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Abstract

Given a finite set of polygons we investigated the question how to find a polygon that
is as similar as possible to all of the input polygons. We call such a polygon a polygon
consensus. This can be done by using a geometrical or a cluster-based approach. We
propose three algorithms using these approaches. Two cluster-based algorithms were
evaluated with real world data. These algorithms involve two pre-processing steps, each
of them needs heuristic parameters. We could show that one of those pre-processig steps
can be safely skipped without loss of quality. The decision which pre-processing step to
use is based on the data of which the polygon consensus has to found. The quality of the
calculated polygon consensuses is rated with a semi-automatic method also described in
the thesis.

Zusammenfassung

Um Gebdude aus handschriftlichen Karten zu digitalisieren bendétigt man ein Verfah-
ren, welches aus einer Menge von Polygonen ein Polygon findet, das mit den meis-
ten Eingabepolygonen iibereinstimmt. Dies kann durch geometrie-basierte oder durch
cluster-basierte Verfahren erreicht werden. Wir schlagen drei Algorithmen vor, die diese
Verfahren nutzen. Zwei cluster-basierte Algorithmen evaluierten wir mit realen Daten.
Diese Algorithmen benétigen zwei vorbereitetende Schritte, jeder dieser Schritte erfor-
dert die Angabe heuristischer Parameter. Wir konnten zeigen, dass einer dieser Schritte
weggelassen werden kann, ohne die Qualitdt der Ausgabe zu beeintrachtigen. Die Wahl,
welcher der Schritte durchgefiihrt wird, erfolgt anhand der Art der vorliegenden Da-
ten. Die Qualitdt der erzeugten Polygone wurde mit einer halbautomatischen Methode
bewertet, die ebenfalls in dieser Arbeit vorgestellt wird.
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Fig. 1.1: A map of the financial district of New York in the 19th century.

1 Introduction

One benefit that came with the Internet is the ability to allow a large amount of inde-
pendent users to work together on one project. This is known as crowd sourcing. A
specific crowd sourced project is maintained by the New York Public Library (NYPL).
The project is called Building Inspector and aims to create a fully digitized map of New
York City in the 19th century [2]. With this map, it will be possible to explore the
development of the city of New York. Which buildings were torn down to make room
for the modern skyscrapers? Are there any buildings whose shapes did not change at
all over the time? On which foundation was the main branch of the New York Public
Library built? The amount of interesting questions is virtually infinite. The project is
based on handwritten atlases of insurance companies of that time like the map in Figure
[[.1] How can the structures in those atlases be digitized automatically? According to
the lead developer of the Building Inspector, Mauricio Arteaga, manually digitizing one
building including the recognition of several attributes like background color and address
needs several minutes of time [4].

The first step of the digitization was to run an algorithm on the images. This algorithm
produces polygons that approximately represent the buildings. By definition of the
atlases, a building is an area which is completely enclosed by dark lines and there must
be no gaps in those lines. Further, an enclosed area must have a background color other
then white to be a building [4]. However, the algorithm sometimes fails and, for example,
misses corners of buildings or extracts handwritings and other artifacts like folded edges.
Such cases are shown in Figures and

This is where the crowd becomes involved. First, people should classify the output of
the algorithm as “Yes”, “Fix” or “No”. The results which received a majority of “Yes”-
votes are saved instantly, the ones that received a majority of “No”-votes are deleted.
Then the users are asked to correct the remaining polygons the algorithm produced. To



(a) This extracted polygon (b) Here, a handwriting was (c) The interface to fix the
needs a fix of the details. captured, which is not polygons.
correct.

Fig. 1.2: Figures and present two examples where the image extraction algorithm
failed. Figure [I.2c| depicts the interface to correct the polygons.

do this, the users have the possibility to add or remove corners and to move them freely.
The interface is depicted in Figure [1.2¢, Because the interface is easy to understand,
web-based and responsive, it is accessible to everyone having some spare seconds.

Every single digitized building is reviewed by several persons, so that each building
has several corrections proposed by users. It is very likely that most persons agree that
one specific corner is part of the building. However, it is not very likely, that those
people hit the same pixel in the vicinity of that corner. Further, there may be some
people who think a bay window is part of the building while other users do not go into
such a level of detail. The central question of this thesis is: How to construct a polygon
that agrees with most of the given polygons? Namely, what is the polygon consensus
based on a list of similar polygons?

The other attributes of a building, like the background color, the purpose of the
building and its address are also obtained by crowd-sourcing in a similar way. However,
this thesis is only concerned with the extraction of a polygon consensus representing the
layout of a certain building.

In the next chapter we present some related work which is used in this thesis. The
third chapter raises the question what the term “agrees with most of the given polygons”
really means and defines the problem in a formal way. It also discusses which aspects of
the general definition are useful for the Building Inspector. In chapter four and five, we
present three different algorithms to calculate a polygon consensus in general. Practical
results can be found in chapter six. We run the algorithms with real world data given
by the NYPL and analyzed the polygon consensuses. At the end of the thesis, the reader
finds proposals for further work and a summary of our findings.



2 Related Work

There are two papers whose results are used throughout this thesis. The first one
regards the process of obtaining the original polygons using the historical maps. The
second paper provides a solution for an important task in finding the polygon consensus
of polygons whose corners lie roughly in the same areas.

2.1 Historical Map Polygon and Feature Extractor

The first step of digitizing the insurance maps is the automated extraction of the build-
ings. Maurico Arteaga developed a tool chain which implements this process [4]. It
involves the use of several open source tools like OpenCV, R (statistical programming
language), GDAL and GIMP. An insurance atlas consists of several sheets. These sheets
are represented as image files. For each sheet in one atlas, the following steps are exe-
cuted:

Tresholding Using GiMmP, the map is greyscaled. All lines become black while the rest
is colored white. This allows for easy polygon extraction in the next step.

Rough Polygon Extraction GDAL offers a function to extract polygons from an image.
These polygons are filtered so that only reasonable polygons remain. Then the
polygons are simplified using R. The simplification included the removal of holes
and reducing the number of edges.

Polygon Exclusion and Feature Extraction Now, the polygons are compared to the ini-
tial map and further attributes are extracted, for example artifacts lying inside the
polygons and their background color. For this step, GDAL is used again, together
with the Python library OpenCV. All uncolored polygons are removed because the
specification of the atlases defines as building as a colored shape.

According to Arteaga this process works well on the New York maps, but may have
to be adopted to other maps. Several of the produced polygons are wrong, but Arteaga
states that using crowd sourcing to correct the outputs of the process is still faster
than the manual extraction. His algorithm to find a polygon consensus from the user-
contributed polygons is described and reviewed in Chapter



2.2 The DBSCAN-AIgorithm

When n users select one corner of a building, they will probably hit n different pixels. One
major task in finding the polygon consensus involves grouping those points to find the
corner that was meant by the users. We call such a collection of near points which in fact
mean the same corner a cluster. The DBSCAN-Algorithm calculates such clusters [7]. The
advantage of the DBSCAN-Algorithm is the small amount of parameters needed to receive
a useful result. Other popular cluster algorithms, like the CLARANS-Algorithm, need to
know the amount of clusters before the computation starts. But in our application, we
do not know how much clusters there are.

In principle, the algorithm generates a graph G = (V, E). The set of vertices V is
given by all points of all polygons that were provided by the users. There is an edge
between two points p; and ps if the Euclidean distance between p1 and ps is lower than a
given min-eps. Generally speaking, a cluster is one connected component in G. Another
parameter is called min-pts. If min-pts = k, then the value of £ — 1 describes the minimal
degree at least one vertex in a connected component must have so that the component is
a cluster. All connected components that do not fulfill this condition are considered as
noise. Figure shows an example of the DBSCAN-Algorithm using the depicted value
for min-eps. The value of min-pts is 2. We can conclude that most of the users entered
a triangle. Two users may have seen a fourth corner and selected a square, but these
points are not in any cluster, because there are to few of them in that area. Probably a
mistake caused the outlier at the bottom, which is ignored.

