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Abstract

To accelerate the computation of shortest paths in road networks, several pre-
processing-based route planning techniques have been developed, as contraction hi-
erarchies (CH), transit nodes (TN) or hub labels (HL). On real-world instances,
these techniques outperform the algorithm of Dijkstra by several orders of mag-
nitude. To explain this, network parameters as the highway dimension and the
skeleton dimension were introduced. While these parameters are conjectured to
grow polylogarithmically in the size of the networks, their true nature was not thor-
oughly investigated before. Furthermore, the resulting theoretical bounds obtained
for route planning techniques are asymptotic, which rises the question whether they
describe real networks with a finite number of nodes and edges sufficiently.

In this thesis, we empirically analyze the growth of important network parameters
and also the scaling behavior of several state-of-the-art route planning techniques.
We describe efficient algorithms to lower bound the highway dimension and to com-
pute the skeleton dimension, even in huge networks. This allows us to formulate
new conjectures about the scaling behavior of these parameters, which could be the
starting point for new theoretical investigations.

Zusammenfassung

Um die Berechnung kiirzester Wege in Straflennetzwerken zu beschleunigen wur-
den zahlreiche Routenplanungstechniken entwickelt, welche sich eines Vorverarbei-
tungsschrittes bedienen, wie etwa Contraction Hierarchies (CH), Transit Nodes (TN)
oder Hub Labels (HL). In der Praxis sind solche Verfahren um mehrere Gréenord-
nungen schneller als der Algorithmus von Dijkstra. Zur Erklarung dieses Verhaltens
wurden Graphparameter wie die Highway Dimension oder die Skeleton Dimension
eingefiihrt. Obwohl fir diese Parameter ein polylogarithmisches Wachstum beziig-
lich der Grofle des Netzwerks vermutet wird, ist ihr tatsédchliches Verhalten nicht
bekannt. Des Weiteren sind die resultierenden Schranken fiir Laufzeit und Speicher-
bedarf von asymptotischer Natur, was die Frage aufwirft, ob sich diese fiir existie-
rende Netzwerke mit endlicher Knoten- und Kantenanzahl iiberhaupt gut eignen.

In dieser Arbeit analysieren wir das Verhalten wichtiger Netzwerkparameter empi-
risch und untersuchen das Skalierungsverhalten mehrerer aktueller Routenplanungs-
techniken. Wir stellen effiziente Algorithmen vor, welche die Berechnung unterer
Schranken fiir die Highway Dimension sowie die Berechnung der Skeleton Dimensi-
on selbst in groflen Netzwerken ermoglichen. Darauf aufbauend schlagen wir neue
Modelle fiir das Wachstum beider Parameter vor, welche die Grundlage weiterer
Forschung sein kénnten.
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1 Introduction

Finding the shortest path in a road network is a very natural problem that gained a lot
of interest in the last decade. In general graphs, shortest paths can be computed with
the well-known algorithm of Dijkstra (assuming non-negative edge weights), which has
runtime O(m + nlogn) where n and m denote the number of nodes and edges, respec-
tively [Dij59]. On large networks, this takes however several seconds. As a consequence,
several preprocessing-based techniques have been developed, as contraction hierarchies
(CH [GSSV12]), transit nodes (TN [BESS07]) or hub labels (HL [ADGW11]), among
others [BDG™16]. These acceleration techniques include a preprocessing step where
auxiliary data is computed that then enables the answering of shortest path queries
within milliseconds or even microseconds. The required preprocessing time and space
consumption is usually moderate.

The empirical justification stems from the investigation of real-world road networks,
extracted, e.g., from OpenStreetMap (Germany about 20 million, Europe 174 million
nodes), TIGER data (USA 24 million nodes), or PTV graphs (Europe about 19 million
nodes) and other networks provided for the corresponding DIMACS challengeﬂ But for
all of the above listed acceleration techniques, one can construct artificial input networks
on which they perform unsatisfactorily. This inspired the question what characteristics of
real road networks enable their great performance. As a result, new network parameters
have been designed which try to capture the essence of road networks:

Abraham et al. [AFGW10] introduced the notion of highway dimension. Intuitively,
a small highway dimension h implies the existence of small local hitting sets for the
shortest paths around every node. It was shown that, with a special preprocessing, one
can obtain query times of O(hlog D) and a space consumption of O(nhlog D) for CH,
TN and HL where D denotes the network diameter, i.e., the length of the longest shortest
path. For TN, there is also a preprocessing variant with a query time of O(h?) and a
space consumption of O(hn+m). The proposed preprocessing is however NP-hard as it
is based on computing optimal hitting sets. Using the standard greedy approach to solve
the underlying hitting set problem leads to a polynomial preprocessing algorithm with
query time and space consumption increasing by a factor of logh. On large networks,
this approach is not practical either.

An alternative parameter for the analysis of HL is the skeleton dimension k, which
bounds the width of small subgraphs of the shortest path trees in the network (the
skeletons) [KV17]. It was shown that with a randomized polynomial time preprocess-
ing algorithm, one can achieve query times of O(klog D) and a space consumption of
O(nklog D) in expectation.

"http://www.dis.uniromal.it/challenge9/download.shtml
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1. Introduction

The nature of the above-mentioned parameters is however unknown. While they are
conjectured to grow at most polylogarithmically in the size n of the road network, grid
instances with h,k € ©(y/n) are known. As grid substructures are ubiquitous in real-
world road networks, computing h and k£ on a variety of instances is necessary to gain
insights in their real dependency on n. Preliminary results for h and k are available for
New York (about 200,000 nodes), where h > 173 and k = 73 is known [KV17], while for
the US road network h > 1000 was reportedﬂ These h-values are certainly larger than
logyn (18 and 25 respectively). But of course, the conjecture about polylogarithmic
dependency is not invalidated by this, as it could be that h = alogbn for suitable
constants a and b. In this thesis we present scaling experiments performed on both
real-world and artificially generated road networks in order to gain more insight into the
growth behavior of the mentioned network parameters.

Moreover, the analysis of CH, TN and HL in dependency of h reveals similar asymp-
totic search space sizes and space consumption bounds for all three of them. In contrast,
empirical observations indicate that wrt query time, we have CH > TN > HL and wrt
space consumption we have CH < TN < HL (see [BDGT16], Table 1). So far, it remains
unclear if this difference between theory and practice can be explained by asymptotic
bounds versus finite networks (or in other words, is there some n for which our cur-
rent observations would no longer be true?), or if the notion of highway dimension is
not fine-grained enough to differentiate between the scaling behavior of these techniques
sufficiently. Hence another goal of this thesis is to shed some light on this question.

1.1 Contribution and Outline

o We first give an overview over some shortest path algorithms, namely Dijkstra’s
algorithm, CH, TN and HL; see Chapter

e« We then provide new and efficient algorithms for lower bounding the highway
dimension and for exact computation of the skeleton dimension in large networks;

see Chapter

o We review different approaches for the generation of large road networks as required
for our scaling experiments; see Chapter

e The scaling behavior of the discussed route planning techniques and road network
parameters (on networks with 10® to more than 10® nodes) is investigated exper-
imentally in Chapter As our core results we provide empirical evidence that
h and k grow indeed differently in n, and that the route planning techniques ex-
hibit growth functions that are surprisingly different from the predictions made in
dependency of h.

e Finally, we draw some conclusions and provide directions for future work; see

Chapter [6]

’https://www.slideshare.net/csclub/andrew-goldberg-highway-dimension-and-provably-
efficient-shortest-path-algorithms
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2 Route Planning Techniques

In this chapter we outline the classic algorithm of Dijkstra as well as the preprocessing-
based techniques contraction hierarchies, transit nodes and hub labels.

