
Testing Source Code with the
Logic Programming Language Prolog

Master Thesis

Thomas Handwerker

Supervisors: Prof. Dr. Dietmar Seipel
M.Sc. Falco Nogatz

Chair: Chair for Computer Science I
(Algorithms, Complexity and Knowledge-Based Systems)

Institute: Institute of Computer Science

Submission Date: August 1, 2016

Abstract

Static code analysis allows the calculation of different software metrics of a provided
code base. Instead of calculating a metric we dedicate to the examination of design
patterns and guidelines in object–oriented implementations. Within the current the-
sis the testability of source code and what factors influence it in a negative aspect
shall be examined.

We want to establish in this approach a complete toolchain that realises static code
analysis based on the logical programming language Prolog. Defining analysis tasks
are defined within paraphrasing conditional sentences which describe and specify
the coding characteristics to examine. A graphical user interface is responsible for
the visualisation of the analysis results.

The toolchain provides developers with a flexible analysis tool. Because of its rule–
based analysis tasks the examination is not only restricted to testability. Due to
the modular architecture of the tool its usage shall not be limited to Java and the
related Eclipse IDE. In conclusion, a complete toolchain is realised including an own
language to paraphrase analysis rules, the core analysis module, and an integration
to a graphical user interface to visualise the results.

Zusammenfassung

Mit der Unterstützung von statischer Code Analyse lassen sich verschiedenste Me-
triken zu dem Quelltext einer Softwarekomponente berechnen. Im Gegensatz zur
Berechnung von Metriken wollen wir uns bei diesem Ansatz vielmehr dem Erken-
nen von Mustern und Design–Richtlinien in Quelltexten widmen. Der Fokus hierbei
liegt auf der Untersuchung der Testbarkeit von Quellcode und welche Faktoren diese
beeinflussen.

Im Rahmen dieser Arbeit ist eine komplette Werkzeugpalette zur statischen Code
Analyse umzusetzen. Die Implementierung der Komponenten soll hierbei in der lo-
gischen Programmiersprache Prolog realisiert werden. Die Definition von Analyse–
Tasks sind hierbei als Bedingungssätze zu formulieren und spezifieren die relevanten
Design–Pattern. Eine grafische Oberfläche dient zur Visualisierung von den Ergeb-
nissen der Analyse.

Die Werkzeugpalette gibt Entwicklern ein flexibles Analyse–Tool an die Hand, wel-
ches aufgrund der regelbasierten Analyse nicht nur auf die Thematik “Testbarkeit”
beschränkt ist. Durch die Wahl der modularen Architektur sollen die Einsatzmöglich-
keiten von YaCI zukünftig nicht nur auf Java in Verbindung mit der Eclipse IDE ein-
geschränkt sein. Schlussendlich ist ein einsatzbereites Analysewerkzeug entstanden,
dass eine eigenen Sprache für Analyse–Regeln, das Modul zur Code–Analyse, sowie
die Integration einer grafischen Oberfläche zur Anzeige der Ergebnisse umfasst.

Contents

Contents

1. Introduction 1
1.1. Motivation . 1
1.2. Research Field . 3
1.3. Related Work . 3
1.4. Implementation Goals . 5
1.5. Roadmap . 6

2. Testability 7
2.1. Testability in General . 7
2.2. Testability in Object–oriented Software 8

2.2.1. Design for Testability . 8
2.2.2. Testability Design Patterns 9

2.3. Results of Testability Analyses . 12

3. JTransformer 15
3.1. Abstract Syntax Tree as a Factbase 16
3.2. PDT - The Eclipse Integration . 19
3.3. Implementation of an Analysis Task 20

4. The YaCI Rule Language 23
4.1. Grammar Specification . 23

4.1.1. Premise of the Rule . 25
4.1.2. Conclusion of the Rule . 28
4.1.3. Description of the Rule . 29
4.1.4. Example Rule . 30

4.2. Parsing Natural Language . 31
4.2.1. Definite Clause Grammar . 32
4.2.2. Implementation . 33

4.3. Specification of Testability Rules . 38

5. The YaCI Rule Representation 43
5.1. Internal Structure in Prolog . 43
5.2. Interchangeable Representation . 46

I

Contents

6. YaCI - Yet another Code Inspector 49
6.1. Architecture . 49
6.2. Rule Analyser . 51
6.3. Result Generator and JTransformer Integration 55
6.4. SWI–Prolog Package . 58
6.5. YaCI in Development Work Flow . 59

6.5.1. Eclipse Integration . 59
6.5.2. Continuous Integration Lifecycle 61

7. Evaluation and Results 65
7.1. YaCI Modules . 66

7.1.1. Rule Parser . 67
7.1.2. Rule Analyser . 69
7.1.3. Result Generator . 70
7.1.4. JTransformer Eclipse Integration 71

7.2. Analysing “Joda Time” Library . 73

8. Management Summary 77
8.1. Summary . 77
8.2. Future Work . 79

Bibliography 81

Erklärung 84

A. Available Sources i

B. Testability YaCI Rules iii

C. Code Snippets iv
C.1. Definition of Grammar Components iv
C.2. Exclusion of Classes in YaCI Analyser v

D. User Manual vi
D.1. Installation . vi
D.2. Run Analysis Tasks . viii
D.3. Create Packaged Library Version . ix
D.4. Run Tests . x

II

List of Abbreviations

List of Abbreviations

API Application Programming Interface
AST Abstract Syntax Tree
BDD Behaviour Driven Development
CI Continuous Integration
DCG Definite Clause Grammar
DSL Domain–specific Language
GUI Graphical User Interface
IDE Integrated Development Environment
OOP Object–oriented Programming
PDT Prolog Development Tools
TDD Test Driven Development
UI User Interface
YaCI Yet another Code Inspector

III

List of Figures

List of Figures

3.1. Abstract syntax tree derived from simple Pseudo code 17
3.2. Overview to the JTransformer Control Center 19
3.3. Control Center contain result info from Singleton pattern analysis . 22

4.1. Overview to the different components available for rule phrasing . . 25
4.2. Specification of the YaCI Rule premise grammar 27
4.3. Specification of the YaCI Rule conclusion grammar 28
4.4. Available severity problem markers in the Eclipse IDE 29
4.5. Specification of the YaCI Rule description grammar 30

5.1. Workflow of the YaCI Rule Praser and its in– and outcome 47
5.2. Workflow of the YaCI Analyser and its in– and outcome 47

6.1. YaCI components and their interactions 50
6.2. Eclipse and the consulted YaCI Rule Analyser library 60
6.3. Exemplary integration of YaCI into Travis CI 62

7.1. JTransformer Control Center filled with content from YaCI 72
7.2. Analysis results derived from Joda Time examination 73

IV

List of Tables

List of Tables

4.1. Available testability design patterns and their YaCI Rule 41

7.1. General factbase information of examined projects 74
7.2. Results of Testability analyses . 75

V

Contents of Listings

Contents of Listings

3.1. Simple implementation of a Java class 17
3.2. Example factbase of a Java project 18
3.3. Singleton pattern analysis implementation 21
3.4. Attach analysis definition to JTransformer 21

4.1. Different ways to provide YaCI Rules with a description 30
4.2. Simple Definite Clause Grammar implementation in SWI–Prolog . . 33
4.3. Definite Clause Grammar rules which are used to process local file . 35
4.4. Basic DCG implementation to parse YaCI Rule 36
4.5. Implementation of chaining scopes in rule grammar 37
4.6. DCG component “accessor.pl” of the rule grammar 38

5.1. Output of the YaCI Rule Parser after parsing a rule sentence 44
5.2. Nesting of scopes and conditions by conjunctions 44
5.3. Representation of condition term and the related information 45
5.4. Internal term structure derived from substring of a rule sentence . . 46

6.1. Filter only necessary compilation units from factbase 52
6.2. Validate example rule premise against AST 53
6.3. Result term of the YaCI Rule Analyser 54
6.4. Add YaCI analysis definitions to the Control Center 56
6.5. Analysis result API used by YaCI . 57
6.6. Transformed YaCI Rule Analyser match into result term 57
6.7. Implementation of the mark_matcher/2 Prolog clause 58

7.1. Result term of the YaCI Rule Analyser 67
7.2. Parsing failed caused by a misspelling in the rule 68
7.3. Derived match term from Rule Analyser 69
7.4. No match can be derived from AST by the analyser 70
7.5. Match term transformed into JTransformer compatible result term . 71

B.1. Basic set of testability YaCI Rules iii

C.1. Specification of various available components in the rule grammar . iv
C.2. Specification of classes to exclude from analysis v

VI

1. Introduction

Maintenance and analysing legacy code will be the focus of the current work. We
want to establish a toolchain which give developers the availability to analyse existing
software components and the related source code on the basis of a set of rules.
Defining rules shall be as simple as possible in order to give every developer the
possibility to phrase own rules. The key area of the analyses in this thesis is to
examine and assess the testability of the object–oriented programming language
Java. The basic collection of testability rules is extracted from various guidelines and
design pattern described in literature. Furthermore, the specification of rules shall
be flexible to support developers on writing their own analysis rules and extend
the process on analysing the source code. The outcome of intended analysis tool
is very important for the developer to improve the legacy code and observe rule
violations from the analysis process. For this purpose the integration in a graphical
user interface of a Integrated Developement Environment is planned. Because of the
fact that a flexible rule language shall be specified it can be possible to write analysis
rules which are in another context than testability. In the following sections we want
to have a closer look on to the motivation of this topic, the research field shall
be defined in a general way, and to search for related work on analysing software
components which are written in an object–oriented manner. Finally, the objectives
are set for the current thesis we are planned to met. In the last section a short
roadmap gives an overview to the procedure while implementing the Yet another
Code Inspector.

1.1. Motivation

In the past years, software developer didn’t realize that writing tests and verify
correct functionality of their own implemented source code would be part of their
responsibility. Powerful Integrated Development Environments (in short: IDEs) like
Eclipse or NetBeans for Java developers have been unknown and not available at
this time. Debugging the implemented code consists of simple adding output to
command line interface or log files hoping to find helpful information [Osh09, Mar08].
At this time the responsibility of testing was assigned to a particular test team and
developers only validate correct functionality while running the code next to their

1

1. Introduction

development process. Lasse Koskela describes this mindset in [Kos13] as following:
[. . .] „testing“ for most programmers meant [. . .] the stuff that somebody does after
I’m done coding, or the way you run and poke your code before you say you’re done
coding.

But this point of view changed dramatically over the last years. On the topic Unit
Tests Robert C. Martin look back at the time when developers did not realise how
important a well established test suite is helpful to develop good software. He re-
members when he wrote a small test for a C++ timer method: “[. . .] Once I saw
it work and demonstrated it to my colleagues, I threw the test code away.” [Mar08].
Nowadays, agile software development is the preferable set of principles in modern
software engineering [WMV03]. Under the collective term Extreme Programming
(also named XP) there are different techniques established, like Test or Behaviour
Driven Development. These principles are already encourage developers to write
testable code because especially in TDD the unit test have to be implemented be-
fore writing the first line of associated code in production.

Those modern approaches like TDD and BDD forces today’s developers to write
associated test code to improve the quality of the planned software unit. Indeed the
reality often shows the contrary. Dirk W. Hoffman check the evolution of software
quality in [Hof08] over the past years. As the main problem he list the increasing
complexity of today’s software projects and their long-term maintainability that
often results in project schedules wich are not deliverable to the pitched time. The
complexity of the project in later stage of development is an important negative
influence on the ease of writing unit tests. Another point is the maintenance of
legacy code from existing projects over the last few years. The threshold to change
code or implement new features in untested code is much higher then with tested
code. With a good test coverage, the evaluation of correct code functionality is easy
to check. After changes in code base running these tests give direct outcome, if
everything is all right and works smoothly.

The motivation of this thesis is to build up a small toolchain to analyse existing
source code in fact of its testability. In other words: we want to check a given code
base against predefined and entrenched design patterns which will help to write a
code that is testable with less effort. Later on, the term “testability” is discussed in
detail and what kind of good and bad patterns exists onto this topic. At the end, the
implemented tool should find hard to test placements in code automatically to advise
developer refactor the highlighted source section in order to improve testability.

2

1.2. Research Field

1.2. Research Field

The main topic of this work is to run a static code analysis on an existing code base.
First of all, the focus is to make a point about the testability in order to write unit
tests with less effort as possible. Based on the analysis results it would be helpful to
evaluate a simple metric, which describe the level of reached testability.

For this purpose there are different steps necessary to fulfil the goal. Firstly, one
component is a language specification that gives software engineering teams the
possibility to phrase own rules which describe testability patterns introduced by
unit testing literature research or maybe on top of own experience. The rules are
formulated in natural language and not only readable by developers themselves.
Another important point is the variety. Teams should be able to describe their own
testability smells in form of “when �Premise� then �Conclusion�.” rules. In general,
static code analysis by our tool will be performed on the abstract syntax tree which
is created from given code base.

At least some kind of small output to the command line or the integration in a exist-
ing graphical user interface like the Eclipse IDE for instance. Another feasible way
to give feedback to the user is to calculate the average rule violation and check the
score against predefined threshold value. This approach is useful for the integration
of the analysis tool into established continuous life cycle in projects, for instance.

1.3. Related Work

The main focus of this thesis is the analyse of the testability of source code, especially
to identify indicators or impacts which influence this in a negative way. Different
research publications are already available, that address on that topic. Robert V.
Binder talks in [Bin94] about different major factors that describe the testability in
the development process. The Googler Miško Hevery published in his blog a collec-
tion of testability flaws [Hev08], that he experienced while sensitise other developers
at Google in fact of write code that is easier to test. Later on, in chapter Testabil-
ity the focus is on this part of related work and point out different approaches in
research.

We decide to realise our approach using the logical programming language Pro-
log. Meanwhile, the implementation SWI–Prolog of the ISO–Prolog standard [SS06]
reach a respectable acceptance in the Prolog community. There are also other imple-
mentations available like Jekejeke Prolog1 for JVM and Android purpose or SICStus

1http://www.jekejeke.ch, accessed on 28th June 2016

3

1. Introduction

Prolog2 in commercial environment. Various benefits have helped establishing this
programming language in a broader community. SWI-Prolog is not longer only a
possible approach for usage in different research fields at university. Over the years
the development and usage of SWI-Prolog reached a noticeable capacity and its
further development is still in progress [Wie16]. In order to support rapid and in-
cremental development, the system must be able to load and run large projects as
fast as possible. Synchronisation between changes in source code and the state of
running program is another key fact provided by SWI-Prolog. The modular system
design is also a huge advantage. Different packages are available to adapt additional
components and functionality in one’s own Prolog code. Well-known libraries are for
example the HTTP library to support access to HTTP servers and provide HTTP
server capabilities from SWI-Prolog. There is also a unit testing framework in form
of a package available which provide developers to implement simple test suites in
Prolog. Jan Wielemaker describes the main features and core concepts of this logical
programming language more detailed in [WSTL12].

Roger F. Crew demonstrates in [Cre97] that examining an abstract syntax tree of
source code will probably work by using the logical programming language Prolog.
His approach introduces the specification of a domain-specific language called AST-
LOG to analyse the generated syntax tree and find syntactic artifacts in C++ soft-
ware components. Another related work on analysing Java code to detect specified
design patterns is written by Dirk Heuzeroth and Stefan Mandel in [HML03]. They
introduce a high-level language SanD3 that allows describing design patterns in a
more abstract and intuitive way. The pattern detection framework of their approach
implements the analysis workflow and finds classified pattern instances evaluated by
scanning the abstract syntax tree which is represented as Prolog facts.

Parsing sentences spelled in almost natural language will be a core component of
our code analysing tool. The predefined testability and self phrased custom-rules
must be parsed into an internal representation for further purpose. To allow de-
velopers writing their own rules there have to be a specification who restricts the
correct wording of a valid rule sentence in form of a sequentially list. Specification
of this type can be realised by the definition of a grammar. William F. Clocksin
and Christopher S. Mellish introduced in [CM84] how to solve the parsing problem
using SWI-Prolog. A well-known approach to parse sentences is the specification of a
Definite Clause Grammar (in short DCG) and is also examined by Alan Bundy and
Lincoln Wallen in [BW84]. Another approach to analyse sentences phrased in nat-
ural language is described in [PW80] by Fernando Pereira and David Warren. The

2https://www.sics.se/projects/sicstus-prolog-leading-prolog-technology, accessed on
28th June 2016

3Static and Dynamic Specification Language

4

1.4. Implementation Goals

official documentation4 to DCGs in SWI-Prolog provides more details and imple-
mentation guidelines. In [WH13] Wielemaker and Hendricks describe more detailed
what challenges Definite Clause Grammar brings with it and how quasi quotations5

help to solve these problems in SWI-Prolog.

1.4. Implementation Goals

The final version of the tool gives software developers the chance to analyse quickly
their source code against self-phrased conditional sentences. First of all the analysis
process focuses on the topic Testability. Therefore, a set of rules is predefined that
describes common pattern how to write code that is good and easy as possible to
test by using unit tests.

The best practices on writing testable code are obtained from different guidelines
and books oriented on this topic. For example Effective Unit Testing and Clean Code.
Our tool Yet another Code Inspector (YaCI) will parse the rules into an internal
representation and run the analysis process while examining the abstract syntax
tree of a given Java project. At least it collects all matches generated from AST
analysis and append these to the user interface, based on the JTransformer plug–in
for Eclipse. The developers now are able to observe the results and can jump directly
into the specified location in source code.

Evaluating our analysis tool against a real world project is essential to get in touch, if
YaCI will work as expected. In cooperation with the MULTA MEDIO Information-
ssysteme AG we have the opportunity to run testability analysis against a productive
software, written in Java, with a huge code base. The University of Würzburg pro-
vides us with some example projects we can explore, too. These projects have been
developed by students during their practical bachelor course and contain simple al-
gorithm implementations in Java for instance. This is a big advantage to improve
the created analysis tool to guarantee correct functionality and results received from
AST analysis. For the evaluation of YaCI in Chapter 7 tool is running against the
open source Java project Joda-Time6. This utility library provide a quality replace-
ment for default date and time classes available in Java. Thereby, it is a reliable,
public accessible, and repeatable test case that could be comprehend from every-
one.

4http://www.swi-prolog.org/pldoc/man?section=DCG, accessed on 28th June 2016
5Using quasi quotations in SWI–Prolog allows to embed long strings which contain external lan-

guage (e.g. XML, JSON) in Prolog. It also provides an alternative representation of long stirngs
and atoms in Prolog.

6http://www.joda.org/joda-time, accessed on 7th July 2016

5

1. Introduction

Finally, the rules shall be customisable to control the result action when violation
is matched in the AST. In graphical user interface different reporting levels maybe
useful (like info, warning or error). Reporting such severity is meaningful in an In-
tegrated Development Environment, but for instance in a continuous integration
lifecycle this kind of result visualisation is not very helpful. Calculating a average
scoring value from failed rules while examination and compare against a defined
threshold shall be a more useful scenario for CI. Another simple use case on de-
fined rules is to match specific design patterns in code like composition or singleton
pattern.

1.5. Roadmap

This thesis is divided into several parts and will show the way of proceeding. In the
first part it will be clarified what the term Testability means, what best practices
and programming guidelines exists and how to measure the Testability of source
code. Chapter 3 focuses on JTransformer, a powerful Eclipse plug–in to analyse
and transform Java code using SWI Prolog. That part will describe in detail what
functionality the tool provides and how to integrate it into the current research
topic.

According to the definition of Testability and the introduction to JTransformer the
description of the YaCI Rule Language is part of Chapter 4. Phrasing rules will
give developers the freedom to define own constructs of analysis patterns. The core
part of this research is the implementation of an analyse tool. It will use the rule
sentences in order to examine the provided source code according to their description
of the pattern characteristics. Instead of the need to implement analysis tasks in a
higher level programming language (e.g. Java or Prolog) this approach wants to add
an additional abstraction layer specified by analysis rule sentences. The technical
details and implementation of YaCI is discussed in detail later on in Chapter 6. It
reconciles the different aspects of the toolchain, like parsing testability rules, analyses
the abstract syntax tree, and pre-process possible matches to visualise results for
developers in the JTransformer UI.

