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Abstract

Increasingly, processes and relationships of many aspects of our lives are described us-
ing abstract models. Graphs are the underlying principle behind some of these models.
Companies model business processes using event-driven process chains (EPCs). These
EPCs can be interpreted as graphs, thus technology known for visualizing graphs can
be leveraged for use with EPCs, too. One case of using EPCs is the comparison of dif-
ferent yet similar models. Because EPCs can represent complex behaviors, algorithmic
comparison aids are developed to help manage these complexities. These assistant algo-
rithms can often be applied to EPCs and graphs alike based on the relationship between
EPCs and graphs. This way, they can transcend into many domains where graphs are
already an established tool. Three algorithmic comparison aids are further investigated.
One emerged from a tool developed by Andrews et al. [AWWO09|, which calculates and
visualizes a merged graph. The other ones rely on finding a maximum independent set
of a permutation graph and were developed to use existing visualizations of models. The
drawings are adjusted to bring related parts of the model closely together, at least in
one dimension. Lastly, these algorithmic comparison aids are evaluated to verify the
theoretical advantages in real-life scenarios. Participants of a user study rated usability
and helpfulness of the methods.

Zusammenfassung

Zunehmend werden Ablédufe und Zusammenhénge aus allen Lebensbereichen mithilfe
von abstrakten Modellen beschrieben. Graphen bilden die mathematische Grundlage fiir
einige dieser Modelle. Geschéftsprozesse in Unternehmen werden als Ereignisgesteuer-
te Prozesskette (EPK) modelliert. Solche EPKs kénnen in Graphen tiberfiihrt werden
und damit werden bekannte Techniken zur Visualisierung von Graphen auch fiir EPKs
nutzbar. Beim Umgang mit EPKs werden manchmal verschiedene Modelle manuell ver-
glichen. Da die EPKs sehr komplex sein kénnen, lohnt es sich, automatische Assistenzsys-
teme zu entwickeln, um Komplexitdten dabei handhabbar zu machen. Diese Assistenz-
systeme konnen aufgrund der Ahnlichkeit von EPKs und allgemeinen Graphen auch auf
den Vergleich von Graphen allgemein iibertragen werden, was eine Anwendung in ver-
schiedenen Doménen auch aufserhalb der Modellierung von Geschéftsprozessen erlaubt.
Drei dieser Assistenzsysteme werden genauer beschrieben, darunter eine Methodik von
Andrews et al. [AWWO09|, welche auf dem Berechnen und Visualisieren eines zusammen-



gefiigten Graphen basiert. Aufferdem werden zwei neu entwickelte Methodiken basierend
auf maximalen stabile Mengen von Permutationsgraphen vorgestellt, welche bereits vor-
handene Visualisierungenen der Modelle so aneinander anpassen, dass korrelierende Mo-
dellteile in einer Dimension rdumlich ndher aneinander gebracht werden. Zuletzt wird
untersucht, inwiefern solche theoretisch erdachten Assistenzsysteme Nutzern im prakti-
schen Einsatz helfen konnen, unter anderem mit einer Benutzerstudie, bei der die Teilneh-
mer die verschiedenen Verfahren hinsichtlich intuitiver Bedienbarkeit und Niitzlichkeit
bewerten.
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1 Introduction

Motivation These days, some companies manage and document their common work-
flows as digital business process models. By using these well-documented guidelines,
managers can systematically improve the execution of recurrent tasks and companies
can quickly train new members of staff. Similar companies tend to have similar business
processes. Also, departments of the same company may evolve to use similar but dif-
ferent business processes. Merging these organizational units requires merging of their
respective business processes. Since the process models are stored digitally in process
repositories, we want to leverage modern algorithms to help with this task.

As an example for the use of process models, de Moor and Delugach [MDO06] did a
detailed study of a small-sized software development group — about 15 persons — that
develops and maintains aerospace software. They gathered process models from official
documents and interviews with a key manager familiar with both, the published process
and actual practice, and proceeded to calculate the differences. In a meeting with a
manager for two different projects, they reviewed the calculated differences. One such
difference was that change requests were evaluated by a software lead in one project
but by a whole team in another. Identifying and discussing the differences helped the
company find ways to improve their practice, work regulations and process quality.

Another area of application for business process modeling and comparison is the evalu-
ation of commercial off-the-shelf (COTS) software. An entrepreneur will usually conduct
a feasibility study before settling for a specific COTS software. For taking this important
decision they match the existing processes of the company to the processes imposed by
the capabilities of suitable COTS software. The research project Komplex—elﬂ concerns
itself with solving this efficiently.

Lastly, you can think of business processes as graphs with nodes and edges. It is a
topic of ongoing research to draw such graphs in a useful manner. Most of the results
for drawing business processes can be applied in many other fields where graphs are used
and drawn, and vice versa. Therefore, we can build on a great repository of research in
the field of graph drawing. If it can be modeled as a graph, it can be compared like a
graph. On the other hand, the same methods helping experts with comparing business
processes can be used to compare other types of information.

However, without any automatic aids the visual comparison of graphs can be a cum-
bersome task. An example like Figure demonstrates the problem. The two graphs
have been drawn with the same algorithm. For one drawing the algorithm has been given
a slightly differently ordered input and already produced a very different drawing. The

!The results of Komplex-e are yet to be published, meanwhile information can be found at http:
//komplex-e.de/|


http://komplex-e.de/
http://komplex-e.de/

Fig. 1.1: An example where visual comparison of two graphs is hard. Both drawings show the
same graph only arranged differently.

interested reader might take the time to check that the two graphs are in fact exactly
the same.

Other means of documentation like plaintext or wiki hypertext sometimes offer more
flexibility than the comparably rigid structure of a graph and machine learning algorithms
are improving to make intelligent document comparisons feasible. Visual comparison aids
like in Figure have been available for textual information for some time. However,
an analysis with graph-based algorithms comparisons might be more exact and efficient
in case the information is already available in a graph-like format and could be consid-
ered as an alternative in other cases. The advances in graph theory have made a wide
range of algorithms readily available. Problems when comparing results of sophisticated
graph algorithms might deter a potential user from an otherwise useful approach. We
strive make validating and checking the results more usable by developing and improving
methods to assist a visual graph comparison. This way, we want to inspire uses of graph
theory in all kinds of applications.

Related work Finding corresponding processes and quantifying their differences was
already described by Dijkman et al. [DDV™11]. They focus on querying a repository of
business processes for those that are similar to a given query. They also mention that
their metric can be used to indicate the total cost of merging two companies. However,
at some place in the merger human oversight is probably still required to decide how to
resolve differences in process models. A similarity metric alone will not help with this,
rather we want to create a diagram of the two similar business processes.

In 2015 a process model matching contest was conducted, which compared twelve
different algorithms for comparing business processes and calculating matchings. In their
related report, Antunes et al. JABBT15| confirm a “vivid process matching community
that is interested in an experimental evaluation of the developed techniques to better
understand its pros and cons” but also acknowledge that there is still large room for
improvement for methods that do find many relationships while at the same time not



Line 290: Line 290:

* [http://Awww.utm.edu/departments/math/graph/ Graph theory tutorial] * [http://www.utm.edu/departments/math/graph/ Graph theory tutorial]
* [http://www.gfredericks.com/main/sandbox/graphs A searchable database * [http:/Awww.gfredericks.com/main/sandbox/graphs A searchable

of small connected graphs] database of small connected graphs]

* {{Wayback Idate=20060206155001 * {{webarchive

= lurl=http://www.nd.edu/~networks/gallery.htm Ititle=Image gallery: graphs }} 4 lurl=https://web.archive.org/web/20060206155001/http://www.nd.edu/~n
etworks/gallery.htm |date=February 6, 2006 Ititle=Image gallery: graphs }}

* [http:/Awww.babelgraph.org/links.html Concise, annotated list of graph * [http://Awww.babelgraph.org/links.html Concise, annotated list of graph
theory resources for researchers] theory resources for researchers]

* [http://www.kde.org/applications/education/rocs/ rocs] — a graph theory * [http://www.kde.org/applications/education/rocs/ rocs] — a graph theory
IDE IDE

Fig. 1.2: An example of visual comparison aids available for textual information. The
changed text is highlighted and unmodified sections are hidden. Screenshot form
the wiki-based onlne encyclopedia Wikipedia, https://en.wikipedia.org/w/index.
php?title=Graph_theory&diff=prev&oldid=750169746.

finding unwanted relationships.

A survey conducted by Gleicher et al. [GAW™11| does not only list many systems for
visual comparison of complex information, but also provides a general taxonomy of visual
designs splitting them into three categories: Juxtaposition, displaying the subjects next
to each other, either in time or in space, superposition or overlay and explicit represen-
tation of the relationships. They also emphasize the importance of user interaction.

As a foundation for doing the layout for the business process graphs we use the well-
known algorithm by Sugiyama et al. [STT81] for hierarchical drawings and variants
thereof.

When it comes to visually comparing graphs in particular, there are some more recent
works of interest. Some systems receive two input graphs and a list of node similarities
or a matching. For example, Holten and van Wijk [HWO08| compare two hierarchies —
that is, trees — using a juxtaposition. However, trees can be rearranged rather freely
compared to drawings of business processes, which have to roughly maintain the order
of steps.

Schreiber [Sch03] describes a method to compare graphs side by side and also bringing
comparable vertices to the same horizontal position by merging them to a common vertex
for some drawing steps. Their approach is strongly catered to needs of biologists and the
drawing of metabolic pathways, which are a series of chemical reactions.

Andrews et al. [AWWO09] have already developed a tool for comparing business pro-
cesses that closely matches our requirements. In their side by side view they use a
merged graph’s layout to adjust positions, whereas we adjust the individual layouts.
Their method was implemented and used as a reference to evaluate our ideas.

Our contribution We have set ourselves the goal to draw a diagram of two processes in
a way that provides significant improvements for business process modeling experts over
just comparing two traditional drawings side by side. While a similarity metric might
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make for a good first indicator for the extent of differences between processes, the actual
cost of switching to another process can be estimated more exactly by examining differ-
ences in detail. We want to provide key decision makers with means of revealing those
differences effectively. For this we developed an algorithm based on finding a maximum
independent set of a permutation graph. This algorithm uses provided relationships be-
tween parts of a business process and adjusts existing visualizations of process models.
In the basic usage, nodes are spread apart in unmatched parts of the drawing to bring
related parts closer together. In a another usage, the results of the algorithm are used
to adjust scroll speeds when interacting with a side by side view of two processes. The
adjustment leads to related parts showing up at the same time.

To test the theoretical results in conditions close to real-world usage, we implemented
an interactive tool to annotate graphs with similarity information and to compare them.
We conducted a small user study to get some insights into perceived usability and help-
fulness of the methods.

Structure The structure of the thesis is as follows. The next Chapter [2| gives a short
introduction to the basic concepts and terminology. The algorithm developed for adjust-
ing graph drawings for comparison itself is discussed in detail in Chapter [3] Chapter
describes an alternative algorithm that aids comparison and also how the methods prove
themselves in a user study. To conclude, we give a summary of our results and final
remarks in Chapter [f]



2 Graphs and Business Processes

Before describing the methods to aid a visual comparison of business processes, this chap-
ter introduces the most important concepts, which build the foundation for later chapters.
There are some key elements when visually comparing business process flowcharts. The
theoretical foundations are graphs with labels and graph layouts. They are used as data
structure in intermediate steps of the algorithms, as abstraction for the various kinds
of data structures, and as a basis for models of business processes. For the application
in the domain of business processes we look into event-driven process chains, which are
used for modeling business processes. We are also going to show how these components
play together and also define terms for a precise description in the following chapters.