In the following we assume that we are given a road network as an undirected graph
G = (V, E) with positive edge weights ¢: E — N where shortest paths are unique; the
latter can be achieved, e.g., by symbolic perturbation. We abbreviate ¢({u,v}) by £(u,v).
A path is a sequence of nodes vy, . ..,v; where {v;,v;41} € E foralli=1,...,k— 1.

Given a source node s € V and a target node ¢ € V, the shortest path from s € V to
t € V is denoted by 7(s,t). We consider the problem of finding the length d4(t) of this
shortest path. Note, however, that all presented route planning techniques can easily be
adapted to compute actual shortest paths instead of shortest path distances.

2.1 Dijkstra’s Algorithm

The probably best-known method to compute shortest paths is the algorithm of Dijkstra
[Dij59]. Starting from a start node s, it keeps a distance label for every node. In every
step it considers a node v with minimal label that has not been chosen so far and
relaxes all edges {v,w} incident to v. If such an edge leads to a new shortest path to
w, its distance label is updated accordingly. Using a Fibonacci heap as the central data
structure, one obtains a runtime of O(m + nlogn).

2.2 Preprocessing-based Algorithms

For many applications, however, Dijkstra’s algorithm is too slow. A common concept
to overcome this is the idea of preprocessing-based algorithms. There, in an initial step
auxiliary data is precomputed, which is subsequently used to quickly answer shortest
path queries. For instance, precomputing all pairwise shortest path distances reduces
the query time to O(1), but also requires Q(n?) space, which renders this approach
impracticable. Hence, any reasonable preprocessing-based acceleration technique has
to provide some trade-off between query time and space consumption. CH, TN and
HL, the algorithms described in the following, are empirically proven to provide sensible
trade-offs on road networks. Furthermore, experiments indicate that they all hit Pareto
points: On the Western Europe network (PTV, 18 million nodes, 42.5 million directed
edges), the space consumption of CH is about 0.4 GB; for TN it’s 6 times higher, for
HL 47 times higher. Regarding query times, HL needs 0.56 us; query times for TN are
higher by a factor of 4 and for CH by a factor of 196 [BDG™16]. A natural question
is, whether these relations are generally true (invariant of the scale of the network); or
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if the results are artifacts of evaluation on a ’small’ network or sensitive to the chosen
implementation.

The performance of shortest path algorithms is usually measured in terms of space
consumption and search space size, i.e. the number of nodes and edges considered during
a query. The h-dependent analysis indicates that, up to constant factors, the mentioned
techniques exhibit the same scaling behavior: the space consumption is in O(nhlog D)
and the search spaces are in O(hlog D). For TN, there is also a variant with a query time
of O(h?) and a space consumption of O(hn) [ADFT13|. For CH, it depends whether the
search space is just defined as the number of settled nodes or if also edge relaxations are
counted. In the latter case, the query time rises to O((hlog D)?). But the preprocessing
schemes used to prove these bounds differ significantly from the preprocessing schemes
used in practice, as we will discuss more thoroughly in the following.

Contraction Hierarchies

The CH algorithm is based on the notion of node contraction |[GSSV12]. During the
preprocessing, nodes are successively removed from the network. Whenever a node v to
be deleted lies on the shortest path between two of its neighbors v and w, a shortcut
edge {u,w} of length ¢(u,w) = £(u,v) + £(v,w) is inserted (cf. Figure [2.1)). Eventually,
all nodes have been removed and we obtain a set ET consisting of all shortcuts created
during this process. The query algorithm operates on the resulting shortcut graph
Gt = (V,E U E™"), so the space consumption is determined by |[E*]|.

(a) before (b) after

Figure 2.1: Example of a node contraction. The graph is shown before and after con-
tracting the black node.

Let rank(v) be the rank of a node v in the contraction order. The upward graph
GT(v) consists of all paths vy,...,v; in G originating from v that point upwards in the
hierarchy, i.e. that satisfy rank(v;) < rank(viy1) for i = 1,...,k — 1. Given two nodes
s,t € V, the shortest path distance ds(t) is computed by performing Dijkstra runs from
the nodes s and ¢ in the upward graphs G'(s) and GT(t), respectively. Both runs settle
the node that was contracted last on the original shortest path from s to ¢t in G. Hence
the shortest path distance can be computed by identifying the node p that minimizes
ds(p) + di(p). An example of a CH query is illustrated in Figure

It was shown that any contraction order leads to correct query answering, but the
space consumption and the search space sizes depend on the chosen permutation. In
practice, a simple greedy preprocessing scheme produces good results. In every step
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node rank

Figure 2.2: Example of a CH query. The upward graphs of the source s and the target
t and the shortest path are highlighted in yellow, green and red, resp. Solid
lines denote edges in the original network, dashed lines denote shortcuts.

it contracts the node that currently minimizes the number of shortcuts to be inserted.
More complicated selection functions were also tested [GSSV12].

A treewidth-t-based analysis of CH [BCRW13] showed that query times are in the
order of O(tlogn) and the space consumption is bounded by O(ntlogn). This analysis
inspired a different CH construction scheme based on nested dissections, which also
performs very well in practice [DSW14]. The preprocessing scheme used in the highway-
dimension-based analysis involves the enumeration of all shortest paths in the network
and computing (approximate) hitting sets. This takes at least superquadratic time and
uses quadratic space in n. Therefore, this scheme cannot be applied to large real-world
networks [ADF'13].

Transit Nodes

The TN algorithm is based on the idea that all shortest paths from a node v to all ‘far
away’ destinations pass through some small set AN (v) of so-called access nodes (e.g. slip
roads of nearby interstates) [BFSS07]. The union of all access nodes forms the transit
node set T'. For every pair of transit nodes, the shortest path distance is precomputed
and stored in a look-up table. In addition, every node stores the distances to all its
access nodes. So the total space consumption can be expressed as |T'|> + 3,y |AN(v)].
Therefore, to compute the distance between ‘far away’ node s and ¢, it suffices to check
all access node distances of s and ¢ and the respective distances between them in the
look-up table, i.e. to compute

ueAN(g)l,iuneAN(t) ds(u) + du(v) + du(1)-
All this distances are precomputed, so the query time is in O(|AN(s)|- |[AN(t)]).

If s and t are not ‘far away’, the resulting distance is however not necessarily correct.
Hence, a fallback algorithm needs to be used for ‘short’ queries, e.g. the algorithm
of Dijkstra. So strictly speaking, the performance of TN does not solely depend on
the number of access nodes, but also on the maximum length of all shortest paths not
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containing any transit node, as the runtime of the fallback algorithm usually depends
on this distance.

To distinguish between ‘long‘ and ‘short’ queries, a so called locality filter is used.
Formally, a locality filter for a fixed distance r is an oracle which answers if the shortest
path distance between two nodes s and t is at most r (false positives being allowed)
[ALS13]. One possibility for such a locality filter is to treat every query as a ‘long’ query
first and to check whether the returned distance is at least 3/, where 7’ is the maximum
distance between all nodes and their furthest access node [EF12]. If this is the case, the
result is correct (i.e. the oracle returns false), otherwise we perform a ‘short’ query that
is pruned at radius 37" and return the minimum of both results.

