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Zusammenfassung

Wir stellen einen effizienten Algorithmus fiir das Zeichnen von rdumlich-
informativen, linearen Kartogrammen vor: Es wird ein geometrischer Graph
transformiert, so dass gegebene Kantenldngen realisiert werden, wihrend die
Ausrichtung der Kanten so wenig wie moglich verdndert wird. Anwendungen
sind beispielsweise das Zeichnen von Reisezeit-Karten und U-Bahn-Planen.
Unser Algorithmus basiert auf einer linearen Optimierung mit Hilfe der Me-
thode der kleinsten Quadrate und arbeitet mit weichen Nebenbedingungen
fir die realisierten Kantenldngen und Ausrichtungen; wir erreichen einen
schnellen Algorithmus, indem wir diese Nebenbedingungen linearisieren. Diese
Linearisierung kann auch gegebene Kantenausrichtungen heuristisch approxi-
mieren; wir benutzen dies auf geometrischen Graphen um die Winkelauflosung
zu verbessern und Oktilinearitdt zu approximieren. Wir demonstrieren, wie
diese Techniken zur Erstellung von U-Bahn-Pldnen benutzt werden kénnen.
Schliefflich zeigen wir experimentell die Echtzeit-Tauglichkeit des Algorith-
mus und seine Fahigkeit gute Realisierungen fiir praxisnahe Instanzen zu

finden.






Abstract

We introduce an efficient algorithm for drawing spatially-informative linear
cartograms: transforming a geometric graph such that given edge lengths
are realised, while distorting edge directions as little as possible. This has
applications in drawing travel-time maps and metro maps, for example. Our
algorithm is based on linear least-squares optimisation and works by having
soft constraints on the realised edge lengths and edge directions; we obtain a
fast algorithm by linearising these constraints. This linearisation can also be
used as a heuristic to approximate given edge directions; we utilized this on
geometric graphs to improve angular resolution and approximate octilinearity.
We demonstrate how these techniques can be applied to drawing metro maps.
Lastly, we show experimentally that the algorithm has realtime performance
and that it is able to find good realisations of practical instances.
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Chapter 1

Introduction

A linear cartogram (or: edge-value cartogram) is a drawing of a network
such that every edge is drawn with a prescribed length. In general this is
not possible: consider for example a triangle with two short edges and one
very long edge. Therefore, compromise between the edges may be required.

One application of linear cartograms is the so-called travel-time map [7],
in which a geographic network is deformed so that Euclidean distance can
be used to read off (approximate) travel time. This can be used as a visual
aid for planning public transport journeys or as visualisation of traffic jams.
Being able to compute such maps in realtime enables personalised maps
and realtime traffic information. With runtimes in the order of tens of
milliseconds and low memory usage due to utilising sparse matrices our
algorithm is ideally suited for interactive mobile applications. Another
application of linear cartograms is in the construction of metro maps, where
it is often desirable to draw the stops with uniform spacing.

When drawing a travel-time map, we should not care solely about the
lengths of edges: in many applications, the original map must be somewhat
recognisable in order for the cartogram to be useful. This is true even for
metro maps: though they are heavily stylised, with an emphasis on the
topological rather than geographic aspects of the network, they too should
ideally not contradict the reader’s mental map. To facilitate this, we say
a spatially-informative linear cartogram should, as much as possible, not
change the direction of edges. Our algorithm is able to enhance the readability
of metro maps by improving angular resolution and realising approximate
octilinearity; still under the premise of changing edge directions as little as
possible.

We use least-squares optimisation to construct our drawings. This well-
known mathematical framework can be interpreted as attempting to satisfy
a contradictory set of soft constraints as well as possible. We briefly review
it in Chap.
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Our contribution

Firstly, we give an algorithm for spatially-informative linear cartograms
(Chap. . It is based on soft constraints for edge length and edge direction.
These constraints are non-linear, so we develop a linear approximation.
Instead of asking the optimisation to leave the edge directions unchanged,
we can also ask it to realise given edge directions (Chap. . We use this as a
heuristic for improving angular resolution and approximating octilinearity in
graph drawings. Linear cartograms and the realisation of given edge directions
can be used independently or together; both use least-squares optimisation
and both work well for the drawing of metro maps. We demonstrate this in
our case study (Chap. . Lastly, we show experimentally that our algorithm
is efficient and effective in computing linear cartograms as well as realising
given edge directions (Chap. @ On real data, it has runtimes in the order
of tens of milliseconds.