2.1 Graphs

Drawing business process flowcharts is usually based on algorithms for drawing graphs.

Definition 2.1. A (directed) graph G is a tuple (V, E) of two sets, with E C V x V.
v € V are called vertices and e € F edges.

Graphs are the concept behind flowcharts and describe connections between vertices
called edges. While there are undirected graphs, too, for flowcharts only directed graphs
are of interest, where an edge e = (vg,vr) is directed from its head vy to its tail vp. It
is generally implied that there are no loops, that is, vy # vr for all e = (vy,vr) € E.

Here is an example of a graph Gg:

G = (Vi, Eg)
Ve ={0,1,2,3,4,5,6,7,8}
Eg ={(0,1),(1,2),(2,3),(3,4),(4,5),(2,6),(6,7),(7,8)}

Here, the vertices are numbers like 0, 1 and 2 and the edges are pairs like (0,1) or (1,2).
We will use this graph as an example throughout this chapter.

To make graphs more useful, we assign labels to the vertices. We denote this using
a labeling function Iy : V' — S mapping vertices to strings, for example, with § =
{a — z}*. This labeling function is not necessarily injective, there could be two vertices
vy, vy € V with Iy (v1) = ly(v2). Applying this to our example Gg, we could use [y with
ly(0) = hunger, Iy (1) = bake, ly(2) = xor, Iy (3) = black, Iy (4) = sob, ly(5) = brown,
ly(6) = eat.

While the definition of a graph as a tuple of two sets is necessary to formally define
a graph’s properties, for us humans a graph is intuitively described by a drawing. Such



a drawing depicts the vertices as boxes or circles and the edges as lines between them.
Additionally, the edges’s tails are denoted by an arrowhead. You can find examples for
a drawing of the graph Gg in Figure [2.14]

(a) With the vertex numbers as labels.  (b) With labels Iy, and various shapes.

brown

content

Fig. 2.1: Two drawings of the example graph Gg.

There are many variations of such drawings often including colors and different shapes
as seen in Figure 2.1 But we are mostly concerned about the positions of the vertices
on the drawing pane.

Vertex colors or shapes in a graph drawing are usually assigned using domain knowledge
and aesthetic considerations, but the vertex positions may be automatically assigned by
a layout algorithm. The result of a layout algorithm is a layout which positions the
vertices on a drawing pane.

Definition 2.2. A layout of a graph G = (V, E) is a function Ly : V — N x N.
An edge layout is a layout Ly and a function Lg: E — (N x N)* with Lg((vi,v2)) =
Ly (v1),...,Ly(vy) for all (vy,v9) € E.

Some algorithms additionally assign paths to the edges. Instead of connecting two
vertices with a straight line, edges may follow a sequence of points or even a curve to
avoid areas occupied by vertex shapes. It is also sometimes desirable to draw edges using
only or mostly horizontal and vertical segments, known as orthogonal drawing. This can
be achieved using edge paths, too. To keep the edge drawings useful, they should still
start and end at the positions of their head and tail vertices.

Graphs are an abstract concept and they are used to describe all kinds of information
like subway networks with stations and tracks, genealogy trees with family members and
their relationships, computer networks with servers and links or social networks with
users and so-called friendships. Additionally they are a handy tool in computation, since
algorithms are available to solve many kinds of problems. These properties are utilized
in the next sections and chapters.

10



2.2 Business processes and event-driven process chains

In our work we used the domain of business processes to apply our graph algorithms to.
Hansen and Neumann [HNO1| give the following definition for business processes:

“A business process consists of linked activities, which are executed in a par-
ticular sequence for reaching a certain goal. Those activities can be started
and executed in parallel or sequentially.”

Examples of such processes would be handling a request for time off or the purchase
of goods in a trading company. An example of an activity — also known as task or step —
would be calling a client. Processes and their activities are started by events, for example,
when a form is submitted.

Business process modeling forms the first step when developing business-oriented soft-
ware. Existing processes are analyzed and used as a basis for a new system.

When a degree of automation is introduced into a business process, it is also known
as workflow. The workflows are then depicted as flowcharts. A flowchart usually ex-
hibits graph-like characteristics, rendering events and activities as nodes and possible
transitions as edges.

For the illustration of business processes we use event-driven process chains (EPCs).
They provide a visual language that defines possible elements of a flowchart. As such,
they may consist of the following elements:

Event is depicted as a hexagon-shaped node.

Function is depicted as a rounded rectangle node and they relate to activities in the
process.

Logical connectors are depicted as circular nodes. They indicate a parallel execution
(A) or a choice between multiple execution paths (V and XOR).

Arcs are the edges connecting the above three types of nodes.

7

Instead of “XOR” we sometimes just write the symbol “x”. There exist some more
elements in EPCs, for example organization units, however they are not relevant for our
work, as they can either be drawn and placed very similar to the other types or do not
fit into our graph model very well.

Figure is an example for an EPC.

There is a start event “hunger” on top which triggers the first action “bake”. After the
baking is completed there is an XOR decision node. The workflow continues depending
on which event occurs: Is the pie “black” or “brown”? If the pie is black, the next activity
is “sob” until the final event “done” arises. If the pie is brown the process follows up
with the activity eat, until the final event “content” triggers. As you might guess, this
EPC describes the process of making and consuming pie. Notice that the XOR logical
connector forces a decision for exactly one event, so you cannot have a dark-brownish
cake and eat a bit before giving up and starting to sob.

11



done content

Fig. 2.2: Example for an EPC, the process of making and consuming pie.

To get a more formal grasp on EPCs we use the definition provided by W. M. P. van
der Aalst [Aal99):

Definition 2.3. An event-driven process chain (EPC) is a five-tuple (E, F, C, T, A) with:
e F is a finite set of events,
e F'is a finite set of functions,

e (' is a finite set of logical connectors,

T:C — {A,XOR,V} is a function which maps each connector onto a connector
type,

AC(EXF)U(FXE)UEXC)U(CXE)U(FxC)U(CxF)U(CxC(C)isa
set of arcs.

In the example from Figure we would have: E = {hunger, black, brown}, F =
{bake,sob,eat}, C = {xor}, T'(xor) = XOR and A = {(hunger, bake), (bake,xor),
(xor, black), (black,sob), (sob, done), (xor, brown), (brown, eat), (eat,content)}

Theorem 2.4. An EPC (E,F,C,T,A) induces a graph G = (EUF UC, A).
Proof. We have to show that
AC(FEUFUC)x (FEUFUQ) (*)

We observe that () is true for all of the subsets (E x F), (F x E), (E x C), (C x E),
(Fx (), (CxF)and (C x C) of A. O

The example EPC from Figure induces the exemplary graph Gg from Section [2.1
There are other methods for depicting business process flowcharts, such as Business
Process Model and Notation (BPMN) or UML activity diagrams. They expose similar
concepts and an application of our results to these methods should in principle be pos-
sible. However, BPMN also introduces “swim lanes”, that is, partitions of the drawing

12



pane into parallel swaths for each actor. This is yet another layout constraint, leading
to more complex considerations and thus not covered here. An example for a business
process with swim lanes can be found in Figure [2.3

Approvals
Customer Sales Contracts Legal Fulfillment
Cusmmem w| RepLlogs PO, 5| Contracts Agent
submits Pcy 7| Enters Order Reviews Order

Standard
Terms?

Agent Approves
Order

* Attorney
Marks it OK,
Returns to Agent

A

Pick Order
Log Shipment

Agent
> Requests
Approval

Changes
Acceptable?

Y

Attorney
¢ Marks it No,

Returns to Agent

Agent Cancels
Order

Order is
Not Shipped

Order Is

Rep Is

Notified Shipped

Fig. 2.3: A flow chart of a hypothetical business process with swim lanes. Here, they are
vertical sections for the customer, the sales department and so on. Source: https:
//commons .wikimedia.org/wiki/File:Approvals.svg.

2.3 Finding or specifying similarities

A useful approach when comparing business processes is not to focus on the possibly
many differences, but on the similarities first. Comparable processes usually have some
functions in common. In our example with a recipe as process, this could be steps like
“bake” or “eat” that occur while preparing and consuming a meal, even if other steps
differ. In a more business-oriented setting, those would be functions like posting a goods
receipt, confirming a payment, checking delivery instructions or entering data. The same
is true for events. For example, the occurrence of “hunger” would be a common starting
point for two recipes. Even though logical connectors are widespread, they are hard to
match, since for example a XOR. connector is unrelated to most other XOR connectors
in another process.

13
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Those similarities are usually described with a value between 0 and 1, where 0 means
no similarity and 1 means semantically equivalent. A set of similarities is sometimes
called matching, alignment or correspondences. Sometimes a whole group of n elements
matches another group of m elements and they form an n : m matching. The most
common case of matching is two elements in an 1 : 1 matching with a similarity value
of 1. For the methods described in the following chapter this latter matching is the only
one of interest, other matchings can be reduced to this case. We can apply a threshold
value to the similarities to decide between 0 and 1 and unfold n : m matchings into nm
single 1 : 1 matchings. A matching with a value of 0 is usually implied when no other
matching is given for a set of elements. To clarify which kind of matching is used for
adjusting the graph drawings for comparison, we call the resulting 1 : 1 relationships
between similar functions and events constraints.

Definition 2.5. Let Gy = (Vi, E1) and Gy = (Va, E3) be graphs. A constraint between
G1 and Gy is a two-tuple (v,v’) with v € Ey and v' € Es.

In the case that G; and G5 are graphs induced by business processes with G; =
(B U F, UC1, Ay) and Go = (E) U Fy U Cy, Ay), we restrict this to v € Ef U Fy and
v € Eé U F5.

The graph nodes a and b are the equal or similar elements of the graphs or processes,
as determined by experts or automatically. In the context of business processes, the
task of finding these similarities automatically is called process model matching. It con-
stitutes a vast research topic that cannot be surveyed here. It is related to ontology
alignment, which more generally describes finding similarities in concepts. We developed
a preprocessor that will mark functions and events as similar if they have equal labels.

2.4 Sugiyama’s layout algorithm

Sugiyama et al. [STT81| proposed a framework for layered graph drawing, which was
henceforth also known as Sugiyama-style graph drawing. It is based around the idea
of drawing graphs partitioned into layers. In the process, each vertex is assigned a
vertical position based on its layer and a horizontal ordering reducing edge crossings. The
resulting drawing should align as many directed edges as possible from top to bottom. It
is furthermore desirable to have few and narrow layers for a good use of drawing space.
In regard to edges, we want them drawn short and with only few bends and crossings.
Note that these considerations are usually mutually exclusive: To get a very narrow
drawing, we could place all vertices on one straight vertical line. But this would cause
the resulting drawing to be very high and the edges would probably need many bends to
route around the vertices. For this reason, different techniques were developed to balance
the requirements. However, all of these techniques fit in a framework of five steps to draw
a graph in a layered drawing: Breaking of cycles, assigning of layers to vertices, ordering
the vertices in each layer, fixing the horizontal position of vertices and drawing the edges.

Cycle breaking Layered graph drawing is only applied to directed acyclic graphs. But
this can be extended to general directed graphs by breaking all cycles. If we flip an
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edge which is part of one or many cycles, these cycles are then paths. We can continue
flipping edges until no cycles remain. However, any edges flipped here are later drawn
upward against the general direction of edges. To get a consistent drawing we want to
keep the number of upward edges in the layered graph drawing low, but the problem of
selecting a minimum set of edges to flip — a minimum feedback arc set — is NP-complete.
Fortunately, there are fast approximation algorithms, most of which select edges greedily
by different criteria.