The simplest implementation of the DBSCAN-Algorithm has a running time of O(n?).
For one corner, the algorithm must calculate the distance to each other corner which
takes n steps. In the worst case this must be done for each of the n corners, yielding a
cubic running time. The algorithm could be accelerated to O(nlogn) by using advanced
datastructures. We figured out, that the cubic running time of the simple implementation
was fast enough for our data, so we used it for the sake of simplicity.

Whenever the verb “to cluster” occurs in this thesis, we used the DBSCAN-Algorithm
as described above. Each process of clustering some points includes two parameters of
which we silently assume we have adequate values. Of course, some thoughts on choosing
those values are provided in later chapters, too.

w ]

min-eps

Fig. 2.1: DBSCAN applied to this set of points identifies three clusters and three noise points.



3 Preliminaries & Problem Definition

In Chapters [I] and [2] we used the term “polygon consensus” without specifying what the
word “consensus” really means. In this chapter we will give a definition of the problem
as basis for the following chapters. In addition, we discuss these definitions regarding
the Building Inspector.

3.1 Basic Terms

We will use the following basic definitions throughout this thesis.

Definition 3.1. A corner is a 2-tuple which gives the z-coordinate and the y-coordinate
of the corner. Therefore, a corner is denoted as p = (z,y) with x,y € Q.

If we connect several corners, we get a geometrical structure. One of them is the polygon,
which we define now.

Definition 3.2. A polygon is a n-tuple with n > 2 distinct corners. The corners must
be ordered so that no line segment between two successive points intersect. There is also
an edge between the last corner and the first corner.

For example, the polygon p = ((1,1),(3,1),(2,2)) is a isosceles triangle. We observe
that by this definition, the amount of corners in the polygon is the same as the amount
of edges. Further, this definition does not allow holes in the polygons and the polygon
is always a finite area.

Definition 3.3. Let P represent the infinite set of all polygons. Then P* contains all
finite subsets of P without the empty set. An element G' € P is called a polygon group,
or just group if the context is clear.

Normally, a polygon group contains all polygons given by users for one specific building
on the map of the Building Inspector. However, it is possible that a polygon group ac-
tually describes more buildings because it is not always clear which building the original
image processing algorithm extracted. Such a polygon group is depicted in Figure [3.1
Usually most of the polygons in the group are concentrated in one area and only some
polygons are scattered around. We denote such scattered polygons by outliers or remote
polygons of the group.

Definition 3.4. Let f be a function with f: P™ — P. The function therefore accepts a
polygon group as input and returns one single polygon as output. We call this polygon
the consensual polygon.



Fig. 3.1: This group describes two different buildings. The southern polygon would be consid-
ered as outlier because the majority of the users encircled the northern shape.

The polygon consensus is the polygon that one would consider intuitively and naturally
to be the representative of a polygon group G' € P*. The consensual polygon on the
other side is the result of one particular algorithm calculating f on a group G € P*. The
consensual polygon of a hypothetical, perfect algorithm is always the polygon consensus.
The definition of the function f is not complete yet as we did not define how the
output is formed. For example, the function which returns the first polygon found in a
given polygon group complies with the definition above. But we agree that the polygon
consensus of that function is in general not what we would call the polygon consensus.
We will explore the structural properties of a polygon consensus in the next section.

Fig. 3.2: Some example data from the NYPL. The question is what is the polygon consensus for
each of these polygon groups. Of course, these groups are based on map images, but
we will try to find the polygon consensus without the underlying pictures.



3.2 The Polygon Consensus

There are different ways to characterize the polygon consensus of a group G € P+.
Look at the three polygon groups in Figure [3.2] The figures show polygon groups from
the Building Inspector. How would you mark the polygon consensus in each of these
figures? In the first picture, a large amount of polygons can be seen which are roughly
the same. We would choose arbitrarily one polygon with four corners because most
polygons in the group have the same four corners. However, this approach turns out to
not as good as it sounds when we look at the second figure. All polygons are similar, but
the corners are spread over a wider range, making each polygon distinguishable from any
other polygon. In this situation, taking only one of those polygons will not work well.
The most intuitive way to solve this problem is to find the centroid of each corner area
and build a polygon consensus of those centroids. This approach works also in the first
picture. But this approach is not applicable in the last picture because not all polygons
have the same amount of corners.

We conclude from the approaches above that an algorithm which computes f should
have the following properties: First, if the group G consists of many similar shaped
polygons and the amount of other polygons is negligible, then the algorithm should return
a polygon consensus which is similar to the majority of the polygons in GG. Second, if the
corners are spread widely, but the shapes of the polygons are still easily recognizable as
similar polygons, the corners of the polygon consensus should be some kind of centroid
of these areas. The message of the third picture is that the algorithm must identify more
structural properties of the input group than the amount of corners per polygon.

As we will see, some algorithms also need additional parameters besides the group G
to work properly. The effects of those parameters are often complicated to understand
and best values are found empirically. We want to find algorithms without any further
parameters because they are easier to apply. Even if it seems not unreasonable to adjust
the parameters for calculating the polygon consensus of several thousand groups of the
Building Inspector, we are interested in algorithms applicable in general without long
calibrations in advance.

There are two categories of algorithms. The first category contains geometry-based
algorithms. Those algorithms do not need to cluster the corners first because they are
using merely geometric calculations. The second category includes algorithms which
do cluster the corners first. After the clustering, the geometry of the polygons is not
considered any more. Instead, the relations between the clusters are explored. From
the first category, we will propose the Pile-Algorithm in the next chapter. Then, in
Chapter [5], two cluster-based algorithms are described.

Unfortunately, we still lack a formal definition of the “polygon consensus” Every
attempt to formulate a precise definition contains the the words “similar”, “as much
as possible” or phrases alike which we had to define in detail. We will see in the next
chapter that intuitive algorithms based on the ideas above will give reasonable polygon
consensuses. Therefore, we can omit giving a precise definition of the polygon consensus.

¢
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4 A Geometry-Based Algorithm

The principle of the Pile-Algorithm is natural and easy to understand. Given a polygon
group G' € P without remote polygons, we consider this group as an arbitrarily ordered
pile of polygons. Now we see that the polygons overlap in some areas and new shapes
on the inside are formed. These shapes are actually polygons, too. However, we denote
them faces to distinguish them from the given polygons. Let F' be the set of all faces in
the pile. An attribute r is assigned to each of the faces. The number r; € N represents
how many polygons overlap in the respective face s. Then the pile algorithm implements
the following function f: P* x Q — P:

f((p1.p2s - pn) @) = U {seF|rs>i}

an<i<n,i€N

The union U of several faces F/ C F is defined to be the polygon that encloses all
faces in F’ and nothing more. The parameter o € Q describes the level of agreement
in the output polygon. An example showing the functional principle of f can be found
in Figure If @ = 0, then the polygon consensus is equivalent to the union of all
polygons in the group. If @ = 1 then the polygon consensus represents the intersection
of the polygon group. Values lower than 0 or greater than 1 are compatible with our
definition. In the former case, the function behaves just the same as if a would be
0. In the latter case, no polygon consensus could be found. There are several existing
algorithms to obtain the union of two polygons, one of them was proposed by Avraham
Margalit [I0]. However, with his algorithm, we cannot determine the attributes r
efficiently. Therefore, we used another approach to find the unions.

Before we describe the algorithm itself, we have to restrict the input. Consider two
polygons, one has the shape of an “E”, the other one the shape of an “I”, as depicted in
Figure If we put the “I” ontop of the right side of the “E”, we get a pile of polygons

(a) a=1/3 (b) «=2/3 (c)a=1

Fig. 4.1: The polygon consensus with the Pile-Algorithm — with different choices for «.
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(a) The input (b) a=1/2 (c) a=1

Fig. 4.2: If we take an E-shaped polygon and an I-shaped polygon, the results of the Pile
Algorithm are no polygons according to our definition.

with two holes. For a = 0, we obtain an object which is no polygon with respect to our
definition of polygons (Deﬁnition. This is shown in Figure m It gets even worse if
a = 1. Like Figure shows, we get three independent polygons. This contradicts our
function f to calculate a polygon consensus (Definition . Therefore, we restrict the
input of the Pile Algorithm so that no subset of the input group encloses any holes and
every polygon overlaps with every other polygon. One might say that this restriction is
too severe, but on the real life data of the Building Inspector, it has little effect.