There are two different paradigms for the construction of the transit node set, bottom-
up and top-down.

In the bottom-up approach, the radius r for a ’long’ query is fixed a priori. Then, for
each v € V access nodes are selected such that all shortest paths longer than r emerging
from v contain an access node. The size of the transit node set is only known afterwards.
This paradigm was applied in [EF12] by extracting all shortest paths of length r and
then computing a greedy hitting set for those. With the help of instance based lower
bounds, it was shown that the computed transit node set sizes are close to the possible
minimum for the given r. But it was also noted, that this approach scales badly with the
network size, as extracting and storing all shortest paths of length r is time and space
consuming, especially for larger r.

In the top-down approach, the set of transit nodes of given size c is fixed first. Then
access nodes for each v € V' are computed by running Dijkstra until each active shortest
path contains a transit node. The radius r can then only be determined a posteriori
as it is the maximum length of all shortest paths not containing any transit node. In
[ADF™13|, this paradigm was followed to prove theoretical bounds for TN in dependency
of h. There, first |T| < /m got fixed and hitting sets T, for r = D, D/2,--- were
computed to choose the smallest r such that |T,.| < y/m holds. As this approach invokes
multiple hitting set computations and also has to consider large r, it scales even worse. In
practice, an efficient method for TN computation also follows the top-down paradigm,
but is based on CH |ALS13]. Here, the transit node set is chosen as the ¢ nodes of
highest rank for some c¢. Usually, ¢ € ©(y/n) provides a reasonable trade-off between
space consumption and query times. To determine the access nodes AN (v) of a node
v, a Dijkstra run is performed in the upward graph GT(v) where on every branch of the
shortest-path tree the first encountered transit node is selected.

Hub Labels

In the HL algorithm, a set L(v) of hub labels is assigned to every node v. A hub label
is a node w, together with its distance d,(w) from v. The label sets are required to
fulfill the cover property, that is, for every pair s,t € V, the intersection L(s) N L(t) of
the label sets contains a node w on the shortest path from s to t. Then queries can be
answered by simply summing up ds(w) + d(w) for all w € L(s) N L(t) and keeping track



2.3. Implementation

of the minimum, i.e. computing

wetlpn L) T Al
This can be done by a merging-like step if the label sets are presorted by node IDs. Hence
the query time is in O(|L(s)|+]|L(t)|), while the space consumption is in O(Y_,cy |L(v)]).
The goal is therefore to find small hub label sets.

Abraham et al. |[ADF™13| showed that hub labels can be constructed by computing
multiple hitting sets H,. for sets of shortest paths with length r =1,2,4,..., D. The label
set of a single node v is then determined by L(v) = U, (H,NBa,(v)) where Ba,(v) denotes
the set of all nodes whose distance from v is at most 2r. Kosowski and Viennot [KV17]
presented a more practical algorithm for HL. There, a shortest path tree is computed for
each node. Then hub labels are selected on certain subpaths via a randomized process.
A thorough analysis shows that this leads on average to the selection of O(klog D)
labels per node, so the total space consumption is in O(nklog D). Abraham et al.
[ADF™11] observed that hub labels can also be computed based on CH. More precisely,
performing a Dijkstra run in the upward graph G (v) of a node v and choosing the
nodes in G (v) with the computed distances as the hub label set L(v) leads to a correct
HL data structure. The resulting label sets can however further be pruned, as there
might be nodes for which the distance from v in the upward graph G (v) is larger than
in the actual network G (cf. Figure . Such superfluous labels could be identified and
subsequently removed e.g. by an additional one-to-all shortest path computation from
v that is pruned at the distance of the furthest hub label.

A

node rank

Figure 2.3: An example of a superfluous label in an HL. data structure constructed based
on CH. In the upward graph GT(v), the node w has a distance of 5 from v.
The shortest path distance in G is however 4, so w can be pruned from L(v).

2.3 Implementation

In conclusion, the preprocessing schemes that allow to derive theoretical bounds in de-
pendency of h are impractical due to their high complexity and time/space consumption.
Note that this even applies to the polynomial time variants (where hitting sets are not
computed exactly but via the standard greedy algorithm, at the cost of slightly increased
bounds).
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So for a fair comparison of the three route planning techniques in our scalability study,
we will exploit the fact that for all three schemes there exists a preprocessing variant
based on CH. In particular, we use the following approaches:

e For CH we use the greedy preprocessing scheme described of Geisberger et al.
[GSSV12] where in every step a node minimizing the number of shortcuts to be
inserted is contracted.

o For TN we select the 5y/n nodes of highest rank in the contraction order as transit
nodes as described by Abraham et al. [ADF"11].

o For HL we use the CH-based approach of Abraham et al. [ADF™11] with subse-
quent pruning.



3 Scalable Computation of (Road) Network
Parameters

To be able to compare the scaling behavior of route planning techniques to the growth of
the network parameters used in theoretical analyses, we describe efficient ways to bound
these parameters or to compute them even exactly.

3.1 Parameters, Complexity of Computation and Relations

We focus on the highway dimension h and the skeleton dimension k, as these parameters
were explicitly designed to analyze road networks. But as described above also the
treewidth ¢ — a classical network parameter — has been used to prove small search spaces
and low space consumption for CH [BCRW13]. It is NP-complete to decide whether a
graph has treewidth at most ¢ [ACP87]. Upper bounds for selected road networks were
reported by Dibbelt et al. [DSW14], e.g. t < 479 for the Europe network.

Highway Dimension

The highway dimension is defined as follows. Let B,.(v) be the ball around a vertex
v with radius r which consists of all nodes with a shortest path distance of at most r
from v. Furthermore, let S, (v) be the set of all shortest paths that intersect B, (v) and
have a length in the range (r/2,r]. The highway dimension is the smallest & € N such
that, for all radii r» and for all nodes v € V, there exists a hitting set H for Sa,(v) of
size at most h (i.e. H C V and for every P € Sy.(v), we have H N P # () [ADFT11].
Bauer et al. [BCRW13] showed that for a given network G, there exist edge lengths such
that h(G) > (pw(G) —1)/(logs/an + 2) where pw(G) denotes the pathwidth of G. As
pw(G) > t(Q), this inequality also relates h and ¢. Deciding whether a network exhibits
a highway dimension of at most h is NP-hard [FFKP15].

Skeleton Dimension

To introduce the skeleton dimension, we establish the following notation. The geometric
realization of a graph G = (V, E) is denoted by G = (V, E). Intuitively it consists of
infinitely many infinitely short edges such that, for every edge {u,v} € E and every a €
[0, 1], there exists a node w € V satisfying £(u, w) = al(u,v) and £(w,v) = (1—a)l(u,v).
The shortest path tree of a node s which is directed from the root s towards the leaves
is denoted by Ts. For nodes s,v € V, we define Reachs(v) as the shortest path distance
of v to its furthest descendant in 7.
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The skeleton T* rooted at a node s € V is the subtree of T, induced by all nodes
v € V satisfying ds(v) < 2- Reachs(v). Intuitively, we obtain T by cutting every branch
of the shortest path tree T at two thirds of its length.

The width of a tree T rooted at s is the maximum number of nodes at a certain
distance from s, i.e. Width(T) = max, |Cut,(T)| where Cut,(T) denotes the nodes of T
at distance r from s. Finally, the skeleton dimension k of G = (V, E) is defined as the
maximum width of the skeletons of all shortest path trees, so k = maxy,ecy Width(T}))
[KV17].