Layer assignment The next step is to assigning the vertices to layers. We want to end
up with a partition Vy, Vi,...,V,, = V of a graph G = (V, E), that is, V;NV;, = 0 if i # k.
Such a partition is called hierarchy if all edges (v;,vr) € E with v; € V; and v, € Vi
have ¢ < k. If all edges also satisfy ¢ + 1 = k the hierarchy is called proper. The subsets
V; are called layers. It is not hard to see that cycles prevent us from constructing such
a hierarchy. A proper hierarchy can be created from a hierarchy by inserting dummy
nodes on edges when they cross more than one layer.

There is a very simple linear time algorithm to assign all vertices to layers. We layer
Vo to the set of source vertices, that is, all vertices that have no incoming edges. We
then assign a vertex v to layer V; where i is the length of a longest path from a source
to this vertex. This already minimizes the number of layers needed.

Further optimizations are possible which reduce the total edge length. One common
example is that a source vertex v is connected only to a vertex v in a very low level Vj.
If we then set v € Vj,_q instead of v € V{y we would save the height of these k£ — 1 layers
in edge length.

Other variations of the layer assignment step limit the number of vertices per layer
and thus the width of the drawing, while accepting a higher number of layers. We did
not find any examples of very wide layers in our test set of business processes. We
conjecture that drawing a vertices on a different layers which would belong on the same
layer only to save space might decrease usability. Therefore we did not further look into
such optimizations.

Vertex ordering After the vertices are distributed to layers the next step reduces edge
crossings. The vertices are first ordered arbitrarily in a layer, leading to many edge
crossings. The untangling is a combinatoric problem, so an optimal algorithm leads to
a high runtime. A faster heuristic is the barycentric method. The layers are alternately
processed from top to bottom and from bottom to top. The processing from top to
bottom is repeated for a fixed number of times or until no changes were made in one
run. For each layer the crossings between the next layer are reduced. Each vertex from
the neighboring layer is placed on the average horizontal coordinate of its peers in the
current layer. Top and bottom layer switch roles when processing from bottom to top.
In the end, the number of edge crossings is sufficiently low in an acceptable runtime.

Horizontal positioning After assigning layers to the vertices and determining their
relative order in their respective layer, the vertices have to be placed on the drawing
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pane. While their vertical position is directly correlated to the layer, the horizontal
position must be carefully computed to reduce the number of edge bends. The vertex
positioning may induce conflicts leading to either a wider drawing or more edge bends.
An optimal algorithm to solve the problem uses quadratic programming and minimizes
the distance to a straight path between the edge endpoints. However, it is slow for larger
problem instances and may lead to wide drawings. A heuristic method, called priority
layout method works similar to the barycentric method and processes the drawing layer
by layer upwards and downwards. In each step the vertices of a layer are processed in
the order of their priority. Dummy vertices have the highest priority followed by vertices
connected to many others. The positions of hight priority vertices are adjusted first to
make edges vertical. Then the vertices with lower priority follow. After a fixed amount
of iterations a good drawing is achieved.

Edge drawing As a final step the edges are drawn. We can use simple straight lines,
orthogonal connections or more complex methods. The dummy nodes inserted previously
make sure that edges do not cross through any vertices.

Fast algorithms that do almost no optimization may also deliver acceptable solutions
for some problem instances. Finding an optimal solution for most sub-problems is NP-
hard, but acceptable heuristics are known. Sugiyama’s layout algorithm is considered a
well-researched tool to draw individual processes. Also, when comparing processes it is
sometimes already sufficient to draw them both in a hierarchical layout and place them
side by side. If this is not enough, more measures can be applied like the ones described
next chapter.

16



3 Placing Similar Vertices on the Same
Height

When comparing business processes without a defined process, assessors look at com-
panies or departments and use their intuition and experience to gather information on
process differences. Tools like EPCs were developed to help retaining and sharing the
gathered knowledge. The next step is now to compare the gathered processes. This
is usually done manually, using the artifacts from the surveying step. We want to ex-
plore methods of assisting this second phase with automatically calculated visual aids.
Our approach strives to improve the experience when comparing two business process
flowcharts side by side. The methods do not only work on EPCs but on graphs in general.
After drawing the individual graphs using for instance Sugiyama’s layout algorithm from
Section [2.4] we can trivially arrange the drawings side by side to compare them. How-
ever, it would be useful to include information gathered on similarities. In Section
we already described how similar or equal elements of processes might be assessed and
described using constraints. To visualize a constraint (v,v’) between the vertices v and
v’ of two graphs it would be a good idea to just draw a straight line between the rep-
resentations of v and v’ in the drawings. To differentiate those from the edges of the
individual graphs, we can use another color and shape. For large graphs, however, it can
be cumbersome to follow long constraint lines across the drawing pane. This is why we
want to use the constraints in another way: To place similar parts of the graphs next
to each other. This can be achieved by putting vertices with constraints on the same
height, thereby making the drawn line for the constraint horizontal. In this chapter we
want to describe a method of adjusting an existing layout to establish this property, at
least for some constraints.

3.1 A simple adjustment to make two constraints horizontal

The method of adjusting n constraints with our method builds on a procedure to make
two constraints horizontal. After drawing both graphs with Sugiyama’s layout algorithm,
they both are partitioned into layers Vy, Vi, ..., V,. Assume we are given a set of con-
straints C' = {(v,'), (w,w’), ...} with v € Vi) of the first graph and v" € Vi, of the
second graph. This defines a layer assignment L mapping each vertex to the number of
the layer in which it is contained.

We can bring v and v’ to the same height by shifting the whole drawing of the second
graph L(v) — L(v") layers downwards. For example, v’ was in layer V(v before and is
in layer Vi1 (L(w)=L(v)) = V() after the shift and we have our desired property of v
and v’ being on the same height, v,v" € Vi)
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Tab. 3.1: All cases when trying a simple adjustment of two constraints.
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After the shift, w and w’ are most likely still on different layers, let’s call them w €
Vi (w) and w' € Vi(w)- Without loss of generality assume that the constraints are ordered
by the height of the layer of their vertex in the first graph, that is, L(v) < L(w) or v is
above w in the drawing. Flip the constraints otherwise.

If we then want to continue and bring w and w’ to the same height, without at the
same time moving v and v’ to different heights again, we can do what we call a simple
adjustment. For the adjustment to work, v’ has to be strictly above w’ in the shifted
drawing, L(v') < L(w’), and v and w have to be on different layers, L(v) # L(w).
Then look at the height difference of the constraint between w and w’, L(w) — L(w’). If
L(w) < L(w') insert L(w’) — L(w) layers into the drawings of the first graph just before
Vi) If L(w") < L(w) insert L(w) — L(w") layers into the drawings of the second graph
just before V. After this operation, w and w’, too, are on the same height.

What about the cases when this adjustment does not work? First the case where v
and w are on the same layer: In this case we are essentially asking for v, v, w,w’ to all
be on the same layer: After the first shift, we already established L(v) = L(v") and we
have L(v) = L(w) by definition. The adjustment should make L(w) = L(w’). These
equalities come together when v' and w’ are on the same layer, L(v') = L(w'), and we
already have L(w) = L(v) = L(v') = L(w'), so no adjustment is needed. On the other
hand, when v' and w’ are not on the same layer, L(v') # L(w’), our adjustment would
have to put v' and w’ in the same layer or split v and w into different layers. This is not
possible by just inserting new, empty layers, we would have to make further adjustments
to accommodate for the other elements of the drawings.

Secondly, " may not be strictly above w’. If they are on the same layer, we end up with
the mirrored condition of the last paragraph, so again either is L(v) = L(w) and there
is no need for adjustment, or we would have to split or merge layers. The other case, v’
is strictly below w’, means that the lines of the constraints (v,v’) and (w,w’) cross in
the drawing. Then again, simple inserting of layers on one side is no longer possible and
we would have to rearrange the drawing in more complex ways to accommodate both
L(v) = L(v') and L(w) = L(w') at the same time while still maintaining a consistent
hierarchical drawing.

All in all the cases in Table are distinguishable. Note that L(v) > L(w) does not
appear in any of the cases, because we initially assumed without loss of generality that
L(v) < L(w). We call the constraint (w,w’) in conflict with (v,v’) if we cannot do a
simple adjustment. We call the constraint (w,w’) redundant to (v,v’) if L(v) = L(w)
and L(v') = L(w’).

3.2 Conflicts between n constraints

With the method described until now, a drawing can be adjusted to level out two con-
straints. We want to build on the concepts introduced in the last section and develop an
algorithm for n constraints in a set of constraints C' = {(v,v'), (w,w’),...}. Figure
shows an example of two graphs with eight constraints, three of which are already hor-
izontal. In the last section L(v) = L(v’) was established after the first shifting of the
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second graph. However, the cases outlined in Table[3.I]only ever use the relative positions
of v and w and of v" and w’ and make no assumptions about the relationship between
v and v'. A simple adjustment will only insert new layers and thus keep the relative
order of vertices in the drawing. Consequently, if two constraints have the properties
L(v'") < L(w') and L(v) < L(w) after the shift to make (v,v") horizontal — indicating
that we can do the simple adjustment — they already had this property before the shift.
Equally, redundancy and conflicts persist irrespective of simple adjustments. In further
consequence, if there are two conflicting constraints in the initial drawing, no sequence
of simple adjustments can resolve this conflict.

It is therefore sound to introduce a conflict graph Go = (C, E¢). The set of vertices of
the conflict is the set of constraints C. The set of edges is the set of pairs of constraints
in conflict. Figure depicts the conflict graph for the constraints from Figure (3.1
We labeled the vertices for the constraints in the drawing of G¢ with their first vertex
for brevity. In the example the constraint (1,1") crosses the constraint (3,3'), since 1
is strictly above 3 but 1’ is strictly below 3’. The constraints (3,3’) and (2,2’) do not
cross but start in the same layer in the first, left graph so they, too, are in conflict.
We cannot draw them both horizontal without merging layers in the second, right graph.
The constraints (2,2') and (7, 7’) are conflicting because they end in the same layer in the
second graph. There are many pairs of constrains that are not in conflict, for example,
(4,4") and (5,5") are not since they are parallel. Here, 4 is strictly above 5 and 4’ is
strictly above 5, so we could do the simple adjustment, were they not horizontal already.

3.3 Selecting as many constraints as possible

Because of the conflicts between constraints, they cannot all be drawn horizontal using
simple adjustments. We can, however, pick as many pairwise non-conflicting constraints
as possible. In terms of the conflict graph, we want to find a mazimum independent set.
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An independent set of a graph is a subset of its vertices, no two of which are adjacent,
that is, no edge is connecting the two. The maximum independent set is a set with the
highest cardinality of all possible independent sets. Finding a maximum independent set
is NP-hard for general graphs, but we will show that conflict graphs from constraints
in drawings belong to a class of graphs for which the problem is solvable in polynomial
time.