The algorithm itself consists of two stages. First, a graph G = (V, E) is built. All
corners in the input group plus all intersection points of the edges of the polygons
represent the set of vertices V. In the edge set F, all edges of the polygons are gathered,
but some are split with respect to the intersection points in V. Therefore G is planar
because all intersections are replaced by vertices. The pseudocode which builds that
graph is shown in Algorithm [T}

The graph is initialized with one polygon from the input group G in line 1 to 3.
Then we add one polygon p at a time to the graph in the for-loop starting in line 4.
Because the polygons are likely to overlap, we must not only add the corners of the
polygon to our graph, but also the intersection points. These are calculated in the
nested for-loops by checking every edge of p with every edge in the existing graph. If
they are intersecting each other, we first split the existing edge into two new edges,
divided by the intersection point. Once we have checked every existing edge, we can
add the segments of the new edge to our graph. Because we know all intersections, the
segments can easily be calculated and inserted in lines 24 to 25.

To check whether two edges intersect, we use basic two-dimensional geometry. We
represent the edges as infinite lines. Then we obtain a linear system with two equations
which we solve as if we were crossing two lines. If the solution exists, all we have to do
is to check the calculated scalar variables that describe where the intersection on each
of the lines can be found. If, and only if these two scalars are lower or equal to 1 while
being greater or equal to 0, the intersection lies on both of the edges. This approach can
yield edges of size 0 if the start or end point of an edge merely touches another edge.
Such invalid edges are discarded immediately.

12



For clearness, one detail is omitted in the pseudocode below: Everytime we insert or

replace an edge, we look if this edge is already in our set. In this case we increment
the weight of this edge, given by w(edge). At the end, the weight-function w holds how
often each edge is present in the input group of polygons.

Algorithm 1: BuildGraph-Procedure for the Pile-Algorithm

© W N O A W N

- e e
W N = O

14
15
16
17
18

19
20

21
22

23
24
25

26

Input: A group G € P of polygons

Output: A planar graph representing the polygons in G

Let ps be an arbitrary polygon in G

V= {Cﬁ7y)‘ Cnay) € ps}

E = edges representing ps; and weight of those edges is 1

foreach p € G\ {ps} do

foreach edge € p do

intersections = ()

foreach oldEdge € E do

{start, end} = oldEdge

if edge and oldEdge not parallel and intersect then

(x,y) = intersectionOf(edge,oldEdge)

intersections = intersections U {(z,y)}

if oldEdge does not start and does not end with (z,y) then
L Replace oldEdge in E with the two new segments, update w

f edge and oldFdge parallel and overlap then
point = suitable end point of oldEdge

o

edge
intersections = intersections U { point qqqe }
| Replace oldEdge in E with the two new segments, update w

f edge and oldFEdge parallel and one enclosed in other then

if edge longer than oldEdge then
L intersections = intersections U {start, end}

if edge shorter than oldEdge then
L Replace oldEdge in E with the three new segments, update w

i o

V =V U{(z,y) | (z,y) € p} Uintersections
Sort intersections by their distance to one end-point on edge
| Insert edge by adding the segments to E segment by segment, update w

return (V, E, w)

13



With the graph generated from Algorithm [I| we can now implement the function f.
Let G be the polygon group and G = (V, E) the graph constructed from G. Our algorithm
to find the consensus with respect to « is based on the following theorem:

Theorem 4.1. Let 0 < av-n < 1 with n = |G| and o € Q. The polygon p, encloses all
faces in G. By deleting all edges of G which are borders of p, and have a weight of 1,
we obtain a new graph G'. Then r; for all faces t in G’ is at least 2.

Proof. We must show that by deleting the edges in p, with weight 1, we remove all those
faces s with 7, = 1. Let e be such an edge with w(e) = 1. By deleting e, the face s
is resolved. Since e € p, we know that s is residing in the outer regions of the graph.
For rs to be greater than 1 for such faces, the weight of all edges separating the face
from the outside must be also greater than 1. But as we delete only edges with weight
exactly 1, we remove only faces which are covered by one polygon. Because all faces s
with rg lie in other regions, we resolve all of them, leaving only faces covered by at least
two polygons. ]

By taking the union of Graph G’, the polygon consensus with 1 < a-n < 2 can be
found. To satisfy even higher values of «, we repeat this step. But before we find the
surrounding polygon of G’, we must decrease the weight of all edges in p’ which were
not deleted. Also, we remove the eventually created vertices with no neighbours. The
details can be found in Algorithm

Algorithm 2: The Pile-Algorithm
Input: A group of n simply overlapping polygons G and a parameter 0 < o < 1
Output: A polygon consisting of all areas in G that are overlapped by at least
« - n polygons.

1 (V, E,w) = buildGraph(G)

2 p = getUnionOfFacesInGraph((V, E))
3 fori=1to [a-n] do

4 foreach e € p do

5 if w(e) ==1 then

6 L E=F\{e}

7 else

8 L w(e) =w(e) — 1

9 V=V \{veV]|deg(v) =0}
10 | p = getUnionOfFacesInGraph((V, £))

11 return p

To find the union of the polygons, we apply an algorithm similar to the Graham Scan
which finds the smallest polygon containing all points of a set of points [8]. We modified
it so that this polygon can only have edges between two corners if there is also an edge
between those two corners in G. Starting from a vertex s, instead of finding the vertex ¢

14



with lowest angle to the x-axis, as the Graham Scan does, we select the neighbour ¢ of
s with the rightmost turn with respect to our path up to now. We are done when the
start vertex is reached again. The procedure is stated in pseudo-code in Algorithm
All angles are measured counter-clockwise from 0 to 2.

Algorithm 3: getUnionOfFacesInGraph(Graph G)
(V,E,w) =G

[y

2 s = s’ = [ corner nearest to the origin

3 t = neighbour of s so that (s,¢) has the lowest angle with the x-axis.
polygon = (s,1)

4 s=t

5 while s # s’ do

6 t = neighbour of s, so that (I, s,t) is minimal

7 l=s

8 s=t

9 polygon.append(t)

10 return polygon

We conclude this chapter with some thoughts on the choice of . It is easy to under-
stand that lower values often return bad consensual polygons because all input polygons
are taken into account. On the other side, if « is to high, then similar phenomenons
can occur. Consider a group with many similar rectangles and only one small square
inside the rectangles. In the sense of the Pile-Algorithm the polygon consensus is the
area covered by the similar rectangles. However, if a =~ 1, then the consensual polygon
would only represent the small square which is certainly wrong. We recommend values
for o near 0.5, but we have not evaluated this advice against lower or higher values in
more detail.

Even if the natural description of the Pile Algorithm seems straight away, the imple-
mentation of the algorithm is rather complicated. Further, one has to face floating point
inaccuracy when handling intersections of polygons as Margalit [10] already pointed out.
Besides the restriction of the input, the consensual polygon calculated by the Pile Al-
gorithm often contains a lot more corners than any of the polygon in the input group
because many tiny edges are created at the corners and at the intersections between the
corners. The polygon consensus could be simplified using track simplification tools like
the Douglas-Peucker-Algorithm [6], hence needing one more parameter for simplifica-
tion. Because of that reason, we will not evaluate the Pile-Algorithm with the real data
from the Building Inspector, but rather point out that this algorithm might be useful
when the polygon consensus has to be precise with respect to the covered area rather
than the corners.

15



5 Cluster-Based Algorithms

The following two algorithms to find a polygon consensus are cluster-based instead of
using two-dimensional geometry. The two algorithms are called Voting-Algorithm and
Mininum Mean Weight Cycle-Algorithm (MMwc-Algorithm). They are enframed in two
pre-processing steps and one post-processing step:

Outlier Removal Remove remote polygons by clustering the centroids and keep only the
clusters with most centroids. The idea behind this step is that sometimes users
did not know which building to classify. Hence, there can be independent polygons
of several buildings in one group. This step requires a decision on how far away a
centroid must lie from the others to be disregarded. Figure indicates that this
decision is not as trivial as it might sound and that it can affect the result gravely.
Of course, there may be other and more advanced methods of detecting outlying
polygons, but we did not analyze them in this thesis.