Figure 3.1: An illustration of a shortest path tree T and its skeleton 7. The red marks
indicate a cut Cut,(T7) of size 7.

For graphs with bounded maximum degree (which is the case in road networks),
k € O(h) was proven. In contrast to ¢t and h, the skeleton dimension k can be computed
in polynomial time by inspecting all shortest path trees in G. But for large networks,
computing all shortest path trees is far too time consuming. Therefore, we will propose
a more efficient approach for determining k.

3.2 Lower Bounds for the Highway Dimension

Computing the skeleton dimension h exactly seems to be impossible, as this would
require to extract and solve for each v € V and for each r € [1,D] the respective
hitting set instance on Si.(v). Even just the extraction of the instances, requiring
Dijkstra computations from all w € By, (v) and storing all shortest paths in S, (v), is
too demanding for larger r to be practical.

Path Packings

We observe, however, that for any node v € V, for any radius r, and for any subcollection
of the paths in Sy, (v), any lower bound on the size of the hitting set H for these paths
is also a lower bound for h. Clearly, for any packing S of disjoint shortest paths from

10
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Sar(v), it holds that |H| > |S|, as no two paths from S can be hit by one single node. In
a greedy approach to generate such a packing, one would iteratively select a path from
Sor(v) that intersects the fewest other paths. But as we already pointed out, this idea
disqualifies already for moderate radii, as computing and storing Sa,(v) is too expensive.
To improve this algorithm, we could proceed as follows. Instead of explicitly enumerating
all shortest paths Sy.(v), we perform a Dijkstra run from every node w € By, which
is pruned at distance r + &, where § is the maximum length of all edges incident to
w. From the resulting shortest path tree we select a set of disjoint shortest paths that
have length greater than r. However, if at some point all active branches of the Dijkstra
tree intersect an already chosen path, the current computation can be pruned. A more
efficient algorithm to find a packing of disjoint shortest paths from So,.(v) is to simply
perform a single Dijkstra run from the node v that is pruned at radius 3r and to partition
the resulting shortest path tree into disjoint paths of length larger than r.

Hitting Sets

We obtained the best results, however, by directly considering the hitting set problem
on a reasonably sized subset S of S, (v) that is constructed as follows. First we perform
a Dijkstra run from v that is pruned at distance 3r. In the resulting shortest path tree
we backtrack the paths of all leaves up to a distance of r (provided they are not too close
to the root v) and add them to our collection S. Then for parameters c¢; and o < 1, we
select ¢, other nodes from Bgo,(v) and run Dijkstra computations up to a radius of 44,
where ¢ is the maximum length of all edges incident to the root. Again, we backtrack
paths of sufficient lengths from the leaves and add them to S.

On the resulting hitting set instance S we run the standard greedy algorithm that
always selects the node that hits the largest number of paths. This algorithm has an
approximation guarantee of Hy (the b-th harmonic number), where b is the maximum
number of paths that can be hit with a single node [Joh74] [Lov75]. Therefore, a greedy
solution H implies a lower bound of |H|/Hp, which is however somewhat pessimistic. A
more promising (though computationally more expensive) method to compute a lower
bound is to solve the relaxation of the following hitting set ILP.

minimize: Z Ty
UGBQT('U)

subject to: Z Ty >1, VPeES
ueP

xy € {0,1}, Yu € Ba,(v)

To reduce the size of the ILP, we let P, be the set of paths hit by a node u and
choose at most ¢, paths from each P; for some parameter c¢,. With examples from
each P, considered in the ILP, we hope to preserve the essence of the instance. To
improve the runtime of our algorithm, we construct a greedy solution first and solve the
ILP relaxation only if this solution exceeds the best lower bound computed so far by a
certain factor S. If the ILP relaxation improves the current lower bound, we update it
accordingly and proceed in any case by selecting a new source node v.

11
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Choice of Parameters

For choosing the radius r, we compute the average shortest path distance d,s in the
network by performing random s-t-queries. Then we set r = d,y/10. This turned out to
be a reasonable choice, as for larger radii, the size of S decreases because the boundary
of the network is hit while for smaller radii the size of S decreases due to a smaller
ball B, (v) (cf. Section [5.2). For the choice of the parameters ¢s and ¢, one should
note that larger values lead to a larger hitting set instance S (and therefore likely to
better bounds), but also increase the runtime. For the parameter [, the average ratio
between the solutions of the greedy algorithm and the ILP relaxation is a good choice.
A small parameter a reduces the overlap between the shortest paths chosen in the first
and second step of the construction of S, but also increases the overlap within the paths
added in the second step. We made good experiences with a = 0.95.

3.3 Computing the Skeleton Dimension

In contrast to the highway dimension, the skeleton dimension can be computed in poly-
nomial time (by determining the skeleton for each vertex and its width). To make large
road network instances tractable, however, all these steps need to be done very efficiently.
In the following, we provide details of the naive algorithm and our improvements.

Computing the Width of a Tree

The width of a given rooted tree T' can be computed by iterating over the nodes by
increasing distance from the root and storing the (target nodes of the) currently cut
edges in a priority queue. In every step we pop all nodes from the priority queue that
have the same distance label as the top element and push their direct descendants. The
width of the tree is the maximal size of the priority queue during this process, which
takes O(nlogn) time.

Naive Algorithm

Naively, one would simply run Dijkstra’s algorithm from every node, determine the
distance to the furthest descendant in every shortest path tree, construct the skeletons by
pruning nodes whose furthest descendant is too close[], and then compute the widths. In
order to compute Reachg(v) for every node v (the distance of v to its furthest descendant
in Ty), one can iterate over the nodes in the shortest path tree T in reverse topological
order (starting with the node of maximum distance from s) and propagate the distance
of the furthest descendant of every node to its predecessor. But as running a one-to-all
Dijkstra computation alone is already expensive on large networks (order of multiple
seconds), and the computation of the furthest descendants adds to that, one cannot
afford to repeat this procedure for millions of nodes.

! As the skeleton is based on the geometric realization, we might also be required to insert an additional
node w at the end of every branch that satisfies d. (1) = 2Reach, ().
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3.3. Computing the Skeleton Dimension

PHAST

CH, TN and HL are designed to answer point-to-point shortest path queries. For one-to-
all queries, the PHAST algorithm was developed, which usually outperforms Dijkstra’s
algorithm [DGNWT1]. Based on CH, it works on a CH data structure G* = (V, EUE™).
To compute the shortest path distances from a node s to all other nodes, a Dijkstra run
is executed in the upward graph G'(s) of s, before the algorithm iterates over all edges
E U E*. During this edge sweep, edges {u,v} are considered in descending order by
min{rank(u), rank(v)}. Whenever an edge decreases the shortest path distance of an
incident node, its distance and predecessor labels are updated. Eventually, every node
is labeled with the correct distance. The predecessor labels correspond however only
to a shortest path tree in G (which includes shortcuts) and the algorithm does not
construct any explicit topological order. This disables the naive propagation of furthest
descendant distance labels as described previously for shortest path trees computed by
Dijkstra’s algorithm.