A permutation w of integers 1,2,...,n is a bijection assigning each number exactly
one other number. A permutation of integers can be fully specified by the sequence
7(1),7(2),...m(n). The inverse 7! of the bijection assigns each number its position in

this sequence. A pair of numbers a, b with a < b and 7= !(a) > 7=1(b) is called inversion.
The inversion graph or permutation graph G[r] = (V,E) of the permutation 7 is the
graph with the numbers as set V' = {1,2,...,n} of vertices and an edge between two
numbers if they are inverted in 7, so (a,b) € E if and only if a < b and 7~ !(a) > 7= 1(b).
All graphs that are isomorphic to a graph G[n| are called permutation graphs. For
example, the permutation 3,1,8,7,4,2,5,6 has 7(1) = 3,7(2) = 1,7(3) =8,...,7(8) =
6 and the permutation graph in Figure [3.4 Permutation graphs were introduced by
Even et al. [EPL72] motivated by problems in memory allocation and circuit layout and
have since found their way into textbooks, like the one from M. C. Golumbic [Gol04].

Theorem 3.1. The conflict graph of constraints between two Sugiyama-style drawings is
a permutation graph.

Proof. When using only simple adjustments, all that matters about the constraints are
the layers of their vertices and not their horizontal positions because the vertices are
never moved independently. We construct a diagram where we draw two columns of
circles, one column for each input graph, like in Figure [3.2] We then represent the layers
with small circles in the order of their vertical arrangement in the drawing. As a next
step, we draw a line for each constraint connecting the pair of circles belonging to the
layers of its vertices. However, we draw the constraint lines just a little longer, in such
a way that all the lines of each layer cross in the center of its circle, but not too long,
so that we do not create any other crossings with unrelated lines. Notice that for sets of
pairwise redundant constraints, we can only draw one line. This means that all constraint
lines linked to a layer are connected to different circles in the other column, so they have
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different slopes and cross in the circle. All in all we have constructed a diagram where
constraint lines cross if and only if the corresponding constraints are in conflict. If we

now number the endpoints of the lines on the left side with 1,2, ..., n from top to bottom
and repeat each number on the other endpoint of the line, we get a new sequence on the
right side. This sequence is a permutation of the numbers 1,2,....n. In the resulting

diagram the ith and the kth constraint lines cross if and only if ¢ and k are reversed in
the permutation. This means that the inversions of the permutation, the intersection
graph of the constraint lines in the constructed diagrams and the conflict graph of the
constraints are equivalent. O

If we construct such a diagram for the constraints in Figure [3.1| we end up with Fig-
ure In the right column one can read off the permutation 3,1,8,7,4,2,5,6, whose
permutation graph we have already seen in Figure so this is the conflict graph of the
constraints, too. For the sake of the example the nodes and constraints of Figure [3.1] are
conveniently named to correspond with the numbers of the permutation.

The construction of the diagram used in our proof is similar to matching diagrams or
permutation diagrams defined in literature. A matching diagram is constructed from a
permutation by writing 1,2, ..., n in one line and the numbers (1), 7(2),...,7(n) in the
next line. Then the equal numbers are connected. For the permutation 3,1,8,7,4,2,5,6
used across the examples we can obtain the matching diagram in Figure |3.3

3.4 Finding a maximum independent set of a permutation
graph

In the last section it was shown that the problem of selecting a maximum number of
constrains is reducible to finding a maximum independent set of permutation graphs.
This section is about efficient algorithms for this task.

Our initial idea was to solve this using a graph algorithm. We use the permutation’s
integers 1,2, ...,n as vertices of a graph. We also add two special vertices s and ¢, where
s has an outgoing edge to every other vertex and ¢ has an edge from other vertex, that
is, two vertices u and v are connected by a directed edge (u,v) if u = s or v = ¢t. Also we
add an edge (u,v) between u and v if there is no inversion between u and v, meaning they
are a smaller number u followed by a larger number v in the sequence, so u,v ¢ {s,t},
u <vand 771 (u) < 771 (v). No other edges are added.

The resulting graph is acyclic, since the condition 77! (u) < 77! (v) makes sure edges
from any number are always oriented to other numbers later in the sequence of the
permutation, with s and ¢ as sentinel vertices for a first and a last element, respectively.
This means that a path from s to ¢ can be interpreted as a subsequence of the sequence of
the permutation. The vertices of the path, excluding the sentinel vertices s and ¢ are the
elements of the subsequence. For example, a path with edges (s, u), (u,v), (v, w), (w,t)
would denote the subsequence uvw.

Additionally, the condition v < v makes sure that the edges go from a smaller number
to a higher number with s and ¢ as sentinel vertices for a smallest and largest number,
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respectively. This means that any path found is also an increasing subsequence.

On the other hand, all increasing subsequences can be represented as paths in the
constructed graph, since the corresponding edges have been added in the construction.
Any pair of consecutive numbers u, v in an increasing subsequence has the properties that
u < v, since the subsequence is increasing, and 7~ !(u) < 771(v) since the subsequence
keeps the same order as the permutation’s sequence. We can also see that the length of
the subsequence is the length of its corresponding path minus one.

A longest increasing subsequence is thus a longest path in the constructed directed
acyclic graph. We can use a well-known algorithm for finding such a path, sometimes
called critical path method. The algorithm works by first finding a topological ordering
on the graph, in our case we can use 7 for this purpose, adding s and ¢ as first and
last vertex, respectively. Secondly traverse the vertices in the topological order. For s
set the path length to 0. For all other vertices set the path length to the maximum
of the path lengths of the vertices with edges to this vertex plus 1. In the end path
length of the vertex ¢ will be the length of a longest path in the whole graph from s to ¢.
By backtracking which vertex contributed the individual paths lengths we can find the
longest path.

Because we have to check each vertex, and all incident vertices for them, this algorithm
runs in O(|V| 4+ |E|) time. The set V' is {s,1,...,n,t} by construction, so its cardinality
is |V| = n + 2. However, the cardinality of the set of edges |F| is only limited by
O(n?); For the identity permutation 1,2,...,n we get the highest cardinality of |E| =
n+n+nn—1)/2+1=n>+3n+2)/2=(n+2)(n+1)/2, consisting of the n edges
from s to all numbers, the n edges from all numbers to ¢, the n(n — 1)/2 edges between
the numbers and the edge (s,t). Ignoring the directions of the edges, the graph would
be a complete graph, meaning all vertices are connected with all others. The runtime in
terms of the size of the permutation’s sequence n is therefore in O(n?).

Once we have found a longest increasing subsequence, we have also found a maximum
independent set of the permutation graph. It is clear that not only subsequent elements
u,v of an increasing subsequence have the property 7= (u) < 7~!(v) but also any pair of
elements of the sequence, since the order is not changed from the order of the elements
in the permutation’s sequence. This also means that any longest path we find in the
constructed graph is also a clique when ignoring the directions of the edges, that is, any
two vertices of the path are also connected by an edge.

This transitivity suggests that there are many redundant edges in the constructed
graph. If there are edges (u,v) and (v, w), the edge (u,w) must not even be considered
by our algorithm, because if (u, w) was part of a longest path, there would be no elements
between uw and w in the corresponding subsequence. But we could add v to make the
sequence one element larger, meaning we would not have found a longest path in the first
place, leading to a contradiction. In fact, Even et al. [EPL72] show how it is sufficient to
find certain transitivity properties to classify a graph as permutation graph. However,
it is not immediately clear how an algorithm can make use of these properties to reduce
the theoretical runtime bound to something better than O(n?).

To create a fast algorithm we used prior results from Aldous and Diaconis [AD99] and
Kim [Kim90] and ended up with Algorithm
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Algorithm 1: LongestIncreasingSubsequence(Array A, Relation <)

input : Array of permuted elements A and a relation < indicating their original
order
output: A longest increasing subsequence of A according to <
piles = new, empty list
foreach a € A do
index = piles.binarySearch(first with a < last added element)
if index indicates not found then
L piles.append(new queue with only a on it)

[ N N

else
L piles|index].enqueue(a)

8 subsequence = new, empty list

9 last = null

10 foreach p € reverse(piles) do
11 until last is null or p.peek() < last do
12 L p.dequeue()

13 last = p.dequeue()
14 subsequence.append(last)

15 return reverse(subsequence)

We want to describe Algorithm [I] and show that it finds a longest increasing subse-
quence. The loop starting in line [2] goes through all the elements x in the order of the
input permutation sequence A and places each element on a pile. The piles are imple-
mented as first-in-first-out queues and kept in an ordered pile list piles. In every iteration
the first pile in this list with the property that the element x to be piled is smaller than
its last added element is selected. If there is no such pile, the element z is placed on a
new pile at the end of the list piles. This ensures a few invariants for the already added
elements across the iterations of the loop. Firstly, the elements on each individual pile
are ordered from large to small, with the smallest having been added last. Secondly,
the elements of each individual pile appear in the order of the input list, with the first
added element being the first to occur in the input list from all elements in its particular
pile. Lastly, the last added elements from each of the piles in the order of piles form an
increasing sequence, making the binary search possible.

The second part of the algorithm from line[§lon builds an output list subsequence from
these piles. First it takes the firstly added element of the last pile in piles to subsequence,
which is the largest element of this pile. It then continues backwards through piles and
takes one element from each pile. For this it looks through its elements from the one
added first, until an element smaller than the last element in subsequence is found. It
then adds this element to the end of subsequence. In the end the algorithm returns the
reverse of the list subsequence.

As an example, suppose A = 3,1,8,7,4,2,5,6, the sequence known from the previous
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Fig. 3.5: Result of an example run of Algorithm on the input sequence A = 3,1,8,7,4,2,5,6.
The piles are depicted as vertical columns with last added elements on the bottom.
The elements of subsequence are underlined for clarity, the elements discarded in the
second phase are crossed out.

examples such as Figure [3.2] The results of the algorithm along with the piles built
can be found in Figure [3.5] The first phase places the numbers of the piles depicted as
vertical columns with last added elements on the bottom. The first number 3 is placed
on the first pile. Then 1 is placed on the same pile, since 3 is the last added element
on the pile and 1 < 3. The next number 8 has to be placed on a new pile because
8 < 1. The other numbers are placed accordingly. In the second phase the algorithm
starts with the first number of the last pile, 6, and puts it into subsequence. It then
proceeds to take 5 from the penultimate pile. When it starts looking at the second pile
last is set to 5, so the loop in line dequeues and discards 8 and 7, since 8 £ 5 and
7 £ 1. The loop terminates at 4 when 4 < 5, and 4 is added to subsequence. Lastly 3 is
added, yielding subsequence = 6,5, 4, 3 which when reversed is 3, 4, 5, 6 one of the longest
increasing subsequences of A =3,1,8,7,4,2,5,6. Keep in mind that there may be more
than one longest increasing subsequences. The example sequence 3,1,8,7,4,2,5,6 has
the increasing subsequences 1,2,5,6, 1,4,5,6 and 3,4, 5,6, which are all of maximum
length 4. Now that we have defined some basic properties of the algorithm and the piles,
it is time to proof correctness and show that the algorithm does indeed return a longest
increasing subsequence.

Theorem 3.2. The algorithm LongestIncreasingSubsequence calculates a longest increas-
ing subsequence.

Proof. As a first step assume that the input sequence A has a longest increasing subse-
quence ai,ag,as,...,a; of length [ with a; < as < --- < a;. If the algorithm encounters
a1 it is placed on a pile. Afterwards it will encounter as. The algorithm cannot chose
the pile containing a1, because a1 < as. Even if a1 is no longer the last added element
on its pile and some other elements x, vy, ...,z have been added afterwards, they would
have the property z < --- < y < z < aj because that is the condition under which the
elements x,, ...,z are placed on the pile and with a; < as we get z < as. Recall that
the condition in line [3] mandates z > ag, so the algorithm chooses another pile. One can
argue analogously that ag cannot be placed on neither the pile with aq nor the pile with
az, so it has to be placed on a third pile. Ultimately there must be at least [ piles.