The the evaluation shows that the developed YaCI tool works as expected and
provides the correct functionality to end users. An initial set of testability rules in
combination with the available example projects show some results, matched by our
analysis tool. This will be part of Chapter 7. Finally we will discuss the chosen
approach and will give a small summary of the work done. In a short outlook we
want to show possible future works and the ability to extend the YaCI toolchain.

6

2. Testability

This section describes the mean of testability in context of object–oriented pro-
gramming languages in detail and gives readers a definition of it. Another point is,
to examine good respectively bad pattern that exists to improve testability. With
these patterns the developers have useful guidelines on how to implement new fea-
tures and structure code in order to make it easy to test. Afterwards it is important
to know how the testability of a source code can be measured. Is there already a
established metric available which allows to determines, if the current code base is
testable without much effort? Otherwise, what can be a useful metric?

2.1. Testability in General

Exploring testability of software is not an entirely new approach in the domain of
code analysis. In the literature are different definitions what does “easy to test”
in detail means. In the following, a better understanding shall be provided by the
introduction of the important definitions on what does testability mean and how it
is defined.

A very common way to define testability is the ease of performing test cases. The
IEEE Standard Glossary of Software Engineering Terminology definition reads as
follows: “(1) The degree to which a system or component facilitates the establishment
of test criteria and the performance of tests to determine whether those criteria have
been met. (2) The degree to which a requirement is stated in terms that permit
establishment of test criteria and performance of tests to determine whether those
criteria have been met.” [IEE90]. The definition in the ISO Standard is more general.
They define testability as “the capability of the software product to enable modified
software to be validated” [ISO01].

Bruntink and van Deursen [BVD04] give an short overview of various testability def-
initions. Including the measurement of Visibility Components (in short VC). This
can be considered as an adapted version of the DRR7 measure and was introduced
by McGregor and Srinivas [MS96]. This measurement approach can already be used

7Domain-Range Ratio is a ratio between the cardinality of the domain to the cardinality of the
range.

7

2. Testability

in the early stage of the development process. The objective of VC is to consider
object–oriented aspects like inheritance, encapsulation, collaboration and exceptions.
In order to calculate the correct VC value accurate and complete specification doc-
uments are required.

Another approach is “domain testability” described by Freedman [Fre91]. It is in-
fluenced by hardware testing strategies and based on the concept of observability
and controllability. Objects and components have to support this characteristic in
order to validate, if predefined test criteria are met with the received output. In
some cases it is necessary to extend objects and components to fulfil the imposed
requirements. The degree of testability is measured by the effort on implementing
this additional requirements. An entire approach from Baudry et. al [BLS02] tend
to analyse testability of UML class diagrams. Therefore, the various coupling and
interaction between classes is used to measure and characterise the testability.

2.2. Testability in Object–oriented Software

The definitions of testability introduced before are not directly adaptable to our
planned approach. This thesis focuses on analysing the compliance of structural
design patterns in object–oriented systems. It is not the intention of the author to
establish a new testability metric based on mathematical computation. Instead, the
aim is to collect established guidelines on how to design object–oriented software in
order to improve testability and reduce the effort on writing test cases. Within this
fact it is important to define testability for the current approach as following.

2.2.1. Design for Testability

As mentioned earlier, this thesis focuses on investigation of the structural design of
object–oriented systems in order to improve testability. Object–oriented program-
ming allows developers to handle complex software components and break them
down into small independent units. Each unit is responsible for a particular func-
tionality of the software and are called classes in general. In coherence with the
announcement of the programming language Smalltalk in 1993 [Kay93], Alan Key
characterised object–orientation with three core concepts, which are (1) the support
of inheritance, (2) encapsulation and (3) polymorphism [LR09]. Robert V. Binder
describes in [Bin94] six major factors which influence the testability during the
software development process: characteristics of the design documentation, charac-
teristics of the implementation, built–in test capabilities, presence of a test suite,
presence of test tools and the software development process capability respectively

8

2.2. Testability in Object–oriented Software

maturity [Mul07]. Especially the factors regarding to the implementation character-
istics and the presence of a test suite is important for the chosen research approach
of the current work. If source code is testable with less effort is mainly influenced
by the architecture and design of the source code.

2.2.2. Testability Design Patterns

There are different good and bad patterns of testable design in object–oriented
programming (also called OOP) established in the literature over the past years.
These guidelines determine the basis for the different analysis tasks, later on. Lasse
Koskela defines different testability patterns in [Kos13] developer should be geared
to. The Googler8 Miško Hevery has been responsible for coaching developers to write
easier to test production code in fact of the automated testing culture at Google.
In the past, the guidelines published that reflect his experience on testability. At
least, Roy Osherove explains in his book The Art of Unit Testing: With Examples
in .Net [Osh09] the basics on writing unit test for the object–oriented program-
ming language C#. Likewise Koskela, who provides the reader with a list of notable
patterns on writing code that is testable with less effort.

Summarized all the mentioned literature above results in the collection of good and
bad pattern follows below. With these design pattern we are able to phrase our own
testability rules.

#1: Prevent complex, private methods [Kos13]. It is not possible to test private
methods within an independent unit test case. The method which is declared as
private is indirectly tested when they got called from a public method under test.
Because of that, the convention says that you have to prevent writing complex
methods that are declared as private. Possible violations of that pattern may be a
huge amount of control flows (or even nested), loops or simply a large number of
lines. The rule of thump is, to restrict the complexity of private methods to a point,
that the output or side effect are understandable and no explicit test is required.
Complex private method could be a hint to transfer the logic in a separate class.

#2: Prevent final or static methods [Kos13]. One of the core concepts of object–
oriented languages is the inheritance. To declare methods as final prevent developers
from creating subclasses of the related class in order to overwrite the included meth-
ods. Final methods in most cases are needless and only useful when you do not trust
your colleges or yourself. In regards of testability, final methods are hard to test and

8A Googler is a person who is employed by the Google Inc.

9

2. Testability

only testable with much effort. There is no convincing reason to declare methods as
final in the source code of a project. Declaration of static methods is another critical
type for method declarations in fact of testability. Those methods are difficult to
stub out9 in test cases. Object-oriented programming and the usage of interface-
based design has been a huge advantage for developers. Fake objects in test suites
can override instance methods and return predefined result value necessary to create
a simple test case. In contrast, static methods prevent the advantage of stubbing. It
is not impossible but it is hard and test effort increases. As seen from perspective
of testability it is not necessary to declare static methods.

#3: Do not use keyword new to often [Kos13]. This design pattern recommends
the usage of new keyword in methods with care. To call new means the most general
form of hard-coding in object–oriented languages. This statement initiated the con-
structor of an object and return the created instance. In this scenario a dependency
on another class is generated which is not useful to write test case for testing the
affected method. Another problem is the created instance in method under test can
not easily replaced by a prepared fake object. A better solution would be dependency
injection where the object is passed to the method under test through parameters.

#4: Prevent constructors with complex logic [Hev08, Kos13, Osh09]. The con-
structor in object–oriented languages is responsible to create a instance of the class.
Every test case in a unit test suite will start with calling the constructor, in order
to receive instantiated object of it. If the constructor already consisting of complex
logic (like control flows or instantiating of other objects), it is hard to create the
class instance under test. The guidelines encourage developers to leave constructors
as simple as possible. Moving complex logic in a separate init() method will do the
trick to simplify constructors and get the possibility to override it in test suite.

#5: Prevent the Singleton pattern [Hev08, Kos13, Osh09]. The Singleton pat-
tern is often used to ensure that only one instance of the class exists at runtime.
Another advantage of this pattern is the global access to methods of this instance at
every place in the software components. At runtime this could be an advantage but
in the test scenario you do not want the behaviour as described. In a test scenario
this could lead to unpredictable results which are not really understandable. For
example, the properties of the Singleton instance changed in first test case running
in the test suite. In the tearDown() method of the JUnit10 test the instance will

9Stub out means, to replace the method implementation in test case with a simple fake implemen-
tation.

10The JUnit test framework is the de facto standard unit testing library for Java. It contain several
utilities in order to write unit test cases for the Java code [?].

10

2.2. Testability in Object–oriented Software

be reset. The setUp() – runs for each test case – will receive a new instance of the
Singleton. In the special case of Singletons the expected behaviour will not occur
after the setUp() method. The returned instance is exactly the ones that have been
changed by the test case before. Remind: the instance exists during the complete
runtime.

#6: Prefer composition pattern opposite inheritance [Kos13]. Inheritance is a
big advantage of a object–oriented programming language and helps to support code
reuse. The drawback of inheritance is, that at instantiation in every class constructor
the super() method is called. In view of testability these additional dependencies,
produced by the class hierarchy, are awkward to improve testability of software
components. Therefore, it is a good criterion to prevent a depth of inheritance greater
than three times. The testability guideline suggest to use the composition pattern
instead of inheritance. Thereby, the developer has the opportunity to use different
implementations of the code at runtime.

#7: Wrap external libraries [Kos13]. Software projects often use external libraries
to provide specific functionality or allows the integration of various utility compo-
nents are helpful to implement software functions. A good example of a third party
library is Apache HttpCompoments11 for Java that simplifies the implementation of
a HTTP Server. Those frameworks are often do not bring a design of good testability
along. Therefore, it is a good idea to mask external libraries behind a wrapper class.
In source code the communication with the library goes through your wrapper class
which is replaceable easy in test cases.

#8: Prevent service lookups or static method calls [Kos13, Osh09]. It is a
common practice to acquire the instance of a service by use of the Singleton pattern
through a static method call. To stub out this hard–coded dependency in test cases is
technically not impossible, but means much more effort. Passing the service object
through parameters into the method is a better work around instead of a setter
method for the service lookup class in order to pass through fake objects in test
case.

#9: Prefer interface-based design [Osh09]. Substitute objects is a core topic on
writing test cases without much effort. Is it easy to stub out objects for test purpose
in your code base? Then the code is much easier to test if not. For that reason it is
recommended to use an interface-based design instead of concrete class instantiation
11https://hc.apache.org, accessed on 24th June 2016

11

2. Testability

wherever possible. Passing objects via parameter into methods or constructors - so
called dependency injection - makes it easier to fake those objects in tests cases.
The next step is to change the type of passed parameters to interfaces. Create a fake
the implementation of instances using interface-based implementation is much more
easier than faking a concrete class.

#10: Do not declare class as final [Osh09]. When a class in Java is declared as
final, this means that the class can not be extended. This behaviour could be useful
when creating an immutable class. But in the purpose of writing testable code thit is
not a good choice. As described earlier, the substitution and creation of fake objects
to write simplified test cases is an important technique to increase testability. Since
final class can not be subclassed, there is no way to overwrite the methods within.

2.3. Results of Testability Analyses

There are different possibilities to report results of the analysis tasks to the develop-
ers. The simplest approach is to print the various result terms to the command line
interface. A more advanced result reporting will be the attachment of the extracted
information from analysis tasks to a graphical user interface (GUI). In Chapter 3
the JTransformer tool will be introduced that already provides a GUI to attach
analysis results. In the current approach it is planned to use these functionality by
the developed analysis tool. Possible feedback from the examination can be:

1. the name of the matched rule,

2. the resource (e.g. class in Java) where the rule violation happened and

3. the line number in the corresponding class file

If the integration succeed, then developers have the capability to jump quickly into
the flawed source code and can fix the highlighted location in the software compo-
nent. The aim of the current work is not to calculate specific metrics which describe
the testability, like Brutnik and van Deursen present in their publication “Predicting
Class Testability Using Object-Oriented Metrics” [BVD04]. More generally, we want
to show developers on which piece of code the testability is negative influenced as
described before.

However, the rule language we want to implement give therefore flexibility for a
future proposal. The form “when �Premise� then �Conclusion�.” allows to advices
the then part to conclude with some scoring value, for example:

when something is wrong then score 10.

12

2.3. Results of Testability Analyses

The idea behind conclusions of this kind is, to define a threshold which shall not be
exceeded by the examination of the software components against the defined testa-
bility rules. This can be useful when the analysis tool is integrated in the continuous
lifecycle environment of a project development process. If the threshold exceed dur-
ing the daily build, the current process should be stopped and give feedback in the
related log file or other possible outcome of the build process. At the moment, this
use case is planned for feature work and will not be considered in the present work.

13

3. JTransformer

Günter Kniesel, senior lecturer at the Computer Science Department III of the Uni-
versity of Bonn, initiated the development of JTransformer in 2002. The original
decision to realise this kind of tool was to provide the availability of code analysis
on a logic-based infrastructure. In order to detect pattern in source code, the com-
mitment of a general and formal correct definition of the pattern is necessary to
guarantee a successful correct match. Against that, JTransformer want to go a step
further. They want to abstract the formal definition so far that developer can im-
plement their analysis pattern directly in form of executable code without thinking
about mathematical formulations [SRK07]. As a first step, the named tool trans-
forms Java projects into a logic-based fact database which builds up the basis for
further analyses.

Since 2002, JTransformer is continuously refined over the years by different student
assistants of the University of Bonn. The next big step after the project start was
the first version of the plug–in for Eclipse, a well known Integrated Development
Environment for Java. A short time after that, the extension got renamed to Prolog
Development Tools (PDT) and contain all necessary features and functionalities to be
a full-valued Prolog integration in Eclipse. This includes a project explorer, an editor
with syntax highlighting and code completion, an integrated Prolog console as well as
the integration of the SWI-Prolog Debugger. In addition to implement own analyses,
JTransformer give the developer also the availability to execute transformations on
the current Java program code. Those transformations are realised on manipulate
created factbase or change existing facts in order to fulfil the transformation. But
this feature will not really be important for the planned research topic, so it is not
necessary to go more into detail.

In this section we want to get more familiar with JTransformer and demonstrates,
how the existing tool chain will help and provide us with the research topic. The
already suggested factbase, generated from a Java project, represents the foundation
on which we want to examine our phrased testability rules later.

15

3. JTransformer

3.1. Abstract Syntax Tree as a Factbase

As defined in Section 2.2, the testability of software components, written in an
object–oriented language, could be improved by the compliance of several design
guidelines. Those guidelines are nothing else than a description of patterns in a
more general way which could be discovered by analysing the source base. Before
examining the code base of a software project is possible a more abstract representa-
tion is necessary. It does not make sense to run different kind of analysis directly on
the given Java code. On the other hand the AST derived by parsing the source code
is a suitable representation to examine, if it obeys the predefined testability rules.
Today’s compiler are mainly separated in two parts: (1) the so called “Front end”
that contain the lexical analysis, parsing the source code and at least a semantic
analysis and (2) the “Back end” that consists of a generic analysis, the optimisa-
tion phase and finally the code generation [ASU86]. In the syntax analysis step the
compiler is parsing the token sequentially in order to identify the correct syntactic
structure of the program. Because in this phase there is a more general represen-
tation necessary, the compiler parses the code and create the concrete syntax tree
(CST) where the AST is derived from and used as the internal representation for
further analysis steps. Figure 3.1 shows the abstract syntax tree of a very simple
Pseudo code snippet.

Martin Fowler describes in his book “Domain Specific Language” [Fow11] the ad-
vantages and useful use cases for this representation type of source code in detail.
The AST will be derived from parsing the source code according to the program-
ming language grammar. Parsing in general is a strong hierarchical operation, where
source code is simply read as text, token by token. The result of this step will be
a tree structure including hierarchical information. This type of tree representation
is called syntax tree (or parse tree). Iterating through the tree - composed of nodes
and edges - allows the examination of hierarchical structure and draw conclusions
about the design patterns introduced in Section 2.2.2. With use of the extracted
abstract syntax tree we are able to validate the satisfaction of design patterns and
conventions established in the chapter before. For example, if the constructor of a
class contains the call of another constructor – identified by the keyword new – this
can be discovered from the AST. Equivalent to the previous characteristic, all other
information are obtainable, too.

JTransformer provides the functionality of creating a factbase from existing Java
projects. Thereby the structure of a previously described abstract syntax tree breaks
down into small unique identifiable and logic elements that are defined as Prolog
predicates in the factbase. These AST elements are called Program Element Facts
(or in short: PEFs). An better overview can be provided by giving a short example of

16

3.1. Abstract Syntax Tree as a Factbase

a := 0, b := 0
while a < 5
 b := b * a
 a := a + 1

return b

assign

statement
sequence

assign while return

variable
name: a

constant
value: 0

variable
name: a

constant
value: 0

compare
operator: <branch

variable
name: a

variable
name: a

constant
value: 5assign

variable
name: a

constant
value: 0

assign

variable
name: a

constant
value: 0

Figure 3.1.: Abstract syntax tree derived from simple Pseudo code

JTransformer’s creation process that involves internal representation of the abstract
syntax tree and as result the created list of PEFs. Assuming that we have a simple
class named AstExample which contain private attributes and different declaration
of methods. This simple class is shown in Listing D.4.

The Eclipse PDT plug–in gives developers the availability to transform the current
Java project into the internal factbase representation of JTransformer. Listing 3.2
contains a shorten output of the created PEFs generated from JTransformer us-
ing the example code from Listing D.4. All syntax tree nodes are available as a
single fact in the Prolog database and is from now on accessible within a query,
that is well-known from SWI–Prolog programs. To each type in Java – like method
call, constructor declaration, method definition, field access and so on – there is an
equivalent in the generated factbase.

Listing 3.1: Simple implementation of a Java class
1 package de.uniwue.thesis; Java
2 import java. util .ArrayList;
3 import java. util . List ;
4
5 public class AstExample {
6 private List<Object> mNodes;

17

3. JTransformer

7
8 AstExample() {
9 this.mNodes = new ArrayList<Object>();

10 }
11
12 public Object getNode(int index) {
13 return this.mNodes.get(index);
14 }
15 }

Line 3 of the listing shows declaration of the class AstExample represented by the fact
classT(ID, Parent, ’ClassName’, ParamRefs, Definitions). First parameter
of every PEF is an identifier, which is a unique integer value in the factbase. An-
other code snippet from our example class could be reconstructed by the facts
methodT(ID, Class, ’MethodName’, ...), paramT(ID, Parent, Type, ’ParamName’)
and modifierT(ID, Parent, ’modifier’), see line 4, 7 and 11. These Program El-
ement Facts describe the getNode() method declaration of Listing D.4 on line 12.
All available PEFs generated by JTransformer are documented on the official project
website12.

Listing 3.2: Example factbase of a Java project
1 compilationUnitT(28591, 28594, 28593, [28595, 28596], [28597]) . Prolog
2 packageT(28594, ’de.uniwue.thesis’).
3 classT(28597, 28591, ’AstExample’, [], [28598, 28599, 28600]).
4 methodT(28600, 28597, getNode, [28613], 10001, [], [], 28614).
5 constructorT(28599, 28597, [], [], [], 28605).
6 fieldT(28598, 28597, 28603, mNodes, null).
7 paramT(28613, 28600, 10080, index).
8 newT(28610, 28608, 28599, null, [], 21199, [], 28612, null) .
9 returnT(28616, 28614, 28600, 28617).

10 modifierT(28604, 28598, private).
11 modifierT(28615, 28600, public).

For now, we got a short overview through the JTransformer project and their operat-
ing principles. Next, the features of the Eclipse plug–in, which are necessary for the
code analysis approach, shall be introduced in a nutshell. After that we are going to
present an example implementation on how to write an analysis using JTransformer
as envisaged from Günther Kniesel and his team. That allows us to get more in
touch with analysing Java code using the different PEFs the abstract syntax tree

12https://sewiki.iai.uni-bonn.de/research/jtransformer/api/java/pefs/4.1/java_pef_o
verview, accessed on 7th July 2016

18

3.2. PDT - The Eclipse Integration

exists of and the SWI-Prolog programming language. The usage of the factbase by
the code analysis tool will be focused of Chapter 6.

3.2. PDT - The Eclipse Integration

In 2004 the first version of the Eclipse plug–in for JTransformer were introduced by
the team. The integration into an existing Java IDE has improved the development
of analyses and the evaluation with the tool significantly. Creating the JTransformer
factbase for each available Java project, the definition of analysis and running those
against selected factbase are only the core features of the plug–in. Another point is
the good visualisation which is available in Eclipse to view the analysis results or
main factbase information that come together with the integration. In the follow-
ing, the key features that are useful for the YaCI tool will be describe in detail as
follows.