Clustering Cluster the corners of all polygons with a given min-eps. We allow clusters
of size one because it is our hope that they are ignored by our algorithms to find
a polygon consensus one way or the other. Therefore, we set min-pts = 1 for
clustering the corners.

Voting-Algorithm or MMWC-Algorithm Construct a graph from the clusters which
were calculated in the last step and find a cycle with respect to certain criteria.

Post-Processing Given the cycle of clusters which is returned by step 3, we now cal-
culate the actual consensual polygon. To do this, we translate each cluster into a
corner. Then these corners describe the polygon consensus. The simplest method
to translate the clusters to corners is to select the centroid of all corners in a clus-
ter. The disadvantage of using the centroids is that all corners in the cluster must
lie equally around that centroid we would consider to be natural. However, one
corner which lies far away from the other corners in the same cluster will shift the
centroid towards that far away corner. Mostly, such a shift can be avoided by using
a better min-eps in the second phase. Instead of using more sophisticated methods
of translating clusters to corners, we tried to improve the choice of min-eps in this
thesis.

While the actual algorithms do not need any parameters, the preprocessing steps do
need parameters. If we set min-pts = 1 for both preprocessing steps, we still have two
different values for min-eps. The head developer of the Building Inspector proposed
two values which work well with the real data [3]. Because these two parameters are
application-specific and sensitive to scaling operations we want the procedure of finding
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a polygon consensus to be runnable in general without these two parameters. We devel-
oped a heuristic which estimates min-eps for the Clustering-Phase of the corners, which
is described in Section In Chapter [6] we will then explore whether the first step is
really necessary to produce semantically correct polygons. Figure only shows that
the results can differ if the outlier removal is skipped, but actually, we are interested in
the correctness of the consensual polygon, less whether the polygons are different.

We will learn that the graph Gy built by the MMwc-Algorithm is a subgraph of Gy
which is generated by the Voting-Algorithm. Therefore by showing that there exists
always a cycle in Gy, we can show that both algorithms always succeed. Given several
clusters of a polygon group so that at least one polygon has corners in two of the clusters.
Then the Voting-Algorithm constructs the set of edges with the following rules:

1. Select one arbitrary cluster C' of corners.
2. Count how often each cluster contains the successor of a corner in C.

3. Select the cluster C’ with the maximum count found in step 2. If it turns out that
C’ = C, then take the cluster C’ with the maximum count so that C’ # C. If
there is no such cluster, continue with step 5.

4. Add the edge (C,C") to set of edges.

5. Repeat these steps for each cluster.

The maximum out-degree in Gy is 1 because we select only one successor for each
cluster. The following theorem states that there is always a cycle in Gy if there exists
at least one edge. If the graph Gy does not have any edges, than all clusters contain
complete and independent polygons. In this case, min-eps was obviously wrong and both
Algorithms can not return a reasonable consensual polygon.

(a) Allowing the centroids to lie far (b) If only close centroids are allowed,
apart retains the upper polygon. we get another consensual polygon
in this case.

Fig. 5.1: The process of filtering outliers can affect the shape of the polygon consensus.
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Theorem 5.1. There is always at least one cycle in Gy = (V, E) if |E| > 1.

Proof. Let Gy be a graph constructed from an arbitrary polygon group. Suppose there
is no cycle in Gy. Then Gy is a chain of clusters because each vertex has exactly one
successor. Let v be the last vertex in the chain and v’ its predecessor. Then there must
be polygons containing edges with start point in v’ and end point in v. But there can
be no polygon with edges starting in v and ending in any other cluster (®). Otherwise,
v would not be the last vertex in the chain. But when polygons with edges between v’
and v exist, then the same polygons must contain an edge starting in v and providing a
way back to v’. This contradicts ®. So Gy must contain a cycle. O

Given Theorem we can conclude, that both Algorithms will always be able to find
a cycle if the polygon group and the clusters are reasonable. We do not claim that this
cycle represents a useful polygon because it is easy to construct instances where the only
cycle is of length 2.

5.1 Voting Algorithm

The Voting-Algorithm was first described by Mauricio Arteaga [3]. After applying DB-
SCAN to the set of corners the graph Gy is generated with respect to the description in
the previous section. Lines 1 to 7 in Listing [4] explain the construction of the graph in
detail.

After this voting phase, our clusters represent a graph where the set of vertices are
the clusters. The out-degree in this graph is at most 1, because we assigned only one
successor to each cluster. All we have to do now is to find a cycle in this graph. To find
such a cycle we use a trivial corollary from the proof of Theorem [5.1}

Corollary 5.1. Starting at an arbitrary vertex in Gy with out-degree greater than 0 and
traversing the edge progression, we will always reach a cycle.

To achieve this, we pick the cluster which contains most polygon corners and traverse
its successors. We save all clusters that we see during our progression. As soon as we
reach a cluster which we have seen before, we found a cycle. The detailed procedure is
given in Pseudocode [ in lines 8 to 15. Our version of the algorithm is slightly different
from the original version by Arteaga. His algorithm starts with an arbitrary cluster. For
this to work, all outlying polygons have to be filtered, otherwise the result could be an
arbitrary remote polygon. Our version starts with that cluster, that contains the most
corners from different polygons. We claim, that this modification renders the initial
filtering unnecessary and support this claim by results provided in Chapter [6]

The returned cycle consists of clusters of whose we now have to calculate the actual
corners of the consensual polygon. The easiest way to do this is to use the physical
centroids of the clusters. In line 9 we return a cycle of length 0 when the most popular
cluster does not lead into a cycle. Because we defined polygons to have more than two
corners we can interpret such results as indication that the algorithm was not able to
find a polygon consensus.
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Algorithm 4: The Voting-Algorithm

[« B U VN

Data: A polygon group G € P™ and a min-eps for clustering.
Output: A polygon p that is the consensus of G.
Clusters = DBSCAN(points in G, min-eps, 1)
foreach cluster € Clusters do
reset VotesOfEachCluster(Clusters) // Sets c.vote =0 for each cluster.
foreach p € cluster do
target = findClusterOfSuccessor(p)
target.votes += 1

cluster.next = cluster with most votes in Clusters \ cluster

8 cluster = cluster with most corners of distinct polygons
9 if cluster.next = Null then return cluster

10
11
12
13

14
15

seenClusters = [cluster]

while cluster.next ¢ seenClusters do
cluster = cluster.next

L seenClusters.append( cluster)

cycle = seenClusters from first occurrence of cluster to end
return cycle

Unfortunately, the Voting-Algorithm does not always calculate a good consensual

polygon. Looking at the situation in Figure where the red polygon was entered 40
times, the violet polygon was entered 25 times and the blue one was entered 35 times,
we find that the Voting Algorithm chooses the green shaded polygon. The problem with
the green shaded polygon is that it was not present in G and is therefore no polygon
consensus. Another problem occurs in Figure [5.2b] where the distribution of votes is
the same as in the left figure. Here, the Voting-Algorithm decides for one polygon which
has only 35 votes while there is an obvious polygon consensus, namely the red polygon.

(a) Here there algorithm will return a poly-  (b) The distribution of the votes is the

gon consensus which was not part of the same is in Figure First, it follows
input. The red polygon has 40 votes, the blue and violet polygons, but then,
the blue polygon has 35 and the violet it decides only for the blue polygon.

polygon has 25 of the votes.

Fig. 5.2: Practical relevant issues with the Voting Algorithm. The possible start clusters are

marked blue. They contain the highest amount of corners of distinct polygons.
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!‘ h 2 L
(a) If there is are binary tree somewhere in (b) There are 4 red polygons, 3 violet poly-
gons and 2 green polygons. We can
see, that the orientation of the poly-
gons does matter.

the graph, the polygon consensus might
be backed up by only one of the input
polygons.

Fig. 5.3: Some more examples where the Voting Algorithm may not give the desired polygon
consensus. Possible start clusters are shaded blue. Not all clusters are drawn.