The second loop in line [10]selects one element from each pile. Having more than [ piles
would lead to a contradiction, because the algorithm would find an increasing subsequence
even longer than our assumed longest increasing subsequence ai,ao,as,...,a;, thus it
allocates at most [ piles and finds a longest increasing subsequence.
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However, now that we know our returned result has the correct length, we still have to
prove we find an increasing subsequence after all. When the second loop in line [10] starts
all elements have been placed on [ piles maintaining the invariants of the first loop. In
the first iteration the last pile in piles is processed and last is null. This means the inner
loop in line [11] is not entered and the lines after the loop dequeue an arbitrary element
ro from the last pile, store it in last and add it to the result list subsequence. Notice
that when a pile is added it has at least one element, so the dequeue operation always
returns an element.

For the second loop starting in line we want to maintain the following invariant:
After the ith iteration subsequence contains an increasing subsequence r;,7;_;, ..., 7
of A of length ¢ reversed and last is ;. For just the single element 7y this is trivial.
Assume 7; was just added from pile | — ¢ to the subsequence in the last iteration i,
set last = r;, maintained the invariant and now start iteration ¢ + 1. The inner loop
removes elements from the pile I — (i + 1) until the element that would be removed is
< last = r;. Next last is set to the element r; 1 that stopped the loop, that is, the
first element that is smaller than r;, and added to subsequence. Since r; 11 was selected
such that 7,11 < r; an increasing sequence is maintained. Do we always find such an
element and is 7;11,7;, 75—, - .., 7o still a valid subsequence of A? At the moment when
r; was added to pile I — i there must have been an element rj ; as last added element
on pile [ — (i + 1) with 7, ; < r; or else pile I — (i + 1) would have been selected by the
binary search. This means, if the inner loop does not stop at another element rg’H first,
it will eventually stop at element rj ; and we can use it as 7;;1. Because the element
T} 41 was already on the piles when r; was encountered it stands before 7; in the input
list A. Therefore subsequence is still a valid subsequence. In the other case, when the
loop stops at another element 77, | before 74, in the pile, we know that r} ;| came before
i1 in A since its position before 77, ; in the queue means it was encountered before 77,
while traversing A in-order. With this and our knowledge that r;, ; stands before r; we
also know that 77, ; came before r;, so we use is as r;;1 and still maintain the invariant.

After [ iterations [ elements have been added to subsequence and by induction it
contains a reversed increasing subsequence. As a last step, the algorithm returns this list
reversed and thus calculates a longest increasing subsequence. ]

Notice that while the last added elements of the piles are in an increasing sequence
with maximal length [, they are not necessarily a subsequence of the input sequence A.
If a small element comes late in the sequence, it may be placed on a previous pile, thus
violating the order of the input sequence. An example for this is the input sequence
A = 4,231, you can find the resulting piles in Figure [3.6l The numbers 4 and 2 are
placed on the first pile, then 3 on the second and lastly 1 on the first pile again. In
the second phase, 3 is taken from the last pile, 4 is discarded and 2 is taken from the
first pile. Notice that the last added elements of each pile 1,3 are ascending but not a
subsequence of A = 4,2,3,1, because there they appear in the order 3,1. However, the
result of the algorithm, numbers 2,3, are a subsequence of A =4,2,3, 1.

Our initial graph-based algorithm had a runtime of O(n?) and we suspected that it
does some unnecessary work. We can now observe an improvement with the theoretical
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Fig. 3.6: Result of an example run of Algorithm on the input sequence A = 4,2,3,1. The last
added elements of each pile are ascending but not a subsequence of A.

upper bound of the runtime of Algorithm [I]

Theorem 3.3. The algorithm LongestIncreasingSubsequence runs in O(nlogn) time,
with n being the size of the input array A.

Proof. Creating the empty lists, assigning null and reversing subsequence are all at most
linear time operations. So let’s look at the loops. The first loop in line [2 runs exactly
n times. In each iteration it can create at most one pile, so we don’t end up with more
than n piles. In each iteration it does a binary search in line [3| Since we can make sure
that indexed dereferences in our piles list is a constant time operation, the list is sorted
and has at most n elements, the binary search finds the required index in O(logn) time.
Appending to the piles list and looking at the last added element are constant time
operations, too, given apt data structures are used, so the total contribution of this loop
to the runtime bound is O(nlogn). The second loop in line [10]is run once for each pile.
Again, the number of piles is limited by n. The inner loop in line [I1] may remove every
element only once and there are at most n elements. If the dequeueing and appending
operations are constant time, as is the case for e.g. linked lists, this loop contributes O(n)
to the runtime bound. In total the runtime of the algorithm is bound by O(nlogn). O

The algorithm is mostly based on the one by Aldous and Diaconis [AD99]. However,
the second loop with the collection of the results is inspired by Kim |[Kim90]. Aldous and
Diaconis used pointers between the piles to build the final result list, but a loop based
approach seemed easier to implement. Kim’s approach is to iterate based on the natural
order of the elements and calculate the piles by comparing the positions of the numbers,
but having a permuted list as input was more flexible in our use-case. Also it overlaps
nicely with the sorting algorithm patience sort, where the second phase of the algorithm
is replaced by a k-way merge: It repeatedly takes the smallest element from the piles to
form a sorted list as output. The shared pile-building phase is familiar for those already
knowing the sorting algorithm.

This section resulted in a fast and easy to implement algorithm for finding a longest
increasing subsequence and thus a maximum independent set of a permutation graph,
which we can use to select a set of non-conflicting constraints. What is still missing is
how to use these results to adjust the layout.

3.5 Calculating offset lists for adjusting the layout

Recall that our initial problem was given a set of constraints C' = {(v,v’), (w,w’),...}
and a layer assignment L find a way to adjust this assignment to draw as many constraints
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Fig. 3.7: The two graphs from Fig- Fig. 3.8: The constraints from Fig-
ure [3.T] after adjustment ure [3.2 after adjustment

as possible horizontally, yielding a new assignment L. For this start at the top and the
repeatedly add space on the higher side of the constraint, to bring the vertices of the
constraints to the same height.

In the example from Section for a longest increasing subsequence we had found
3,4,5,6. The corresponding constraints back in the examples from Section [3.2] were
(3,3),(4,4),(5,5") and (6,6"). You can find the adjusted graph drawing in Figure
and the schematic of the layers after adjustment in Figure 3.8

If we want to adjust the layouts in such a way that these constraints are horizontal,
we have to shift parts of the graphs downwards, changing the layer assignment L to an
adjusted one La. First, we want to bring 3 and 3’ to the same height. For this we can
shift the whole graph on the right two layers downwards. The vertex 3’ was originally on
layer 0, so L(3") = 0 and is on layer 2 afterwards, so La(3") = 2. Next (4,4’) are brought
to the same height. We have L(4) = 3 and L(4’) = 3, but the vertex 4’ of the right graph
was moved two layers downwards by the previous adjustment. So by shifting all vertices
of the left graph from layer 3 and below by two layers downwards we get La(4) =5 and
L (4") = 5. With the two shifts on each side by two layers, the constraint (5,5") that was
initially horizontal is again horizontal, so we do not have to make any more adjustments
for this constraint. Lastly, the constraint (6,6’) should be horizontal. When shifting the
remaining vertices of the left graph from layer L(6) = 5 and below downwards by one
additional layer, we get L (6) = La(6") = 8.

To calculate the adjustment efficiently and define some additional properties, we will
use two lists of the same length positions and corrections, for each graph. Any index ¢
in the lists describes one step of the adjustment. The first list, positions, contains the
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layer number positions; from which an adjustment starts. We define that each constraint
leads to an adjustment, even if it is a shift by 0 layers. Therefore positions is just the list
of all layers in which a selected constraint occurs. The second list, corrections contains
the amount of layers corrections; to insert from the layer positions; on. For example,
positions; = 3 and corrections; = 2 means that layer 3 and below should be shifted
downwards by two layers. We need those lists for both graphs, and we distinguish the
lists for the right graph as positions’ and corrections’.

If we have these two lists we can calculate La efficiently. For a vertex v of the left
graph, find the index i of L(v) or the next lower number in positions using binary search.
This means v is between the iht and the (i 4+ 1)th constraints. Then add corrections;,
that is, the entry of corrections at index i, to its layer number:

La(v) = L(v) 4 corrections;

For a vertex v’ of the right graph do the same with positions’ and corrections’.

In the example from Figure [3.7] the position lists are quickly built with positions =
L(3),L(4), L(5),L(6) = 2,3,4,5 and positions’ = L'(3),L'(4),L'(5),L'(6) = 0,3,4,6.
The correction list require a little more thought. The first adjustment to bring 3 and 3’
to the same height was to shift the whole graph on the right two layers downwards. For
this movement store 0 in corrections, because the vertices in the left graph are not moved.
Additionally, store 2 in corrections’, because the vertices in the right graph are shifted by
two layers downwards. Next (4,4’) are brought to the same height by shifting all vertices
of the left graph from layer 3 down two layers. This means we add 2 to corrections and
0 to corrections’. The constraint (5,5") did not lead to any adjustments, but we defined
these to be adjustments by 0 layers. Consequently add 0 to corrections and corrections’.
Lastly, for the constraint (6,6") we shift the vertices of the left graph downwards by one
additional layer, so we only append 1 to corrections and 0 to corrections’. We end up
with the lists corrections = 0,2,0,1 and corrections’ = 2,0,0, 0.

To show that it is possible to build the lists corrections and corrections’ in an efficient
manner we use Algorithm [2| It first sorts the list of constraints C' in line [3| which can be
achieved in O(|C|log|C|) time. The sorted list is then used as input to LongestIncreas-
ingSubsequence from Algorithm |1|in line 4] which runs in O(]C|log |C|) time. As seen in
the previous sections, the longest increasing subsequence S is a set of non-conflicting con-
straints. Finally, the loop in line [9] processes each element of S once with constant-time
operations, leading to a runtime of O(|S|) for this loop. This leads to a total runtime
within O(|C|log|C|), since S is a subsequence of C' and |S| < |C|. For applying the
corrections to a single vertex we get a runtime of O(log|S|) caused by the binary search
to lookup the index in the sorted list positions of length |S]|.

One problems arises for constraints that cover a big amount of space in the original
drawing, when a high number of layer has to be inserted to make them horizontal: The
adjustment results in a huge gap in the graph without any vertices in the whole inserted
space. This situation does not occur in the example from the previous section, so we use
a new example in Figure 3.9 To adjust the graph in Figure we have to make the
lower constraint connecting the two lowest vertices of the left and right graph horizontal.
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Algorithm 2: AdjustLayerAssignment(LayerAssignment L, List C)

input : A relation L of vertices and layers and a list C' of constraints, that is,
pairs of vertices
output: An tuple of lists (corrections, corrections’) of adjustment amounts

1 operator (v,v") < (w,w’) := L(v) < L(w) V L(v) = L(w) A L(v") < L(w’)
2 operator (v,v") <’ (w,w') := L(v') < L(w’) V L(v") = L(w") A L(v) < L(w)
3 C' = sort(C, <)
4 S = LongestIncreasingSubsequence(C’; <)
5 corrections = list with only element 0
6 corrections’ = list with only element 0
7c=0
8 =0
9 foreach (v,v’) € S do
10 offset = L(v) +c¢— L(v") — ¢
11 if offset < 0 then
12 c = —offset
13 d=0
14 else
15 c=0
16 d = offset
17 corrections.append(c)
18 corrections’.append(c)

19 return (corrections, corrections’)

Our initial algorithm would compare the layers of the vertices and insert two layers above
the vertex of the right graph as shown in Figure[3.9b] As you can see this vertex is now
separated apart from the other two vertices of the right graph. The adjustment brought
the two corresponding vertices of the two graphs closer together to aid the comparison,
however, it spread related vertices in the right graph apart, making the drawing less
useful overall.