In order to run an analysis, the creation of a factbase which can be queried by Prolog
is required. The JTransformer Developer perspective in Eclipse offers the option to
create those factbases when assign the existing Java project to JTransformer. Use
Right click on project → Configure → Assign JTransformer Factbase to initialise the
process. After assertion the construction of the abstract syntax tree – in form of PEFs
– are automatically started and are available via an initiated SWI–Prolog process.
Eclipse Java projects are assigned to JTransformer and contain AST representation
results in a drop-down list of available factbases in the Control Center view.

Figure 3.2.: Overview to the JTransformer Control Center

The Control Center view is not only responsible for switching between factbases.
Other content which is displayed there, is the list of available analysis definitions
created by the user and the result of already executed analyses. Both are shown in
Figure 3.2. Each entry in the analysis table is checkable in order to enable or disable

19

3. JTransformer

the analysis for the next run. An entry in the table is available, if the analysis defi-
nition is loaded in the factbase. How to add definitions is described in Section 3.3:
Implementation of an Analysis Pattern. On the right hand side of the Control Cen-
ter the results are in another table perspective. For each analysis result the table
contents the following information: a short description of the result (defined by de-
veloper at analysis implementation step), the resource (e.g. the class name) where
the match was found and the location (line) of the matched analysis result in its
resource.

Another considerable feature of the Eclipse plug–in is the ability to export the
created factbase to local Prolog file in order to consult it in own SWI-Prolog modules.
A statistics view give developers a short overview to the PEF factbase and options
to filter these by fact–type, e.g. methodT/8, constructorT/6 and so on. We plan
to integrate our YaCI tool to the JTransformer plug–in, especially to use the user
interface to give developers direct feedback from analysis examination.

3.3. Implementation of an Analysis Task

In general, the definition of an JTransformer analysis consists of two parts: (1) add
analysis and their result to graphical user interface and (2) implement the logical
part using PEFs to match analysis on the AST. A work through of the Singleton
pattern analysis – available in the JTransformer examples – helps to get in touch
with the Prolog based tool. Remembering, the Singleton pattern mentioned already
in Section 2.2 where the testability design guidelines were introduced.

Before writing the first analysis implementation the question have to be clarified
which characteristics are useful to identify the Singleton pattern in a Java code base.
The common way of the Singleton implementation is, to declare the constructor of
the class as private. This prevents to create instance from outside of class. Second,
a method has to be declared as public that has the return type of the class itself.
A private field declaration with type of Singleton class is the last characteristic to
identify this pattern. Summarized, these are the a characteristics in a nutshell:

• private constructor

• public method which return the class and

• a private field of type is equal to class

Listing 3.3 show a simple analysis implementation using the different PEFs available
in JTransformer factbase.

20

3.3. Implementation of an Analysis Task

Listing 3.3: Singleton pattern analysis implementation
1 :− module(’singleton.analysis’, [Prolog
2 classMethodReturnsOwnInstance/3
3]) .
4
5 classMethodReturnsOwnInstance(Type, Method, Field) :−
6 methodT(Method, Type, _MethodName, [], Type, _, _, _),
7 modifierT(_, Method, static),
8 fieldT(Field, Type, Type, _FieldName, _Init),
9 modifierT(_, Field, static) ,

10 containsFieldAccess(Method, Field).
11
12
13 containsFieldAccess(Method, Field) :−
14 fieldAccessT(_ID, _Parent, Method, _Receiver, Field, _Type),
15 ! .

The term classMethodReturnsOwnInstance/3 returns the unique identifiers of the
three distinguishing characteristics of a Singleton, after the unification of the vari-
ables during the SWI–Prolog process: the class itself (Type), the method which
returns instance of the Singleton (Method) and the private field, that store the Sin-
gleton (Field). The defined predicate can be already called interactively via the asso-
ciated Prolog console. The result of the query are the unified unique identifiers which
are not very helpful and hard to read by a human. Therefore JTransformer offers a
specific analysis api with two important predicates to use: analysis_definition/5
and analysis_result/3. Both are used in Listing 3.4 to add the Singleton analysis
implementation to the JTransformer GUI.

Listing 3.4: Attach analysis definition to JTransformer
1 :− use_module(’singleton.analysis’). Prolog
2
3 analysis_api: analysis_definition (
4 ’singleton-pattern’, onSave, info,
5 ’Testability’, ’Singleton pattern detection’).
6
7 analysis_api:analysis_result(’singleton-pattern’, _, Result) :−
8 classMethodReturnsOwnInstance(Type, Method, Field),
9 (

10 make_result_term(class(Type), ’Singleton class’, Result);
11 make_result_term(instanceMethod(Method), ’The instance method’, Result);
12 make_result_term(instanceField(Field), ’The instance field’, Result)
13)

21

3. JTransformer

After adding an analysis definition to JTransformer, as seen in line 3 of the listing,
a new entry with the label “singleton-pattern” in the analysis list appears. Second
parameter of definition says that the analysis should always run after save action
is triggered in Eclipse. Third parameter determines which marker in Eclipse IDE
should be displayed on matching elements (e.g. info, warning or error). With the
last two parameters the developer can define the group label where the analysis
belongs to and a simple description of the anlysis. Both are displayed in the Control
Center of JTransformer. Finally, line 7 shows the analysis_result/3 predicate
which wraps up the results of analyses in order to display them in the JTransformer
GUI. The first parameter determines the name of the analysis, the results belongs
to and have to be the same as defined in analysis_definition/3 clause. In the
body of the analysis_result/3 clause the implementation of the singleton pattern
detection is called and the unified ast-element-identifiers are wrapped into a term
using the make_result_term/3. How the control center looks like when analysis
pattern matched is shown in Figure 3.3

Figure 3.3.: Control Center contain result info from Singleton pattern analysis

This knowledge about how JTransformer works and analysis definitions, as well as
their results could be attached to the graphical user interface is important for the
current approach. Later on, developers should have the possibility to run the au-
tomatically generated analysis from rules and review the outcome of the analyses
via the Eclipse plug–in. The integration of YaCI into JTransformer is part of Sec-
tion 6.5.

22

4. The YaCI Rule Language

The definition what does testability of software components in the world of object–
oriented programming languages mean is introduced in Chapter 2. There are also
important design patterns determined which help to write code that is testable with
less effort. Because of the goal, that not only developers can implement their own
analysis pattern for the examination part of the analysing tool, there is a more
abstract and general language necessary to phrase analysis rules. A specification of
a natural language similar to the English once is required.

For this purpose, the current chapter introduces the YaCI Rule Language and its
related grammar. Parsing phrased rule sentences – represented as simple strings –
requires a closer look into Definite Clause Grammar and quasi quotations techniques
which are available in SWI–Prolog. They are suitable to process strings token by
token. Result of parsing is the generalised internal representation of rules which will
be introduced in Chapter 5.

4.1. Grammar Specification

Phrasing a valid YaCI Rule assume that two main parts are always used in the
descriptive sentence. The rule obligatory starts with the keyword “when”, followed by
a sequence of allowed words described later. This section of the rule is called the rule
premise. As the closing of a valid rule wording, there has to be a section introduced
with the keyword “then”, that induces a logical implication of the sentence – the
conclusion. Finally, the dot closes the rule sentence. This form is known as the
grammatical structure named conditional sentences. Figure 4.1 shows the general
form of the YaCI Rule definition, that can be handled by the implementation of the
rule parser.

�rule� |= when �premise� then �conclusion� .

�premise� |= specified later

�conclusion� |= specified later

23

4. The YaCI Rule Language

The word sequence after “when” are expresses a hypothetical situation, or factual
implication, which is also known as premise. It is possible to concatenate different
premisses or only name one of these. In contrast of the premise sequence the “then”
keyword can only be followed by a single conclusion. The introduced conditional
sentence form will be used as the structure for phrasing testability rules in the current
approach. In order to give end–users the capability to phrase valid testability rules,
a specification of a grammar is necessary. Transformation of the string sentence into
internal representation is also done during the parsing process using the grammar.
Therefore the premise and conclusion must be written accordingly to the grammar
we introduce in Section 4.1.1 and 4.1.2.

In Section 2.2.2 the introduced testability design guidelines shall be expressible
within the rule premise. At this point we want to be one step ahead and provide
a flexible language specification that allows to phrase a wide variety of rules and
not only to be limited to the context of testability. The conclusion of the rule takes
part as what happens when the defined premise fails while examination against the
abstract syntax tree.

A formal grammar type is necessary to write down a specification of the YaCI Rule
language. For the proposed approach we use a context–free grammar (CFG) to define
a set of production rules, in order to describe all possible sequences of words for
phrasing rules. CFGs consists of a set of rules which describe possible replacements.
Available components for the body of a production rule are:

• Terminals which represent symbols of the alphabet of the language being de-
fined,

• Non–terminals that represents different type of clause in the grammar sentence
and

• a start symbol is a variable that represents the complete language being defined.
The start symbol is always the first variable in a grammar specification.

The reason for using a conditional sentence as the basic structure of rule wording is
the fact that these are already fulfilling the requirements for the given approach of
phrasing testability rules. In the premise the end–user is able to describes the specific
design pattern and how it is reflected in object–oriented programming languages. The
conclusion part permits to define the desired action when the premise is evaluated
to true. Especially for rule based systems these conditional sentences are established
and usually used. Randall Davis and Jonathan J. King define in [RK84] that rules
in a pure production system can also be viewed as simple conditional statements.
Furthermore, they specify that one side (the premise of the rule) is evaluated with

24

4.1. Grammar Specification

reference to the data base and, if succeeds, then the action (the rule conclusion) is
executed.

4.1.1. Premise of the Rule

The core part of the rule language is the premise. Within it the user can describe
the pattern, respectively coding quirks, the analyse tool shall find in source code
under test. A simple, but powerful description language for this part is necessary to
achieve a flexible way of examine the abstract syntax tree of the software component.
First version of the YaCI Rule language must contain all essential conditions and
language–based quirks to phrase the testability design pattern with the language
specification defined in the next step. As a short reminder, the analysis tool in its first
version is restricted to the object–oriented programming language Java. Therefore
the grammar is adjusted to general structure and language depended characteristics
of object–orientation, especially in the context of Java. A short assessment, if the
specified grammar is compatible or can be adapted to other programming languages
will be part of future work section later in this work.

rule

area

class

package
accessor

abstract

�nal

private

protected

public

synchronized

static
condition

is

has

equal

contain

conjunction

and

or

conclusion

score 1 - 10

drop

error

info

warning

patternscope

package

class

method

constructor

�eld access

�eld assertion

condition_term

callable
class_method

instance_method

control_�ow

if / else-if / else

for

while

declaration

�eld

method

class

inheritance

line_count

keyword

method_call

name

parameter

return_type

comparator

greater / more than

greater equal

less / less than

less equal

equal / of

not equal / not of

Figure 4.1.: Overview to the different components available for rule phrasing

The structure of every rule is based on components which can be combined in a re-
stricted but flexible way. An overview of the available components and their relations
are shown in Figure 4.1. The premise itself starts always with one of the available
scopes. Possible scope elements are for example class, method or constructor and
are adapted from Java. After the scope, a condition construct is expected by the
grammar specification. Conditions are useful to describe more in detail, what pat-
tern, keyword or maybe some other language quirk has to be considered in order
to fulfil the condition in respect to the selected scope. The condition can be in-
troduced with one of the five available keywords: is, has, contain, equal or not

25

4. The YaCI Rule Language

equal. Therefore the basic structure of phrasing simple rule for a single scope and
condition is established. To satisfy the requirement that developer can describe more
complex design pattern the support of chaining scopes and conditions must be de-
fined. In general, this mean that every rule premise can handle both, a single scope
and a list of scopes, chained with allowed logical conjunctions: and respectively or.
Furthermore the scope also can be composed of a single or chained condition. The
logical conjunction to chain scopes are also available for conditions. A brief overview
gives the simple example shown bellow:

(1) when �Scope1� and �Scope2� then �Conclusion�.
(2) when �Scope� �Condition1� and �Condition2� then �Conclusion�.

At this point, the premise of the rule can consists of a scope and the associated
condition. In order to complete the conditional part, a detailed specification of the
misbehaviour in source code is necessary. Therefore the condition can be specified by
a wide variation of allowed terms in respect of the comparison against a predefined
integer or a string value. Details on how to phrase valid conditional parts can be
derived from the grammar (see Listing 4.2 near to the production rule condition).
A simple example condition on the scope of a method can be as follows:

when method contain line_count greater 3 then score 1.

While examination of the AST this condition will match on every method, when the
body of the related method include three lines of code or more. It is very easy to
restrict the condition on the given scope a little bit more. This can be realised by
adding another condition to the related rule scope using an available conjunction:

when method contain line_count greater 3 and contain control_flow more
than 3 times then score 1.

This extension of the condition results in a more restricted result set after running
the analysis. At least, this rule expresses that only methods are relevant whose body
covers more than three lines and additional there have to be a control flow more
than three times in the method implementation (e.g. if/else, while, for). The premise
including the two compound conditions is simple phrased as seen above.

In the rule wording the premise part is the most complicated section because of the
huge variety of coding quirks and the availability of different scopes and condition
terms. Next, it is described in detail what conclusions are possible and how to phrase
them within a YaCI Rule.

26

4.1. Grammar Specification

Figure 4.2.: Specification of the YaCI Rule premise grammar

�rule� |= when �premise� then �conclusion� .
�premise� |= �scopes� �conditions�

�scopes� |= �scope� | �scope� �conjunction� �scopes�
�scope� |= class | constructor | field | method | package

�conditions� |= �condition� | �condition� �conjunction� �conditions�
�condition� |= contain �contain_term� | is �accesor� | has �has_term�

�conjunction� |= and | or
�contain_term� |= access of �accessor� �scope� | call of �callable� �comparison� |

control_flow �comparison� | declaration �scope_combi� �comparison� |
keyword �keyword� �comparison�

�has_term� |= declaration of �scope_combi� | inheritance of depth �numbers� |
line_count �comparison� | name �string_comp� �chars� |
paramater of type �chars� | return_type �comparator� �chars�

�callable� |= class_method | instance_method | �scope_combi�
�comparison� |= �comparator� �numbers� | λ

�scope_combi� |= �accessor� �scope�
�accessor� |= abstract | final | private | protected | public | static | synchronized

�comparator� |= greater | more than | greater equal | less | less than | less equal |
equal | of | not equal | not of

�string_comp� |= equal | not equal
�keyword� |= new
�numbers� |= �numbers� | �number� �numbers�
�number� |= 0 | 1 | 2 | . . . | 8 | 9 | 10

�chars� |= �char� | �char� �chars�
�char� |= [a-z] | [A-Z]

27

4. The YaCI Rule Language

Figure 4.3.: Specification of the YaCI Rule conclusion grammar

�rule� |= when �premise� then �conclusion�.
�premise� |= already specified

�conclusion� |= score �number� | drop �severity� | pattern�chars�
�number� |= 0 | 1 | 2 | . . . | 8 | 9 | 10
�severity� |= error | info | warn

�chars� |= �char� | �char� �chars�
�char� |= [a-z] | [A-Z] | [0-9]

4.1.2. Conclusion of the Rule

To paraphrase a complete and valid YaCI Rule there is also a conclusion necessary.
When the premise of the rule is matched while abstract syntax tree examination,
the conclusion has to be evaluated. In the first implementation of the grammar it
can be process three different consequences, when the premise failed:

• Severity

• Scoring

• Pattern detection

Listing 4.3 illustrates the specified grammar definition for the conclusion part of
the rules. The reason to provide YaCI with different rule consequences is because of
the various possible applications in the analysis area. The main goal in the current
work is to show different severity in an Integrated Development Environment like
Eclipse using problem markers. But later on, the integration in the continuous life
cycle of the software development process is conceivable, too. For this purpose using
different score values as the consequence is maybe the more convincing way.

Severity: Herewith, the level of feedback in modern Integrated Development Envi-
ronment tools can be defined by using different problem marker levels. For example in
Eclipse, when compiler found unused variables in class declaration, then the marker
with the level warning is displayed in the editor view (see Figure 4.4). The severity
levels in the specified grammar are adapted from the problem markers available in
the Eclipse editor. These are info, warn and error. To advise the analysis tool to
create the marker using the different levels of severity the rule must conclude with
a conclusion contain “drop” and the associated severity level.

28

4.1. Grammar Specification

Figure 4.4.: Available severity problem markers in the Eclipse IDE

Scoring: The grammar for conclusions also provide the specification of a variable
score value that has to be an integer between 1 and 10. Because of the actual
development situation of the YaCI tool the scoring is mapped back to severity, as
described above. A meaningful usage of score values can be the integration into the
continuous integration life cycle of software components. But this approach will be
left out for the present and is not considered in the current work. The mapping from
scoring to severity is defined in the following way:

• from 0 to 3 → info marker

• from 4 to 6 → warning marker

• from 7 to 10 → error marker

Pattern detection: The third and last possible conclusion of a YaCI Rule can in-
duce the matching of a design pattern. In order to examine a pattern the rule must
conclude with “. . . then pattern "�Name�".”. The result of this rule covers the differ-
ent indicators in source code belongs to the phrased pattern. The well-known Gang
of Four introduce in their book “Design Patterns: Elements of Reusable Object–
Oriented Software” [GHJV95] different recurring solutions to common problems in
software design. One example of a possible pattern is the Singleton (envisaged in
Section 2.2) to restricts the object creation of a class to only one available instance
at runtime.

4.1.3. Description of the Rule

The YaCI Rule language provides an additional description written as free text. This
simply allows the user to describe the rule in his own words. Another point is to
improve the readability of the set of rules collected in a *.rules file. Later, the rule

29

4. The YaCI Rule Language

Figure 4.5.: Specification of the YaCI Rule description grammar

�rule� |= �description� @ �rule� .
�description� |= �long desc� �short desc� | �short desc�

�long desc� |= /* �multi line� */ �return�
�short desc� |= �chars�
�multi line� |= �chars� | �chars� �return� �multi line�

�chars� |= �char� | �char� �chars�
�char� |= [a-z] | [A-Z] | [0-9] | “ ”

�return� |= \n

file is used by the JTransformer YaCI integration to read the testability rules in and
display it in the JTransformer Control Center (see Section 3.2). The JTransformer
Eclipse plug–in provide two types of description: a short and a long one. Listing 4.5
shows the grammar specification of the rule description, while Listing 4.1 gives a
short instruction on how to provide a YaCI Rule with a description.

Listing 4.1: Different ways to provide YaCI Rules with a description
Short description @ when method is private then drop warning. Rules
/* Long, one-liner description */
Second rule @ when constructor has line_count greater 10 then drop error.
/* Long description
over to lines or more */
Another rule @ when class is final drop info.

4.1.4. Example Rule

In the last sections the available rule components were introduced. As a consequence
of this an essential knowledge on how to structure and write valid rules based on the
YaCI Rule grammar is acquired. For a better overview on how to construct YaCI
Rules a brief example shall be introduced next. Ahead of writing an own rule there
have to be two questions answered by yourself: “What kind of bad smells in code is
expected as a resulting match by the rule?” and “How to identify this circumstance
in source code?”

For example, a simple rule shall identify all methods which are private and named
“getInstance”. This thought sets up the requirements on writing a valid YaCI Rule
and is all what is necessary for the beginning. As a short reminder: every premise
starts with a scope followed by a single condition or chaining of different conditions.

30

4.2. Parsing Natural Language

The instruction “identify all methods” indicates that the scope of the rule has to be
of type “method”. Towards the grammar specification after the scope a condition is
followed. The requirement says there have to be two conditions necessary to fulfil it
related to the named scope:

• only methods declared as private and

• the plaintext name of the method specified in source code

This results in an logical and conjunction contains the first condition (“is private”) to
observe only private declared methods and the second one determining the method
name (“has name ’getInstance’ ”). The final rule that is specified using the introduced
rule grammar looks like the following conditional sentence:

when method is public and has name “getInstance” then drop info.

The purpose of this small example is to demonstrate the flexibility and cardinality
of the defined rule grammar to write an arbitrary set of rules not only limited to
the context of testability. As an introduction and to start testability analysis from
scratch, the testability design patterns – which are presented in Section 2.2.2 – are
already available as YaCI Rules. An overview to the phrased rules is available in
Section 4.3.

