nested structure. The structure is roughly based on the Byrd Box model.
Associated events are stored for each goal. Also, subgoals are nested inside the parent
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goal. A dict is used as data structure. This represents events which occurred during
execution and serves as an exchange format between SWI-Prolog and JavaScript.
This works because dicts are converted to JSON by Pengines. First, the structure
of the dict is presented, followed by an brief insight into how it is generated.

Each execution step, stored as fact step/8, can be represented as a dict event.
As attributes this contains the execution step number, the type of the event, and
the current redo counter value. In addition, the goal is stored with its current vari-
able bindings. Facts step/8 contain a clause reference. This is used to determine
the associated line number of the rule from the DCG used. The built-in predicate
clause_property/2 is utilised for retrieving this information. If there is no mean-
ingful line number, as in the case of terminals, an identifier for the type of the goal
is provided.

event{

step: <Step>,

type: <unify | exit | fail | depth>,

redo: <Redo>,

goal: <Goal with current variable bindings>,

line: <Line number of associated clause | ’T’ | ’P’ | ’DCGBody’>

}

All events associated with a goal are summarised in a dict goal. In addition to the
list of events, this includes a list of choices. For each unification of a goal, executed
subgoals are stored in a separate choice.

goal{

events: <List of event>,

choices: <List of choice>

}

Each dict choice consists of a list of its subgoals and a reference to the execution
step which lead to this choice.

choice{

parent: <Step>,

subgoals: <List of goal>

}
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The result and the steps taken can thus be represented as a nested structure. The
root is a dict goal, containing the queried DCG body. The executed subgoals and
execution steps are nested inside. An excerpt from the dict which results from the
example in Section 6.4, is intended to illustrate the structure. Shown is only the dict
of the goal noun//0, which is part of the complete resulting dict. To reduce the size
of this example, the attributes line and redo are not printed for every event.

% ..

goal{

events:[

event{goal:noun(B, []), step:7, type:unify, line:6, redo:1},

event{goal:noun([cat], []), step:10, type:exit, ..},

event{goal:noun(B, []), step:14, type:fail, ..},

event{goal:noun(B, []), step:15, type:unify, line:7, ..},

event{goal:noun([mouse], []), step:18, type:exit, ..}],

choices:[

choice{parent:7, subgoals:[

goal{

events:[

event{goal:’T’([cat], B, []), step:8, type:unify, ..},

event{goal:’T’([cat], [cat], []), step:9, type:exit},

event{goal:’T’([cat], B, []), step:13, type:fail}],

choices:[choice{parent:8, subgoals:[]}]

}

]},

choice{parent:15, subgoals:[

goal{

events:[

event{goal:’T’([mouse], B, []), step:16, type:unify},

event{goal:’T’([mouse], [mouse], []), step:17, type:exit}],

choices:[choice{parent:16, subgoals:[]}]

}

]}

]

}

% ..

The goal noun//0 has five events. These describe the unification with its first clause,
the rejection of this first solution, indicated by the event fail in step 14, and finding
the second clause and its solution. This leads to two choices, one for each unification.
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Both include the subgoals of the corresponding clauses. In both cases, this is just
a terminal as a subgoal, so these have no further subgoals. Therefore, only the
associated events and a choice without any subgoals are stored there.

There are three predicates which are used to create the dict: goal/3 requires the
module and the unique identifier of a goal, the latter is composed of the parent step
and position. The corresponding dict is unified with the third argument. First, the
events associated with the goal are determined using the predicate event/3. With
the help of the built-in predicate findall/3, all corresponding events are found.
Every unification of a goal leads to a choice. These are evaluated in a second step
by the predicate choice/3, which identifies the subgoals and calls goal/3 on each,
providing a resulting dict of type choice. Thus, the corresponding dict is created
recursively for the given top level goal.

6.6 Provided Modules

The Prolog code which implements DCG Tracer is split in three modules. First,
there is the module dcg term expansion. This performs the modified DCG transla-
tion as introduced in Section 6.2. Second, the module dcg tracer provides predicates
for querying a DCG and retrieving the dict. In addition, the modified version of the
SWI-Prolog system library ’$dcg’ is provided.

Module: dcg_term_expansion

This module serves to modify the DCG translation, as presented in Section 6.2.