This issue can be elaborated to a more theoretical example in Figure In this
case there is one clear polygon consensus which is the blue one. But there are more red
polygons and each of the red polygons is part of a binary tree. The root of this binary tree
consists of all red polygons while each leaf is only represented by one red polygon. Then
the Voting-Algorithm chooses one red polygon instead of the blue polygon. However,
this case is not likely to occur within the Building Inspector.

We assume, that all polygons in the input group are oriented in the same direction.
In some cases, it does matter whether all polygons are oriented clockwise or counter-
clockwise. An example is shown in Figure[5.3b] The start clusters stay the same, but the
distribution of the votes has changed. The problem concerns all groups where several
minor polygons branch from a popular polygon to different clusters, but return to the
branch together. In one direction, the main branch has more votes because the other
polygons are split. In the reverse direction, their votes add up and can outvote the most
popular polygon so their path is pursued. This behavior equals Figure [5.3a] where the
popular branch is also abandoned in favor of the minor polygons.

In the next Chapter we will introduce the MMwcC-Algorithm which is not orientation-
sensitive. It finds the cycle by regarding the graph in a global manner rather than the
local aggregation of votes which the Voting-Algorithm does. But exactly this greedy
progression of clusters renders the Voting-Algorithm very easy to implement. Despite
the different approaches, the MMwcC-Algorithm shares some problems with the Voting-
Algorithm. We will see in Chapter [6] whether the MMwc-Algorithm can outperform the
Voting-Algorithm on real data.
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5.2 Minimum Mean Weight Cycle Algorithm

The Voting Algorithm works locally, meaning that the choice of the successor of a cluster
¢ depends only on the situation at ¢ itself. The philosophy of the Minimum Mean Weight
Cycle-Algorithm is to work global. Like the Voting-Algorithm, the MMwc-Algorithm
takes a list of clusters as input. Then a graph Gy = (V, F) is built, where each cluster
represents one vertex. There is a directed edge between two clusters ¢; and co, if there
is at least one polygon with two successive corners v; and v;41, so that v; lies in ¢; and
vi41 lies in ¢y. The edge (¢, ¢2) is weighted with the following function w:

Number of polygon edges from ¢ to 62>

w((e1,c2)) = —log ( Tl

The more popular an edge is, the lower is its weight given by w. Therefore it is rea-
sonable to find a polygon consensus containing edges with low weight. But the minimum
weight cycle would not be a good idea, because a long progression of popular edges could
still have a higher total weight than a short progression of unpopular edges. Therefore,
we want to find the minimum mean weight cycle, that is the cycle in Gyt that has the
lowest average of edge weights. We use the the logarithmic function rather than the
a pure linear dependence to degrade unpopular edges even more while preferring the
popular ones.

This approach also allows to have several remote polygons in the polygon group.
Then the graph consists of several connected components. After finding a minimum
mean weight cycle in all of them, we can select the cycle, which has the minimal value
among them. In the weight function w we divide through the amount of polygons in
the group. This causes connected components with a small amount of polygons to have
high weights on all their edges — and therefore a high average weight.

In 1978, Richard Karp published an algorithm to find the minimum mean cycle in a
directed, strongly connected graph [9]. For a complete proof of correctness, we refer to his
article. The algorithm chooses an arbitrary vertex s in the connected component with n
vertices. Then for each vertex v in the connected component, we introduce the variables
Foo,Foi,...,F,n, where F,; denotes the minimum weight of an edge progression of
length 7 from vertex s to v. For all v, the initial equality F3, o = oo holds, except for
s with Fs 9 = 0, because only s can be reached from s by using zero edges. All other
values F,; can be computed by using dynamic programming. While computing those
values, the predecessors are saved to be able to reconstruct a path of length ¢ from s to
a vertex v with the minimal possible weight F},; later. Given the values F,; the value
of the minimum mean weight cycle is given by the equation

Fv n Fv,k
veY 0<k<n—1 n—k

A = min max ( ’
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The set V contains the vertices in the connected component. While iterating over all
vertices, we do not only save the minimal A but also the vertex v which causes this value
and its maximizing value k. Now we start at v and traverse the progression of length
n back to s by using the edges in reverse. Then there must be a cycle of length n — &
in this progression, which we find and extract. This cycle is our minimum mean weight
cycle. Because the vertices are actually clusters, we can now calculate the centroids of
the vertices and return the polygon consensus.

From Theorem [5.1] we know that the graph contains a least one cycle. But for the
Mwmwc-Algorithm to work, we must show that the graph is also strongly-connected.

Theorem 5.2. Let Gy be the graph generated by the MMwcC-Algorithm. Then every
connected component in Gy is always strongly-connected.

Proof. Suppose there exists a connected component in Gy which is not strongly con-
nected. Then there must be a pair of vertices u,v with (u,v) € E, so that u is not
reachable from v. If there would be no such pair, then each edge would be part of
directed circle, making the connected component strongly connected. Looking at the in-
struction to build the graph, we know that there exists a polygon so that one edge of this
polygon is connecting the clusters respective vertices u and v, else (u,v) ¢ E. But each
polygon contributes a cycle to the graph because the clusters of each polygons form a
cycle on it self. So there must be an edge progression from v back to u. This contradicts
our assumption. Therefore, every connected component in G is strongly-connected. [J

Figure [5.4] illustrates that the MMwc-Algorithm does perform intuitively better than
the Voting-Algorithm. As shown in the last section, the Voting Algorithm chooses the
blue polygon to be the consensual polygon in the situation depicted in Figure
even if the red polygon has more votes. The Mmwc-Algorithm, on the other side,
generates a graph with the weights depicted in Figure [5.4b] There are three cycles.
The first one, representing the result of the Voting Algorithm, has a mean weight of
(022 + 2 - 045)/5 = 0.224. The second circle, which was introduced by the
violet polygon, has a mean weight of (0.22 + 0.60 + 0.18)/5 = 0.2. This leaves
the last circle with a mean weight of (0.39 + 0.18)/4 = 0.1425, which is the minimum
mean weight. However, if the red polygon consisted of £ more corners between the two
lower clusters, then there would be more edges of weight 0.39. The mean weight of this
cycle would consequently approximate 0.39 for a high k. The other cycles would not
change and another consensual polygon will be calculated on the same distribution of
votes. Although the global approach of the MMwcC-Algorithm seems better than the
local approach of the Voting-Algorithm, we can construct instances were the result of
the MMwcC-Algorithm is as undesired as the result of the Voting-Algorithm. Later we
will see, whether the global principle gives better results in practice.

Another difference between the MMwcC-Algorithm and the Voting-Algorithm is its
independence from the orientation of the polygons. While the Voting Algorithm can
return different consensual polygons if the orientation of all polygons is changed, the
Mwmwc-Algorithm will always produce the same consensual polygon. This can be proved
with the following Theorem
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(a) We have 8 red polygons, 7 blue poly- (b) Now there are three possible circles, the

gons and 5 violet polygons. Given this circle with the minimum mean weight

distribution, the graph on the right is indicated by the green shape. This

hand side is constructed. polygon was in fact entered by most of
the users.

Fig. 5.4: In some cases, the results of the MMwcC-Algorithm are more satisfiable than the results
of the Voting-Algorithm. This is the same example as in Figure[5.2} The decimals are
truncated after the second digit.

Theorem 5.3. Given a clockwise-oriented polygon group G € PT and a polygon group
G’ which contains all polygons in G, but counter-clockwise. Let R be the undirected
(multi-)graph using G as input and L the undirected (multi)-graph using G' as input.
Then R and L are the same, including the weight of the edges.