4.2. Parsing Natural Language

The domain–specification language of phrasing YaCI Rules shall be as closely as
possible to the English language. To realise this purpose a grammar is specified in
Section 4.1 to determine the frame of wordings for testability rules. Before these
sentences can be used to run the analysis process they have to be parsed using
the specified grammar. This step will transform them into the internal rule repre-
sentation that can be used as input of the YaCI Analysis tool. Using an internal
representation has the advantage regarding to different capabilities in the commu-
nity. This aspect removes the limitation to only use outcome of the parser within
the YaCI toolchain. Section 5.2 describes detailed why it is useful to introduce an
adaptive representation of the parsed rules. The input that is passed through the
parser is in form of the conditional sentence listed in a simple text file. Achieving
the goal to handle a set of rule strings the parser reads the file line by line and
applies the grammar to the token sequence. A short introduction on parsing En-
glish language sentence using SWI–Prolog is already introduced by Alan Bundy and
Lincoln Wallen in [BW84]. For this purpose the Definite Clause Grammar (in the
following named as DCG) is used. Matter of the next section is to explain in short

31

4. The YaCI Rule Language

what a DCG is and how it is used to define a grammar in SWI–Prolog. Afterwards
the implementation is shown more detailed in context of the YaCI Rule parser.

4.2.1. Definite Clause Grammar

The starting point of solving the parser problem is to handle the specified rules
shown in Section 2.2.2. Each rule is represented as a simple string in the rule file.
This can be a single line for each rule, if there is only a short description available, or
multiple lines, if a long description is attached to the rule. The parser processes the
sequence of tokens according to the grammar specification that is already introduced.
Especially in the context of the logical programming language Prolog, using DCG
is a well–known and proved approach to write rules for the parsing process. They
also improve the ease to specify a context free rule grammar in a more readable
notation. In order to use YaCI Rule Parser and the related DCG as well as the
quasi quotations, a local installation of SWI–Prolog 6.4.0 or newer is necessary.
An additional DCG library basics.pl13 is also available through the official package
source. This package adds basic functionality and different general utility predicates
which help to implement Definite Clause Grammar in SWI–Prolog. Loading it via
consult/1 into the Prolog file it will frees up the different utility clauses.

The DCG exists on a set of Prolog structures in the ordinary form of “head −−>
body”. Instead :− the body is separated from the head using the special notation −−>.
As gathered from the official DCG documentation, the body of a rule can contain
three different types of terms:

• a simple reference to another DCG grammer rule,

• code, that have to be interpreted as native Prolog code (must written between
{...}) and

• a list, that is interpreted as a sequence of literals.

Listing 4.2 illustrates a possible implementation of the basic YaCI Rule grammar in
a simplified way using DCG notation in SWI–Prolog. The detailed implementation
will be part of the next section. There are two different rules specified: Line 1 to 5
implements the grammar for rules contains a description before “when . . . then . . . ”
part is expected. The other way round in line 7 to 14 the grammar for rules without
description is specified. Another important difference is the head of the rule. Within
the second one the normally unbound variable Rule will be unified during the parsing
process and returns the unification of the variable. Using this programming style
13http://www.swi-prolog.org/pldoc/doc/swi/library/dcg/basics.pl, accessed on 20th July

2016

32

4.2. Parsing Natural Language

will help to realise the planned internal rule representation. As well, the example
above contains all three available variations of terms in the rule body. A reference to
another DCG grammar rule rule_description//1 is illustrated in line 2. Instead of
the conventional list notation in Prolog (e.g. [itemA, itemB, ...]), the sequence
of characters is embraced by quotation marks and represents a valid list of characters.
For instance, the internal representation of the quoted string “when” is simple a list
notation like [“w”,“h”,“e”,“n”]. Finally, line 10 to 13 explains the usage of code
in the grammar body that shall be interpreted in native way by the Prolog process.
Especially for generating the outcome from the parsing process this notation will
be helpful to create the internal Prolog structure of YaCI Rules which consists of
name and different arguments. These arguments themselves can be again literals
and atoms.

Listing 4.2: Simple Definite Clause Grammar implementation in SWI–Prolog
1 rule −−> Prolog
2 rule_description, "when", rule_premise, "then", rule_conclusion, "." .
3
4 rule(Rule) −−>
5 "when", rule_premise, "then", rule_conclusion, {
6 % build up rule representation
7 Rule = rule(when(), then())
8 }, "." .
9

10 rule_description −−> % ...

The basic knowledge about DCGs and how to use them in Prolog helps to understand
the implementation of the YaCI Rule parser. The following section takes a closer
look at the technical implementation of the parser and how to specify a grammar
using the previously described approach in Prolog.

4.2.2. Implementation

At the starting point of the grammar parser there is a local rule file containing a set
of testability rules, in order to parse them into the internal YaCI Rule representation
(see Chapter 5). As described earlier each rule can consist of three parts:

1. optional, long description

2. required short description

3. and the rule sentence itself according to the grammar specification

33

4. The YaCI Rule Language

The indicator for the end of a rule is simply a dot followed by a line break. Processing
the file is done using an input stream that reads the file token by token until the
end of the stream is reached. The result of parsing the text file will be a list of rule
terms transformed into the internal structure.

The set of rules in the current work are provided through a local file. There is already
a helpful library available from official SWI–Prolog package source called Pure I/O14.
It deals with processing input streams from local resource using grammar rules.
New predicates are provided with the package which can be used in Prolog. For the
current approach phrase_from_file/2 is used to read text from file sequentially
and parse them according to the DCG definition which is passed through the first
argument. The second argument is used to determine the absolute path where the
rule file is located on local hard disk. Prolog will open an input stream for the given
file. There is also an implementation of phrase_from_file/3 available which allows
to determine different options that have to be recognised within the read and write
operations.

Before we get more in detail on the implementation of the Definite Clause Grammar
there shall be introduced some general Prolog notation hints. When talking about
DCG in Prolog this means in general a set of rules which are used to parse a given
string. Defining DCG rules is equal to the ordinary clauses syntax are known from
Prolog using :-/2 for separating head and body of the clause. Instead of :-/2 the
head and the body of a DCG rule is separated by −−>/2. The Prolog preprocessor
uses expand_term/2 to translate DCG rules into ordinary Prolog clauses. Two ad-
ditional arguments are added to the converted terms which represent the difference
lists15 of the parsed string. The arity of a DCG rule is declared by // after the name.
For instance, the grammar rule rule(Result) –> .. is declared using the predicate
rule//2.

Back to parsing the read-in rule sentences. Entry point of the grammar specification
is the parse_rules//1 predicate. It has one argument that is unified after success-
fully parsing the text file and holds all created rule predicates as the result of the
parsing process. As seen in Listing 4.2 the parse_rules//1 references to blanks//0
and list_of_rules//1. The referenced blanks//0 rule is a helper from the basics.pl
utility library that holds various general utilities for processing strings. For instance
blank//0 and blanks//0 used to skip white-space characters in the sequence of
tokens. For processing a set of rules the list_of_rules//1 is referenced. Two dif-
ferent scenarios are available during traversing through the input stream. Firstly, if
14http://www.swi-prolog.org/pldoc/man?section=pio, accessed on 10th July 2016
15A difference list is a sorted pair of lists d(L1, L2) where the second list L2 is completely included

at the end of list L1. Simplified, this means that the last elements in the first list are reflected
by the elements of the second list.

34

4.2. Parsing Natural Language

there is only one rule generated from input stream, then line 10 is used and returns
a list with one parsed rule. Secondly, if there are two or more rules built up from
tokens, then the DCG rule in line 12 is used and called recursively until the end of
file is reached or no valid rule can be generated any more. In Listing 4.2 there are
also different definitions of the rule//1 predicate – see line 16, 22, 27 and 34. This
one specifies the available and valid sequence of words for the general wording of the
YaCI Rules.

Listing 4.3: Definite Clause Grammar rules which are used to process local file
1 % read rule file and pass them through the dcg Prolog
2 read_file(File, Result) :−
3 phrase_from_file(parse_rules(Result), File).
4
5 % entry point of the YaCI grammar
6 parse_rules(Rules) −−>
7 blanks,
8 list_of_rules(Rules).
9

10 list_of_rules ([SingleRule]) −−>
11 rule(SingleRule).
12 list_of_rules ([SingleRule|Rules]) −−>
13 rule(SingleRule),
14 list_of_rules(Rules).
15
16 rule(Rule) −−>
17 when, blank, blanks, rule_premise(Premise),
18 then, blank, blanks, rule_conclusion(Conclusion), ".", ("\n" ; eos) ,
19 { /* create rule term and unify with "Rule" */ }.

The already introduced component–based structure of the natural language for para-
phrasing testability rules is used for the grammar implementation, too. To get a quick
overview, Listing 4.4 contains all necessary DCG rules to parse the simplest YaCI
Rule containing a scope, a simple “is” condition term and the conclusion to return
the severity level “error” as result of the analysis when rule is failed. The example
testability rule looks like:

“Simple Example @ when method is private then drop error.”

Listing 4.3 gives a basic introduction how to free up the testability rule file in SWI–
Prolog. This includes the creation of an input stream to read–in the content of the
file as well as the entry point in form of a recursive clause definition (see line 10 and
12) that calls rule/1 until the end of the token sequence is reached or no valid rule
was found. Much more interesting is for now, how the implementation on parsing
each single rule by the YaCI parser looks like. In other words, what set of DCG rules

35

4. The YaCI Rule Language

is necessary to specify the wordings of a valid YaCI Rule and how it is structured in
the current implementation.

The complete rule parser exists of a set of DCG rules which are process the in-
put stream in form of tokens. Line 1 in Listing 4.4 shows the general rule//1
clause as the starting point for parsing the conditional sentences. Its body lists the
different terms necessary to specify a valid YaCI Rule. If all terms are evaluated
to true, then the parsed character sequence is a valid rule and the generated in-
ternal representation during parsing process is unified to the provided argument
variable and added to the list of rules. The body of rule//1 specifies that a rule
has to start with a description. The wording of these description is defined in the
clause rule_description//1. Next, the token stream must contain the keyword
“when” that introduces the rule premise, followed by one or more white–space
characters. Furthermore, the grammar expect the premise itself that is signified
by a reference to the DCG rule rule_premise//1. After the premise there has to
be the keyword “then” followed by white-spaces as well and the reference to the
rule_conclusion//1. Finally the grammar except a “.” (dot) as the closing of a
valid rule statement. After that a line break indicated the start of another rule or
the end of the stream is reached (eos).

Listing 4.4: Basic DCG implementation to parse YaCI Rule
1 rule(Rule) −−> Prolog
2 rule_description(Description),
3 when, blank, blanks, rule_premise(Premise),
4 then, blank, blanks, rule_conclusion(Conclusion), ".", ("\n" ; eos) ,
5 { Rule = rule(when(Premise), Conclusion, Description) }.
6
7 rule_description(Description) −−>
8 string_without("@", ShortDescription), blanks,
9 "@", blank, blanks,

10 { /* create description term and unif with "Description" */ }.
11
12 rule_premise(Premise) −−>
13 rule_scope(Scope), { Premise = Scope }.
14
15 rule_scope(ScopeResult) −−>
16 single_rule_scope(Result), { ScopeResult = Result }.
17
18 single_scope_condition(Structure) −−>
19 condition(ConditionTerm), blank, blanks,
20 condition_term(ConditionTerm, TermResult), !,
21 build_structure(ConditionTerm, TermResult, Structure).
22
23 condition_term(is, Result) −−>
24 accessor(AccessorTerm), blank, blanks, { Result = AccessorTerm }.

36

4.2. Parsing Natural Language

The example rule above is the simplest available phrasing through the YaCI Rule
grammar. For instance, the chaining of scopes or conditions are not considered yet.
But exactly this element increases the strength of the grammar immense in order to
observe several conditions in a single rule premise. This advantage is implemented
in the grammar specification using three different rule_premise//1 clauses – see
listing below. The first listed clause describes a premise that only consists of a single
scope. If the token sequence only hold one scope, then the clause rule_scope//1 is
used to parse the sentence and unifies the outcome to the unbound variable Premise.
More interesting will be an example with the following YaCI rule wording:

“when method �Condition� and constructor �Condition�
then �Conclusion�.”

This sentence can not be parsed using the first clause of Listing 4.5. For this purpose
the clauses in line 4 and 8 are necessary. These allow to parse sentences with two or
more scopes in the rule premise chained with the conjunctions “and” respectively or.
The way of proceeding in SWI–Prolog is to try each of the three DCG rules. If the
currently used rule failed during process of the string then go back to the last correct
branch and tries an alternative path using one of the other available rule definitions.
The chars “and” causes the break using first clause of rule_premise//1. because it
expects the keyword “then” to initiate the rule conclusion. In fact of the extended
clause definitions the SWI–Prolog interpreter is able to use one of the other available
rules. The variation starts in line 4 contain the keyword “and” in its specification
which allows to parse the sentence above without problems. Third clause is necessary
to cover rule wordings using the or conjunction between two scopes. SWI–Prolog uses
for the explained behaviour the technique called backtracking16.

Listing 4.5: Implementation of chaining scopes in rule grammar
1 rule_premise(Premise) −−> Prolog
2 rule_scope(Scope), { Premise = Scope }.
3
4 rule_premise(Premise) −−>
5 rule_scope(FirstStatement), and, blank, blanks, rule_premise(SecondStatement),
6 { Premise = and(FirstStatement,SecondStatement) }.
7
8 rule_premise(Premise) −−>
9 rule_scope(FirstStatement), or, blank, blanks, rule_premise(SecondStatement),

10 { Premise = or(FirstStatement,SecondStatement) }.

16Backtracking uses the trial and error principles in order to solve a problem while extending a
reached partial solution to a comprehensive solution. If the partial solutions can not be resolved
than the algorithm goes one or more steps backwards and tries alternative ways.

37

4. The YaCI Rule Language

It is almost impossible to publish a stable application within its first release. Often
the requirements has changed several times during the development process. Starting
from scratch also means that the developed tool at the beginning contains a limited
basis of functionality. This includes also the potency of the rule grammar in order to
write complex rules and transform testability design patterns into valid rule wording.
In order to reduce the additional expenditure on refactoring and extending the rule
grammar, the related component definitions are extracted into separate Prolog files.
Each file contains simple DCG rules that determine the component and the string
value of it. This implementation allows to quickly add new components or keywords
to the rule grammar. Listing 4.6 shows the declaration of available accessors through
the accessor.pl file.

Listing 4.6: DCG component “accessor.pl” of the rule grammar
1 accessor(abstract) −−> "abstract". Prolog
2 accessor(final) −−> "final".
3 accessor(private) −−> "private".
4 % ...

The chosen component–based file structure which hold the different grammar defini-
tions reflecting each component to keep the DCG rule specification clean and allows
the extension of the keywords in an easy way. The body of the rule only contains the
list of characters that represent the parsed component string. The single argument
in the head is used to return a named term that will be used to create the internal
rule representation during parsing process. All other rule components are divided
into separate files and are specified equal to the accessor example above. The com-
plete list of accessor definitions named before and an additional declaration file of
grammar components is shown in Appendix C.1.

4.3. Specification of Testability Rules

In Section 2.2 we already picked out general testability design guidelines from lit-
erature. These principles target on the object–oriented programming language Java
and help to write test suites with less effort. With the YaCI Rule Language develop-
ers are free to phrase their own rules. It is not mandatory to stay at the context of
testability or extend these basic rule specifications. Because of the selected approach
on examine testability of source code, a basic set of testability rules is provided by
default with the YaCI analyser tool. Later in the evaluation, these basic testabil-
ity rules are used to interpret the correct operating principle of the implemented
analysis toolchain, includes rule parsing, examination of rules against the AST and

38

4.3. Specification of Testability Rules

the feedback to developers via IDE. Below, there are the rule specification for the
various literature design pattern guidelines introduced.

#1: Prevent complex, private methods
Scope Method
Symptom 1. Declared as private

2. To many control flows
3. To many lines in body

Solution Break down complex private method into several small methods
which are easy to understand and lose complexity

YaCI Rule “when method is private and has line_count greater 10 and
contain control_flow more than 3 times then drop info.”

#2: Prevent final or static methods
Scope Method
Symptom 1. Declared as final

2. Declared as static
Solution Do not declare methods as final or static
YaCI Rule “when method is final or method is static then drop warning.”

#3: Do not use keyword new to often
Scope Method
Symptom 1. Used keyword new to often
Solution Prevent to create to much class instances in a single method

instead split them into separate but logical related methods
YaCI Rule “when method contain keyword new more than 4 times then

drop warning.”

#4: Prevent constructors with complex logic
Scope Constructor
Symptom 1. Object instantiation with keyword new

2. To many control flows
3. To many lines in the body

Solution Pass objects via parameters into constructor (dependency in-
jection), implement init methods instead of control flows and
tons lines of code

39

4. The YaCI Rule Language

YaCI Rule “when constructor contain keyword new more than 0 times and
contain control_flow more than 3 times and has line_count
greater 15 then drop error.”

#5: Prevent the Singleton pattern
Scope Constructor, method, and field
Symptom 1. Constructor is declared as private

2. Public method with return type of class
3. Private field with type of class

Solution Implementation of Singleton pattern is in most cases unneces-
sary. If it is not avoidable the wrap Singleton implementation
with testable wrapper class.

YaCI Rule “when constructor is private and method has return_type of
class and is static and contain access of static field then drop
warning.”

#6: Prefer composition pattern opposite inheritance
Scope class
Symptom 1. Depth of inheritance hierarchy of a class is to depth
Solution Instead of inheritance prefer the composite pattern. Therefore

the additional dependencies on calling super() of the super
class does not exist.

YaCI Rule “when class has inheritance of depth greater 3 then drop warn-
ing.”

#7: Wrap external libraries
Scope Constructor, method
Symptom 1. call method on class, not on instance

2. called method not in package of project
Solution Calls to class methods of external libraries can not be stubbed

out during unit testing. A solution could be to implement a
wrapper class for the library which can be easily faked.

YaCI Rule “when method contain call of class_method more than 0 times
not in package then score warning.”

#8: Prevent service lookups or static method calls
Scope Method
Symptom 1. call method on class, not on instance

40

4.3. Specification of Testability Rules

Solution Implement a wrapper class which wrap all calls to an exter-
nal library behind it. The wrapper class instead can be easily
stubbed out during unit tests.

YaCI Rule “when method contain call of class_method more than 0 times
then drop info.”

#9: Prefer interface-based design
Scope Constructor, and method
Symptom 1. Type of parameters not of type interface
Solution Replace invalid parameter type with definition of an interface
YaCI Rule “when method is public and has parameter not of type interface

or constructor has parameter not of type interface then drop
info.”

#10: Do not declare class as final
Scope Class
Symptom 1. Declaration of class is final
Solution Change accessor to public because there is normally no reason

to declare class as final
YaCI Rule “when class is final then drop info.”

Table 4.1.: Available testability design patterns and their YaCI Rule

As already mentioned, the user is able to extend and adapt these rule specifications
to his own requirements. Phrasing new rules is therefore not limited to the context
of testability. Remember: the conclusion of a rule can be also to match a pattern
defined through the premise.

41

5. The YaCI Rule Representation

The YaCI toolchain includes different modules in order to fulfil each partial objective
set for the current work. Focus of this section will be the outcome of the rule parser
after processing the predefined testability rules. The necessary grammar for parsing
various conditional rules is already introduced in Chapter 4. Establishing a more
generalised intermediate step on specifying an internal rule representation is useful
in order to improve the flexibility and the use of single YaCI modules in their own
analysis work flow with external tools. Later on, Section 5.2 present an outlook on the
obtained flexibility through the intermediate step using a abstract representation.

5.1. Internal Structure in Prolog

The implementation of the rule parsing and the analysis module are both written
in SWI–Prolog. This fact makes the decision on how to design the internal rule
representation as the outcome of the YaCI Rule parser. It will be a complex structure
of nested Prolog terms including all the extracted rule information while parsing the
sequence of words. Because all other YaCI toolchain modules are also written in
SWI–Prolog it will be useful to design the exchange format in a Prolog notation.
Using another proven exchange format like JSON17 or XML18 does not make much
sense at this point. This will result in additional expense that is not necessary. On the
basis of the chosen modularised architecture it is technically possible to specify an
own representation of the parser outcome. For more details, look onto Section 5.2.