Therefore we propose the following approach to compute Reachs(v) for every node
v based on PHAST. After running a normal PHAST query, we iterate over all nodes
in contraction order (i.e. nodes of low rank first) and propagate the distance of the
furthest descendant of every node to its predecessor. When this step is finished, we have
determined Reachs(v) for every node v, for which the path to its furthest descendant
strictly decreases wrt to node ranks (cf. Figure . In the next step, we iterate over
the nodes in G'(s) in reverse topological order (that is obtained through the Dijkstra
run in GT(s)) and propagate the descendant labels again to the predecessors. Now, the
distance of every node to its furthest descendant in the shortest path tree wrt G* is
known (cf. Figure . To propagate the correct value also to the nodes, that are
shortcut on the shortest path from s to their furthest descendant, we sweep again over
all edges F U ET as in the PHAST algorithm. For every edge {v,w} we check if it is
contained in the actual shortest path tree T, which is the case if dg(v) +£(v,w) = ds(w).
If this holds, we propagate the descendant label of v to w. With this approach, we can
compute Reachs(v) for every node v and some root s in the time required for one Dijkstra
run in the upward graph G'(s) and two linear sweeps over the edges of G* (creating
only a mild overhead of one edge sweep over PHAST).

Still, running PHAST for every node in the network is demanding. Hence, we now
describe several ideas that allow to spare a lot of these computations.

Upper and Lower Bounds

The width of any skeleton T is a valid lower bound for k. Moreover we can observe that,
given a supergraph 7" of a tree T, the width of T” is an upper bound on the width of T
Hence, if for every skeleton T there is a supergraph 77 that suffices Width(T,) < k' for
some k', it follows that & < k. We will now concentrate on the efficient computation of
small supergraphs in order to obtain good upper bounds on k.

Kosowski and Viennot [KV17] suggested the following method to compute reasonable
sized supergraphs of shortest path tree skeletons based on the notion of (global) reach.

13
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A A
< 4
= E
g £
) g
g s
= =

A A
. =
(5} [}
s <
E g

(c) Step 2 (d) Step 3

Figure 3.2: Example of the computation of Reachs(v) based on PHAST. Arrows denote
label propagation, gray nodes are labeled correctly.

Given a shortest path 7(s,t) and a node v € 7(s,t), the reach of v wrt (s, t) is defined as
the minimum length of the two subpaths 7 (s,v) and 7(v, ). The (global) reach Reach(v)
of a node v is the maximum reach of v wrt to all shortest paths in the network [GKWO06].

Assuming that Reach(v) is known for every node v, a supergraph of a skeleton 73 can
now be computed by performing a Dijkstra run from s where every node v gets pruned
if ds(v) > 2- Reach(v). The resulting trees are however relatively large compared to the
skeletons and do not provide too good bounds on k (cf. Section . Moreover, this
algorithm requires a reach computation for all nodes in the network, which is not trivial.
On the road network of North America (about 30 million nodes) computing these values
takes about 11 hours[GKWO06].

Therefore we propose an alternative approach, which is based on the following obser-
vation.

Observation 3.1. Let v be a descendant of u in the shortest path tree Ts. Then we have
Reachs(v) < Reach,(v).

Proof. Let v be a descendant of w in the shortest path tree Ts and let « be the furthest
descendant of v in T, i.e. Reachs(v) = dy(z). As shortest paths are unique, z is also a

descendant of v in the shortest path tree of w. This means that Reach,(v) > d,(z) =
Reachg(v). O

Assume now that for some nodes ay, . .., a. the distances Reach,,(u) are already known

14



3.3. Computing the Skeleton Dimension

for alli € {1,...,c} and all w € V. Then for a node s we can compute a supergraph of
the skeleton T by performing a Dijkstra search from s and keeping track of the first a;
encountered on every branch of the search tree. Whenever we scan a vertex v such that
ds(v) > 2- Reachg, (v) for the corresponding preceding a;, it follows from Observation
that no descendant of v is contained in the skeleton T, an we can prune the current
branch. When the algorithm terminates, it has explored a supergraph of T7.

But every branch on which none of the nodes ai,...,a. was encountered has been
explored entirely and can still be pruned. Therefore, we iterate over all nodes v in
such a branch in reverse topological order and determine the value Reachs(v) before
discarding all nodes v with ds(v) > 2 - Reachs(v) and adding boundary nodes v that
satisfy ds(0) = 2 - Reachs(0). After this step, we obtain a smaller supergraph of T3 and
compute its width k(s), a valid upper bound on the width k(s) of T7*.

Exploiting Transit Nodes

The idea of our algorithm is that we compute a transit node set of the given network
and use the access nodes AN (v) as the nodes aq, ..., a. of every node v. As illustrated
in Figure [3.3] usually for every node v € V there is a whole set of nodes vy, ..., v, that
use the same access nodes as v, i.e. AN(v) = AN(v;) fori=1...,¢c. We call such a set
{vi,...,v.} also a cell. For every cell {v1,...,v.} and every access node a; € AN (v1), we
need to compute Reach,, (u) only once in order to compute /%(Uz) for all v; € {v1,...,v.}
as described previously. The whole network is processed by iterating over all cells via
a depth-first search. As adjacent cells are very likely to share some of their access
nodes, we store the computed values for Reachg;(u) for the most recent access nodes in
a least recently used cache, where the values of the least recently considered access node
gets evicted when the cache is full. By doing so we can avoid computing the values of
Reach,, (u) several times for some access nodes.

Figure 3.3: An illustration of the TN cell structure. Red nodes denote transit nodes.
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3. Scalable Computation of (Road) Network Parameters

Pruning

We now define a chain and show, how certain nodes on a chain can be pruned during
the computation.

Definition 3.1. A pathvy,...,v), is called a chain with end nodes vy and vy, if va, ..., vp—1
have degree 2 and vy, v, don’t.

Observation 3.2. Let vy,...,v, be a chain. Then

(i) We have k(vi) < k(vy) if deg(vy) = 1.

(ii) For alli € {2,...,p— 1} we have k(v;) < max{2, k(vy)} if deg(vy) = 1.
(iii) For alli€{2,...,p— 1} we have k(v;) < k(vi) + k(vy,).

Proof. Let v1,...,v, be a chain and consider the skeleton T}, for some i € {1,...,p}.
We partition T3, into trees 71 and T}, such that 77 is induced by all descendants and
predecessors of vy in T}, and T, is defined analogously (cf. Figure . Let 7; denote the
geometric realization of the path v;,...,v; for j € {1,p}. We claim that Ty C T;;, U .

To prove this, consider a node x of T1\ (T}, U m1). Then we have d,, (x) > 2- Reach,, ().
As x ¢ m, the node x must be a descendant of vy in T, so dy,(z) > dy, (z). From
Observation it follows that Reachy,,(x) > Reach,,(x). This means that d,, (x) >
2 - Reachy,(z), so x is not contained in the skeleton T, which is a contradiction to the
choice of z. Analogously one can show that 7, C T, YU mp.

It follows that the width of 71 is bounded by k(vi) (the width of T}y ) and that the
width of T}, is bounded by k(vp,). Consider now the following cases.

(i) Let deg(v1) = 1. Then we have T,; =T}, so k(v1) < k(vy).

(ii) Let deg(v1) = 1 and ¢ € {2,...,p — 1}. We have k(v;) = 2 if deg(vy,) = 1 as
deg(v;) = 2 and k(v;) < k(vy,) otherwise, as Tp), = T.