Proof. 1t is easy to see that R and L contain the same edges without regarding the
weight because changing the orientation will not remove or create new edges. So we
must only show that the weights of those edges do not depend on the orientation. Thus
we have to prove that w((c1,c2)) = w((e2,c¢1)) for any two clusters ¢; and co. Let
be the amount of polygons with a corner p; in ¢; and a successive corner po in cs. By
changing the orientation of the polygons, ps becomes a predecessor of p;. Obviously,
x did not change, but now it counts the amount of polygons with a corner in ¢y and
successive corners in ¢;. So w((e1,c2)) = w((c2,¢1)) and L = R. O

Given this theorem, it is easy to see that the orientation of the polygons in the input
group does not affect the actual minimum mean weight cycle because all edges are simply
orientated in the other direction. There are no new cycles created or removed by this
operation. Unfortunately, this is not a real advantage over the Voting-Algorithm because
the data from Building Inspector turned out to not include such special groups where
the orientation does matter. Although the MMwc-Algorithm does have these theoretical
improvements, its implementation is not as trivial as the implementation of the Voting-
Algorithm. In the next chapter, we will explore whether this additional effort does pay
off against the Voting Algorithm.

A variant of the MMwcC-Algorithm uses a probabilistic definition of the weight func-
tion, which is more local than the original weight function:

Number of polygon edges from ¢; to co
Voting corners in ¢;

w'((c1,¢2)) := —log <
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We did not use this definition, because it does not work well with several connected
components. If there exists a connected component which consists of only one polygon,
then its own cycle has weight 0. In case there is another connected component like
the one of Figure with an obvious polygon consensus, the cycle of weight 0 would
be returned, backed up by only one polygon. Another disadvantage of w’ is that the
orientation of the polygons does matter.

5.3 Choice of Parameters

In the last two sections, we assumed that we already have a suitable min-eps to cluster
the vertices. If the user of the algorithms knows the geographical background of the
polygons, it may be easy to find an min-eps which creates reasonable clusters. It is also
simple to interpret the magnitude of min-eps to be some sort of geographical information
about the data. But in some cases, it might be useful to estimate min-eps, for example
if one does not have a geographical context or the scaling of the polygons has changed.
In this section, we propose an idea to find min-eps automatically.

The choice of min-eps affects the resulting consensual polygon. If the value is chosen
too low, then there are too many clusters and the polygon consensus may represent
exactly one of the input polygons (Figure [5.5a). On the other hand, higher values
of min-eps can make two different clusters merge into one cluster as Figure [5.5b| shows,
where the single corner in the center of the line segment causes the left and right clusters
to collapse. Last but not least, Figure shows a good choice of min-eps.

In this section we assume that if a polygon group G € P7T contains an intuitive
polygon consensus, then this consensus does only use clusters with more than |G|/2
corners. Otherwise, we argue that there is no obvious polygon consensus in the group.
Therefore, we allow only clusters of size |G|/2 or greater from now on. When we consider
the amount of clusters in a polygon group G as a function of min-eps, a diagram like to
one in Figure [5.6] results. We call the input parameter of that function € to distinguish
it from the min-eps used for clustering. As long as min-eps is too small, there are no

(b) min-eps is too big.

(c) min-eps is is suitable.

(a) min-eps is too small.

Fig. 5.5: The same input set is shown with different values of min-eps. In the left picture, min-
eps is too high, in the center picture, min-eps is too low. The right picture shows the
result with accords with the expected result for this polygon group.
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Fig. 5.6: Given the polygon group on the left side, the diagram on the right side results. We
can see, that the desired amount of eight clusters is reached fast and it is stable. The
next stable plateau is reached when the clusters on the inside merge together. Because
the footprint is nearly square, there is a long plateau with an amount of two clusters
before collapsing into one cluster.

suffiently congregations to form a cluster of size |G|/2. If min-eps is increased, the
amount of clusters increases too, until a threshold is reached. Then, while increasing
min-eps further, several clusters will be merged and the amount of clusters decreases.
Of course, it is possible that the amount of clusters ascends again, but finally, min-eps
is large enough so that all points in G fit into one cluster.

We also assume that most polygons in GG will have the same amount of corners — namely
the amount of corners the polygon consensus has. So from the diagram in Figure [5.6
only those plateaus are interesting where the amount of clusters is the median of the
corners in G. But there may be several of them. By selecting a min-eps in the longest
plateau of them, we find a value which represents the right amount of corners and the
most stable of these plateaus.

The naive way to implement this algorithm would be to start with a low value of min-
eps, then apply DBSCAN, count the clusters and increase min-eps. But this would lead
to the question of the magnitude A by which we increase min-eps in each iteration. The
value of A again depends on contextual data like the scaling factor and the distribution
of the corners. Too small values of A lead to longer running times and values to high
may oversee some plateaus. We present a better way to construct the Figure[5.6| without
these difficulties.

A change of the amount in Figure [5.6] at the value € implies that e represents exactly
a distance between to corners in the input list. The inversion of this implication is not
true because there may be distances between pairs of points which do not change the
amount of clusters. But this implication is enough to reduce the calls of DBSCAN. We
calculate the distance between all pairs of corners and sort them. If there are n corners,
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than we have O(n?) distances. Now we can take those distances and give them as
values for min-eps to DBSCAN. If we count the clusters after each invocation of DBSCAN,
we also obtain the diagram above. This makes roughly O(n?) calls to DBSCAN and a
running time of O(n*) in total if we implement DBSCAN naively. A better running time
to generate the diagram above can be used if we build the clusters successively. Let C;
be the set of clusters with using min-eps = d; where d; is the i-th distance in the sorted
list of distances. In the next step, the distance d;y1 is used. Three events can now
occur: Two clusters merge because d;y; links their connected components. Or a new
cluster is created because the min-pts—threshold is reached for an area. Or simply nothing
happens. We see that we do not need to call DBSCAN with d;;; as min-eps. Instead
we can evaluate which event occurs after each step. To achieve this, semi-dynamic sets
become handy.

A semi-dynamic set is a data structure which manages sets, often it is also called
disjoint-set data structure [5]. Apart from the default constructor, it provides four
operations which are closely related to graph operations.

insertSet(e) Takes an element e and inserts the set {e} into the data structure. In graph
theory, a new vertex e is added to the graph with deg(e) = 0.

findSet(e) Returns the set in which the element e currently resides. Speaking of graphs,
this method returns the connected component in which e lives.

unionSets(s;, s2) Replaces the sets s and sg in the data structure by their union s;Uss.
Or, in graph terms, adds an edge between the connected components s; and ss.

size() Returns the current number of sets in the data structure or the number of con-
nected components respectively.

To start, we insert all n corners into our semi-dynamic set D. If we now called D.size(),
the answer would be n, which is the same as calling DBSCAN with min-eps = 0 and min-
pts= 1. As we have set min-pts to |G|/2, we modify the size()-operation accordingly.
Now we can use our semi-dynamic set to execute DBSCAN step-by-step with increasing
min-eps-values. Everytime when a plateau with the desired amount of corners ends, we
check whether this plateau is the longest we have seen so far. If this is the case, the
current sets in the semi dynamic set are stored to be used with the Voting-Algorithm or
the Mmwce-Algorithm later. The actual value of € in the moment of saving the clusters
does not matter with regard to our interpretation of the plateaus. So we take the lowest
value possible. Keep in mind, that by using other, equally reasonable values for €, the
amount of corners in the clusters can change and therefore, the centroids can change.
The actual min-eps value is no longer needed, expect for debugging purposes. Naive
implementations of the semi-dynamic-set—operations have a running time of O(n) where
n is the amount of corners. This running time suffices for our application so we did
not improve it in order to keep the algorithm simple. The overall running time of the
min-eps-estimation is now O(n?) which is faster than using DBSCAN all over. A detailed
description of the algorithm is given in Pseudocode
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Of course, this solution is not robust in difficult polygon groups. In the next chapter,

we will also evaluate how this procedure to find a min-eps automatically performed on
the real data of the Building Inspector and explain those examples, in which this method
did not work.

Algorithm 5: An algorithm to estimate min-eps.

N N
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Input: A group of polygons G
Output: Clusters obtained by estimating an min-pts-value
D = new Semi-dynamic Set
Tmed = median of corners
foreach corner ¢ € G do
L D.insertSet(c)

Let Distances be a sorted list of all distances between pairs p; and ps of corners.
longestDist = 0

plateauStarted = false

plateauStart = 0

clusters = ()

foreach distance between p; and ps € Distances do

s1 = D .findSet(p1)

s9 = D.findSet(ps)

D .unionSets(s1, s2)

count = D.size()

if count = ryeq and plateauStarted = false then
plateauStarted = true

plateauStart = distance between p; and po

clusters = Sets in D with size greater or equal than eq.

if count # Tmeq and plateauStarted = true then

plateauStarted = false

if distance between p; and py — plateauStart > longestDist then
L longestDist = distance between p1 and po — plateauStart

return clusters
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6 Practical Results

We have implemented all algorithms presented in the last chapter. In this chapter, we
take a look on the results and the performance of these algorithms in connection with
the Building Inspector.