Each processed rule sentence consists of a single rule/3 literal19. Possible arguments
of the basic rule structure can be the literals when/1, then/1 and an optionally
argument description/2. The first two literals are available in each rule term. Only
the description can be left out and is missing when the rule string does not include
17The JavaScript Object Notation is a compact data format with less overhead and is used for

exchange data between applications. The notation is also easily readable by humans and helped
to make JSON popular [JSO13].

18The Extensible Markup Language (XML) is another format to exchange data between applica-
tions. It is used to represent hierarchical and structured data in form of text files. Instead of
JSON, the XML format contain more overhead caused by opening and closing tags [BSMP+04].

19A sequence of characters that have the same syntactical form as facts but have no closing dot at
the end. Literals are atomic statements.

43

5. The YaCI Rule Representation

a description sequence. Listing 5.1 gains an overview to a valid rule representation
after processing the related rule sentence using the grammar parser.

Listing 5.1: Output of the YaCI Rule Parser after parsing a rule sentence
?− string_codes(’Prevent final methods @ when method is final SWI-Prolog

then drop warning.’, Rule),
phrase(parse_rules(Result), Rule).

Rule = [80, 114, 101, 118, 101, 110, 116, 32, 102|...],
Result = [rule(

when(method(is(final))),
then(drop(warning)),
description(short(’Prevent final methods’))

)] ;
false.

The term of the parsed rule premise is dependent on the scopes and the associated
conditions listed in the premise. If there is no conjunction of scopes or conditions
available, then the created term is according to the name of the currently parsed
scope tokens. For instance, the premise “method is private” is represented as

method(is(private)).

In case of the combination of two rule scopes the and/2 respectively or/2 literal
encloses the scope terms. The term itself contains two arguments: both describes
the related scope and the additional condition term. This is the first scenario when
the premise only exists of two scopes. In the second one, there are three ore more
scopes listed in a single rule combined by conjunctions. As already mentioned, in
this case the internal representation is nesting the different incidence of the scope.
The first argument of the term is a scope and the second one the next conjunction
term and so on. Listing 5.2 gives a short overview on the generated representation
of combining two or more scopes respectively conditions. The decision to nest the
conjunction instead of using a simple Prolog list is taken because nested terms are
easier to handle within the YaCI Rule Analyser and break them down into their
single terms, later on.

Listing 5.2: Nesting of scopes and conditions by conjunctions
?− string_codes(’when method is private or constructor is private SWI-Prolog

and class is final then drop warning.’, Rule),
phrase(parse_rules(Result), Rule).

Rule = [119, 104, 101, 110, 32, 109, 101, 116, 104|...],
Result = [rule(

when(or(method(is(private)), and(constructor(is(private)) , class(is(final))))) ,
then(drop(warning)), description())] ;

false.

44

5.1. Internal Structure in Prolog

For now, the general rule structure and the associated scope and condition represen-
tation is introduced. The chaining of scopes or respectively their related conditions
is represented, too. Next, the specification of the condition term is necessary to com-
plete the parsed rule representation. It is easier to understand the transformation
by introducing a simple example which exists of a rule scope and the associated
condition term:

1. when method has line_count greater 3 then score 1.

2. when constructor contain keyword new more than 3 times then drop warning.

The scope term is followed by “has” and the concrete classification of the condition
term. In this case it is phrased to observe the line count of the scope body declaration
and validate it against the given numeric value using the comparator “greater”. This
is only one valid constellation of the condition term. The grammar implementation
has to take care of the different wording of rule conditions in order to provide a
most natural language spelling for the YaCI Rules. In the second example above
another rule is listed which validates the usage of the new keywords in scope of
a constructor. The outcome of the parser is approximate the same instead of the
different phrasing above. Let’s have a look at the resulting internal representation
shown in Listing 5.3.

Listing 5.3: Representation of condition term and the related information
?− string_codes(’when method has line_count greater 3 SWI-Prolog

then score 1.’, Rule),
phrase(parse_rules(Result), Rule).

Rule = [119, 104, 101, 110, 32, 109, 101, 116, 104|...],
Result = [rule(when(method(has([line_count, greater, 3]))), then(score(1)) , description ())] ;
false.

?− string_codes(’when constructor contain keyword new more than 3 times
then drop warning.’, Rule),

phrase(parse_rules(Result), Rule).
Rule = [119, 104, 101, 110, 32, 99, 111, 110, 115|...],
Result = [rule(when(constructor(contain([keyword(new), greater, 3]))) , then(drop(warning)),

description())] ;
false.

In the described implementation the important keywords, extracted during parsing
process, are transformed to the Prolog fact named after the keyword. The argument
of the condition term is a list containing all associated information. They are simply
defined as Prolog atoms20. In the second example above the first item in the list
20An atom in Prolog is a character string starts with lower–case letter or is enclosed by quotation

marks.

45

5. The YaCI Rule Representation

is another literal in Prolog and specifies the condition term and the related key-
word. All available transformations of rule conditions through the parsing step are
summarised in Listing 5.4. Previously the internal representation of chained rule ele-
ments are determined to nesting terms instead of lists. The decision on representing
condition terms as list elements is explained because it results in a more flexible way
of collecting the information related to the conditional term.

Listing 5.4: Internal term structure derived from substring of a rule sentence
"is {accessor}" := is({accessor})

"has {term} of depth {comparator} {number}" := has([{term}, {comparator}, {number}])
"has {term} {comparator} {number}" := has([{term}, {comparator}, {number}])
"has {term} {comparator} {string}" := has([{term}, {string}])
"has {term} {comparator} type {type}" := has([{term}, {comparator}, {type}])

"contain {term} {keyword}" := contain([keyword({keyword}), greater, 0])
"contain {term} {keyword} {comparator} {number}" :=

contain([keyword({keyword}), {comparator}, {number}])
"contain {term} of {accessor} {type}" := contain({term}([{accessor}, {type}]))
"contain {term} of {callable} {comparator} {integer} times" :=

contain({term}([{callable},{comparator},{interger}]))
"contain {term} {comparator} {number}" := contain([{term}, {comparator}, {number}])

The illustrated term representation of the parsed rule string is created during the
parsing process according to the YaCI Rule grammar. Changes on this internal struc-
ture are possible by adapting the corresponding term creation in the implementation
of the DCG rules. How to use the parser result in order to run analysis during the
YaCI Rule analyser is part of Chapter 6, where the architecture and functioning of
the analysis is described in detail.

5.2. Interchangeable Representation

The additional step on defining an exchangeable representation of parsed rules is not
necessary to reach the imposed goals for the current work. For simplification, the
parsing result have to be tightly meshed to the analysis implementation of YaCI.
In this case, the intermediate step on specify an additional representation is not
necessary. The tightly coupled grammar parser and the analysis step would certainly
work well together, but for this, the given approach will not have to be such a flexible
toolchain in order to reuse on other research fields or within other applications. On
the basis of the current modularity of YaCI, the usage of each single component is
conceivable in a broader community.

46

5.2. Interchangeable Representation

YaCI
Analyser

Alternative
Analyser #1

Alternative
Analyser #2

processed set of rules
(internal repesentation)

YaCI
Rule Parser

grammar
specification

set
of rules

Figure 5.1.: Workflow of the YaCI Rule Praser and its in– and outcome

In a closer look at the grammar parser and the analyser module the advantages of
the introduction using a generalised rule representation get more clear. As shown in
Figure 5.1, there is now the possibility to replace the analyse task which is done in
this case by the YaCI tool with another implementation of an analyser. It is only
necessary that the used analysis tool is able to handle the specified internal rule
representation of the parsing process generated from the rule parser. The other way
around, it is also possible to replace the used rule grammar from the developed YaCI
toolchain. The implemented version of the YaCI core module – the analysing part –
uses the internal representation as input, too. For instance, in order to use another
natural language parser, the outcome of the parsing step only has to be changed to
the internal structure of the rules, defined in Section 5.1.

YaCI
Analyser

factbase
(abstract syntax tree)

result set
of analysis

parsing result
(internal representation)

YaCI
Rule Parser

Parser #1 Parser #2

Figure 5.2.: Workflow of the YaCI Analyser and its in– and outcome

The modular design architecture allows a more flexible usage of each single com-
ponent. Especially for the grammar parser and the analysis step this is a great
advantage. With the chosen design approach it is possible for developers of other
research fields to use different parts of the YaCI toolchain. This can be an own
grammar for parsing other rule structures instead of conditional sentences or an-

47

5. The YaCI Rule Representation

other analyse module for examining the AST derived from source code. Figure 5.2
gives an overview to this obtained flexibility. A possible scenario can be for instance
the extension of the toolchain in order to support other programming languages to
bet not only limited to Java.

48

6. YaCI - Yet another Code Inspector

Different modules are introduced in the previous chapters. This includes a grammar
specification for phrasing conditional sentences as well as the parser which imple-
ments the defined grammar and processes the rules. We often talk about modulari-
sation and different components who shall work together to finally realise a complete
analysis work flow in one toolchain. At this point of the thesis the big picture of the
realised tool shall be get more clear. The complete work flow of the YaCI toolchain
and its components is shown in Figure 6.1.

Furthermore in this chapter the two core components of YaCI are introduced, too.
On the one hand, the analyser module that do the main analysis process in order
to find rule violations in the abstract syntax tree of Java source code, on the other
hand the result generator module. Its responsibility is the transformation of a rule
match to a representation that can be used to display the results in the Eclipse
JTransformer Control Center. To reduce the effort on installation and integration of
the YaCI tool a packaged version is necessary. For this purpose we plan to publish
a library of the complete toolchain including the grammar parser, the core analysis
tool, the result generator, and the interface to the JTransformer Eclipse plug–in.
Finally, the use of YaCI in a developers daily business is presented and a short
future prospect to integrate the analysis tool into an already existing CI process.

6.1. Architecture

As already mentioned, the YaCI toolchain is developed as a software which exists of
different modules. All together, a full working analysis tool is implemented, start-
ing from phrasing conditional sentences (better call it rules) in a convenient and
well–known natural language, over to parsing those sentences into an internal rule
representation which is used for analysis purpose and examination of the abstract
syntax tree of Java projects. At least the JTransformer Eclipse plug–in is adapted
to display the analysis results in a GUI. The different components are coupled to-
gether using the implemented interfaces of the modules and the related exchange
format to pass data from one module to the next one. Figure 6.1 not only shows the
available components. It also gives an overview on which modules are interconnected
and what data they share together. The implementation of the analysis toolchain

49

6. YaCI - Yet another Code Inspector

YaCI Rule Analyser JTransformerYaCI Rule Parser

Java Code Base

Create Factbase

AST Representation
of Source Code

Analyse Rule

Parsed Rules Factbase

Result of Analysis
(match terms)

Set of Rules

Grammar
Specification

Parse Rules

Parsed Rule
Collection Result Generator

Prepare Results

Result of Analysis
(match terms)

Attach to GUI

Viewable
Result List

Figure 6.1.: YaCI components and their interactions

is based on version 7.2.3 of SWI–Prolog. It is recommended to use this version or
newer in order to provide the necessary built-in predicates regarding to DCGs and
quasi quotations. These are used by the rule grammar specification and the related
parser implementation.

The rule parser is focus of Chapter 4 and the creation of the abstract syntax tree
is explained in Chapter 3. In the figure above, on the left side there is the internal
rule representation shown as the exchange format between the rule parser and the
analysis tool. Its characteristic and benefit is explained in Chapter 5. Creating the
factbase of the related Java project is done via the available JTransformer integration
for Eclipse. A closer look at the created AST and the structure of the derived Prolog
factbase is shown in Section 3.1.

There are only two modules missing and not yet observed. One of those is the core
module of the complete YaCI toolchain: the analyser. Inside this component all the
examination of the abstract syntax tree using the generated rules from grammar
parser take place. The result will be a generalised match result term containing de-
tected unique fact identifiers affected by the rule. Because of the planned approach to
visualise these results in the JTransformer Eclipse plug–in another simple component
is necessary: the result generator. It simply takes the matching results and transform
them into a JTransformer compatible representation. In this way it is possible to
attach the result information – like what class, method or constructor declaration
are failed during analysis process – to the JTransformer Control Center.

50

6.2. Rule Analyser

6.2. Rule Analyser

The analytical part of the YaCI toolchain shall be also implemented in the logical
programming language SWI–Prolog. The analyser expects two inputs in order to
fulfil the imposed demands. Firstly, the factbase is necessary which hold the abstract
syntax tree in form of Prolog–based logical facts generated from a Java project. The
second input will be the collection of parsed rule sentences represented in the internal
structure that was introduced in Section 5.1. Generating the abstract syntax tree
using JTransformer was already described more detailed in Section 3.1.

All modules of the Yet another Code Inspector are implemented in SWI–Prolog
which is a huge advantage on building up a complete toolchain. There is no more
additional work expected to transform output from one module in order to use it
with the subsequent module realised in another programming language. In fact of
this advantage the exchange format between the different YaCI modules are always
nested Prolog terms. The core analysis component is able to consult the generated
factbase resulting from JTransformer. This step makes the factbase available to the
SWI–Prolog process that represent the core analysis implementation. To start the
examination of the AST against the predefined set of rules it is only necessary to
hand over this collection to the analysis module.

Entry point of the analysis is the clause analyse_rule/2, defined in the module
as the public interface to pass data into it. The already mentioned AST factbase
is consulted when the SWI–Prolog process is started and from now available to
query it. Remind: the database consists of facts specified as Program Element Facts
(see JTransformer manual21 as a reference of available facts). The starting point
of the analysis expects only the rule premise. Conclusion and the third term – the
description labels – are not important for analysing the provided rule. Generally,
the parsed rule sentence illustrated in the internal representation looks like this:

rule(when(method(is(private)), then(�Conclusion�),
description(�Desc�)).

Using the rule premise as the input of the analysis term and call the analyse_rule/2
clause will start the process on validating the rule against the AST. As seen in the
short example above, the premise is well structured and follows the assembling of a
scope, followed by the condition and the related term containing specific information
on how to satisfy the condition term. To validate the different parts of the premise
term the analyser has to dismantle it using different Prolog clauses implemented by
the YaCI Rule Analyser. Because of the generated abstract syntax tree includes not
21https://sewiki.iai.uni-bonn.de/research/jtransformer/api/java/pefs/4.1/java_pef_o

verview, accessed on 18. July 2016

51

6. YaCI - Yet another Code Inspector

only own implemented classes of the Java project it must filter unnecessary facts
out in order to analyse only the relevant once.

In Listing 6.1 the entry point of the analysis module is shown and its related im-
plementation. The find_compilation_unit_id/2 clause in line 2 is responsible for
finding all class identifiers which are under /src in the Java project. This excludes
all files in /test and prevent the examination of its associated facts during the
analysis process. An important naming convention of the PEFs apparent in line 1
and 6. All types related to the Java AST ending with a capital T, instead of the
language–independent facts that represents the organisation of source code in the
AST. These types are ending with a capital S.

Listing 6.1: Filter only necessary compilation units from factbase
1 analyse_rule(when(Premise), Result) :− Prolog
2 find_compilation_unit_id(_, CompilationClassID),
3 apply_premise(Premise, CompilationClassID, PremiseResult),
4 Result = PremiseResult.
5
6 find_compilation_unit_id(_, ClassID) :−
7 projectS(ProjectID, _Name, _LocalPath, _, _),
8 sourceFolderS(_FolderID, ProjectID, _FolderName), !,
9 fileS (FileID, ProjectID, FileName),

10 \+ sub_string(FileName, _, _, _, ’/test/’),
11 compilationUnitT(_, _PackageID, FileID, _ImportsArray, [ClassID]).

In detail, the clause iterates over all available projectS/5 facts in the factbase and
unifies the project id to the variable ProjectID. Next, an available sourceFolderS/4
is selected from the factbase whose second parameter can be unified with the already
bound variable from line above. Line 4 bind the Filename to an available string rep-
resented by a fact of type fileS/3. Because all unit test files shall be ignored by the
analysis tool it left out fileS/3 facts whose filename contain the substring /test. At
least, the variable ClassID is unified in the last line using the compilationUnitT/5
fact. Result of the clause will be an unique identifier of an available classT/5 term.
Via backtracking the analyser will investigate one class identifier after another and
collect possible rule matches in a list.

Understanding the example above on filtering only necessary compilation units from
the factbase helps to understand all the remaining implementation and working
method of the analysis module. To provide a better understanding for using the
existing factbase in order to observe the YaCI Rule, the example premise above
shall be picked up again:

when(method(is(private))))

52

6.2. Rule Analyser

Similar to the rule parser which iterates through a sequence of words, the analyser
goes through the nested premise terms in order to examine the given rule. The
apply_single_scope/3 clause is called by the already introduces analyse_rule/2
and contain two input parameters and the third parameter as the outcome of the
clause. First the clause on applying the rule scope search for a methodT/8 term
that second argument can be unified with the Context variable. This variable repre-
sents the class identifier received from the find_compilation_unit_id/2 clause.
To ensure that the method id is a direct child element of the class the helper
is_direct_child/2 is called. When a fitting method fact is found then the condition
is examined using the clause in line 4. The remaining lines of apply_single_scope/3
create a Prolog structure that represents the result of the examination containing
the scope of the rule, the id, and name of the matched method in the factbase, and
all hint elements which are related to the rule validation. In this simple case it is
only the matched accessor of the method.

Listing 6.2: Validate example rule premise against AST
1 apply_single_scope(method(Condition), Context, Result) :− Prolog
2 methodT(MethodID, Context, MethodName, _, _, _, _, _),
3 is_direct_child(MethodID, Context),
4 apply_condition(Condition, Context, MethodID, ConditionResult),
5 Result = method(
6 id(MethodID),
7 name(MethodName),
8 hints(ConditionResult)
9) ;

10 fail.
11
12 apply_single_condition(is(Modifier), Element, ModifierResult) :−
13 modifierT(ModifierID, Element, Modifier),
14 ModifierResult = modifier(ModifierID).

The Listing 6.2 also includes the apply_single_condition/3 clause that validates
the related rule condition, if all requirements are met. It expects three arguments.
The first is the rule condition which is necessary. The condition is taken apart by
the term is(�Modifier� where the variable Modifier is unified with the content of
the condition term – in the example above the atomic string “private”. The second
parameter is unified with the unique id of the parent element (in this case the unique
scope id of the method) received from the factbase. Checking, if the modifier of the
method fact is according to the rule definition, in line 14 the modifierT/3 tries
to unify the variable ModifierID by using the already bound variables Element
(the method identifier) and Modifier. If the modifier id can be matched in the
factbase, then a result term is generated and unified to ModifierResult. The result

53

6. YaCI - Yet another Code Inspector

is returned to the calling clause which uses the intermediate result on generating the
final term of the scope examination.

Described above is the general work flow of examining the abstract syntax tree
against the YaCI Rules. It only depends on the different components the rule premise
term can be exists of. Summarised the analysis process can be explained in a short
way during the following steps:

1. Start analysis by calling analyse_rule/2 clause of YaCI analyser.

2. Find relevant compilation units in order to omit unnecessary unit tests classes
or basic Java class files.

3. Select element fact from factbase according to the current scope.

4. Apply the condition which is defined in the rule related to the scope and return
the validation result.

5. Go back and build up the result term related to the current scope.

6. If rule contain more than one scope (conjuncted by “and” respectively “or”)
start again at (3) until all scopes are analysed.

7. Return the match result term.

Listing 6.3: Result term of the YaCI Rule Analyser
1 ?− analyse_rule(when(method(is(private))), Result). SWI-Prolog
2 Result = match(class(28595), scopes([method(id(28600), name(initialize),
3 hints ([modifier(28613)]))])) ;
4 Result = match(class(28595), scopes([method(id(28601), name(appendToLog),
5 hints ([modifier(28676)]))])) ;
6 false.

The general output of the analyse_rule/2 clause is specified in an abstract level.
This gives the flexibility to use the result of the analysis process in collaboration
with another graphical user interface to display the results. For the current approach
the Eclipse IDE is used as the UI in combination with the JTransfomer plug–in.
In Listing 6.3 a match term is represented that is generated during the analysis
process of the simple example rule “when method is private then drop info.”. Via
backtracking all possible matches for a single YaCI Rule will be generated during
the analysis process. Each of the results contain the compilation unit item with its
unique identifier and a list of scopes that will be matched by the rule. The scope
itself contains its own identifier as well as general information – like the name of
the method. Each scope term hold as the last information a term called “hints”.
This term contains all elements that are identifying the pattern described in the

54

6.3. Result Generator and JTransformer Integration

given YaCI Rule. In case of the previously introduced simple rule example, only
the modifier of the method is a helpful hint on matching these rule in the factbase.
Within this additional information the developer is able to see which element in the
source code is affected on evoking the matching rule.