• dcg_expansion(+DCGRule, -Expanded)
For a given rule, its expanded form is provided. This is a replacement for the
built-in dcg_translate_rule/2. Optimisations are disabled, terminals and
Prolog code are wrapped in the predicate ’T’/3, respective ’P’/3. Since
term-expansions are not exported beyond module boundaries, it has to be
added manually as a term-expansion in the module that holds a DCG.

• ’T’(?Terminal, ?Input, ?Rest)
Succeeds, if Terminal is the difference between the lists Input and Rest.

• ’P’(+PrologCode, ?Input, ?Rest)
Handled PrologCode is called. If it succeeds, the lists Input and Rest are
unified. This is restricted to calling built-in predicates.
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Module: dcg_tracer

This module provides an interface to query DCGs and to get a corresponding dict.
The initialisation, creation and clean-up of step/8 and counter/2 facts is encapsu-
lated by these exported predicates.

• phrase_mi(:DCGBody, ?Input, -Dict)
The same as phrase_mi(:DCGBody, ?Input, [], -Dict).

• phrase_mi(:DCGBody, ?Input, ?Rest, -Dict)
Analogous to the built-in phrase/3, solutions for a given DCGBody are calcu-
lated. Further solutions can be retrieved via backtracking. While the handled
:DCGBody is extended inside this rule, the queried DCG has to be translated
using dcg_term_expansion:dcg_expansion/2 beforehand. In addition, a dict
is unified that represents all executed steps. If a query fails, Input and Rest

will not be unified with a solution. A dict which displays the execution steps
which lead to failure is unified nevertheless. This predicate uses the built-in
setup_call_cleanup/3 to retract asserted facts after finishing the goal.

• phrase_mi_nth(:DCGBody, ?Input, +Nth, -Dict)
The same as phrase_mi_nth(:DCGBody, ?Input, [], +Nth, -Dict).

• phrase_mi_nth(:DCGBody, ?Input, ?Rest, +Nth, -Dict)
Similar to phrase_mi/4, a dict is unified in addition to the result of a query.
Instead of creating several solutions using backtracking one after another, the
parameter Nth is used to specify the number of the solution to be output.
Here, asserted facts are also deleted after finishing the query. The built-in
findnsols/4 is used to find the Nth solution. In the case of a failing query,
a dict is also provided here. However, if it is not possible to calculate Nth

solutions, this predicate fails.

Module: swi_dcg

The SWI-Prolog system library ’$dcg’ handles DCG translation and provides
also predicates for querying DCGs. The module swi_dcg is a modified copy which
exports only one predicate for translating grammar rules without optimisations or
caching of translated grammar bodies. This is used internally by dcg_term_expan-

sion:dcg_expansion/2.

• dcg_translate_rule_(+Rule, -Clause)
Behaves like the built-in predicate dcg_translate_rule/2, except for the
waiving of optimisations.
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The developed modules are independent of the web application and Pengines. Ac-
cordingly, it is possible to use these also for other purposes. Unfortunately, these
modules will not work in other Prolog implementations. Used language features
and built-ins such as dicts, clause/3 or findnsols/4 are not part of ISO Prolog,
but SWI-Prolog specific.

6.7 Future Work

The current implementation already covers the main part of the language features
of DCGs as introduced in Section 4.2.2. Thus, extensive analyses of DCGs are
possible. However, there are still possibilities for expansion.

Nested Prolog code in curly brackets {..} may currently only use built-in pred-
icates. This provides a rich set of predicates and should be sufficient for most use
cases. The definition of additional clauses and their usage within the DCG is cur-
rently not possible. Furthermore, the expansion and interpretation of semicontext is
not implemented yet.

The meta-interpreter expects clauses whose bodies only contain grammar body items
or conjunctions of those. Disjunctions can already be expressed by defining several
rules per non-terminal indicator. Adding the interpretation of further control struc-
tures in grammar bodies is possible with the provided approach. This can be done
analogously to the interpretation of conjunctions by using Prolog’s control struc-
tures. The cut is most likely to be the most complicated control structure to imple-
ment because it must remove choice points not within goals of the meta-interpreter
but with respect to the executed query. There are already approaches for implement-
ing cuts in meta-interpreters which could be used as a starting point [Imp14][SS86,
331–332].