(iii) From the partitioning T, = 71 U T}, and the observation following our claim, we
obtain that k(v;) < k(v1) + k(vy). O

Note that replacing k(v1) and k(vy,) on the right hand side of the inequalities by some
upper bounds k(v;) and k(v,) does not invalidate the same. Provided that the network
contains some node of degree at least 3 (which implies k& > 3), we can therefore skip
all nodes of degree 1 or less in our algorithm (isolated nodes do not contribute to the
skeleton dimension at all). Consider now a node u with deg(u) = 2 that lies on a chain
with end nodes v and v/. Then we can simply choose k(u) = max{2, k(v)} if deg(v') = 1,
ki(u) = max{2, k(v)} if deg(v) = 1 and k(u) = k(v) + k(v') otherwise.

This requires however that k(v) and k(v') are already known. In every cell we consider
therefore all non degree 2 nodes before processing the degree 2 nodes. It may however
happen that the bound k(u) = k(v) + k(v') is not very tight. At the beginning of
our algorithm we compute therefore a lower bound k on the skeleton dimension k by
computing the width of a few skeletons and choosing k as the maximum of this widths.
Then we use the bound k(u) < k(v)+k(v') for a degree 2 node u only if k(v) +k(v') < k,
otherwise we compute a better bound based on the access nodes of wu.
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3.3. Computing the Skeleton Dimension

Figure 3.4: An example of the partitioning of a skeleton T into trees Ty an T),.

Computing Exact Values

When all cells have been processed, we have an upper bound l%(u) on the width of every
skeleton 777 and it follows that k < max,ecy /%(u) In order to compute the exact value of
k, we iterate over all nodes u sorted descending by l?:(u) and compute the actual skeleton
T and its width. During this process we keep updating the lower bound ltu‘, which is
the maximum width of all skeletons computed so far. If at some point for the upper
bound k(u) of the currently considered node u we have k(u) < k, it follows that k = k.
Provided that the bounds l?:(u) are not too bad, this last step involves considerably less
complete one-to-all shortest path computations than the naive approach.
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4 Algorithmic Generation of Road Networks

To enable sound scalability studies, we need access to road networks of different sizes.
Usually, cutouts of real road networks are used for this purpose. But we argue that this
is not sufficient here. First of all, the planet road network as available in OSME] contains
only about 600 million nodes, and these nodes are distributed over many unconnected
or only sparsely connected components. Secondly, due to the silhouette of real road
networks, one runs quickly into border affects — which leads to an artificial reduction of
search space sizes of route planning techniques and possibly also affects the growth of
network parameters. To avoid such distortions and to be able to consider even larger
networks than those available at the moment, we want to generate road networks of
compact shapes and arbitrary sizes.

4.1 Synthetic Road Network Generators

Simple models for generating road networks are e.g. grid graphs or unit disk graphs. But
they lack the hierarchy of slow and fast roads usually present in large road networks.
Eppstein and Goodrich [EGO8| characterized road networks as multi-scale dispersed
graphs and modeled them as subgraphs of disk intersection graphs. Eisenstat [Eisll]
proposed nested quad trees to model road networks but with the primary goal of ana-
lyzing maximum flows. The graph generator presented in [AFGW10] is custom-tailored
to produce networks with constant highway dimension. There, the road network is con-
structed in an online fashion, where a new node is always connected to the so far existing
network according to a specific protocol. To model the hierarchy, a speedup parameter
is defined and used to make travel times on longer edges proportionally quicker.

Bauer et al. [BKMW10] implemented most of these generators and tested them against
a newly designed generator based on recursive Voronoi cell computations. Properties as
node degree distribution, distance distributions and speedups for selected route planning
techniques were measured with the help of a (small) scalability study (up to half a million
nodes). It was experimentally shown that the sophisticated generators perform well for
most considered aspects. But the highway dimension related generator produced too
dense networks, and the scalability studies revealed too large speed-ups for CH when
using the Voronoi-based generator. Furthermore, most of these generators require to fix
a large number of parameters manually and are quite resource demanding.

"https://www.openstreetmap.org
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4. Algorithmic Generation of Road Networks

4.2 Road Networks as Jigsaw Puzzles

Blum [Blul7] proposed a different approach, whose main idea we sketch in the following.
The suggested generator combines tiles cut out from real road networks, providing the
possibility to construct road networks larger than that of our planet — with a compact
shape, and with similar properties as the original networks.

As input it requires a road network where for every node its coordinates and for every
edge the corresponding road type (e.g. motorway or living street) and traversal speed (or
distance) are given. All of this information is available for road networks extracted from
OSM. A distinction is made between critical and non-critical road types, where critical
roads such as motorways are the most important and fastest ones in the network.

From the input network square shaped tiles are cut out at random positions and
combined on a grid that is filled bottom-up from left to right. In every tile so called
portals are inserted at all positions where an edge was cut by the tile boundary, these
portals are the places where the whole network will be connected by inserting edges
between neighboring tiles on the grid. To smooth the transitions between tiles, they are
not placed seamlessly next to each other, but with a small gap (see Figure [4.1]).

Figure 4.1: Two neighboring tiles that have been connected via some of their portals. Green
roads are critical.

To create sensible networks, only similar tiles are placed next to each other. For that,
the generator stores a supply of already cut out tiles. When a new tile is to be placed
into the grid, the generator considers the portals along the neighboring tiles that have
already been placed and selects a tile according to the following criteria. Connecting
portals that arose from cutting a critical road to portals of the same road type has
highest priority. The remaining portals are connected whenever possible according to
their relative positions (avoiding crossings). To quantify the similarity of two tiles, the
following measure is used: Connecting two portals of the same type comes with no cost,
connecting two portals of different types and turning a portal into a dead-end has a
cost of 1. The total cost of connecting two tiles can be computed by means of dynamic
programming as in the common algorithm for the computation of the Levenshtein dis-
tance of two strings [Vin68]. So when a new tile is to be placed into the grid, the tile
exhibiting the least total cost to its neighbors is chosen from the supply. If necessary,
ties are broken by the total offset along the boundary (in terms of Euclidean distance)
that all portals to be connected exhibit. Finally, reasonable road types and traversal
speed of the inserted inter-tile edges are derived from the portals that they connect.
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5 Experiments

We implemented the route planning techniques CH, TN and HL in C++ as well as the
proposed algorithms for computing bounds on the highway dimension and the skeleton
dimension. Experiments were conducted on an AMD Opteron 6272 CPU (32 cores
clocked at 2.1 GHz) with 264 GB main memory, running Ubuntu 16.04.2 (kernel 4.4.0).
We used the GNU C++ compiler 5.4.0 with optimization level 3.

All experiments were based on the OSM road network of Germany (in the following
just “Germany”) consisting of about 23.9 million nodes and 24.6 million undirected
edges. Shortest paths were computed wrt travel time.

5.1 Scaling Behavior of Route Planning Techniques

To study the performance of the mentioned route planning techniques on networks of
different sizes, we used the generator from [Blul7] to construct a road network with
roughly 800 million nodes and recursively cut out squares, reducing the number of nodes
in every step by a factor of four until we stopped at about 2000 nodes. To show that the
results are truthful, we also include results on cutouts of Germany. There, the largest
square we could cut contained about 11 million nodes. For networks with up to 2 - 10°
nodes, we report the average over 16 instances (for both Germany and the generated
network), to avoid strong distortions by 'unlucky’ selection. For networks with 7 - 10°
nodes, the results are the averages over 4 instances.

On these networks we measured the sizes of the search spaces and the memory con-
sumption of CH, TN and HL using the preprocessing schemes described in Section
The results are shown in Table We observe that the outcomes on the generated
instances are very close to the ones obtained on Germany, there is no overestimation
on larger instances, and the respective ratios never exceed 2.2. Hence we deem the
generated networks suitable as basis for our analysis.