In the next section we want to describe how the analysis results can be used to display
the extracted information from the abstract syntax tree in a graphical user interface.
Therefore an additional result generator module is implemented that transform the
match terms into a JTransformer compatible result term that can be used to attach
them to the Control Center.

6.3. Result Generator and JTransformer Integration

In Section 3.3 the JTransformer tool and its analysis API22 is already introduced.
Using the predefined analysis interface of JTransformer allows developers to add own
implementations of analysis tasks to the Control Center in order to run and view
this tasks. In order to add the YaCI Rules – representing the analysis definitions
of the YaCI toolchain – a JTransformer integration is necessary that uses these
API. The correct usage of the interface gives the opportunity to use additional
functionality like to jump in to related position in source code by double click on
the analysis results in the Control Center. A specific term structure is necessary in
order to have the availability to add the analysis results of the YaCI Rule Analyser
to JTransformers graphical user interface. The transformation of the result terms
(received from the YaCI Rule Analyser) is done by the Result Generator module
which is described later in this section. First a short overview to the JTransformer
YaCI Integration is given in the following.

Attaching the analysis implementations defined by the YaCI Rules is done by using
the corresponding interfaces which are provided by JTransformer. The general us-
age of the analysis API is already shown in Section 3.3 where the Singleton Pattern
analysis task is implemented and attached to the Control Center in order to analyse
given factbase against it. First there have to be an analysis definition asserted to the
current SWI–Prolog process which can be used by the UI to display a list of avail-
able analysis tasks. Exactly the same must be done for the analysis result interface
which is also available through the JTransformer API. This steps are automated by
the YaCI JTransformer Integration when the library is consulted during the boot-
strapping process. As a short summarise, the following actions are executed when
22An application programming interface allows using functionality of a programm through the

defined interfaces.

55

6. YaCI - Yet another Code Inspector

the YaCI integration module is consulted in order to use the analysis toolchain via
Eclipse IDE:

1. Read in the YaCI Rule file in order to parse the conditional sentences using
the specified DCG.

2. Attach parsed YaCI Rules to the JTransformer Control Center using the anal-
ysis definition API.

3. Initialise the analysis result API in order to show the result terms in the
Control Center after running selected analysis tasks.

As already mentioned, to attach analysis tasks to the graphical interface YaCI has to
define for each parsed rule the analysis_api:analysis_definition/5 and assert
the term to the current factbase of the running SWI–Prolog instance. The YaCI
JTransformer Integration module runs for each rule the clause in line 1 with one
argument to pass in the generated rule from the Rule Parser. The necessary infor-
mation to assert the analysis definition are unified to the associated variables shown
in line 2 to 4. Asserting the analysis definition is done by using the assert/1 clause
of SWI–Prolog. All helpful information to complete the JTransformer Control Center
UI are passed into analysis_api:analysis_definition/5.

Listing 6.4: Add YaCI analysis definitions to the Control Center
1 add_single_definition(rule(_,then(Conclusion),description(Short, Long))) :− Prolog
2 Short = short(ShortLabel),
3 Long = long(LongLabel),
4 Conclusion = drop(LogLevel),
5 assert(
6 analysis_api: analysis_definition (
7 ShortLabel, % Rule name
8 onSave, % Trigger
9 LogLevel, % Severity level

10 ’Testability’, % Analysis group
11 LongLabel % Long description
12)
13) .

After adding the YaCI Rules to the UI as explained before, there is still the im-
plementation of the analysis result API missing. Listing 6.5 shows the specifica-
tion of the create_single_analysis_result/2 Prolog clause which asserts the
analysis_api:analysis_result/3 rule to the currently running SWI–Prolog pro-
cess. For each YaCI Rule, also the clause will be called in order to add the associ-
ated analysis result. When starting the process on running all defined analysis tasks
via Control Center and there are available matches for the related rule, then the

56

6.3. Result Generator and JTransformer Integration

analysis_result/3 clause is invoked. The terms in the body of the rule will be
called via backtracking until all possible results are attached to the result view in
the Control Center. The listing also shows in line 10 and 11 invoking the YaCI Rule
Analyser and the result generator module of the toolchain. In line 13 the differ-
ent matched AST elements are marked in the related resource (the class in a Java
project where the rule is matching). The implementation of mark_match/2 will be
explained next.

Listing 6.5: Analysis result API used by YaCI
1 create_single_analysis_result(Premise, Description) :− Prolog
2 Description = description(short(RuleID), _),
3 assert(
4 analysis_api:analysis_result(
5 RuleID,
6 ResultGroup,
7 Result
8) :−
9 (

10 analyse_rule(Premise, AnalysisResult),
11 generate_match_term(AnalysisResult, MatchTerm),
12 MatchTerm = result(ResultGroup, RuleElements),
13 mark_match(RuleElements, Result)
14)
15) .

As seen in the listing before, there are to helper modules necessary in order to add
the analysis results to the UI. Firstly, the already mentioned result generator which
applies the transformation from the match term generated by the YaCI Rule Anal-
yser to the result term. Secondly, another small helper that creates the Eclipse IDE
problem markers in order to highlight affected elements in the editor view of Eclipse.
The result generator flatten the match term in order to generalise the affected AST
elements to provide a more smoother way to add these elements using the JTrans-
former analysis API. Listing 6.6 shows the transformation result of the result/2
term. The result_group/1 term and the included unique identifier represents the
Java class which contains the rule match.

Listing 6.6: Transformed YaCI Rule Analyser match into result term
1 ?− generate_match_term(match(class(28595),scopes([method(id(28600), SWI-Prolog
2 name(initialize) , hints ([modifier(28613)]))])) , Result).
3 Result = result(result_group(28595), elements([method(28600), method_modifier(28613)])).

At least, there is the mark_match/2 clause that will be invoked until adding analysis
results to the Control Center result view. The first argument is an already bound

57

6. YaCI - Yet another Code Inspector

variable to pass in the matching elements which were examined during the analysis
process. The variable RuleElements contain a list of available element types to
attach a marker to the Eclipse IDE editor view. Listing 6.6 already introduce a small
range of available element types, e.g. method/1 or method_modifier/1. The helper
module implements a set of Prolog rules to cover all possible element types returned
from the analysis task. JTransformer provide the make_result_term/3 in order to
create a valid Prolog term that can be displayed in the Control Center window.
It expects as the first argument an unique fact id from the existing factbase, and
second a short description which is displayed in the result view of the Eclipse IDE.
The third argument represents the bound variable Result during the unification of
the make_result_term/3 term.

Listing 6.7: Implementation of the mark_matcher/2 Prolog clause
1 find_element(List, Pattern, Element) :− Prolog
2 member(Pattern, List),
3 Element = Pattern.
4
5 mark_match(elements(ElementList), Result) :−
6 find_element(ElementList, method(_), Element),
7 make_result_term(Element, ’Method caused rule violation’, Result).
8
9 mark_match(elements(ElementList), Result) :−

10 find_element(ElementList, method_modifier(_), Element),
11 make_result_term(Element, ’Modifier of matched method’, Result).

For now, there are all necessary prerequisites made in order to use the YaCI toolchain
in combination with the Java–based Eclipse IDE and the JTransformer plug–in.
How to integrate YaCI into the daily business of a developer will be discussed in
Section 6.5.1 later on.

6.4. SWI–Prolog Package

In order to support an easy as possible usage of the YaCI toolchain there shall be
a packaged version of the tool which can be used as a SWI–Prolog library. This
package includes the grammar specification, the related rule parser, the analysing
module, the result generator and the JTransformer integration for Eclipse. Packaging
all these components will provide a more easier installation and usage of the tool on
other development workstations. The YaCI SWI–Prolog package is created according
to the tutorial23 available on the official website.
23http://www.swi-prolog.org/howto/Pack.html, accessed on 18th July 2016

58

6.5. YaCI in Development Work Flow

Creating the Prolog library of YaCI is realised by using a simple shell script. In
the first step it copies all necessary resources to a temporary distribution folder.
The resources are mainly the implemented Prolog files and the required pack.pl
that contain general information of the package like the name of the author, the
title of the package and the version. The current version number of the package
is readout from the pack.pl file and used for the archive file name. The created
yaci–�version�.tgz can now be used for distribution purpose. Installing the pack-
age on another workstation is done by using the following command in a running
SWI–Prolog instance:

pack_install(’path/to/pack/yaci-�version �.tgz’).

The pack_install/1 clause extract the package and copy it to the local library
folder of SWI–Prolog. It can be found in /home/�user�/lib/swipl/pack. When
the package is locally installed then it can be referenced in a Prolog file using
use_module/1 in the following way:

use_module(library(yaci)).

6.5. YaCI in Development Work Flow

In order to make the Yet another Code Inspector available for developers the first step
is to build a SWI–Prolog package that can easily be used in own Prolog programs.
The procedure on packaging YaCI is described in the section before. But how can
developers integrate the tool in their local development process to validate their
source code by running the analysis tool. And what about internal build process –
like continuous integration – that create the Java project to release it for customer
use. In the following, the usage of YaCI on a local development machine using Eclipse
as the Integrated Development Environment shall be described. Furthermore, a short
outlook on how to integrate it into the CI process is given.

6.5.1. Eclipse Integration

To use YaCI on a local machine there are some installation requirements to met.
First of all the IDE Eclipse is necessary as well as the JTransformer plug–in for
Eclipse and the Prolog Development Tools (PDT). Both are available via the official
JTransformer update site24 and can be installed using the New Software dialogue
in Eclipse. Just an executable SWI–Prolog installation is required. The installer
24http://sewiki.iai.uni-bonn.de/public-downloads/update-site-jt, accessed on 19th July

2016

59

6. YaCI - Yet another Code Inspector

can be downloaded on the official website or using the swivm command line tool.
Using swivm is the preferable way because it allows the handling of different local
installations of SWI–Prolog. A helpful documentation for swivm is available in the
official GitHub repository25.

If all prerequisites are finalised, then YaCI can be used according to the following
instruction in order to analyse Java projects. First of all a new project in the current
workspace of Eclipse have to be created. This can be done using the New Project
wizard that is available in File → New → Project. . . . The name of the project is
arbitrary and freely selectable. For instance, we named it “YaCI”. From now the
project is available via the Project Explorer in Eclipse. Next, a new file load.pl
is added to the project that is used as the entry point of the YaCI project. This
file simply load the packages library including the actual implementation of the
rule parser, the analysis core module and the result generator. Figure 6.2 shows an
overview to Eclipse with the YaCI project and the opened load.pl file. Before the
module is consulted for the first time, the variables BasePath and RuleFile have to
be unified to the current circumstances on the local environment first. The rule file
– holding the phrased conditional sentences – can be placed in the Eclipse project
as seen in the figure bellow or changed to a valid path on the local disk.

Figure 6.2.: Eclipse and the consulted YaCI Rule Analyser library

25https://github.com/fnogatz/swivm, accessed on 19th July 2016

60

6.5. YaCI in Development Work Flow

If not already done, open the Developer View of the JTransformer Eclipse plug–in
to display the Control Center. In this view the desired factbase of the Java project
under analysis has to be selected. After selection, consult the load.pl file by right
clicking on the YaCI project and select Prolog Development Tools → (Re)consult. A
new Prolog process is started and interacting with it can be done using the Prolog
Console view. Start initialisation of YaCI is done by executing the bootstrap/0 clause
via console view. After successfully finished the init process there comes a short log
message that shows a success message. (Re)Consulting of the load.pl at this point
is necessary to refresh the Control Center in order to display the available analysis
definitions for JTransformer.

Running the analysis process of the selected rules is started by clicking the Run
all enabled analyses buttons. After processing the analyses the results are attached
to the Control Center and can be considered in the result table view. Jumping to
marked elements in source code is also available. Simply make a double–click on the
desired entry in the list and Eclipse will jump to the point in source code and open
the correct file in editor, if necessary.

6.5.2. Continuous Integration Lifecycle

Another important point of utilising the analyses functionallity is the integration
into an already available continuous integration lifecycle of a software deployment
process. The technical implementation of the CI integration will not be part of the
current work. Leastwise, through its important attitude in today’s software develop-
ment it shall be shortly suggested. Continuous integration is the process on building
deliverable software in a progressively and repeatable way. This mean that compiling
Java classes, running unit tests, packaging the necessary resources, etc. is a specified
and automated process. For this purpose there are different build systems available
that helps to characterise one or more build process. For example, Jenkins26 and
Travis CI27 are well–known in this section and are widely used. The prominence of
Travis CI is likely to be, because of the good integration into GitHub which is used
for a huge amount of open source projects in the community.

As described in the previous section, the integration of YaCI into the local develop-
ment process is possible at all. The next logical step is to integrate the analysis tool
into an existing build system. This integration will help to keep the source code of a
Java project testable and ensure that only “good” and clean code will be shipped to
the customer. Local integration of YaCI is a good choice to help developers to anal-
yse their written line of codes against the predefined coding guidelines (illustrated
26https://jenkins.io, accessed on 19th July 2016
27https://travis-ci.org, accessed on 19th July 2016

61

6. YaCI - Yet another Code Inspector

through the rules are used for YaCI) just in time on their local machine. But this
will not prevent developers from committing code into the version control that not
follow the rules. This behaviour can send to deliver an undesirable software to the
customer.

Figure 6.3.: Exemplary integration of YaCI into Travis CI

The integration of YaCI into the build process can prevent this misbehaviour and
is able to stop building the delivery premature when the YaCI analyser returns
errors during analysis. This ensures that only stable and well analysed code will
be delivered to the customer. To integrate the realised code analyser into the build
process the YaCI rule grammar already support conclusions like

when method is private then score �Integer�.

By using a rule condition of this type, a simple integer value can be provided which
determine the severity of violating this rule. A appropriate way on using these integer

62

6.5. YaCI in Development Work Flow

values in the context of a build process can be as follows. If a predefined value in the
build system is exceeded by the score value of a rule, then stop building the software
immediately and return corresponding log message. Another – and maybe a better
– solution can be the definition of a threshold value configured server–side on the
build server. This approach prevent the situation, if only one rule with a high score
value is matched during analysis process and therefore stops the remaining build.
Using a threshold will only stop building when the averaged value of the matched
analysis rules will exceed the predefined value.

The extension of existing build systems shall be able through their plug–in architec-
ture. This allows to extend the functionality in order to use external tools during the
build process, for example. The already named open source build tools Jenkins and
Travis CI also include such a plug–in system. Using the YaCI analysis tool during
the build process can be realised by implementing an own extension for considerable
build tools. The requirements that have to be met on the build server is nearly exact
the same as on local machines. A global installation of SWI–Prolog is necessary as
well as the JTransformer tool which creates the abstract syntax tree of the Java
projects. The AST factbase is essential for the analysis part of the YaCI tool. How
to use JTransformer in order to create the factbase without running Eclipse on the
build server have to be examined in the run–up of the plug–in implementation.

63

7. Evaluation and Results

In this section the functionality of the implemented analysis tool shall be evaluated.
The goals of this approach – defined in Section 1.4 (Implementation Goals) – are
used for evaluation and prove if these are reached in an acceptable coverage. As a
short reminder, the following goals are set in scope of the current work:

• Search for available testability design pattern in literature and collect them in
order to rewrite them in conditional sentences for the analysis tool.

• Specify a rule grammar and the related parser using DCGs in SWI–Prolog.

• Realise internal rule representation as the outcome of the parser in order to
provide a flexible usage of the different components of the analysis tool.

• Implementation of an analysis tool which examines the parsed conditional
sentence rule against the abstract syntax tree of a Java project.

• Result of the analysis tasks shall be used to generate feedback for developers
and help to find inconsistency in source code matched by the testability rules.
A graphical user interface shall be used to show the generated feedback.

• Implement this toolchain in the logical programming language Prolog (respec-
tively its implementation SWI–Prolog)

• Evaluation of the YaCI toolchain using the real world Java–based software
project “Joda Time”.

In order to check, whether the objectives of the current work have been achieved,
the Yet another Code Inspector shall be run in an environment which is as close
to the real world as possible. For this purpose the developed toolchain is used to
examine the Java date time utility library “Joda Time”. Its source code is published
as open source under the Apache 2.0 licence and is available on GitHub28. The
decision to use an open source project was made because a transparent, reliable,
and repeatable evaluation shall be obtained. Analysing the abstract syntax tree of a
Java software helps to improve its testability with regards to writing unit tests with
less effort. Therefore, the analysis focuses on finding design patterns in source code
28https://github.com/JodaOrg/joda-time, accessed on 21th July 2016

65

7. Evaluation and Results

which are bad in the point of view form testability in object–oriented programming
languages.

The way of proceeding is structured as described in the following: First, a list of
rules is necessary which is stored in a local *.rules file and must be available for
the YaCI toolchain. The set of rules contains all testability rules which are extracted
from literature and coding guidelines (see Section 2.2). According to the specified
YaCI Rule grammar the patterns are reworked to the conditional sentence structure
“when �Premise� then �Conclusion�.” and are listed in the local rule file. In the
next step, this file acts as the input of the YaCI Rule Parser. The parser processes
the set of rules and transforms them into the internal representation which is also the
output of the module. The list of the parsed testability rules is passed on to the YaCI
Rule Analyser that is responsible for the core analysis. As second input parameter
the analyser expects the AST of the Java software which shall be examined. The
syntax tree is represented by a set of Prolog facts in its logical representation which
is generated from the JTransformer Eclipse plug–in. During the analysis process the
YaCI Rule Analyser applies each testability rule to the AST and builds up the related
match terms. These terms contain all necessary information to display the result of
the analysis process in a graphical user interface. Helpful information extracted by
the analysis can be for example the affected resource (in Java it means the class
where the result is matched) or different hints that indicate a match of the rule in
the AST. The created result terms of the YaCI Rule Analyser are then passed on
to the YaCI Result Generator. It transforms the outcome of the analyser into result
terms which are used by the YaCI JTransformer Integration in order to display the
analysis results in the associated Control Center.

7.1. YaCI Modules

In this section, the general functionality of YaCI and its various modules shall be
observed in detail. This starts with using the Rule Parser to process conditional
sentences followed by the Rule Analyser to examine the AST of a Java project.
In order to provide a visualisation of the results in a graphical user interface the
components Result Generator and JTransformer Eclipse Integration is necessary
and shall be evaluated next. The provided set of rules are to extensive for carrying
out a concrete evaluation. That is the reason why the decision to limit the evaluation
on only one testability rule has to be made. This single rule will be used during the
following sections to determine, if the objectives of the current work have met or
not. A far–reaching testability design pattern will be #4: “prevent constructors with
complex logic”. The wording in form of a YaCI Rule is defined as follows:

66

7.1. YaCI Modules

“when constructor contain keyword new more than 0 times and contain
control_flow more than 3 times and has line_count greater 15 then drop
error.”

7.1.1. Rule Parser

The specification of the YaCI Rule grammar is realised by the usage of DCGs in
SWI–Prolog. With the help of this technology the implemented parser is capable
to parse a stream of tokens according to the specified grammar. During the parsing
process the parser collects all necessary information from the rule and returns the
result as a term in the well–known Prolog syntax. The rules are so–called conditional
sentences in the form of “when �Premise� then �Conclusion�.”. The output of the
parser will be used later as the input for the YaCI Rule Analyser. In Listing 7.1 the
correct functionality of the rule parser is demonstrated. The entry point of the Rule
grammar is the built–in predicate phrase/2 of SWI–Prolog. It expects as the first
parameter the specified DCG grammar and as the second one a list which represents
the string tokens. For demonstration purpose the above rule “prevent complex logic
in constructor” is used as the input token stream. The result of the parsing process
using the DCG specification parse_rules//1 of the YaCI rule grammar is also
shown in the listing bellow.