6.1 The Input Data

We tested the data with real polygon groups from the Building Inspector. As described
in Chapter [I] the users were asked to classify the image-processing-detected polygons to
be true, need a fix or to be completely false. We received 5,834 polygons which were
classified to need a fix. For each of those 5,834 polygons, we had up to 70 user fixes per
polygon. Therefore, our base data consisted of roughly 60,000 user fixes. The actual
image-detected polygons were only used as a reference in the evaluation later.

As a consequence from the interface described in Chapter [I] there are two structural
observations on the polygon fixes. First, attention must be paid to such cases depicted in
Figure Obviously, the image-detecting algorithm figured out one corner correctly.
This corner was not moved by most of the users and exists therefore in nearly every user-
contributed polygon. To handle such cases correctly, we must not put the raw corners
in sets. If we did, the sizes of the clusters were not correct. So we gave individual
identification numbers to the corners because sets only allow unique elements.

~ “
.... A ° . - ....
min-eps

(a) The image-processing algorithm obviously ~ (b) In this group, there are four clusters, but

detected one correct corner. This cor- one user did not delete superfluous cor-

ner was then never moved by most of the ners. This influenced the shape and conse-

users. quently the centroid of the lower left clus-
ter.

Fig. 6.1: This figure shows two of the structural properties we found in the real data.
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Processor Intel Core i7

Processor Frequency | 4 GHz

Processor Cache 8 MB

RAM 16 GB

Operating System Linux Mint 17.2 64 bit
Linux Kernel Version | 3.16.0-38

Hard Drive SSD

Python Version 3.4.3

Tab. 6.1: Description of the computer used to run the algorithms.

A second problem occurs when the a user simply pushes the corners on the delimiting
line of the building rather than deleting superfluous corners. Of course such cases will
not affect the consensual polygon in general because most users deleted such corners.
However in some cases, this behaviour caused some clusters to be too big which is
illustrated in Figure As long as there are much more corners at the right place, the
centroid of that cluster also stays in the right position. But in some cases, there were not
enough correct polygons to compensate such problems. There are two solutions for this
problem. The easiest, yet unsatisfying, solution is to change the value of min-eps — which
likely leads to problems in other places. Or a more advanced method of translating the
clusters to corners could be used to solve the issue. However, we have not evaluated
these solutions in this thesis.

6.2 Implementation

For the implementation of the algorithms above we used the Python programming lan-
guage. The algorithms run on a desktop PC, whose technical details are described in
Table We did not use libraries to represent the graphs and to run algorithms on
them. Solely the parsing of the input file in JSON-format and the generation of the
images you see in this thesis were left to the built-in python modules.

The running time of the algorithms was measured with the linux command line tool
time. The running time to evaluate 8,534 polygon groups was always below three min-
utes. In this three minutes, a file containing all 8,534 groups was parsed, the consensual
polygon was calculated and the result was written to a text file, one text file per group.
Additionally, debugging information like the used parameters and amount of polygons
was written to the standard output.

6.3 Process of Evaluation

After running each of the algorithms (except the Pile Algorithm) on every polygon
group, we evaluated the results. This evaluation consisted of two phases. In the first
phase, we decided for each existing polygon whether it is semantically true, meaning
that the polygon does in fact represent a building. In order to do this, we implemented
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a tool which projected the polygons on the historic maps. A polygon is semantically
correct if it has the same amount of corners as the building it surrounds. Further, the
inscribed shape must have a background color other than white and this shape must not
be disconnected by a wall. Some examples are illustrated in Figure This phase was
rather time-consuming, we therefore selected randomly 200 polygon groups so that each
group contained between seven and sixteen polygons. The 200 groups were parted into
two bundles of 100 groups which were checked separately. During this manual evaluation,
we did not know how the polygons were generated. There are eight sources a polygon
can come from:

detected The polygon was generated by the Image-Processing-Tool.

user The polygon was entered by a user.

voting-clean Result of the Voting Algorithm with removing the outlying polygons.
voting-raw The Voting-Algorithm without the first preprocessing step.
voting-autoeps The Voting-Algorithm, min-eps was auto-estimated, no preprocessing.
mmwc-clean Result of the MMwC-Algorithm with removing the outlying polygons.
mmwc-raw The Voting-Algorithm without the first preprocessing step.
mmwc-autoeps The MMwcC-Algorithm, min-eps was auto-estimated, no preprocessing.

For all clustering processes we took the constants provided by Arteaga because he
claims that they work best on the data [3].

It is reasonable to conduct this step by humans because if it would be possible to
check the polygons automatically against the historic maps, then the classification of
the polygons in the first step of the crowd-souring project could have been omitted. It
is important to note that we did not evaluate the accurateness of the polygons.

From the first phase, we expected all of the detected polygons to be semantically
incorrect — otherwise they would have been rated with “yes” in the first place. The
amount of correct user-contributed polygons should be fairly high, but not one hundred
percent because we knew that some users did not interpret the maps right or did not
delete unnecessary corners. Then we hoped that the algorithms without outlier removal
are equally successful as the algorithms with outlier removal because we claimed that
this step is not necessary. At last, we wanted to find out how the min-eps-estimation
would perform because we had no idea how it will react to the real data. We knew
already that the estimation will fail on some groups but we were anxious to see how
many good polygon consensus this heuristic would give.

In the second phase, the accuracy of the polygons was rated. This could be done
automatically because all edges should lie on walls. These walls are painted black.
Consequently, the pixels behind the edges should be very dark. Using the method
Color.getBrightness() of the NET-Framework [I], we obtained a value between 0.0
and 1.0 for each pixel, where 0.0 represents a completely black pixel. Given a polygon,
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Fig. 6.2: The instance on the left is semantically incorrect because the polygon is certainly not
representing a building. The image in the middle is also not correct because it has
one corner too many. Even if there are two inaccurate points on the right picture, this
polygon is semantically right because it covers the correct shape and has the proper
amount of corners.

our tool found the average brightness for each edge. Then the average of all edges of
the polygon was calculated. All edges are weighted equally no matter how long the
respective edges are. Given this average brightness, we can rate the accuracy of the
polygon. Low values mean a high accuracy, high values mean a low accuracy. This
result does not depend on the semantic correctness of a polygon as Figure [6.3] shows.
The left and the center images show semantically correct polygons, but the accuracy of
the center image is very bad compared to the left picture. The right picture shows a
accurate polygon, yet, this polygon is semantically wrong.

Our hope with the results of this phase was that the polygons given by our algo-
rithms were more accurate than the user polygons. If that is the case, then using those
algorithms is even then useful if the users entered only semantically correct polygons.

6.4 Results of the Evaluation

In the first phase, every polygon was reviewed by three persons. Of the three votes given
by the three persons, the majority determines if the polygon is semantically correct. The
results are grouped by source in Figure It shows that our exceptions turned out to
be true. In fact, all detected polygons were wrong, while most of the other polygons are
correct. It became also clear that by using one of the algorithms with fixed min-eps-value
the probability to obtain a correct polygon is higher than by simply select one of the
user polygons to be the consensual polygon.
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Fig. 6.3: The leftmost polygon is correct and has an average brightness of 0.36, the polygon
in the center has an average brightness of 0.48, but it is semantically correct. The
last polygon has an average brightness of 0.38, which is pretty small. However, the
polygon itself is not useful.
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Fig. 6.4: The diagram shows the distribution of the Yes/No votes for each of the sources. All
detected polygons were semantically wrong while most of the user polygons were cor-
rect. However, the amount of correct polygons could be increased by using one of our
algorithms except for the algorithms estimating min-eps.
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Fig. 6.5: In this case, all polygons have 4 corners. When using a autoeps-variant, the longest
plateau with 4 clusters is searched. This state can only be reached when two clusters
merge together, resulting in the image on the right. Naturally, there would have been
six clusters.