In addition to the execution of these control structures, an expansion of the generated
dict would also be reasonable then: Instead of only listing subgoals inside each dict
choice, the structure of the clause could also be represented. Since the clause’s
body is accessible using clause/3, this information can be retrieved directly when
a clause is unified.

Currently, an overview of occurred unifications is only indirectly available by com-
paring the stored goals of several events. An extension of an explicit overview of
those would be conceivable. Also, the naming of unbound variables could be further
improved. These are named starting with an underscore, followed by a number, as
usual in SWI-Prolog.13

13The latter is already solved by dynamically renaming variables in the visualisation.
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The application DCG Visualiser uses the introduced meta-interpreter DCG Tracer
to analyse and visualise the execution of querys on DCGs. First of all, the imple-
mentation is discussed in Section 7.1, followed by an overview of provided features
in Section 7.2.

7.1 Implementation

The visualisation is realised as a web application. It consists of a server that provides
HTTP functionality and manages Pengines. On the client side is the web application,
where requests are formulated and received results visualised accordingly.

7.1.1 Server

The server is based on the demo server by the Pengines project.14 This is adjusted
accordingly to provide features needed for the application. The web server is already
preconfigured. This uses SWI-Prolog’s library http for handling HTTP requests
and responses. In addition, the library Pengines is loaded. Unnecessary sample ap-
plications have been removed from the demo server.

Since the basic functionality of the server is already given, only minor additions are
necessary: The previously introduced DCG Tracer must be made available for the
usage within Pengines. For this purpose, modules presented in Section 6.6 are loaded.
Afterwards, they are only available for the server, but not for Pengines running on it.
With the use of sandbox:safe_meta/2 and sandbox:safe_primitive/1, required
predicates are also made accessible for them.

A term-expansion calling the predicate dcg_term_expansion:dcg_expansion/2 en-
sures that DCGs loaded within a Pengine are properly translated. In addition, to
use the meta-interpreter, the predicate dcg_tracer:phrase_mi_nth/5 is declared
as a safe meta-predicate.
14A Prolog Engine application server: https://github.com/SWI-Prolog/pengines.
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To prevent the execution of Prolog code which should be constrained, like ac-
cess to the file system or the termination of Prolog, in nested Prolog code
in grammar bodies, it is checked prior calling. This is executed in the predicate
dcg_term_expansion:’P’/3 by means of sandbox:safe_goal/1.

In order to run the server, a current SWI-Prolog is required. The application is
developed and tested using SWI-Prolog 7.6.0 for Microsoft Windows. In principle,
the server should also be executable with upcoming SWI-Prolog releases. However,
it should be noted, that in July 2017 a critical vulnerability was patched [Ogb17].
Previously, a Pengine was able to execute arbitrary code on the server. Therefore,
the use of older versions than 7.5.12 of SWI-Prolog is strongly discouraged. In
general, the Pengines project is still under development and not yet released as a
stable version. The developers explicitly point out that safety can not be guaranteed
at this time [Lag17].

The server is started by running the file ’run.pl’ located in the project folder
Pengines. In addition, a debugging mode is available (’debug.pl’) which offers a
graphical overview of running threads on the server. Already pre-configured is the
ability to run the server as a Unix daemon (see ’daemon.pl’).

7.1.2 Client

When the server is running, the web application can be accessed locally in a web
browser at http://localhost:3030. Recommended is a recent version of Google
Chrome15 (developed and tested using version 62.0). Of course, this is not to be
understood as a limitation. The application and its functionality has also been tested
in other web browsers with different rendering engines. All the latest versions of
Internet Explorer 11, Microsoft Edge, and Mozilla Firefox have been successfully
reviewed to check the operability of the application. According to the current usage
share of desktop browsers, over 90% of web browsers used are thus covered [Net17].

The application is based on common web technologies: JavaScript, HTML5 and
CSS3. In addition, several frameworks are utilised in the implementation. The layout
of the application is based on MUI16. This is a lightweight CSS framework based
on Google’s Material Design Guidelines17. Furthermore, CodeMirror18 is used as a
editor for DCGs.

After the user has entered a DCG and formulated a request, it is executed by
means of Pengines in SWI-Prolog. The dict generated by DCG Tracer is returned
15Google Chrome: https://www.google.de/chrome/.
16MUI: https://www.muicss.com/.
17Material Design: https://material.io/.
18CodeMirror: http://codemirror.net/.
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in JSON format. This represents the model of all required execution steps to find a
solution. To render this, it is translated into HTML markup. This is achieved with
the help of Handlebars19, a logicless templating engine. Interactive features, such as
displaying individual execution steps, were realised with the help of jQuery20. An
overview of the interface and its provided functionality is given in the next section.