Listing 7.1: Result term of the YaCI Rule Analyser
?− string_codes(’/* Prevent complex logic in constructor */\nRule #1 SWI-Prolog

@ when constructor contain keyword new more than 0 times and contain
control_flow more than 3 times and has line_count greater 15 then drop error.’,
Rule),

phrase(parse_rules(Result), Rule).
Rule = [47, 42, 32, 80, 114, 101, 118, 101, 110|...],
Result = [rule(

when(constructor(and(contain([keyword(new), greater, 0]), and(
contain([control_flow, greater |...]) , has([line_count, greater |...]))))) ,

then(drop(error)),
description(short(’Rule #1’), long(’Prevent complex logic in constructor’))

)] .

Generating the internal rule structure is implemented as simple as possible. Each
scope and each condition produces a Prolog term containing its relevant information
parsed from the token stream, unifies them with a variable and give it back to the
calling clause. Maybe in the future or in association with the use of other analysis
tools it is required to produce another result exchange data structure. Another can
be JSON, XML or other possible formats, for instance. With less implementation

67

7. Evaluation and Results

expenditure it is possible to adapt the grammar parser in order to generate the
required output structure. There only have to be adapted the related locations in
the code. The specification on how to parse the token stream will not be affected by
these changes. This fact is a good point of flexibility in order to use the grammar
parser in a complete other area or research approach.

A huge disadvantage of the current parser implementation is the missing error han-
dling during the parsing process. In the actual version the YaCI Rule parser returns
a result if the provided sentence – the testability rule – is a valid wording accord-
ing to the specified grammar is introduced in Section 4.1. If a YaCI Rule contains
invalid conjunction of components or uses not supported keywords, the parsing pro-
cess is stopped immediately. The behaviour is the same when the rule includes a
simple spelling mistake – like transposed letters, etc. Instead of returning the cor-
rect phrased rule sentences at least, the rule parser stops and returns false. This
described behaviour is shown in the listing bellow. In the second line there is a typ-
ical example of transposing two letter (cotian instead of contain). A better solution
would be a detailed error handling that advises the developer what kind of failure
has happened and at which position in the string. Especially when the rule set is a
bigger one, it is hard to find the invalid location in the sentences.

Listing 7.2: Parsing failed caused by a misspelling in the rule
?− string_codes(’/* Prevent complex logic in constructor */\nRule #1 SWI-Prolog

@ when constructor contian keyword new more than 0 times and contain
control_flow more than 3 times and has line_count greater 15
then drop error.’, Rule),
phrase(parse_rules(Result), Rule).

false.

Regarding the objectives on the rule grammar set at the beginning, the developer
shall be able to phrase rules which cover the testability patterns introduced in this
thesis. This goal is obtained as seen in Section 4.3 where all design pattern and
guidelines are transformed into conditional sentences starting with “then” and end-
ing with an according conclusion. All these sentences can be parsed with the current
grammar specification and returns the result as expected. In order to extend the
grammar respectively adapt them to other Java language characteristics this can
be done by implementing the related DCG rules or by adding the keywords for the
scope, conditions or something else in the appropriate Prolog files. For instance, a
simple expansion can the attach of a new accessor to the accessor.pl component
when in a future release of the Java language specification a new keyword is added
to the set of available modifiers (e.g. private, public and so on). If new components
or a variation of the predefined wordings is desired, this can be realised by changing

68

7.1. YaCI Modules

the related location in the grammar or add new DCG rules in the grammar imple-
mentation. In summary, the YaCI Rule Grammar is flexible and can be varied in
different ways as described previously.

7.1.2. Rule Analyser

Within this approach, one objective is to realise code analysis by using conditional
sentences as the description of an analysis task. These rules shall be used to identify
the described characteristics in a software components code base. In order to run
those analyses it assumes that two prerequisites have met. On the one hand, the
already named rules and a parser which implements the grammar specification, on
the other hand the AST of a software component to examine which represents the
structure and hierarchical information of the code. Another objective is to realise
this analysis tool using the logical programming language Prolog. The YaCI Anal-
yser module is completely implemented in SWI–Prolog regarding to the predefined
requirements. JTransformer and its available Eclipse plug–in helped to realise the
examination because of the provided feature to create the AST factbase from a
Java–based software component. These facts – in context of JTransformer named
as PEFs – in order to query the AST and validate its structure against the rule
sentences provided by the YaCI Rule Parser.

Listing 7.3: Derived match term from Rule Analyser
?− analyse_rule(when(constructor(and(contain([keyword(new),greater,0]), and(SWI-Prolog

contain([control_flow,greater ,1]) , has([line_count,greater ,1]))))) , Match).
Match = match(class(28597), scopes([constructor(id(28604), name(’ComplexConstructor’),

hints([new(1, [28645]), control_flows(2, [28624|...]), line_count(8)]))])) ;
Match = match(class(28630), scopes([constructor(id(28701), name(’ExampleMatcher’), hints([

new(2, [28655|...]), control_flows(5, [28611|...]) , line_count(11)]))])) ;
false.

The listing above illustrates the performed analysis task using the testability rule
that aforesaid to prevent complex constructors and logic instructions (testability
rule #4). To start the analysis process the premise of the parsed rule sentence is
passed into the analyse_rule/2 clause of the YaCI Rule Analyser. Before running
analyses against the AST, it is necessary to consult the factbase which contains
the generated AST. Later on, when using the analysis tool, these prerequisites are
carried out by the YaCI toolchain itself.

An additional objective for the analysis module is to provide the general infrastruc-
ture which ensures that the testability rules can be processed by the YaCI Analyser.
This requirement is fulfilled and will be proven in Section 7.2 when the tool is used

69

7. Evaluation and Results

to analyse the Joda Time open source framework. Caused by the grammar specifica-
tion developers are allowed to phrase a wide range of rule sentences not only limited
to the context of testability. It is possible to extend the analysis module of YaCI
in order to provide the compatibility for those rules. These additional wordings of
rules are not yet implemented and can be done in a future work approach.

Listing 7.4: No match can be derived from AST by the analyser
?− analyse_rule(when(constructor(and(contain([keyword(new),greater,10]), and(SWI-Prolog

contain([control_flow,greater ,15]) , has([line_count,greater ,50]))))) , Match).
false.

In Listing 7.3 a successfully generated match term is returned by the Rule Analyser.
The term match/2 contains all necessary information to reproduce the affected AST
elements which are the description of the code characteristic. In case of the “Prevent
complex logic in constructors” rule these different elements are identified: the unique
id of the constructor itself, its name (ComplexConstructor) that also represents the
class name where the constructor belongs to and a list of the different hints. Calling
the constructor of another class (usage of keyword new), different control flows and
the count of line numbers in the body of the constructor are the core hints of the
appeared testability rule. When more than one match can be derived in the AST
factbase, then SWI–Prolog returns this terms one after another via backtracking.
The YaCI Rule Analyser simply returns false, if the rule sentence does not fit the
given structure in the AST. Listing 7.4 demonstrates the described behaviour.

Finally, an important point is here that the current implementation of the YaCI Rule
Analyser is evaluated during the development process on explicit created Java source
code fixtures to evoke the necessary hints to match the different rules. Furthermore,
improvements on the robustness of the analyser reached during the examination
against minor projects received from the practical bachelor course on the University
of Würzburg and the internal projects of MULTA MEDIO written in Java. The
closing evaluation of the analysis module is done in Section 7.2 when examining a
real world open source project.

7.1.3. Result Generator

The YaCI Result Generator is used as the connecting link between the rule anal-
yser evaluated before and the integration of YaCI into the Eclipse IDE. During the
technical implementation of the analysis toolchain the need of an additional module
has arise. This helps to prepare the analysis results in order to use them with the
preferred integration module for a desired graphical user interface or IDE.

70

7.1. YaCI Modules

At the moment the toolchain and the analyses are restricted to Java projects and the
associated programming language. For future approaches the result generator gives
the opportunity to handle another analysis tool and adapt them to the JTransformer
Eclipse plug–in. Or the other way around use the analysis tool in order to attach
the result onto another IDE.

Listing 7.5: Match term transformed into JTransformer compatible result term
?− generate_match_term(match(class(28597), scopes([constructor(id(28604), SWI-Prolog

name(’ComplexConstructor’), hints([new(1, [28645]), control_flows(2, [28624,28641]),
line_count(8)]))])) , Result).

Result = result(result_group(28597), elements([constructor(28604), new_keyword(28645),
control_flow(28624), control_flow(28641)])).

To come back to the introduced example rule for evaluating the general functionality
of the different YaCI modules, Listing 7.5 shows how the result generator transforms
the match term into the according result term. This generated structure fits to the
required input of the match marker for the Eclipse IDE integration of the YaCI tool.
Flexibility and the capability to adapt this module for using in another approach
is important, too. For this purpose the implementation of the Result Generator is
as simple as possible and therefore the output of the module can be easily adapted.
This allows to use the Result Generator in association with other GUIs in a future
approach. If the output of the YaCI Rule Analyser will be extended or the structure
changed, then the generator module must be adjusted in order to maintain the
compatibility between these two modules, too. The Result Generator contains no
additional logic. It simply splits up the match term of the analysis process and
generates a new structure for the parsed information.

7.1.4. JTransformer Eclipse Integration

The JTransformer Eclipse Integration module completes the YaCI toolchain. It is
responsible for the integration of the core analysis module and its results into the
JTransformer Eclipse plug–in. This gives developers the ability to run and observe
the analysis tasks specified through the graphical user interface of the Eclipse IDE.
One objective is to attach the testability tasks in form of conditional sentences and
their description dynamical to the JTransformer Control Center view. The same is
planned with the related results after running each analysis as well as the function-
ality to jump into the location of the rule violation by double clicking on the result
entry in the Control Center. These described functionalities are already supported
by the JTransformer plug–in. Section 3.3 demonstrates the basic usage of the API
based on the Singleton pattern detection analysis in order to attach the definition

71

7. Evaluation and Results

and the related results to the user interface. This is done by using the advised way
of implementing the JTransformer interfaces. The JTransformer Eclipse Integration
will do it in a dynamical manner.

Figure 7.1.: JTransformer Control Center filled with content from YaCI

The previously described objectives are achieved with the first version of the YaCI
toolchain. A simple predefined Eclipse project in the current workspace of the project
is necessary to initialise and connect YaCI with the JTransformer integration. The
selection of an available factbase in JTransformer (represents the AST of a Java–
based project) starts an own Prolog process coupled with the graphical user interface
of the Eclipse plug–in. Consulting the Prolog file – contained in the YaCI Eclipse
project – includes the library of the realised analysis tool and allows the developer
to bootstrap the YaCI integration by calling bootstrap/0 via the Prolog console. A
short success message informs that the rule definitions are attached to the JTrans-
former UI. Within the current approach it is not possible to refresh the Control
Center automatically after YaCI has been successfully initialised. The user has to
(re)consult the Prolog file in the Eclipse project in order to refresh the Control Cen-
ter view. Finally, the loaded analysis definitions created by the rule set is shown in
the Eclipse perspective.

With the exception of the automatic refresh relating to the JTransformer Control
Center, all objectives have satisfied within this approach. Figure 7.1 above shows
the related perspective of Eclipse which contains the information extracted from the
rule sentences respectively the data received from the analysis results. In the list of
available analysis definitions (on the left side of the figure) the developer can select
single tasks and run them separately. Showing the affected locations in the source
code works as expected, too. The additional feature to jump into the code can be
used by the developer when double click on the result entry. The YaCI JTransformer
integration runs stable and does not crash during test analyses. Imagine, when the

72

7.2. Analysing “Joda Time” Library

AST analysis gets into an infinite loop caused by the YaCI Analyser. In this case
the Eclipse integration will not react on user interactions and the running Eclipse
process has to be killed via command line respectively the task manager.

7.2. Analysing “Joda Time” Library

In the previous sections the basic functionality of the single YaCI toolchain mod-
ules are proven. Therefore the general objectives set for the current thesis are met
and realised within the analysis tool implementation. The result of the previously
performed evaluation should be taken with a pinch of salt. This steps were done by
using smaller source code examples in order to give guarantee on the basic function-
ality of the tool. Because it is important to run YaCI against a real world project
to have a more meaningful evaluation result. As the next step the open source date
time utility library Joda Time is used to examine a real software component and
give short overview on the quality of analysis results. During the evaluation these
questions shall be answered more detailed in the following:

• Is it possible to analysis such a huge project without crashing YaCI?

• Are the returned results correct and the described design pattern in the rules
are matched?

Figure 7.2.: Analysis results derived from Joda Time examination

The answer to the first question is simple: yes, the YaCI toolchain is able to analyse
real word Java projects. After successfully creating the AST of the related software
component the code analyser is ready for examination. In order to show the cor-
rect functionality, all available testability rules are enabled within the JTransformer
Control Center before starting the analysis tasks. After the duration of round about
1 minute and 8 seconds the analysis finishes and shows the results in the Control

73

7. Evaluation and Results

Table 7.1.: General factbase information of examined projects

Fact Type Joda Time
Entire factbase 356106

callT 69556

classT 529

commentT 7396

fieldAccessT 16156

foreachT 26

forT 188

ifT 2292

methodT 9134

newT 9336

Center result table perspective. These are grouped by their rule id into separate
result sets which can be investigated by developers. The runtime of YaCI depends
on two factors: the size of the created factbase derived from the Java source code
and the complexity of the premise in the phrased analysis rule. The more complex
the premise is the more complex are the analysis tasks to examine the AST of the
code base under examination. A short overview to the factbase of Joda Time is given
in Table 7.2. It contain a narrow range of created facts. For instance, the library
contains 529 class declarations and 9134 method definitions.

After the evaluation of the general serviceability of the YaCI toolchain, a closer
view onto the received results from the examination is necessary. Therefore, the
open source Joda time library – written in Java – is used for analysis purpose. As
seen in Table 7.2 below, altogether the YaCI analyser found 222 matches within
the 10 testability analyses tasks. This verifies the correctness and feasibility of the
code analyser which is implemented in the current approach. Next to the received
results, developers can use them to quickly jump into the affected location in the
sources and fix the examined design pattern violations. The problem markers which
are provided through the Eclipse IDE are working as expected and highlight the
location in the code editor. The severity of the problem markers are determined by
the conclusion of each YaCI Rule.

Based on this evaluation, the core functionality of the YaCI toolchain and its work-
ing order is proven. The received results from analysis tasks are visualised in a

74

7.2. Analysing “Joda Time” Library

Table 7.2.: Results of Testability analyses

Analysis Description Matches
1 Prevent complex, private methods 4

2 Prevent final or static methods 80

3 Do not use keyword new to often 11

4 Prevent constructors with complex logic 1

5 Prevent the Singleton pattern 3

6 Prefer composite pattern opposite inheritance 36

7 Wrap external libraries 0

8 Prevent service lookups or static method calls 33

9 Prefer interface-base design 0

10 Do not declare class as final 54

- Sum of all 222

graphical user interface. This allows developers to work with them and get a quick
overview. In what way the predefined testability rules help to improve the source
code in order to write test cases with less effort is not an general objective of the
current work. Basically, within this approach we want to show that static code anal-
yses can be realised by the logical programming language Prolog (respectively its
implementation SWI–Prolog). Furthermore, the analysis tasks shall be describable
through conditional sentences in a more natural wording instead of implementing
own analysis tasks. The evaluation shows that these objectives are achieved and a
general analysis toolchain is established during the current work.

75

8. Management Summary

In this chapter the chosen approach and the realised tool will be summarised in order
to present the big picture of the implemented toolchain and the achieved objectives.
Finally, we want to discuss possible improvements of the YaCI toolchain for the
future. A critical view on the achieved approach is already done in the previous
chapter where the practicality of the realised analysis tool is evaluated.

8.1. Summary

In modern software engineering approaches the existence of testing support is a nec-
essary prerequisite to deliver stable and tested software. Different modern process
models like TDD or BDD guarantee that basically first a test case has to be written
before the first line related line of productive code is implemented. A large num-
ber of projects are not provided by such a good test support. Adding a set of test
suites later on in the project cycle is complex and maybe impossible. The hardness
on writing tests for productive code later is the grown structure and raised code
design. The investigation of legacy code in fact of its testability will be the focus of
the current work and the related static code analysis tool shall be realised within
this thesis. Starting point of the analysis tasks shall be different descriptions of pre-
ferred design pattern in object–oriented programming languages in order to improve
the testability. The planned analysis tool shall be implemented completely in the
logical programming language Prolog – respectively its implementation variation
SWI–Prolog.

Altogether, ten principles on writing better testable code and implementing test
cases with less effort are collected from literature research and different experiences
of various leading authorities on this area. These principles describe different pat-
terns and preferable design guidelines in the context of object–oriented program-
ming languages in order to provide less effort on writing associated test suites. After
the specification of an own YaCI Rule Language, we are able to paraphrase these
guidelines in conditional sentences. Using the YaCI Rule Parser the rule sentences –
represented as strings – can be parsed according to the grammar and transformed

77

8. Management Summary

to the internal rule representation of YaCI. The grammar specification and the ac-
companying parser implementation are successfully realised in SWI–Prolog by using
the built–in functionality of Definite Clause Grammar and quasi quotations.

To accomplish analysing source code a representation is necessary which contains
information about structure and hierarchy of it. Examine a simple *.java file will
not fit for purpose because it contains only a stream of tokens without additional
knowledge about it. Therefore, the AST must be derived from source code during a
parsing process. Creation of the AST is realised by using the JTransformer tool from
the University of Bonn. This provides the necessary functionality to create the AST
and generates the associated factbase that contains all structural and hierarchical
information necessary for analyses.

In the next step the core module implementation of the toolchain is realised. It uses
the parsed rule sentences in order to examine the given AST of a Java software com-
ponent. The input is represented as nested Prolog term specified by the internal rule
representation generated by the YaCI Rule Parser. The result of an analysis task
is a match term that includes all affected AST elements. These hint elements are
defined by the wording of the provided analysis rule. The basic usability of the core
module is achieved during the current thesis. It is also confirmed during the evalu-
ation process where we analyse the open source “Joda Time” library according to
the predefined testability rules. At this time the analysis results can be observed via
command line interface. But it is hard to read and understand for humans because
the result term only contains identifiers (unique integer value for each element) of
the matched AST elements.

In order to visualise the analysis results in a readable and understandable nature a
graphical user interface is necessary. The mentioned JTransformer plug–in for the
Eclipse IDE already provides a GUI for analysis results written in the preferred
JTransformer manner (means to implement the analysis definition directly in Pro-
log). In our approach the JTransformer perspective is used to attach the analysis
results of the generated result terms derived from the YaCI Rule Analyser. The in-
tegration of a GUI into the work flow of the toolchain is also achieved within this
work. Developers are able to observe the attached result terms via the JTransformer
Control Center perspective in the Eclipse IDE.

Finally, all set objectives are achieved within this thesis. The first runnable version
of the analysis toolchain works as expected and accomplishes the basic functional-
ity. This includes paraphrasing analysis rules in form of conditional sentences and
the examination of Java source code using its AST. The rule wording specifies the
characteristic of the analysis task and the obtained result of the examination. As
well as the integration of the derived results which are attached to a suitable GUI.

78

8.2. Future Work

Outcome of the current approach is a “ready for use” toolchain to analysis software
components according to simple “when . . . then . . . ” rules implemented in a logical
programming language.

8.2. Future Work

In the first version of YaCI we focus on the basic functionality and the general
objective to realise a runnable analysis tool on the basis of Prolog. Due to this,
there are various improvements rather that will increase the range of functions for
YaCI. In the following, this possible enhancements are discussed in the scope of
future work.

At the moment the possibility to give feedback during the rule parsing process is
missing in the YaCI Rule Parser implementation. If rule sentences contain spelling
mistakes or invalid components which are uncovered by the grammar specification,
then the parsing process fails without additional error information. This behaviour
does not allow any conclusions regarding to the occurred failure. In the next version
of YaCI some kind of error handling for parsing the rule sentences will be helpful
during paraphrasing further analysis rules. Furthermore, the behaviour of the parser
can be improved when an invalid rule is included in the collection of rules. At the
moment the parser failed and nothing will be returned. A preferable behaviour will be
skipping invalid sentences and return only the correct paraphrased rules at least.

The grammar specification allows wording of analysis rules that can not be analysed
with the current implementation of the YaCI Rule Analyser. This is justified by the
missing implementation in the analysis module to examine the AST according to the
described characteristics based on the rule wording. Within this the performance of
the analysis step is a good point to investigate. First and foremost, YaCI will be a
proof of concept toolchain. Therefore the functionality and general usability and not
the performance was centre of attention.