In the literature on linear cartograms, the issue of edge intersections
has been largely ignored. Being based on least-squares optimisation, our
algorithm can ensure that the a crossing-free input drawing remains crossing-
free after transformation by using the event constraints from [22]. We extend
this approach for metro map drawing and propose two methods that prevent
branches of metro maps from getting placed in close proximity.



Chapter 2

Related work

The concept of a travel-time map dates back to Clark [7], who draws a
single-source time cartogram by starting at a source vertex and building
the network outward in a breadth-first-search manner. An algorithm for
travel-time maps of a single source that also deforms the underlying map
along with the network was given by Bies and van Kreveld [I]. Buchin et
al. [0] propose another approach to maintain the underlying map by keeping
the vertex positions fixed and replacing straight lines between vertices with
sinusoid curves of desired length.

The abstract problem of drawing a set of points such that a given set of
point pairs has prescribed distance is known as graph realisation. Saxe [20]
and Cabello et al.[6] have shown that this problem is A/P-hard in many
settings and variants. Still, the problem is well studied, for example in
work on sensor network localisation [9, [10]. Specifically in the context of
graph drawing, there is a relation to multidimensional scaling, as noted for
example by Gansner et al. [I1]. In fact, multidimensional scaling has been
applied to time-distance maps by Kaiser et al. [I3]. Such approaches are
computationally somewhat expensive: they typically require an iterative
solver. Inoue and Shimizu [2I] use least-squares optimisation with linearised
constraints depending on edge directions for computing linear cartograms,
similar to us. Their linearisation, however, is less flexible and they also
require an iterative solver.

Of particular interest to us are the focus-and-context metro maps of
Wang and Chi [23], based on non-linear least-squares optimisation. They
use a course-to-fine approach, whereby they first find a solution to a much
simplified version of the network and then later reintroduce the omitted
vertices. This helps with convergence and runtime. In contrast, our algorithm
is easily fast enough to be run on an entire network at once, and since our
model is linear we always find the unique optimal solution (to our linear
approximation). The runtime of our algorithm cannot be directly compared
to that of Wang and Chi, however, because their algorithm attempts some

3



4 Chapter 2. Related work

things that are outside the scope of this thesis; for example, they label
the stations on the focused path. For general metro maps Noéllenburg and
Wolff [19] propose an algorithm based on mixed-integer programming; their
problem design also includes the labeling of stations. Since mixed-integer
programming is computationally expensive, they use a network of reduced
size and then reintroduce omitted vertices, similarly to Wang and Chi.

In this thesis we consider a drawing to be just the positions of the vertices.
Bottger et al. give an algorithm to morph additional information along with
the network [3].

Least-squares optimisation

Here we briefly review the basic framework of least-squares optimisation.
Least-squares optimisation is a standard approach to find approximate
solutions to overdetermined systems of equations. A system of equations is
considered overdetermined if there are more equations than variables. Given
a set of variables and a overdetermined system of equality constraints, least-
squares optimisation asks for values of the variables such that the constraints
are satisfied “as well as possible,” in the following sense. Given the variables,
the discrepancy of a constraint is the difference between its left-hand and
right-hand side. Least-squares optimisation asks for a solution such that the
sum of squares of discrepancies is minimised, hence the name. Since any
constraint is allowed to have some discrepancy, such constraints are called
soft. E| It is possible to assign different weights to each of the constraints by
multiplying every equality constraint on both sides with the square root of
their prescribed weight.

If all constraints are linear, we can represent the system of constraints
using a matrix equation Ax = b, where x is the vector of variables, A the
coefficient matrix and b the vector of the constraints’ right-hand sides. Then
the least-squares solution  minimises the norm of Az — b. It is well known
that this minimum is achieved by solving ATAxz = ATb. If the constraints
are (over)determined, this has a unique solution that can be readily found
using standard linear-algebra software. This is particularly efficient if A and
ATA are sparse [15].