To evaluate the scalability of the route planning techniques, we tried to fit the data
to the model functions f(z) = a - logy(x)? (polylogarithmic growth) and g(x) = c -
z? (polynomial growth). We also tried more complicated models with an additional
constant term but obtained very similar results. For this purpose we used the gnuplot
implementation of the nonlinear least-squares Marquardt-Levenberg algorithmE] Given
a parametrized model function fg, the objective of this algorithm is to minimize the
sum of squared residuals 3, 7;(3)?, where r;(3) is the residual of the i-th data point.
Starting from an initial parameter 3, it iteratively improves the fitting by replacing 3
with a new estimate [ + ¢ until the improvement falls below a certain threshold.

"http://gnuplot.sourceforge.net/docs_4.2/node82.html
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5. Experiments

Germany Generated
CH TN HL CH TN HL

n flogn va | Wi (BN |1AN] - [HLI [ vt (BT | AN] ¢ | |HI
2 x 103 11.0 45 || 0.76 14.5 26.6 1.8 18 12.0 || 0.73 15.2 28.3 1.7 20 12.6
1 x 10% 13.3 100 || 0.80 23.4 57.5 2.2 37 17.8 || 0.78 23.7 58.4 2.0 41 174
4 x 10* 15.3 200 || 0.81 42.8 153.3 2.8 75 26.7 || 0.79 41.3 146.7 2.6 83 26.1
2 x 10° 17.6 447 || 0.82  82.8 481.7 3.8 141 40.0 || 0.79 74.2 381.0 3.6 160 | 37.5
7 x 10° 19.4 837 || 0.83 176.3 1529.2 5.2 268 58.2 || 0.79 149.2 1103.2 5.1 319 54.6
2 x 106 21.0 1414 || 0.83 399.3  5069.6 7.7 518 | 88.9 | 0.80 301.0 3027.4 7.8 567 | T74.8
1 x 107 23.3 3162 || 0.82 929.8 15575.4 17.5 1049 | 125.2 || 0.80 558.6 7321.5 11.5 1071 | 102.9
5 x 107 25.6 7071 - - - - - - || 0.79 1196.1 22267.1 | 21.1 2066 | 150.5
2 x 108 27.6 14142 - - - - - - || 0.79 2546.6 63223.4 | 44.9 4057 | 213.0
8 x 108 29.6 28284 - - - - - -l 0.79 5187.9 160193.4 | 88.0 7459 | 295.0

Table 5.1: Average search space sizes (over 1,000 random queries) and space consumption for different route planning tech-
niques: ratio |E*|/|E|, number of nodes in upward graph (|[VT|), number of edges in upward graph (|ET|), number

of access nodes (|AN|), radius to furthest access node in seconds (r), number of hub labels (|H L|)
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5.1. Scaling Behavior of Route Planning Techniques

In the following, we sketch the most important outcomes.

Contraction Hierarchies

For the space consumption of CH, indicated by the ratio of shortcuts |E™| and original
edges |E| in Table[5.1] we get the clear result that |E*| ~ 0.8-|E|, so the space consump-
tion is linear in | F| invariant of the size of the network. Consequently, the contraction of
every node introduces only a constant number of shortcuts on average, although nodes
of high rank usually also have high degree. This is really surprising, given that analysis
of CH even on special graph classes (such as planar graphs) never revealed a bound of
o(nlogn) [Mill2)].

For the size of the search space (column |V'|) depending on n, the best fit for f(n)
was a = 2.4- 107! (note that a can also be interpreted as a change of the log base) and
b = 9.8, with a sum of squared residuals being 17695 and the asymptotic standard error
(ASE)EI for a being over 58%. This renders a polylogarithmic growth unlikely. For g(n)
on the other hand, we got ¢ = 0.18 and d = 0.5 with the sum of squared residuals being
2421 and the ASE for ¢ about 7% and less than 1% for d. Furthermore, g(n) ~ 0.18-/n
was also roughly the result when we fitted only a subset of the available data, while in
this case the exponent of the log changed significantly for f(n). Hence we conclude that
the search spaces of CH most likely grow linearly in y/n.

The number of edges in the search space was assumed to be quadratic in [V in pre-
vious analyses [AFGW10], [BCRW13]. Our analysis of | ET| depending on |V'T|, however,
shows the best fit to be |ET| = 0.5|V1|1?, hence the quadratic bound seems to be overly
pessimistic.

Transit Nodes

The number of access nodes (|AN]) fits the polynomial model g(n) = 6.0 - 1073 . n%?
best with a sum of squared residuals of 41 and an ASE of 45% and 4.8% for ¢ and d,
respectively. For the polylogarithmic model, the best fit was a = 5.8 - 10712 and b = 9.0
with an ASE of 200% and 6.5%, respectively and a sum of squared residuals of 70. Again,
the exponent b changed drastically when only sampling over a subset of the data, so we
conclude that |[AN| most likely grows linearly in y/n, which would imply a search space
size of O(n).

For the radius r we get very similar results with a polynomial fit of g(n) = 0.27 - n%?
(sum of squared residuals 289495, ASE 20% for ¢ and 2.2% for d) and a polylogarithmic
fit of f(n) =4.2-107? -logy(n)® (sum of squared residuals 145627, ASE 98% for a and
3.5% for b). Actually, the growth of  resembles the behavior of [V| and is hence most
likely linear in /n.

2The ASE is only a very rough estimate for the standard deviation of each parameter that is generally
over-optimistic, but useful to compare the quality of different models.
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Hub Labels

For the number of hub labels (|HL|), the best fit in the log model is f(n) = 4.9 -
10~*1ogy(n)*. For g(n) we get 2.0 - n%2°. The sum of squares of residuals are 759 and
388, respectively, the ASE values are 68% and 5.2% for a,b and 15% and 3.5% for ¢, d.
So again, the polynomial model seems to fit better.

Comparison

For CH, we get an estimated space consumption of O(n), and search space sizes of
O(y/n). For TN, we obtain that the number of access nodes |AN| and the radius r most
likely both grow in O(y/n). For HL, we get a space consumption of O(n!-?°) and search
spaces of O(n?2%).

If our best polynomial fit reflects the growth behavior truthfully, then extrapolations
indicate that for instances with n > 1.3 - 101 the number of access nodes |AN| would
exceed the estimated number of hub labels |HL|. In that case HL would dominate TN
wrt space consumption (wrt search spaces, HL is superior to TN already in the tested
networks with n = 1-107).

5.2 Empirical Growth of Network Parameters

Finally, we applied our algorithms for computing (bounds on) the highway and skeleton
dimensions on the networks up to 11 million nodes. The results are shown in Table
for every order of magnitude the maximum value is reported.

Germany Generated
n logon /n h r k r h r Eor

2x10° [ 11.0 45| >93 39| 30 54| >8 15|24 101
1 x 10% 13.3 100 | > 159 48| 35 66 || > 129 25136 78
4 x 104 153 200 || >304 61| 58 82| >244 41 | 64 100
2 x 10° 176 447 | > 468 76| 73 60 || >519 131 |79 161
7 x 10° 194 837 | >656 163 | 86 221 || >523 266 | 83 161
2 x 106 21.0 1414 || > 642 458 | 86 221 || > 328 598 | 82 165
1 x 107 23.3 3162 | > 775 876 | 114 186 | > 320 1145 | 89 129

Table 5.2: Highway dimension h and skeleton dimension k of different sized networks
and the corresponding radii in seconds

Highway Dimension

To find a radius r that provides good lower bounds on the highway dimension, we
sampled 100 balls in the largest cutout of Germany with different radii and computed a
lower bound on the corresponding hitting set. The results are shown in Figure As
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5.2. Empirical Growth of Network Parameters

we can see, the best bound was found for a radius of about 10 minutes which corresponds
approximately to 10% of the average shortest path distance in the network.