This problem can be mitigated by interpolating between offsets, as shown in Fig-
ure Nothing changes for the vertices connected by the constraints. The vertices
on the layers between them, however, are distributed evenly across the inserted space.
Alternatively this can be described as scaling the part of the drawing between the layers
of the constraints.

To calculate the positions for the vertices from the lists positions and corrections
we use interpolation. For any vertex v with its layer L(v) between positions; and
positions;+1 we use the following equation to calculate La:

corrections;y1 — corrections;

La(v) = L(v) + corrections; + (L(v) — positions;) - positions;,, — positions,
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(a) no adjusment (b) gaps (c) interpolation

Fig. 3.9: Drawings of two graphs with three different adjustment methods. The graphs are just
paths with five and three vertices respectively. The two constraints between the left
and the right graph are indicated by the dashed lines.

As one can see by the occurrence of a fraction in this equation the value of La may
not be an integer but a rational number instead. This indicates that the layer of the
vertex should be placed between the positions of the previous integer layers. In this
case, L and La are analogous to the y-coordinates of the vertices. The denominator
positions;+1 — positions; is always greater than zero because constraints in the same
layer were excluded when calculating the longest increasing subsequence.

3.6 Adaptive scrolling

Based in the offset lists and adjustment described in the previous section we developed an
interactive comparison aid that we call adaptive scrolling. The method was inspired by
the scrolling behavior of diff-GUIs, that is, applications that compare text in a graphical
user interface. Equal lines of text are aligned in a side by side view and differences are
highlighted. While scrolling, if one of the texts has extra lines, the other side stays in
position until all of the inserted text has passed by. Gleicher et al. |[GAW 11| showcase
a tool called Vdiff which apparently exhibits this behavior, however, we were unable to
obtain a copy. A similar tool called Kompare is readily availableﬂ

Viewing and comparing large graphs on a computer screen results in a trade-off between
recognizable graph elements and readable label texts and the size of the section of the
graph that fits on the screen. To fit a large section of the graph drawing into the screen
viewport the size of the drawing can be scaled down, known as zooming out, which at
the same time decreases the size of labels texts and other elements of the drawing. At
some point the size becomes too small to read the labels or recognize the graph elements.
As a result, with larger graphs only a section of the graph can be shown at a time. The
user then navigates through the drawing by moving the viewport. Vertical movement is
commonly referred to as scrolling.

'Kompare is available through the KDE project or at http://www.caffeinated.me.uk/kompare/.
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We developed some approaches to ease scrolling. First, we split the viewport into
two halves, each displaying one graph. We added the option to navigate each viewport
independently and thus the ability to compare arbitrary parts of each graph even after
zooming in. Otherwise the two viewports are moved together. Secondly, we added the
option to use adaptive scrolling. It is a hybrid mode between independent and coupled
scrolling. The viewport currently scrolled by the user moves in the usual way. The
other viewport is moved with increased or decreased scrolling speed to bring the vertices
linked to the newly visible vertices of the dragged graph into the other viewport. This
interactive process is depicted as a time-series in Figure[3.10] In the first instance the two
viewports are centered on the two topmost vertices of both graphs. In this exaggerated
example only about two vertices fit into the viewports. As the user scrolls downwards,
the graph drawings are moved upwards through the viewports. The left graph is moved
faster than the right graph. In the last instance the bottom vertices of both graphs are
now centered in the viewport.

It is not trivial to apply adaptive scrolling to graphs with more vertices and more
constraints. If there are two conflicting constraints, one graph would have to move
backwards to bring the vertex back into the viewport. For a large number of conflicting
constraints the scrolling motion would be a mix of forward and backward motions, which
makes the process hard to fathom. We can use the methods developed in the previous
sections to get a smooth, continuous motion. We use Algorithm [2] to select a maximum
set of non-conflicting constraints. By using only these non-conflicting constraints we
ensure a continuous forward movement. Also the algorithm builds lists for calculating
an adjusted layer assignment L from another layer assignment L. The layer assignment
adjustment with interpolation can be used to calculate a smooth scrolling motion. If
the user is dragging the left graph we look at the point ¢ in the drawing, that is, in the
center of the left viewport. The y-coordinate of ¢ defines a rational number indicating its
position between the layers of the drawing of the left graph which we write as L(c). If we
treat c like a vertex in the left graph, we can obtain an adjusted layer coordinate L (c).
Next we conceive a vertex ¢ of the right graph with La(c') = La(c). If we reverse the
adjustment of the right graph we can obtain the corresponding layer coordinate L(c’).
We set the scrolling position of the right graph so that the L(c’) is in the center of the
viewport. If the user is dragging the right graph we use the same process the other way
round.

As an example, look at the last frame of the time-series in Figure [3.I0] Say the user
dragged the left graph with the five vertices to obtain this situation. The center ¢ of the
left viewport is just the vertex on the bottom, which is on layer 5 in the drawing, thus
L(c) = 5. To obtain La(c) look at the adjusted drawing in Figure [3.9¢d The vertex is
on layer 5 in this drawing, too, so La(c) = 5. Next we conceive ¢’ in the right graph
with La(c’) = 5. As depicted in Figure there is actually a vertex in layer 5 in the
adjusted drawing of the right graph, the third vertex from the top. This vertex was on
layer 3 before the adjustment. This means we have to move layer 3 of the right graph
into the center of the viewport. This is indeed what happens in Figure |3.10

In conclusion, adaptive scrolling is easily realized using the same calculations as in the
adjustment with interpolation. It does not change the graph drawing itself, so it may
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Fig. 3.10: Time-series of navigating through a drawing of the graphs from Figure using
adaptive scrolling. The bold rectangles depict the viewports. Scrolling down is
depicted by moving the graphs upwards through the viewport.

be used for complex drawings where inserting space between layers is not feasible. It is
an interactive method, so it cannot be used in cases where scrolling and dragging of the
drawings through a viewport is not applicable, for example, for a paper printout of the
graphs or when the graphs fit into the viewport entirely.
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4 Evaluation

So far, Chapter [2] described the relationship between graphs and business processes and
Chapter |3] introduced methods for assisting users in visual process comparisons. This
chapter is about the evaluation of these methods and if they prove themselves in practice.
Initially, Section describes a tool previously developed by Andrews et al. [AWWQ9]
and the underlying algorithm. Their tool, like ours, was developed to compare business
processes and we will look at differences and common features. Next, Section[4.2]describes
the comparison tool prototype that we developed to make the algorithms applicable to
real-world problems. Lastly, we did a user study where we asked the participants various
questions to assert the usefulness and other properties of our approach.

4.1 Placing similar vertices on the same positions

We were looking for other tools that employ aids for visually comparing business pro-
cesses. In 2009, Andrews et al. [AWWO9] presented a tool for comparing and merging
business processes called Semantic Graph Visualiser (SGV). The SGV works on two
similar input graphs G; and Gs and a list of node similarities. The tool presents the
two processes side by side and a third view in between them shows a merged graph G,,.
The user can then manage node similarities and adjust the layouts. A toolbar displays
the similarity matrix and a small overview of the merged graph for navigation, replacing
the feature of zooming in and out. The SGV works on general graphs and has no EPC
specific features, like different shapes for functions, events and connectors.

To make the graphs visually comparable and create a merged graph, a multi-step
process is used. First, the graphs and the list of similarities are loaded. Since we have
lists of constraints they are converted into similarities by keeping the pairs and assuming
a similarity value of 1. The similarity list is then converted into a similarity matrix by
setting the corresponding entries. If a pair of vertices does not occur in the list, their
similarity is set to O.

The next step is to chose matching vertices. A vertex can be similar to an arbitrary
number of other vertices from the other graph, but for the graph merging it can only
be assigned to one other vertex or to no other vertex. This assignment problem can be
solved in O(n?) time using the hungarian algorithm, where n is the number of vertices.

Next, a merged graph Gy, is constructed from the graphs GG; and G3. The merged
graph contains all vertices and edges from G;. Additionally, it contains all vertices from
G5 which are not matched with another vertex from G;. The edges from G5 cannot be
directly added, because the vertices with matches do not occur in G,,. Whenever there
is an edge in G to (from) a vertex with a matching vertex in G an edge to (from) this
matching vertex is inserted instead.
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As a last step a layout for G,, is calculated and then used to layout G and Ga.
The vertices of G and the vertices of G2 without a match get same positions as in the
layout of G,,. The vertices of G2 with a match get the position of their corresponding
vertex from G1. The SGV allows users to inspect and adjust the results of each of the
intermediate steps.

Figure shows an example for a comparison created in this way. The two graphs G
and Go are the same graphs already used as examples in Chapter 3] but this time with
the layout derived from the merged graph G,,. All vertices with numbers in G; were
matched with their counterparts in G5 and are at the same positions in the drawings of
both graphs. The unlabeled vertices remain unmatched and there are gaps in their place
in the respective other graph.

(a) first graph G4 (b) merged graph G, (c) second graph G

Fig. 4.1: Drawings of two graphs and with the layout of their merged graph The
graphs are the same like in Figure

There are some fundamental differences to the algorithm we presented previously to
bring vertices in a constraint pair to the same height. For the layout of a merged graph
we must run a layout algorithm. This can be an advantage, since almost any layout
algorithm can be used, whereas the same height adjustment can only meaningfully be
applied to layered graph drawings or other drawings that can easily be spread apart in
height. But it can also be a disadvantage. A time-expensive layout algorithm might
require a long time to calculate the layout for the merged graph, while the same height
adjustment has tight theoretical runtime bounds. Also, if an automatic layout is not
sufficient, manual adjustments to the merged layout have to be made. The same height
adjustment can work on manually created layouts. In case of the scrolling adjustment,
the original layouts are not changed at all. Both offer no additional support when the
task is to merge two graphs.
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When it comes to specifying differences and similarities between graphs, the SGV is
a bit more flexible. It uses a list of similarities with weights. Our methods currently
only uses binary constraints, that is, a constraint either connects two vertices or not.
However, both tools have to select a set of similarities. The SGV uses the hungarian
algorithm with an O(n?) runtime bound, while our methods use an algorithm for finding
a longest increasing subsequence with an O(mlogm) time bound, where m is the number
of constraints.

4.2 Development of an interactive comparison tool

To test the algorithms described in Chapter [3[ and in the last section we built a custom
prototype tool. Figure shows a screenshot of the user interface. This prototype
provides a set of tools to compare business processes or — more specifically — EPCs. It
was realized in the programming language Java. Using the Java technology, the tool
runs on a virtual machine which is available on many platforms. Also, there are some
libraries available for Java solving various tasks in the fields of graph drawing and business
processes, some of which were leveraged for development of the tool.