If the system of constraints is not linear, a common approach is to
use a sequence of linear approximations in a hill-climbing-like approach.
Such algorithms are computationally more expensive, since they have to
potentially solve many instances of linear least squares. They can also have
problems with convergence and can be sensitive to the required initial linear
approximation used [2], potentially finding a bad local optimum even if the
algorithm converges.

1Tt is possible to have hard equality constraints by substituting variables, but we do
not use this.



Chapter 3

Linear cartograms

In this section we model the problem of drawing a linear cartogram in the
framework of least-squares optimisation. In particular, we model it using
a linear model. This is in contrast to for example Wang and Chi [23] who
have a similar approach, but use a non-linear model and therefore require an
iterative solver.

First we define the objective function that we would actually like to
optimise. Unfortunately, this objective function is non-linear, so we develop
a linear approximation. In particular, we don’t use the common approach
of iterated linear approximations using Jacobian matrices; instead, we are
more careful about what linear approximation we use.

Preliminaries

By convention, we use uppercase characters for constants and lowercase
characters for variables. Let G = (V, E) be a connected graph, possibly
representing a road network or a set of metro lines. We are furthermore
given the original position P, = (X,,,Y,) of every vertex v € V as input: this
is the ground truth in relation to which we want to be spatially informative.
For geographic networks these would be real-world positions. We also get a
desired length L. for every edge e € F.

As variables of our optimisation problem, we take the coordinates of
the vertices: z, and y, for every v € V. For notational convenience, let
Py = (%y,yy). Then ideally we want a drawing of G that realises the re-
quested lengths exactly and leaves the edge directions unchanged: a spatially-
informative linear cartogram. In a perfect drawing, we have for every edge
e = {u,v} that

Pv_Pu

D, = h D=L, —— .
Pu + De Do, wihere e e HPU_P’U,H

(3.1)

Note that this equation is linear in the variables, since D, is a constant.
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These constraints do not fully determine the coordinates of the vertices:
the entire drawing can be translated without affecting the constraints. There-
fore we arbitrarily fix the position of one of the vertices. When displaying the
map, the size of the computed drawing follows from the requested lengths
given in the input; if the drawing needs to fit a certain extent and only
the relative length of the edges is important, a uniform scale factor can be
applied as postprocessing.

3.1 Non-linear objective

The stated objective of a spatially-informative linear cartogram is to realise
certain edge lengths and additionally care about the direction of edges. Our
optimisation objective is therefore to find a drawing with small error in
length and direction. Consider soft constraints that set ||py, — pull = Ly}
and the direction of (p, — py) equal to the direction of (P, — P,) for every
edge {u,v} € E. We call these the length constraints and the direction
constraints respectively. Note that they are not linear in our variables.

For every edge e = {u,v}, let Ar, be the discrepancy of its length
constraint, that is, Ar. = ||py—pu||—Le. Similarly, let Ac, be the discrepancy
of e’s direction constraint. We weight the constraints by factors depending on
the requested length L.. Call these weights Wy (Le) and W, (Le) respectively.
Then a least-squares solution to this set of constraints minimises

Z Jpolar(Aae, Are, L), where (3.2)
ecE
Foolar(e, 7, L) = Wo(L) - o + Wi(L) - 72 . (3.3)

Our choice of weights is led by the “visual impact” of errors: two errors
with the same value according to fpolar, should have approximately the same
visual impact on the network. This, of course, is always a subjective matter.
However, it is agreeable that the same absolute length error has more impact
on smaller edges. Similarly, we consider the same relative length error to
have more impact on longer edges. We decide to compromise between the
two and set 1
I
Figure shows our weight W;(L.) in contrast to absolute and relative
weighting.

This leaves the choice of weight W, (L) for the direction discrepancy.
Here we decide that a direction error of 7 /4 radians is equally as bad as being
too long or too short by 50%. Setting this equality and using Wy(L.) = L%,
we get

Wi(Le) = (3.4)

Wa(Le)'(Z>2:Lle‘(L;>2 — WL =

4L,
w2

(3.5)
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» Absolute weighting

- » 50%error » Our weighting

» Relative weighting

Figure 3.1: Our weight of length errors in contrast to absolute and relative
weighting: The black edges show the prescribed length and the grey edges
the actual length. The edges on the left side serve as reference and the
edges on the right side show equally bad errors according to the respective
weighting.