It is also interesting to examine the question whether the algorithms agreed in a
particular polygon group. Of the 200 investigated groups, in 122 cases all algorithms
produced a semantically correct result. In 45 of the remaining groups, the autoeps-
algorithms were not able to produce a semantically correct polygon while the results
of the other algorithms were correct. All of those 45 groups were reviewed and we
found that in 42 cases, the polygons described different buildings. Such a situation is
depicted in Figure 6.5 The other three groups, on which the autoeps-variants failed,
contained a large amount of polygons with too many corners that the users simply put
on the border. This is the same problem that Figure [6.1b|concerns. In those 45 groups,
the polygon consensus itself was ambiguous. In such cases, the autoeps-variants gets
confused and returns a wrong polygon which can interpreted as an indicator that there
is no obvious polygon consensus. The other algorithms, however, return a semantically
correct polygon based on the user inputs because they can choose any polygon which is
backed up a sufficient amount of users. In such cases there is no indicator that there was
actually no real polygon consensus in the group. Yet, there were two very interesting
groups in which only the auto-eps variants found a correct polygon. In this case, the min-
eps-value of Arteaga was too high causing two clusters to merge while most of the users
recognized both near corners as can be seen in Figure Therefore, the autoepsvariants
using the median worked well.

In 17 cases, the preprocessing turned out to be necessary. The algorithms without
removing the outlying polygons did not find a correct polygon. In the remaining 16
groups, there was no polygon consensus because the user fixes were parted in several
equally often selected polygons. Because of that, the choice which consensual polygon
to take was arbitrary and so it was different for each algorithm.

We conclude from these observations that if we had removed the outlying polygons
in the autoeps-variants, they would have worked better. We also conclude that the
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Fig. 6.6: This is an example for the disadvantage of a constant min-eps for all groups. On the left
side, the result of the Voting-Algorithm with Preprocessing and Clustering is printed.
The right images shows the result of the auto-eps variant of the MMwc-Algorithm.

fixed min-eps for clustering the corners delivered more correct polygons than the user
fixes. Consequently, one preparing step is needed, either outlier removal or clustering
the corners. Based on the dataset, one of them might be easier to implement. With the
data from the Building Inspector it is obviously easier to cluster the corners with a fixed
min-eps than to remove the outliers. But on other datasets it may be easier to remove
the outliers than to give a fixed min-eps. This choice can be made based on the kind of
data.

If we plot the average brightnesses of each source, we obtain the diagram of Figure|[6.7a]
It is interesting that the detected polygons have the worst brightness of all because the
image-detecting algorithm works by identifying dark lines the maps. The result of this
evaluation implies that if the image-detecting algorithm fails then it fails completely. We
see also, that the brightnesses of all other sources are lower and, therefore, the polygons
are more accurate. However, the values of these sources are not interpretable straight-
away because they also include those polygons which were semantically wrong. We are
only interested in the accuracy if the polygon itself is reasonable. Figure presents
also the average brightnesses, but now only of those polygons which were semantically
correct.

Given the results of the brightness, it is still arguable to select the user-polygon which
has the lowest brightness and consider that as the polygon consensus. In fact, in 185
of the 200 groups, this strategy would yield a semantically correct polygon. In 121 of
those 185 groups, the algorithms found a more accurate, semantically correct polygon
then the users. This result strengthens our thesis that using the algorithms s better
then selecting the darkest user polygon.
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(a) The average brightness of the resulting polygons for each source. These values include all
polygons, even if they were semantically wrong.
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(b) The average brightness of the resulting polygons for each source, using only the polygons
that are semantically correct. This image does not show the detected polygons because there
were no correct polygon consensuses from the image-processing algorithm.

Fig. 6.7: The average brightnesses using all polygons versus only the correct ones.
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To conclude the evaluation, we finally want to know which algorithm is the best to
use. We already know that the choice whether to remove the outliers or to cluster the
corners using a fixed min-eps depends on the kind of data. Therefore, we simply count
how often the Voting-Algorithm or the MMwc-Algorithm found more accurate polygon
consensus without regarding the specific variant. It turns out, that on our data, the
Voting-Algorithm produced in 93 cases the most accurate and correct polygon and the
Mwmwe-Algorithm produced in 83 cases the most accurate polygon. In the remaining
cases, they found equally accurate polygon consensuses. This implies the both algorithms
are equally suitable to work on the given data. Despite the theoretical disadvantages of
the Voting-Algorithm we recommend using it because it is easier to implement and less
complex than the MMwc-Algorithm.
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7 Conclusion

Among the tasks to be done for digitizing history maps of New York City, the extraction
of building-footprints can be found. Users were asked to correct the polygons which were
detected by a image-processing-algorithm. This thesis proposed several algorithms to
obtain one polygon consensus from a group of user-contributed polygons. Some of these
algorithms can be used indeed to generate a reasonable polygon consensus representing
building outlines.

The Pile-Algorithm uses a geometric approach. It interprets the polygons as indepen-
dent geometric structures and finds the area that is covered by « - n edges, where « is
a parameter given by the user and n the amount of polygons. The big disadvantage of
the Pile-Algorithm is its behaviour at the corners of the polygon consensus. Because of
the geometric approach, many additional corners are produced in this area. Therefore,
the Pile-Algorithm is not suitable for calculating polygons representing buildings.

The other two algorithms cluster the polygons first. Consequently, the input polygons
are no longer independent geometric structures, but rather related clusters. Then both
algorithms build a graph of these clusters and search for a cycle in the graph. After
the post-processing, that cycle represents the consensual polygon. We have seen that
the MMwcC-Algorithm returns in some theoretical cases better results than the Voting-
Algorithm. However, the Voting-Algorithm is easier to implement. Both algorithms
need a constant to cluster the polygons. We proposed a heuristic method to find this
constant automatically for each polygon group.

We did evaluate the cluster-based algorithms with real world data from the Building
Inspector and found that one of the pre-processing steps can be skipped without loss
of quality. Because these pre-processing steps are very different, it may be easier to
apply one or the other to a dataset. Using our results, one can decide, which of those
pre-processing step is more suitable for the data at hand. Finally, we concluded that the
Mwmwc-Algorithm does not have a practical advantage over the Voting-Algorithm. We
therefore recommended to use the Voting-Algorithm because of its simplicity.

There are more topics to be explored. The most interesting question is a profound
analysis of the pre-processing step to remove remote polygons and how it affects the
consensual polygon. The evaluation showed that the results with and without pre-
processing can differ. Another issue is the interpretation of the weight function in the
Mwmwce-Algorithm. We found a weight function that works well, but it would be nicer
to be able to interpret the weights with regard to the actual polygon group. Another
subject of further work is to find a better min-eps-estimation which does not get as easily
confused as our algorithm. Or it can give a warning instead of a wrong polygon if it
gets confused. Generally, it would be nice if all our algorithms could rate their results
in some way so that the user can filter bad ratings and review those groups manually.
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We also suggest to analyze the realization of the crowd-sourced part of the Building
Inspector. One major problem was, that the users did not know which building to select
because the shown polygon covered several footprints. This lead to many outliers we
had in the groups. A possible solution is to simply show the centroid of the image-
detected polygon and ask the users to select the building containing that centroid. Then
all polygons would describe the same footprint. Also, the definition of buildings are
not really precise. The definitions say that a building must have a background color.
But there are many footprints having two or more background colors. Further, some
footprints are completely dotted and have a background color. We do not know whether
these footprints are buildings, too. With more precise definitions, the user-fixed polygons
would have been much more homogenous and the calculation of the polygon consensus
a lot easier.

On June 18, 2016, a paper with the title “Polygon Consensus: Smart Crowdsourcing for
Extracting Building Footprints from Historical Maps” was submitted to the 24th AcMm
SIGSPATIAL 2016. It was written alongside this thesis by Benedikt Budig and Thomas
van Djik. I provided the implementations and the data used in the last chapters.
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