The tool was designed to allow displaying EPCs side by side. It also contains rudi-
mentary functionality to manage constraints on the graphs. The main focus was on the
graph layouts and the interactive comparison. To keep things simple, it consists only
of a toolbar and the graph views. The buttons of the toolbar were ordered from left
to right in the order of the workflow when comparing EPCs. The first button can be
used to load EPC files. The tool can load an arbitrary number of EPCs only limited
by available screen space and memory. The files are expected in the XML-based format
of the bflow* Toolboaﬂ which is a tool for modeling and simulating EPCs and was in-
troduced by Béhme et al. [BHK™10]. The second button is used to load a repository of
constraints. The format for the constraints was developed specifically for the needs of
the prototype. It is XML-based, too, and provides a list of pairs of identifiers for the
EPCs’ elements. In the center there is a button for adding new constraints. The user
can select EPC elements by clicking and they will be linked with a new constraint when
clicking this button.

Next in the toolbar, a drop-down menu is provided. It is used to switch between
the various adjustments, namely the interpolated height adjustment from Section
the adaptive scrolling as described in Section and the adjustment based on merging
graphs, which was described in the previous Section There is also an option to not
use any adjustments. Lastly, there are two buttons to save the constraint repository to
a file and to close all EPCs. These are used when starting a new comparison. Unlike
to the SGV, the tool does not have an additional view for a merged graph, but only
displays the two graph with the layout of the merged graph applied to them. All in all,
the buttons of the toolbar provide the essential functionality to control the comparison.

The second and more prominent part of the tool is the graph view below the toolbar.
It contains the graph drawings for the opened EPCs. It is vertically split into multiple

"bflow™ Toolbox is available at http://bflow.org/
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Fig. 4.2: Screenshot of the interactive comparison tool.

panes, one for each EPC. The graphs in these panes can be dragged and the mouse
wheel — or a substitute input method for notebook computers — can be used to zoom in
and out. In the default mode all graphs move together. Holding down a modifier key
the graphs of each individual pane can be moved independently. The panes cannot be
zoomed independently, as this would introduce complexities in the movement behavior.

Constraints are depicted as thick semi-transparent lines. Their thickness and trans-
parency distinguishes them from regular edges. Opaque lines caused problems when
many constraints ran in almost parallel paths. To further differentiate them from other
edges we used Bézier curves instead of straight lines. The two intermediate Bézier control
points are horizontally centered between the vertices and distributed in their heights to
the heights of the two vertices. After noticing completely horizontal constraints overlap-
ping other vertices, we used a slightly curved line in those cases.

The graph panes were realized using J UNGEL the Java Universal Network/Graph
Framework. 'This library provides data structures for graphs and interactive visual-
izations. It was introduced by O’Madadhain et al. [OFST05|. The graph layouts were
calculated using algorithms of the KLayE| library, which is part of the Kiel Integrated En-
vironment for Layout Eclipse RichClient or short KIELER. It provides Sugiyama-style
graph drawing including heuristics as described by Schulze et al. [SSH14].

2JUNG is available at https://github.com/jrtom/jung
3KLay is available at https://rtsys.informatik.uni-kiel.de/confluence/display/KIELER/KLay+
Layered
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The tool was tested on EPCs provided to us by the Komplex-e project. The EPCs are
reference processes, modeling either Plan-to-Produce or Forecast-to-Fulfill procedures.
They were derived from four business-management software applicationsﬂ This means
there are four EPCs in each of the two categories. Each set of four EPCs can be assembled
into six pairs, yielding twelve process pairs in total. The EPCs have between 61 and 132
elements and 60 to 143 connections. The pairs have between 14 and 48 constraints, 27.83
on average. The speed of the tool on these process pairs was good enough, such that no
significant delay was noticeable for calculating the layouts or the adjustments.

When inspecting the changes in size caused by the adjustments for the test processes, a
pattern emerges. In Figure[{.3]each plot contains one arrow for each of the twelve pairs of
processes in our test set. The base of the arrow is at the size of the original drawings. The
tip of the arrow is at the size of the adjusted drawings. The size is calculated by adding
the widths of both drawings and taking the maximum of both heights. This resembles
placing the two drawings side by side on paper. The plot in Subfigure shows that
the merged graph adjustment increases the width, sometimes by large amounts, while
the height stays almost the same or even goes down. In our test set the width increased
by 38-258 % and on average by 128 %. The large increases in width are caused by the
small amounts of matched vertices. When two rather linear processes are merged and the
merged graph is no longer as linear as the source processes, the Sugiyama algorithm can
place vertices next to each other, leading to a reduction in height. The largest reduction
was by 11 % of the original height, opposed to a maximal increase of 48 %. The average
height increase of 6 % is remarkably close to no increase at all.

The plot in Subfigure [£:3D] shows the increase in size when using the same heights
adjustment. Because only vertical space is added the width does never change and all
arrows point straight upwards. The increase of height fluctuated between 3 % and 46 %,
averaging at 22 %. A small increase of 3% can occur when a smaller business process is
scaled up beside a larger one.

4.3 Design of the user study

After the theoretical foundation for various comparison aids was laid out and imple-
mented in a usable way, we conducted a user study to learn how our tool would work out
in practice. The user study proceeded in two stages. The first stage was to conceive, test
and improve the survey design and the tool. In the second stage a number of individuals
was asked to participate in the revised survey.

For the fist stage, we prepared an instructional text to explain the basic functionality
of the tool and a total of 79 questions about various aspects of the tool. Some questions
were available in different wordings. The questions were aiming to assert usability of the
split graph view and the four different methods of adjustment implemented. Participants
were instructed to test and compare each of the methods before starting the survey, to
make the scores comparable regardless of the order of the questions for the adjustments.

“The applications are: Microsoft Dynamics NAV, SAP Business ByDesign, Sage Office Line and
godesys.
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Fig. 4.3: Size increase when applying different adjustments to example process flowcharts. The
arrow points from the original size to the adjusted size.

Otherwise assigning a high or low score in the beginning renders assigning an even higher
or lower score later impossible.

After drafting a wide range of questions, we conducted a supervised participation
with two test participants. They read the instructions, used the tool as described in
the instructions and filled out the questionnaire. They were instructed to think aloud
throughout the whole process. Using this feedback we identified three main weaknesses
with the study and proceeded to remedy or fix them.

The first weakness becoming apparent were the complex instructions. To simplify the
instructions and to reduce barriers for participation we modified the tool used for testing
and added a mechanism that pre-loads two example processes into the comparison view.
This had the side effect that we could now also ask participants which processes they
used while testing and we were hoping to collect additional data on how the choice of
the process influenced the overall experience.

The second weakness indicated by the participants was that the processes were too
complex to grasp in a reasonable amount of time. We mitigated this issue by clarifying
the detail of required comparison in the instructions. We also added a simpler example.
To ensure that complex processes are still covered, too, we selected three different pairs of
processes. Two pairs of processes were selected from the Forecast-to-Fulfill dataset from
the Komplex-e project, henceforth labeled as Erample A and Example B. Another pair
of processes was derived from the data set of the 2015 process model matching contest of
Antunes et al. JABBT15|. This contest uses three different kinds of processes. The first
dataset Asset Management contains of 72 EPC models from the SAP Reference Model
Collection and is similar to the dataset we used from the Komplex-e project. The second
dataset Birth Registration contains models representing birth registration processes in
various countries. These models are only available as petri-nets, which cannot be loaded
into our tool. The third dataset University Admission contains 9 models representing
the application procedure for Master students of nine German universities in BPMN
format. All datasets include a gold standard, a description of ideal matchings fostered
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manually. Since the processes of examples A and B were considered very complex by
the test participants, a simple processes different from examples A and B was chosen.
Two processes from the University Admission dataset were picked and converted into
the EPC format used by the tool. The pair was added as FExample C to the user study.
The processes for examples A and B consist of 79, 90 and 132 elements and have 14 and
34 constraints between them. The processes for Example C consist of 49 and 40 elements
and there are 7 constraints from the corresponding gold standard. The participants were
randomly given one of the examples.

The third weakness was that some questions were identified as vague when the partici-
pants asked for clarification. We removed some questions that lead to misunderstandings
and reworded some others to clarify. Based on additional feedback of the test partici-
pants, we checked if the questions were interpreted the way we planned. We ended up
with a total of 42 revised questions. Three questions are about previous knowledge, five
questions about the evaluation itself and eight questions about properties of the tool in
general. Fore each of the three adjustments — not including no adjustment at all — there
were six questions about properties of the adjustments. Another eight questions asked
which of the four adjustments — now including no adjustment at all — fits best to a given
property. This last group of questions was used to check the plausibility of the other
answers. If the participants were asked for a score, they had to answer with a number
between 1 and 5 with 1 standing for “I do no agree at all” and 5 standing for “I fully
agree”. An odd number was chosen to allow an undecided answer.

These questions and instructions were then composed into an online questionnaire and
sent to the members of a chair of computer science and the members of an institute
of business informatics. The instructions included steps to obtain and launch the tool
and basic information about the purpose of the tool. Even though all members had
the same chances to participate, we can assume an influence of self-selection, since we
did not check which individuals invited actually submitted answers and individuals only
responded when motivated. The selection of possible participants also assumes that
academics can judge a tool intended for practitioners. We were also interested to see
if individuals without sophisticated prior knowledge in the fields of computer science,
informatics and economics would be able to use the tool, so we had two other students
from unrelated fields participate. To reduce problematic submissions, the participants
were given the option to mark their submission as unfaithful or skip the questions if the
tool does not work at all for technical reasons.

4.4 Results of the user study

After designing and revising the survey in the first stage, we collected answers from par-
ticipants in the second stage. All in all, the study had 13 participants. Eight participants
were from the field of computer science, three of which had already been studying for
over 2 years, another three had completed a degree and another two had completed their
doctoral studies. All but one of the computer science educated participants stated that
they had already concerned themselves with graph theory. This might indicate that only
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those interested in graph theory were motivated to respond, confirming suspicions about
self-selection, on the other hand it is one of the most common fields of study.

Two participants had graduated in the field of business informatics and one was cur-
rently a student of economics. They all said they had experience with business processes.
Two of them had studied them in a scientific context, one of which also had concerned
himself with graph theory. Additionally, two participants were not related to computer
science nor economics nor business, one of which had graduated in an unrelated field.

Participants were instructed to rate their approval to various statements on a scale
from 1 to 5. The average score of n score ratings 1, ..., T, is calculated with

n
D _ai
1=0

which is also called arithmetic mean. The corrected sample standard deviation was
chosen because the actual mean score in the statistical population is not known. It is
calculated as

i’:

S

s = nilz(xi—j)Q

1=0

and s? is the related wvariance. For example, the scores 1,2,3,4,5 imply Z = 3,
52 = 10/4 = 2.5 and s = /2.5 ~ 1.58. Assuming all scores are equally likely, the
expected value E(s) of the standard deviation s is 1.41. An overview of all score aver-
ages and corrected sample standard deviations can be found in Table The questions
with the lowest standard deviations are about the complexity of the tool and about the
self-assessed faithfulness of the answers. Participants generally claimed to answer faith-
fully with a mean score of £ = 4.62 on a scale from 1 to 5 and perceived the complexity
of the tool as rather low with a mean score of = 1.69. The navigation through the
graph layouts with coupled (Zz = 4.23) and independent (z = 4.23) scrolling was gen-
erally considered helpful, indicating that both modes are necessary. Participants were
undecided about the overall helpfulness of the tool with a mean score of £ = 3.46 and a
standard deviation of s = 1.33. In hindsight, the lack of a clear object of comparison was
an error in the concept of this question. Even though the scores for Example C seem in
general more unfavorable, they may be biased, because the example was only assigned to
two participants, both from the computer science subgroup. The scores of participants
that looked at Example A are in general more favorable than those of participants with
Example B. Since Example B is more complex — 34 constraints versus 14 in Example A
— we can conclude that the processes had an influence on the ratings of the tool.