Figure 3.2: Weighting of length error to direction error: each of the grey
edges is considered equally bad according to the black edges as prescribed
lengths.

Note that the proposed length weight and the chosen equality also lead
to lower weight on direction discrepancy on short edges. The effect of our
weights is illustrated in Fig.

The output of our algorithm should be independent from the scale of the
input network; this makes it reasonable to change the scale of the output
to fit a certain extent. Hence, we must confirm that the objective function
fpolar 18 scale invariant with our weights W, and W,.

Theorem 1. The objective function

fpolar(avraL) = Wa(L) : a2 + W?"(L) : T2

is scale invariant for weights Wy (L) = % and W,(L) = +.

Proof. Let fpolar(cv, 7, L) be the objective value of the original input network.
Let s € R* be the constant scale factor between the original and a scaled
input network. Notice that only r and L are affected by scaling; « stays the
same. Hence, fpolar(cv,s -7, s+ L) is the objective value for the scaled input
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network. The following holds:
fpolar(a, s - 7,8 L) =Wy(s-L)- a? + Wi(s-L)-(s- r)2

— . 2
- a+s-L (s-r)

AL, 1,
:S'fpolar(aaruL)

Therefore the objective value just gets scaled by the constant factor s: both
optimisations lead to the same result. In other words, the objective function
fpolar(ax, 7, L) is scale invariant. O

3.2 Linear approximation

As noted, we cannot minimise using linear least squares. Consider ((3.1])
for some specific edge. It actually represents two constraints: one for the x
coordinate and one for y. We could instead express these constraints in some
other basis, if the transformation is linear. Considering that we would like to
penalise direction error and length error differently, we rotate the coordinate
system such that the edge is aligned with one of the axes. Then there is a
‘perpendicular’ and a ‘parallel’ discrepancy 4, and 4, which for small values
are similar to direction and length. These discrepancies can be calculated as
follows for an edge e = {u,v}:

.(PU_PU)J— Pv_Pu _
[Py — Pul| [Py — Pul|

We set them to zero with soft constraints. Notice that the dot product is
with a constant vector and therefore linear. See Fig. [3.3| for the geometry
involved. Now that we have separate constraints for the perpendicular and
parallel error, we can weight them differently; call these weights W, (L.) and
W)|(Le). Then the linear soft constraints will optimise the following, as a
function of «, r and L (Compare ):

fim(ev, 7, L) = W (L) (sin(e) (L + ))*+W}|(L)- (cos(a)(L + 1) — L)* (3.6)

Note that matrix A that encodes these constraints is sparse, since every con-
straint involves only a constant number of variables. Experiments show that
on practical instances ATA is also sparse. Linear least-squares optimisation
with such sparse matrices A and A”A is particularly efficient [I5].

Solving the optimisation with objective function may in general
result in a drawing with edge crossings. Edge crossings are undesirable,
because they make drawings harder to read and also often contradict the
reader’s mental map. Therefore we always use the event constraints from [22]
to prevent intersections, unless noted otherwise.

oL = (pv — Pu) and  d) = (py — Pu) - Le
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Figure 3.3: The geometry of parallel and perpendicular discrepancies.

3.3 Parameter values

This leaves the choice of W, and Wj. Consider the difference between our
actual objective (fpolar) and the objective we can efficiently optimise ( fiin):
Let fair = fpolar — fiin- We want fgig to be small for all reasonable values of
« and r: then the objective that we actually optimise is close to the objective
we want to optimise. We assume that all errors in a reasonable range are
equally as likely; to that end, we pick W, and W) so as to minimise

L2 I )
/ faig(a,r, L) da dr .
—rj2 J-z

The bounds o € [-7; §] and r € [—%; %] have been chosen because we rarely
observe worse discrepancy, so we concentrate on fgi for relevant parameter
values. Solving this for the weights gives the following;:

Wi(Le) = “2PL and W (L) = 0 (3.7)
e e
The calculation is standard, but rather unwieldy, so we present Mathematica
code. Tedious manual calculation confirms these results.
First of all, we define the error functions fpolar (fPolar), fiin (fLin) and
their difference fDiff.