7.2 Overview of the Application

The application realises concepts and ideas introduced in Chapter 3. The following
is an overview of the user interface and its features. In addition to this section,
Appendix A.1 provides an overview of here presented features in the form of screen-
shots.

7.2.1 Posing Queries

The user has the opportunity to formulate a DCG himself. Alternatively, it is pos-
sible to load examples and adapt them if desired. Among others, DCGs used within
this thesis for illustration purposes are available as example DCGs there.

All language components that can be processed by the presented DCG Tracer may
be used: Terminals, non-terminals and embedded Prolog code. Terminals can be
specified either as lists or as strings, the latter enclosed in double quotes. As usual
in Prolog, strings are internally converted to lists of individual characters. By
default, this list consists of character codes. In order to achieve a readable output,
the corresponding character is displayed instead of its code.

The possibilities to make a request are based on the built-in predicate phrase/3.
So a DCG body, an input and a rest list is needed. The DCG body is not limited
to single non-terminals and may consist of a conjunction of several grammar body
items. The input and rest lists can either be lists of arbitrary content, or an unbound
variable. Here, specifying strings is also permitted if terminals in queried rules are
based on strings or char lists.

In addition, two buttons are available: First Solution and Next Solution. The former
provides the first result of a query. The latter can be used to retrieve further solutions
to the current query via backtracking.
19Handlebars: http://handlebarsjs.com/.
20jQuery: https://jquery.com/.
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7.2.2 Interactive Visualisation

The result of a query is displayed according to the structure presented in Section 3.2.
Above the actual visualisation is an overview of the queried DCG body, the event
with which the execution finished, and the input and rest list.

Underneath is the visualisation of the execution. After fetching a result, this is
initialised with the final result of the query. The topmost box of the visualisation is
the queried DCG body, called goals are displayed below. Of course, the visualisation
is not fixed to this step, individual steps of the execution can be viewed interactively.
This is done by the slider and corresponding buttons. There are buttons for step-
by-step navigation through the execution steps, as well as buttons to get directly to
the last or next toplevel event. The latter buttons are useful, for example, to jump
back to the step where the previous solution was found. Then the following steps for
finding the next solution can be viewed. This visualises backtracking: The rejection
of already found solutions to goals and the execution of alternative grammar rules
can be viewed step-by-step.

The current goal is highlighted in the visualisation (green text colour). If the current
goal is a non-terminal, the corresponding line of code is marked, too. In addition, the
state of each goal is indicated by its background colour. So it is easy to distinguish
whether a goal is called (light blue), it could be satisfied (dark blue), it failed or no
further solution could be found during backtracking (red), it was aborted because the
recursion limit has been reached previously (pink), or it has been discarded through
an alternative that has been called instead (greyed out). In order to be able to show
for each goal in the visualisation the corresponding grammar rule, associated code
is also highlighted when these are hovered.

To adjust the scale of the visualisation, there are corresponding buttons. Also, pan-
ning the visualisation is possible by dragging with the mouse.

The labeling of each box in the visualisation depends on its content: Terminals
are labeled with the associated list, similarly, Prolog code is written inside curly
brackets. By default, only the functor and additional arguments of non-terminals
are displayed. There is an option in the controls section to also display input and
rest lists for each non-terminal. The queried DCG body is displayed analogously.

A screenshot of DCG Visualiser is given in Figure 7.1. This shows the applica-
tion after fetching a result. Further insights into provided features are given in
Appendix A.1 in form of screenshots.
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7.3 Future Work

With the developed application, it is possible to interactively comprehend the ex-
ecution of queries on DCGs. Most of the features introduced in Chapter 3 have
already been realised. Nevertheless, there are still ways to improve the application
even further in the future.

Depending on future development of DCG Tracer, the presentation may change.
For example, if additional control structures are implemented, they should also be
visualised.