A set of scores were collected for each of the three evaluated adjustments. When asked
about the desirable properties — helpfulness, predictability or intuitiveness — participants
tended to give on average higher scores to the same heights adjustment that made se-
lected constraints horizontal by spreading certain parts of the layout. The adaptive
scrolling adjustment that only changed the scrolling with respect to some constraints
ranked second. The merged layout adjustment which layouts both processes based on
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Tab. 4.1: Overview of scores allotted by survey participants, mean scores Z and corrected sample
standard deviations s. Additional columns for subgroups of the participants, those
with economics background and those using one of the three provided examples. The
numbers in parentheses indicates the number of participants in this subgroups. The
second part lists properties for each of the adjustments, with the key SH = same
heights, ML, = merged layout, AS = adaptive scrolling for brevity. The values for the
property desirability were derived from the other questions.

Property Adj.  All (13) Econ. (3) Ex.A(5) Ex.B(6) Ex. C(2)
z s z s x s z s z s
Helpfulness 346 133 333 208 440 0.55 283 098 3.00 2.83
Clarity 3.54 120 4.00 0.00 4.00 0.71 3.50 1.22 250 2.12
Unintelligible 215 1.21 267 208 160 0.55 2.67 151 2.00 1.41
Complexity 1.69 085 1.67 058 140 055 2.00 1.10 1.50 0.71
Process Layout 3.38 1.04 4.00 0.00 3.80 0.84 333 0.82 250 212

Helpfulness of

, 423 1.09 4.33 1.15 500 0.00 383 098 350 2.12
moving together
Helpfulness of 400 1.08 367 153 460 0.55 3.67 1.03 350 2.12
independently moving
Confidence in 331 1.03 433 058 3.60 1.14 3.17 098 3.00 1.41
OoOwInl answers
Answer faithfulness 162 065 4.67 058 4.60 089 4.67 052 450 0.71
SH 392 1.12 367 153 440 089 3.67 1.03 3.50 2.12
Helpfulness ML 292 1.38 433 0.58 340 1.82 283 1.17 2.00 0.00
AS 330 1.60 2.67 1.00 4.00 1.22 233 1.63 450 0.71
SH 146 078 233 1.00 1.40 055 1.67 1.03 1.00 0.00
Complexity ML 261 1.33 200 153 260 1.52 2.33 1.03 3.50 2.12
AS 238 1.33 3.00 058 220 1.30 3.00 1.26 1.00 0.00
SH 400 1.00 400 1.15 420 084 4.00 089 3.50 2.12
Predictability ML 3.07 1.19 3.67 1.00 3.00 122 3.17 1.33 3.00 141
AS 400 1.15 3.00 058 3.80 1.30 4.00 1.26 4.50 0.70
Helpfulness in SH 300 1.15 3.00 0.00 340 089 250 1.05 3.50 2.12
oo 0 ML 292 104 300 058 240 089 3.7 0.75 350 2.12
AS 315 152 3.00 058 3.80 1.30 250 1.52 3.50 2.12
SH 208 126 233 208 200 122 217 147 200 142
Negative emotions ML 292 1.38 233 173 3.00 1.41 283 1.60 3.00 1.42
AS 223 136 233 173 220 1.30 267 1.51 1.00 0.00
SH 438 065 367 1.73 4.60 055 4.17 075 450 0.71
Intuitiveness ML 3.62 1.04 3.67 153 340 0.89 3.83 098 3.50 2.12
AS 385 099 267 1.15 3.80 1.10 3.67 1.03 450 0.71
SH 4.15 088 3.73 0.82 436 081 400 081 410 002
Desirability ML 322 0.72 3.87 041 3.24 049 3.33 056 2.80 0.84
AS 371 0.74 3.00 068 3.84 037 3.27 064 470 0.39
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a merged graph ranked third. When asked about the undesirable properties — added
complexity or the presence of negative emotions — the ranks are inverted. This suggests
a trend, however, the differences are smaller than the standard deviations, with only two
exceptions. Participants rated the perceived increase in complexity for the same heights
adjustment at a low score of £ = 1.46 with an unusually small standard deviation of
s = 0.78. The only other value with a smaller standard deviation of s = 0.65 is the
rather high score of T = 4.38 for the intuitiveness of the same heights adjustment. A
total of 69% of the participants selects scores of 4 or 5 for the helpfulness of the same
height adjustment, as opposed to only 38 % for the merged layout adjustment and 54 %
for the adaptive scrolling. When asked which of the adjustments is the most reliable,
31 % opted for the same heights. In summary, the height adjustment felt most natural
and unintrusive to the participants.

To embrace the concept of desirable and undesirable properties we derived a new
property desirability. For each participant and each adjustment look at the desirable
properties scores. Add the undesirable properties subtracted from 6. This will inverse
these scores. The average of these values together is a measure for the overall quality
of the adjustment perceived by this participant. The standard deviation of these values
indicates how coherent the participant answered the questions or how correlated these
properties are. Since the standard deviations were generally low we concluded that
the properties are indeed correlated. One participant had outstandingly high standard
deviations for each of the derived scores. We traced the origin back to situations like them
having bad feelings about an otherwise helpful adjustment. We first suspected an error in
the calculations or a fraudulent submission. The calculations were double checked and the
other answers were in check, too, so we dismissed this theory. The average values found in
Table are the arithmetic means of the participants’ averages. The standard deviations
are the square roots of the arithmetic means of the participants’ variances. Thus, they
reflect the total average and standard deviation across all desirability properties and
participants.

When asked to name the most helpful or the most functional adjustment, most par-
ticipants — 5 of 13 — picked the merged graph adjustment. The three participants with
economics background — including business informatics — ranked the three adjustments
in the opposite way, putting the merged graph adjustment in front. Especially the help-
fulness they scored highest for the merged layout with z = 4.33 and a low standard
deviation of s = 0.58. One can only speculate why, maybe they are more familiar with
the concept of merging business processes.

Participants were offered to write textual responses about their experience with the tool
and their experience with the evaluation itself. When asked about the evaluation, one
user answered that they would have wanted more processes for testing. It was considered
to add more processes, however it would be hard to tell which processes the participants
looked at and which processes influenced their final scores most. The responses about
the experience with the tool provide additional insights.

Three participants encountered some minor bugs or inconveniences, like the view not
updating immediately after adding a constraint. These bugs were subsequently fixed
and are thought to not have influenced the rating of the adjustments but might have
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influenced the scores for the overall usability of the tool negatively.

Three participants explicitly noted that they did not understand the merging adjust-
ment or did not consider it intuitive. This is probably due to the processes having very
few nodes in common. One of the participants stated that the layouts became to wide for
the viewport. Andrews et al. [AWWO09] note that “if [the graphs]| are too dissimilar, then
the merge graph is meaningless”. They do not give a fixed threshold, but from the results
of the evaluation we can assume that the merged graph was at least in part meaningless.

One participant stated that they would like a different representation of the constraints
when the vertices are on the same height, because of excessive overlap. The tool already
draws the constraints as arcs in this case, but apparently this attempt to untangle con-
straint lines is futile and a better solution is needed. This is a disadvantage of bringing
the vertices to the same height which we could not solve.

One participant noted that adaptive scrolling is only useful if the viewport shows just a
small part of the drawing, confirming our similar conjecture. Two participants expressed
their wish for more color in the tool, one even suggested colorful icons for the buttons in
the toolbar. Color would definitely add value to the tool, but its use should be considered
carefully and its artistic nature was out of scope for now. One participant acknowledged
that they had a short phase of disorientation in the beginning. One participant found a
typo in one of the provided processes. The fact that only one single participant found
this typo might indicate that participants overall did not look into the specifics of the
processes but we think this does not diminish the value of the evaluation.

Because of the small sample sizes, it is hard to derive statistically significant results.
However, strong effects would stand out, so we can conclude that there were no severe
issues with any of the adjustments or the tool itself. On the other hand, no single
adjustment was considered clearly superior. We would therefore suggest letting the user
choose an adjustment and augmenting comparison tools with additional aids.
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5 Conclusion and Future Work

There are many approaches to help visually comparing business processes and graphs
in general. We focused on three methods based on adjusting the layout of the graphs.
Two of the methods are based an algorithm which uses a maximum independent set of a
permutation graph to select pairs of corresponding vertices which can be brought to the
same height by inserting new layers into one of the drawings. One of the methods brings
them to the same height by adjusting an existing drawing and the other one adapts the
vertical scrolling motion to show related parts on the screen. A third method layouts a
merged graph of the two graphs compared and propagates the result back to the graphs.

All three algorithms were implemented in a prototype tool which allows displaying and
comparing of business processes in EPC format. The implementation of the algorithms
was rather straightforward compared to the integration and customizing of the various
libraries for loading, displaying and interacting with business processes.

The user study concluded that the height adjustment felt most intuitive and least
obtrusive to the participants. The layout based on a merged graph was considered
functional and useful by some and confusing by others, probably founded on the fact
that not many elements could be matched in our test EPCs. The adaptive scrolling
method drew mixed reactions, but was considered useful by some. Since the answers did
not allow a clear conclusion, maybe the comparison aids have to be evaluated in depth
by experts and in more real-word scenarios. It is probably best to choose an adjustment
best suited to exact use-case and processes. The layouts using the merged graph seemed
superior for graphs with many matching nodes or if the aim of the comparison is to create
a merged graph.

We showed how transferring business processes into graphs enables the use of known
layout algorithms to draw neat diagrams. In the future, it would be interesting to com-
pare the influence of the layout adjustments to some more artistic visual aids, like using
colors to highlight similar elements or changes. Another possible approach is the exten-
sion of the longest increasing subsequence algorithm to the weighted problem. Then, each
constraint has a weight value and the task is to find a set of non-conflicting constraints
of maximum weight. This way, important or low-effort constraints could be preferred
when selecting the constraints to cater the adjustment to. This could reduce edge cases
where single constraints induce great changes.

Changes to the way the constraints are visualized could improve the readability of
the diagrams. Currently there are many crossing lines in areas with many constraints.
Also, the case of n : m matchings, where a whole group of elements is related to another
group, is currently uninvestigated for all three methods. A solution may be merging
them into new vertices. For these matchings a new way of visualizing the constraints
could be introduced, since a simple line connecting two elements is only reasonable for
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the case of 1 : 1 matchings. Figure [5.1] shows how n : m matchings are visualized
in some publications. The related elements of both processes are wrapped in colored
shapes which make a confusion with edges unlikely. In case of a simple process this is
trivial and was performed manually in this instance, but for more elaborate processes
with complex relationships it becomes a lot harder to route the boundaries of the shapes
around unrelated elements and keep them free of overlays.

prepare ingredients [ make cookie dough — bake in preheated oven [ sell cookies

mix ingredients to cookie dough — preheat oven | bake [ eat cookies

Fig. 5.1: Example for two processes each about making cookies. Here, the matchings include
more than two elements and are displayed using simple rectilinear gray polygons.

Another open problem is applying the methods in those areas where a simple graph
abstraction is not sufficient to describe the models. One case would be processes with
elements grouped into hierarchically nested subprocesses. They can be used to hide
complex behaviors and condense them into one element. The corresponding abstraction
is compound graphs.

When better automatic comparisons for graphs using semantic analysis and artificial
intelligence become available, the need for manual comparison aids will eventually surge.
In the meantime, our results might help making manual comparisons a little easier despite
their recognized limitations.
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