In: | fPolar[a_,r_,L_]:=Warc x "2+ Wrad * r"2;
flin[a_,r_,L_] := Wperpx*(Sin[a](L+1)) 2+Wparx*(Cos[a](L+r)—L)"2;
fDiff[o_,r_,L_] := fPolar|a,r,L] — fLin[a, 1, L];

Then we integrate fDiff squared over o € [—7; 7] and r € [—%; %] respec-
tively.

In: | Integrate[fDiff|wo,r,L]"2,{a,—Pi/4,Pi/4},{r,—L/2,L/2}] ‘
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Next we minimise this integral over Wperp and Wpar. We specify appropriate
bounds for the weights and L and state that they must be real numbers.
Applying Simplify and N convinces Mathematica to display a numeric result.

In: | Simplify[N[Simplify]

Minimize[{%, Element[Wperp, Reals], Wperp>=0,
Element|Wpar, Reals], Wpar>=0,
Element[L,Reals], L>0,
Element[Warc,Reals], Warc>=0,
Element|Wrad,Reals],Wrad>=0},

{Wperp, Wpar}]

JI]

This leads to approximately the following values. Notice the dependence on
L; this is a constant for our optimisation problem.

Out: | Wperp — 0.115959 Wrad + % Warc

Wpar — 0.694059 Wrad + 2784713 yarc

Following (3.4) and (3.5), we set Wrad = 1 and Warc = %. This gives the
following values for W and W):

In: | Wperp = 0.115959 % 1/L 4 0.733046/(L"2) = 4L/(Pi"2)
Wpar = 0.694059 * 1/L + 0.764513/(L"2) % 4L/(Pi"2)

.| 0.413051
Out: T

1.0039
L

Then we are done: these are the values in (3.7)).
Notice that our proof of Theorem [l| works similarly for the objective

function fiin(ct,7, L) and weights Wy (L) = 2433051 apd Wy (L) = 1.0039,

Corollary 1. The objective function
Ffuin(oe,r, L) = Wi (L) - (sin(@)(L + 7)) + W) (L) - (cos(a)(L +7) — L)*

is scale invariant for weights W (L) = 243051 gpq Wy (L) = 1.0039

3.4 Comparison to one Jacobian step

We briefly introduce the textbook way of doing least-squares optimisation
with a non-linear system of constraints. This uses a sequence of linear
approximations with Jacobian matrices in a hill-climbing-like approach.
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Each iteration of the hill-climbing process takes some approximate solution
for the prescribed constraints. It performs a least-squares optimisation on
changes that improve the given solution; the improved solution is then used
for the next iteration until a local optimum for this procedure is reached.

The optimisation linearises the length and direction constraints from
Sect. The constraints consist of functions fien, and fqir calculating the
length or direction of an edge on the left-hand side and the expected result
on the right-hand side. Let A be the Jacobian matrix of these functions at
the values of the current solution. Call b the vector of differences between
the desired lengths and directions of edges and their values in the current
solution. Then Az = b encode the desired linearised constraints for the
optimisation.

Let p. = (x¢,y.) and pg = (x4,yq) be the coordinates of two vertexes
c and d. We used the following length and direction functions for an edge

{c,d}:

flen(xca yaxd?yd) = ||pd _ch and

fair(%e, Yo, a, Ya) = atan2(yq — Ye, ¥4 — o) Where

arctan(¥) ifx>0
arctan(%) + 7 if y > 0,2 <0
tan(¥) — if y<0,2<0
atan2(y, x) = irc an(g) = 1 y o
5 ify>0,z=0
-5 ify<0,z=0
undefined ify=0,z=0

Let P. = (X,,Y.) and Py = (X,,Y.) be the coordinates of ¢ and d in the
current solution. Then we get the following Jacobian matrix A at P, and Py:

X.—Xy4 Y.—Yy, Xg—Xe Y,—Ye
A— [ Pg—P|] [ Pqa—P|| [[Pq—Pe|l | Pg—P|]
o Y,-Ye, Xe—Xg Yo=Yy Xg—Xe

Pa—Pell?  [[Pa—Fcl? NPa—Fell? [[Pa—Fcl?