700 ‘
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400 | ]
300 | :
200 | A ]
100 [A :

0 Il Il
1 10 100
radius / minutes

lower bound
>

Figure 5.1: The best lower bounds found in a cutout of Germany with 11 million nodes
depending of the chosen radius r. The x-axis uses a logarithmic scale.

Still, it seems safe to assume that due to the nature of our lower bound construction,
the results are far from being tight. Moreover, the quality of our bounds presumably
decreases the larger the networks become, as due to runtime and network size we were
only able to sample a small fraction (a few thousand) of the nodes. This also explains,
why the bounds are not strictly increasing. Still, especially the results obtained for
Germany suggest that there is a correlation between the size of the network and h.

When fitting these lower bounds to the polylogarithmic model, we obtained f(n) =
0.5210gy(n)?3 with a sum of squared residuals of 28 500 and an ASE of 121% and 17%
for the factor a and the exponent b, respectively. For the polynomial model, we obtained
g(n) = 46-n%'8 with a sum of squared residuals of 46 332 and an ASE of 55% and 21% for
the factor ¢ and the exponent d, respectively. Hence, better bounds for larger networks
are required for clearer results, which are however not trivial to obtain.

Taking into account that the search space size of CH is supposed to be in O(hlog D)
according to the h-dependent analysis and that our empirical CH analysis revealed a
growth of O(y/n), we conclude that h should roughly grow linearly in /n as well. But
this would result in a space consumption of O(ny/nlogn) which appears to be very
loose compared to the linear growth indicated by our empirical results. Furthermore,
our results indicate that at least CH and HL scale differently, while the h-dependent
analysis predicts the same behavior for both (with matching lower bounds as proven in
[Whil5]). Of course, it might be that the more complicated CH and HL preprocessing
routines analyzed for h lead to a different scaling behavior. But this means that either the
h-dependent analysis has little relevance for the variants of the route planning techniques
used in practice or the h value scales worse than conjectured (and actually close to the
proven growth of \/n on grid instances).
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5. Experiments

Skeleton Dimension

The instances with 11 million nodes were the two largest networks for which we managed
to compute an exact value for the skeleton dimension. Both computations required less
than 39 hours runtime (using 14 cores on average) and 75 GB RAM. We used 20/n
transit nodes and dedicated 50 GB memory to simultaneously store the results of 1200
PHAST runs. For the cutout of Germany and the generated network, in the last step
182275 and 83963 exact computations were required to close the gap between upper
and lower bounds, respectively. In total 17% and 24% of the degree 2 nodes could be
pruned, respectively. On these instances we estimated that the naive algorithm based
on Dijkstra computations would have taken more than 500 days on one core, and the
PHAST based algorithm without our improvements and pruning strategies about 120
days.

We observe that the radius defining the skeleton dimension is small in all considered
networks (only up to about 3 minutes). Figure shows the maximum and average size
of Cut,(T™) (the number of edges cut at radius r) of 1000 randomly sampled skeletons
in the largest cutout of Germany. We can see that the radii at which the largest cuts
occur are significantly smaller than the radius of the whole network. This might hint
that the value of the parameter is indeed not dependent on the total size of the network
but rather on the densest cluster therein (e.g. the largest city). In fact, for the networks
7 x 10° and 2 x 106 the skeleton of the very same root defined k.

120

Maximum —
100 Average .

80 R
60 R
40

2 %%Mw i

0 ! ! ! ! ! ! | e e
20 40 60 80 100 120 140 160 180 200
radius / minutes

cut width

Figure 5.2: The maximum and average size of Cut,(T™*) in dependency of the radius r
in the largest cutout of Germany

The maximum skeleton dimension in all networks is 114, which is the width of a
skeleton in the largest cutout of Germany with 11 million nodes (see Figure . This
width is assumed at a radius of 186 seconds, which means that the relevant part of the
skeleton is contained in a small cutout consisting only of 16 126 nodes.

Taking into consideration that the search spaces of HL was shown to be in O(klogn)
and that our experiments provide some evidence for a growth linear in \/n, this indicates
that the skeleton-based preprocessing technique for HL might behave differently than
the chosen CH-based variant, which could be worth investigating further.
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5.2. Empirical Growth of Network Parameters
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Figure 5.3: A skeleton of width 114 (green), the 114 shortest paths cut at a radius of
186 seconds (yellow) and the relevant ball of radius 279 seconds (blue).

We also computed 1000 shortest path tree skeletons in a network with about 180000
nodes and compared the sizes of the supergraphs obtained by the TN approach (using
54/n transit nodes) and the reach approach. The former created supergraphs that were
on average 5% larger than the actual skeleton, while the graphs resulting from the latter
were too large by 171%. The average width of the trees were 23.2, 26.0 and 61.8,

respectively. An example can be seen in Figure This shows that the TN approach
provides bounds that are a lot tighter than the reach approach.

Figure 5.4: A shortest path tree skeleton (yellow, 12442 nodes, width 29) and two super-

graphs based on TN (blue, 12845 nodes, width 29) and reach (green, 32932
nodes, width 85).
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6 Conclusions and Future Work

We have presented the first thorough scalability study of three state-of-the-art route
planning techniques and two important (road) network parameters, based on different
sized networks with up to more than 750 million nodes. Somehow surprisingly, the ob-
tained empirical results do not comply with existing theoretical bounds and conjectures
in many cases. There is strong evidence that, on real-world road networks, CH exhibits
a linear space consumption and a search space size of O(y/n). For TN we conjecture
linear search spaces of O(n). For HL, search spaces of O(n%?°) and a space consump-
tion of O(n%?%) are most likely. Moreover it seems, that the skeleton dimension k does
not depend on the network size. This gives rise to several new research questions and
additional analysis tasks.

o As the preprocessing techniques used for the highway dimension based analysis are
too demanding to implement, it might be a good alternative to try to come up
with efficiently computable (instance based) lower bounds for feasible CH, TN or
HL data structures and to study their growth behavior.

e Better and more efficient lower bounds for the highway dimension itself would be
helpful to determine its growth in dependency of n with higher confidence. Also,
bootstrapping the used generator with other networks (e.g. the US network with
more grid structures) is necessary to observe further structural dependencies.

e Our results indicate that the skeleton dimension k grows much slower than the
highway dimension (and is possibly even independent of n). Only for HL bounds
depending on k are known. Therefore it seems worthwile to investigate such bounds
also for CH and TN.

o There are several engineering techniques available for CH, TN and HL. For exam-
ple, stall-on-demand allows to settle fewer nodes in a CH query |[GSSV12], com-
pression techniques reduce hub label sizes [DGW13], etc. It would be interesting
to investigate whether these techniques influence the scaling behavior.

The most important open question of course is whether our empirical results can be
explained by some alternative road network model or suitable road network parameter,
or even by a more involved analysis of existing ones. The functions which fitted our data
best look natural in many cases, hence it would be interesting to see whether there are
sound interpretations and explanations for these results.
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