Integrating the analysis tool into an existing continuous integration life cycle is al-
ready mentioned inside the current thesis. Currently the static code analysis is only
usable on a local workstation in contextually with the Eclipse IDE. The integration
of YaCI into a automatic build environment will be a useful feature in order to run
defined analyses each time before the software component is delivered to the cus-
tomer. Because of the modular architecture of YaCI only the Eclipse JTransformer
integration module must be exchanged by a specific implementation that connects
the analysis tool with the build server.

79

Bibliography

[ASU86] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Princi-
ples, Techniques, and Tools. Addison–Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1986.

[Bin94] Robert Binder. Design for Testability in Object–Oriented Systems.
Comm. ACM, 37(9):87–101, 1994.

[BLS02] Benoit Baudry, Yves Le Traon, and Gerson Suny’e. Testability Analysis
of UML Class Diagram. In Proceedings of the Metrics Symposium, pages
54–63, June 2002.

[BSMP+04] Tim Bray, Michael Sperberg-McQueen, Jean Paoli, François Yergeau,
and Eve Maler. Extensible Markup Language (XML) 1.0
(Third Edition). W3C Recommendation, W3C, February 2004.
http://www.w3.org/TR/2004/REC-xml-20040204.

[BVD04] Magiel Bruntink and Arie Van Deursen. Predicting Class Testability
Using Object-Oriented Metrics. In Source Code Analysis and Manip-
ulation. Fourth IEEE International Workshop, pages 136–145. IEEE,
2004.

[BW84] Alan Bundy and Lincoln Wallen. Definite Clause Grammars. In Cat-
alogue of Artificial Intelligence Tools, page 26. Springer Berlin Heidel-
berg, 1984.

[CM84] William F. Clocksin and Christopher S. Mellish. Programming in Prolog
(2nd Edition). Springer-Verlag, New York, USA, 1984.

[Cre97] Roger F. Crew. ASTLOG: A Language for Examining Abstract Syntax
Trees. In Proceedings of the Conference on Domain-Specific Languages,
DSL’97, Santa Barbara, volume 97, page 18, 1997.

[Fow11] Martin Fowler. Domain–Specific Languages. The Addison-Wesley Sig-
nature Series. Addison–Wesley, 2011.

[Fre91] Roy S. Freedman. Testability of Software Components. IEEE Trans-
actions on Software Engineering, 17(6):553–564, June 1991.

81

Bibliography

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. De-
sign Patterns: Elements of Reusable Object-oriented Software. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1995.

[Hev08] Misko Hevery. Guide: Writing Testable Code. The Testability Explorer
Blog, November 2008.

[HML03] Dirk Heuzeroth, Stefan Mandel, and Welf Lowe. Generating Design
Pattern Detectors from Pattern Specifications. In Automated Software
Engineering, 2003. Proceedings. 18th IEEE International Conference
on, pages 245–248. IEEE, 2003.

[Hof08] W. Dirk Hoffmann. Software–Qualität. EXamen. press series. Springer
Berlin Heidelberg, 2008.

[IEE90] IEEE Standard Glossary of Software Engineering Terminology. IEEE
Std. 610.12-1990, pages 1–84, Dec 1990.

[ISO01] ISO/IEC. Software Engineering – Product Quality (ISO/IEC 9126).
Standard, 2001.

[JSO13] The JSON Data Interchange Format. Technical Report Standard
ECMA–404 1st Edition, ECMA, October 2013.

[Kay93] Alan C. Kay. The Early History of Smalltalk. In The Second ACM
SIGPLAN Conference on History of Programming Languages, HOPL–
II, pages 69–95, New York, USA, 1993. ACM.

[Kos13] Lasse Koskela. Effective Unit Testing: A guide for Java developers.
Manning Publications Co., 1st edition, 2013.

[LR09] Bernhard Lahres and Gregor Rayman. Praxisbuch Objektorientierung:
Das umfassende Handbuch. Galileo Press, Bonn, 2 edition, 2009.

[Mar08] Robert C. Martin. Clean Code: A Handbook of Agile Software Crafts-
manship. Prentice Hall PTR, Upper Saddle River, NJ, USA, 1st edition,
2008.

[MS96] John D. McGregor and Satyaprasad Srinivas. A Measure of Test-
ing Effort. In Proceedings of the USENIX Conference on Object-
Oriented Technologies, COOTS’96, Toronto, Ontario, Canada, June
17–21, 1996.

[Mul07] Emmanuel Mulo. Design for Testability in Software Systems. Master
Thesis, Delft University of Technology, July 2007.

82

Bibliography

[Osh09] Roy Osherove. The Art of Unit Testing: With Examples in .Net. Man-
ning Publications Co., Greenwich, CT, USA, 1st edition, 2009.

[PW80] Fernando C.N. Pereira and David H.D. Warren. Definite Clause Gram-
mars for Language Analysis – A Survey of the Formalism and a Com-
parison with Augmented Transition Networks. Artificial Intelligence,
13(3):231–278, 1980.

[RK84] Davis Randall and Jonathan J. King. The Origin of Rule-Based Systems
in AI. Rule-Based Expert Systems: The MYCIN Experiments of the
Stanford Heuristic Programming Project, pages 20–52, 1984.

[SRK07] Daniel Speicher, Tobias Rho, and Günter Kniesel. JTransformer – Eine
logikbasierte Infrastruktur zur Codeanalyse. Softwaretechnik–Trends,
27(2), 2007.

[SS06] Péter Szabó and Péter Szeredi. Improving the Prolog Standard by
Analyzing Compliance Test Results. In International Conference on
Logic Programming, pages 257–269. Springer, 2006.

[WH13] Jan Wielemaker and Michael Hendricks. Why It’s Nice to be Quoted:
Quasiquoting for Prolog. CoRR, abs/1308.3941, 2013.

[Wie16] Jan Wielemaker. SWI–Prolog Implementation, off. GitHub Repository.
https://github.com/SWI-Prolog/swipl-devel, 2016.

[WMV03] Laurie Williams, Michael E. Maximilien, and Mladen Vouk. Test–
Driven Development as a Defect–Reduction Practice. In Software Reli-
ability Engineering, 2003. ISSRE 2003. 14th International Symposium,
pages 34–45. IEEE, 2003.

[WSTL12] Jan Wielemaker, Tom Schrijvers, Markus Triska, and Torbjörn Lager.
SWI-Prolog. Theory and Practice of Logic Programming, 12(1-2):67–96,
2012.

83

Erklärung

Erklärung

Ich, Thomas Handwerker, Matrikel-Nr. 1995289, versichere hiermit, dass ich meine
Master Thesis mit dem Thema

Testing Source Code with the
Logic Programming Language Prolog

selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel
benutzt habe, wobei ich alle wörtlichen und sinngemäßen Zitate als solche gekenn-
zeichnet habe. Die Arbeit wurde bisher keiner anderen Prüfungsbehörde vorgelegt
und auch nicht veröffentlicht.

Mir ist bekannt, dass ich meine Master Thesis zusammen mit dieser Erklärung frist-
gemäß nach Vergabe des Themas in dreifacher Ausfertigung und gebunden im Prü-
fungsamt der Universität abzugeben oder spätestens mit dem Poststempel des Tages,
an dem die Frist abläuft, zu senden habe.

Würzburg, den 30ten Juli 2016

Thomas Handwerker

84

A. Available Sources

Along with this thesis there will be all sources provided as a CD. This also includes
the created implementations which are done to realise the Yet another Code In-
spector toolchain. Additional, the sources of the implementation are available at the
official GitLab of the University of Würzburg. They are released under the terms
of the license specified in the projects repository or if not specified, under the MIT
license.

Thesis All necessary LATEX source files of the thesis are located in the /thesis
directory. The base document is thesis.tex. Before compilation, ensure that all
necessary packages are installed:

• backnaur

• longtable

Distribution The packaged version of the YaCI toolchain is located at the /distribution
folder at the CD. The SWI–Prolog library can be installed by using the pack_install/1
clause.

Implementation All source files of the YaCI toolchain are located at the /implementation
folder of the CD. A detailed installation instruction for YaCI is provided in Ap-
pendix D.1. The implementation of YaCI includes the following modules:

YaCI Rule Parser
The parser implementation and the related rule grammar specification is located
in the /implementation/src/grammar directory.

YaCI Rule Analyser
The core analysis tasks are done by the rule analyser. Its implementation is located
in /implementation/src/analyser directory.

Result Generator
Result terms derived from the YaCI Rule Analyser are transformed into match
terms. This allows the integration of the analysis results into the GUI. Its imple-
mentation is located in the /implementation/src/generator directory.

i

A. Available Sources

JTransformer Integration
In /implementation/src/jt-integration the source of the JTransformer inte-
gration of YaCI is provided.

YaCI Analyser (Eclipse)
The predefined Eclipse project is located in /implementation/src/yaci-analyser.

Test Suites
In /implementation/test all available tests for the different YaCI modules are
provided.

Joda Time Library During the evaluation of the YaCI toolchain it was recom-
mended to not only examine small and prepared Java projects. Therefore, the open
source Java date time utility “Joda Time” was used to run analysis on a real world
project. The version used for the evaluation is located in the /evaluation/joda-time
directory of the CD. The sources are also available at GitHub at https://github
.com/JodaOrg/joda-time. At the time of the evaluation we analyse the library on
top of the commit id 1e86b1eb.

ii

B. Testability YaCI Rules

In this appendix we want to give an overview to the testability rules which are
extracted from literature and different guidelines of object–oriented programming.
The patterns are introduced in Section 2.2 and are rewritten as YaCI Rules in the
form of conditional sentences. This collection is only a basic set of rules and can
be extended according to the specified rule grammar. See Chapter 4 for detailed
information related to the YaCI Rule grammar.

Listing B.1: Basic set of testability YaCI Rules
/* Prevent complex, private methods */ Rules
Rule #1 @ when method is private and has line_count greater 10 and contain control_flow

more than 3 times then drop info.
/* Prevent final or static methods */
Rule #2 @ when method is final or method is static then drop warning.
/* Do not use keyword new to often */
Rule #3 @ when method contain keyword new more than 4 times then drop warning.
/* Prevent constructors with complex logic */
Rule #4 @ when constructor contain keyword new more than 2 times and contain control_flow

more than 2 times and has line_count greater 10 then drop error.
/* Prevent the Singleton pattern */
Rule #5 @ when constructor is private and method has return_type of class and is static and

contain access of static field then drop warning.
/* Prefer composition pattern opposite inheritance */
Rule #6 @ when class has inheritance of depth greater 3 then drop warning.
/* Wrap external libraries */
Rule #7 @ when method contain call of class_method more than 0 times not in package then

score warning.
/* Prevent service lookups or static method calls */
Rule #8 @ when method contain call of class_method more than 0 times then drop info.
/* Prefer interface-based design */
Rule #9 @ when method is public and has parameter not of type interface or constructor has

parameter not of type interface then drop info.
/* Do not declare class as final */
Rule #10 @ when class is final then drop info.

iii

C. Code Snippets

C. Code Snippets

This appendix contain different code snippets to present basic implementation de-
tails of the YaCI toolchain.

C.1. Definition of Grammar Components

Listing C.1 and C.1 shows the specification of two basic components available in the
YaCI Rule grammar. This implementations are encapsulated in order to provide a
better extensibility for the rule grammar. New keywords for the different components
can be simply append to this files.

Listing C.1: Specification of various available components in the rule grammar
1 :− module(’components/accessor’, [Prolog
2 accessor//1
3]) .
4 :− use_module(library(dcg/basics)).
5
6 accessor(abstract) −−> "abstract".
7 accessor(final) −−> "final".
8 accessor(private) −−> "private".
9 accessor(protected) −−> "protected".

10 accessor(public) −−> "public".
11 accessor(static) −−> "static".
12 accessor(synchronized) −−> "synchronized".

1 :− module(’components/comparator’, [Prolog
2 comparator//1
3]) .
4 :− use_module(library(dcg/basics)).
5
6 comparator(greater) −−> "greater" ; "more than".
7 comparator(greater_equal) −−> "greater_equal".
8 comparator(less) −−> "less" ; "less than".
9 comparator(less_equal) −−> "less_equal".

10 comparator(equal) −−> "equal" ; "of".
11 comparator(not_equal) −−> "not_equal" ; "not of".

iv

C.2. Exclusion of Classes in YaCI Analyser

C.2. Exclusion of Classes in YaCI Analyser

The following listing shows the exclude_class module used by the YaCI Rule Anal-
yser. It also includes a short example factbase of classes that shall be ignored during
the analysis process. The list can be extended by adding new facts of the type
excluded_class/2.

Listing C.2: Specification of classes to exclude from analysis
1 :− module(’exclude_class’, [is_class_excluded/2]). Prolog
2
3 :− discontiguous exclude_class:excluded_class/2.
4
5 is_class_excluded(PackageName, ClassName) :−
6 excluded_class(PackageName, ClassName).
7
8 % extend this list of facts in order to ignore the specified classes.
9 % and their package name

10 % form: excluded_class(PackageName, ClassName).
11 excluded_class(’java.lang’, ’Integer’).
12 excluded_class(’java.lang’, ’String’).
13 excluded_class(’java.util’, ’ArrayList’).
14 exlcuded_class(’java.util’, ’HashMap’).
15 excluded_class(’java.util’, ’Random’).

v

D. User Manual

D. User Manual

In this appendix the installation of the YaCI toolchain is describe in detail. This
allows to set up the analysis tool locally on a workstation and examine software
components written in Java.

D.1. Installation

YaCI is a SWI-Prolog based source code analysis tool. It includes different modules
which provide a complete toolchain that can be used in the Eclipse IDE. To use
YaCI in the local development process there are some prerequisites to met.

SWI-Prolog

First, there have to be a local installation of SWI–Prolog. The recommended version
will be 7.2.3 (this version is also used during development and testing the analysis
toolchain). Since YaCI use quasi quotations which are introduced in version 6.4.0
this release of SWI–Prolog is the minimum requirement because of DCG and quasi
quotations built–in predicates are necessary. The installed version can be checked
using the command:

$ swipl −v Command Line

If SWI-Prolog is not available the swivm command line interface is a helpful tool to
install and handle local installations.

Eclipse IDE and JTransformer

Creating the necessary abstract syntax tree of a Java project is done by using the
JTransformer plugin for the Eclipse IDE. This requires the installation of Eclipse
≥ Mars and the available JTransformer Plugin ≥ 4.1.0. There is also a local instal-
lation of the Java Development Kit necessary. Recommended is JDK 7.

vi

D.1. Installation

Eclipse IDE can be downloaded via official mirrors. For the current work Eclipse
Mars is used and tested. The necessary JTransformer plugin is available via the
official update site (http://sewiki.iai.uni-bonn.de/public-downloads/updat
e-site-jt/). After installing the JTransformer Eclipse plugin we have to change
the location of the swipl executable. This allows Eclipse to start a SWI–Prolog
process. The configuration can be done within the following steps:

1. Go to Window → Preferences and select in the tree view the item PDT → Prolog
Processes.

2. On the right side of the dialogue select SWI Prolog and click on Edit. . . .

3. Click on Browse. . . in the line of the Prolog executable and select the swipl binary
in the local installation path of your SWI–Prolog (if swivm is used for installing
SWI–Prolog, then the binary is in /home/<user>/.swivm/versions/<version>
/bin/)

4. Click on Apply and close dialogue with OK.

Installing YaCI SWI-Prolog library

The YaCI toolchain and all its accompanying modules are packaged in the “yaci”
pack that is available through the files attached to this thesis. It can be added to the
local SWI–Prolog installation by using the following command in a running Prolog
process:

?− pack_install(’/path/to/yaci_<version>.tgz’). SWI-Prolog
true.

Configure YaCI Eclipse Project

For the usage of the analysis tasks that can be processed by YaCI it is recom-
mended to use the Eclipse IDE. All results of the analysis will be attached to the
JTransformer Control Center as well. In order to run analysis with YaCI we need
a general project in the current Eclipse workspace. This serves as the bridge be-
tween JTransformer Eclipse plugin and the YaCI toolchain. A starter project for
Eclipse is already included in the YaCI SWI-Prolog library installed previously. Be-
fore importing the project into Eclipse you can copy the project folder into your
workspace (e.g. /home/<user>/workspace). The prepared project can be found in
/home/<user>/lib/swipl/pack/yaci/eclipse.

1. Right click to the Package Explorer in Eclipse.

vii

D. User Manual

2. Select Import. . . to open the Import dialogue.

3. In the wizard select General → Existing Projects into Workspace and click Next.

4. Browse to your local workspace and select the “yaci-analyser” folder which contain
the .project file for Eclipse.

5. Select the “yaci-analyser” entry in the list of available projects and import the
project.

Finally, the BasePath and RuleFile must be adapted to your local environment
characteristic which is defined in load.pl. But for now, the YaCI toolchain is in-
stalled, the Eclipse project for YaCI is set up, and is ready for usage in the devel-
opment process. How to run an analysis task to examines a specific Java project is
explained detailed in the next section of the manual.

D.2. Run Analysis Tasks

First of all the AST of the Java project must be created by using the JTransformer
Eclipse plugin. Therefore, the following steps must be done:

1. Open the Eclipse workspace and right click on the desired project in the Package
Explorer.

2. Select Configure → Assign JTransformer Factbase in the context menu.

3. In the appearing dialogue a name of the factbase can be entered and then starts
the creation process with OK

All generated factbases are selectable in the JTransformer Control Center view in
Eclipse. By selecting one of the list items an associated SWI-Prolog process is start-
ing in the Prolog console and consults the selected factbase. Now we are ready to
bootstrapping YaCI:

1. Open the JTransformer Developer view in Eclipse.

a) Window → Perspective → Open Perspective → Other. . .

b) Select JTransformer Developer from the list of available perspectives.

2. In the JTransformer Control Center view you can select one of the available
factbases which are created before.

3. Consult the YaCI Analyser project:

a) Right click on load.pl

viii

D.3. Create Packaged Library Version

b) Click on Prolog Development Tools → (Re)consult

4. In the Prolog console start YaCI by typing bootstrap. and press enter. This
will read in the rule file, parse the rules and attach the resulting analysis defini-
tions to JTransformer. In the console a short success message will appears like:
“initialisation finished: 10 rule(s) loaded.”

5. In order to refresh the JTransformer Control Center we have to reconsult the
YaCI Analyser (repeat step 3).

The YaCI Analyser is ready to run analysis tasks on the selected factbase by picking
all or only single analysis rules. Start analysis by pressing Run all enabled analysis
(the green play button). After a while the analysis results will appear right to the
rule list in the result table. You can jump into the associated line of code by double
clicking the result entry.

D.3. Create Packaged Library Version

The repository contain a build script for packaging the Yet another Code Inspector
SWI-Prolog library. This is a simple shell script implemented in build.sh. Running
the script via command line will create an archive that contains all necessary files
to publish the YaCI toolchain to the official SWI–Prolog packs website or to use it
on another workstation.

The package contain the following source files:

• pack.pl: Necessary package informationen for SWI-Prolog packs website

• YaCI Grammar Parser: contain grammar specification and parser

• YaCI Rule Analyser: the core analyser module of YaCI

• YaCI Result Generator: Transforms analysis match term into result term which
can be attached to the JTransformer plugin

• YaCI JTransformer Integration: Module to integrate YaCI and its features
into the Eclipse IDE

• YaCI Eclipse Project: Bootstraping project for Eclipse integration

ix

D. User Manual

D.4. Run Tests

The development of the YaCI modules are provided by simple test suites. These are
written according to the Test Anything Protocol. In order to run the test specifica-
tions the “tap” library for SWI–Prolog must be installed on the workstation. Simple
run the following command via swipl

?− pack_install(tap). SWI-Prolog
true.

will be install the package to home/<user>/lib/swipl/pack. After that you can run
the various test suites for the YaCI modules by executing the following commands:

test suite for YaCI Rule grammar Command Line
$ swipl −q −t main −f test/grammar/grammar.test.pl
test suite for YaCI Result Generator
$ swipl −q −t main −f test/generator/generator.test.pl
test suite for YaCI Analyer (1-9)
$ swipl −q −t main −f test/analyser/analyser_0∗.test.pl

x