The proposed method of this thesis only solves one instance of linear least
squares, so we only do the first Jacobian step to get a comparable approach.

We still need an initial approximate solution for this first step. In
default of a better alternative, it is reasonable to take the original position
P, = (X,,Y,) of each vertex v € V as the initial solution.
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Realisation of given edge
directions

Here we present a relatively straightforward modification to the above al-
gorithm; we present it separately because it can be applied independently,
outside of linear-cartogram applications. The idea is to realise given edge
directions instead of the original ones. Two use cases of this are improving
angular resolution and approximating octilinearity of the network. The com-
bination of these two things with linear cartograms give the most pleasing
results when drawing metro maps (see Chap. .

Note in that the definition of D, uses the normalised direction
P, — P,. We can simply use a different direction for each edge and do the
optimisation for those directions instead.

4.1 Angular resolution

One application of realising given edge direction is the improvement of
angular resolution. This increases the readability of the drawing. A possible
drawback on metro maps, for example, is higher Euclidean distance between
unconnected stations. This may lead to the impression that station are quite
far away, even if the distance between them is easily walkable.

Similar to Brandes et al. [4], we pick for every vertex a set of edge
directions that has perfect angular resolution and is most similar to the
original directions: we set them to have least-squares discrepancy compared
to the directions in the input drawing. Then we ask our optimisation
algorithm to realise these directions in our straight-line drawing; in contrast,
Brandes et al. use these balanced directions as tangents for cubic splines.
Note that these constraints do not force a path of degree-2 vertices to be
realised as a straight line, but it does smooths the path. Figure shows an
example of improving angular resolution on a public transport system.

13
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(a) Without angle resolution (b) With angle resolution

Figure 4.1: Crop of a public transport network (city centre of the Karlsruhe
public transport system). Notice that the angular resolution has improved
and that this benefits readability.

4.2 QOctilinearity constraints

Octilinearity is a typical trait for metro map drawings. In an octilinear
drawing every vertex has 8 available directions called ports in 45 degree
margins. By assigning each edge to a port and asking our algorithm to realise
these ports we can approximate octilinearity in our drawings. We call the
respective constraints octilinearity constraints.

Similar to angular resolution, we pick for every vertex an assignment of
edge directions to distinct ports that is most similar to the original directions
in a least-squares sense. Then we ask our optimisation algorithm to realise
these ports. The assignment of edges to distinct ports is a discrete least-
squares problem; it is solved as preprocessing for our main least-squares
optimisation.

Figure shows the minimum-cost flow network leads to solution of
this problem. Every segment in the network has capacity 1. The segment
from an edge e to a port p has the squared discrepancy between p and the
original direction as cost c(e, p). The capacities ensure that every edge gets
assigned to exactly one port; the set of assignments has minimum cost in a
least-squares sense, since we use a minimum-cost flow network. An optimal
solution with integer capacities for this network can efficiently obtained using
standard techniques [§].

Note that this minimization also assures that the embedding of the
vertexes is preserved.

Theorem 2. Every assignment of edges to distinct ports for a vertex that
minimaizes the discrepancy between the assigned ports and the original edge
directions in a least-squares sense, preserves it’s embedding.
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edges ports
c(e, p)

Figure 4.2: Minimum-cost flow network for octilinear edge directions for one
vertex. Every segment has capacity 1. The segment from an edge e to a port
p has the squared discrepancy between p and the original direction as cost

c(e,p).

Proof. We do a proof by contradiction. Assume that there is a minimal
solution which does not preserve the embedding. We say an edge moves
clockwise if the clockwise angle between it’s original direction and assigned
port is smaller than 7 radians, otherwise it moves counter-clockwise. Further
we say an edge a overtakes an edge b if

o they move in the same direction and the sector induced by a’s movement
completely covers the sector of b

e they move in different directions and their sectors overlap at any point.
Let a be the edge that moves counter-clockwise in this case.

Figure illustrates overtaking edges. Since our minimal solution does not
preserve the embedding, there must be such edges a overtaking b.