Variables in input and rest lists are unified with the corresponding result when a
query is executed. Unfortunately, there is no sharing of identifiers between multiple
variables in the data returned by Pengines. Thus, in each returned term, the variable
naming begins with an A for the first variable, using the built-in numbervars/3.
With several unbound variables, this leads to erroneous conclusions, e.g. unrelated
variables appear to be unified. So the identifiers of unbound variables are not suitable
to be shown. However, since the display of variable bindings and not just the output
of input and rest lists is meaningful, it would be preferable to find a way how this
can be realised in a proper way.

Currently, code is displayed without syntax highlighting. The library Codemirror,
which is used for providing the text area, does not feature a language mode for
highlighting Prolog yet. There are already efforts to realise this. This is being
worked on as part of SWISH.21 The identification of individual code fragments of
Prolog code is more complex than in other programming languages. So this is
currently done not locally in the browser but server-assisted. If this is released as a
language mode for CodeMirror, it could be integrated in DCG Visualiser.

There is also room for improvement in the presentation of syntactical errors in the
DCG and the query. Currently, errors returned by Pengines are already displayed as
a warning. However, this is not further processed and thus these notifications may
be confusing.

21SWISH: SWI-Prolog for Sharing https://swish.swi-prolog.org/.
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8 Conclusion

This chapter gives a brief summary of this thesis. Subsequently, the future develop-
ment of the presented approach and application is discussed.

8.1 Summary

In this work a visualisation of DCGs was introduced and realised. Based on existing
research and the needs of the potential user group, a concept of such an application
was first presented.

To realise the visualisation, different approaches for gathering data on the execution
of queries on DCGs were discussed. DCG Tracer, a meta-interpreter based approach,
was introduced and implemented. This traces the execution, subsequently a dict
which represents execution steps in a structured way is created.

The thereby provided information on the query is used by the developed web appli-
cation DCG Visualiser which displays it in an appealing manner. The connection
between SWI-Prolog and JavaScript is established using Pengines. Utilising this
application it is possible to interactively comprehend which execution steps Prolog
performs to satisfy a query on a DCG. Backtracking and failing queries can also be
visualised since failing execution steps are also displayed.

The aim of this work was to find a way of interactively visualise DCGs. This was
achieved with the presented approach, resulting in an appropriate application.

8.2 Outlook

“Software is a process, it’s never finished, it’s always evolving. That’s its nature.”22

With the presented DCG Tracer and the application DCG Visualiser based on it,
there is already a possibility of visualising DCGs. Nevertheless, there are still plenty
of ideas for further improvements.
22Dave Winer, 1995 http://scripting.com/davenet/1995/09/03/wemakeshittysoftware.html.
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8 Conclusion

These have already been discussed in detail in Sections 6.7 and 7.3 respectively.
In summary, extending the tracer by the interpretation of further language compo-
nents and subsequently integrating those into the visualisation are the next major
challenges.

In addition, a study on how the presented application supports the understanding
and debugging of DCGs could help to refine the direction of future development.

Currently the application is limited to the visualisation of DCGs. However, the
underlying meta-interpreter based approach, as well as the representation of the
execution as a dict, are flexibly expandable. Thus, based on the introduced modules
and application, a visualisation of arbitrary Prolog programs could be realised in
the future.
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Appendix

A.1 Screenshots of DCG Visualiser

The following pages provide an overview of the application DCG Visualiser. For this
purpose, different features are presented by means of screenshots. Utilised DCGs
are mostly already introduced within this thesis. In addition, these are provided in
the application as example DCGs.

• View of a result:
Figure A.1, Page 80

• Querying further solutions:
Figure A.2, Page 81

• View of a failing query:
Figure A.3, Page 82

• Detailed view of a failing step:
Figure A.4, Page 83

• String based queries and normal Prolog code:
Figure A.5, Page 84

• Depth limit reaching query:
Figure A.6, Page 85

• Provided instructions:
Figure A.7, Page 86
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A.2 CD Contents

A.2 CD Contents

The provided CD contains the following data:

• /dcg_tracer:
Prolog modules for analysing DCG execution
(as introduced in Section 6.6).

• /dcg_visualiser:
A Pengines server and the web application DCG Visualiser
(as introduced in Chapter 7).

• /listings:
Example DCGs and code which is used within the thesis,
but not in the actual implementation.

• /screenshots:
Screenshots of the visualisation.
These images are also included in Appendix A.1 of this thesis.

• thesis.pdf:
A digital copy of this thesis.

For more information about folder contents, see the README files
stored in each of the folders on the CD.
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