Let d, be the original direction of edge a and d; the original direction
of edge b. Furthermore be p, and p; the directions of the assigned ports of
these edges. We define Z(d, d’) as the absolute discrepancy of two directions
d and d'. Note that Z(d,d") = Z(d',d) holds. We assume without loss of
generality that a moves counter-clockwise.

Case 1. Edges a and b move in the same direction. We want to show that
switching the assigned ports of @ and b improves the solution. The squares
discrepancies of a and b amount to

Dyorm = £(da; pa)? + £(dp. po)* - (4.1)
If we swap their ports, we get

Dswap = 4(da7pb)2 + 4(db>pa)2 . (4'2)
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(=)

[

[

[

[

(a) Edges move in the same direction. (b) Edges move in different directions.

Figure 4.3: Edge a overtakes edge b while moving the same and different
directions.

Since the sector induced by a’s movement completely cover the sector of b,
it follows

Z(das pa) + £(dp, pp) = £(da, pp) + £(db, pa) (4.3)

as well as

£(dg,pa) > L(daypy) = £(dp, pa) > £(dp, pb) - (4.4)
Equation leads to

[£(das pa) + £(dy, po))* = [£(das py) + Z(dp, pa)]?
Duorm + 2+ Z(da, pa)£(db; P) = Dswap + 2 - £(da, pp) £(dy, pa) -
So to prove Dyorm > Dgwap, We can also show that
2 Z(da; pa) £(dp, o) < 2+ £(da; pp) £(dy, Pa)
Z(da; pa)Z(dy, py) < £(da, py)£(dp; Pa) - (4.5)

Rearranging leads to
0 < Z(da; po) £(dy, pa) — £(da; pa) £(db, po)
0 <BD £(da, py) £(dy, pa) — [£(das p) + Z(dy, pa) — Z(dp, py)] Z(dp, p1)
0 < £(das o) Z(dps Pa) = £(das o) £ (dps po) = £(db, Pa) Z(dp, p1) + £ (dp, pp)?
0 < [£(dps pa) — Z(dp, p)] - [£(da; o) — £(dy, pp)] - (4.6)

Inequality (4.6 holds, since both factors in square brackets are truly positive
due to (4.4). So switching the ports of a and b does indeed improve the
solution. This contradicts the solution’s optimality.
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dp

dy

Figure 4.4: The four possible cases of overtakes if edges a and b move in
different directions.

Case 2. Edges a and b move in different directions. We again want to show
that swapping their ports improves the solution. The discrepancies Dy orm
and Dgyap are the same as in (4.1)) and . Figure shows the four
possible cases of overtakes. The following inequalities hold for Case @

A(da,pa) > A(dmpb)
Z(db,pb) > l(dbapa)

For Case the inequality

Z(dbvpb) > 4<da7pb) + A(dbapa)

holds. In both cases Dnorm > Dgswap follows directly. Cases @ and @
work analogous to Cases @ and respectively. So switching the assigned
ports also improves the solution in this case. This is in contradiction to the
optimality of the solution.

It follows that every optimal solution must preserve the embedding. [

Note that the above proof works analogously if the ports are not octilinear
but arbitrary; that is as long as we minimize the direction discrepancy in a
least-square sense. Therefore the preservation of the embedding also applies
to angular resolution.

Remember that we calculated a set of distinct octilinear directions for
every vertex. We can now ask our optimization algorithm to realise these
directions; this gives approximately octilinear drawings. Figure shows
that our algorithm leads to good approximations of octilinear drawings.
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(a) Input drawing (b) Output drawing using octilinearity
constraints

Figure 4.5: The input drawing for the calculation of the octilinear edge direc-
tions and the output drawing of the algorithm using octilinearity constraints
with these directions.

The octilinear edge directions get calculated based on the input drawing in
Fig. @ The optimisation is then applied with these directions and produces
the drawing in Fig.

There are mainly two reasons we do not get fully-octilinear drawings:
Firstly, the least-squares optimisation is a trade-off between length and
direction errors. So often it will make small direction errors to satisfy length
constraints better; especially since realising edge directions is not the main
focus of our weights. Section [I.4] proposes a modification of our weights
for improved realisation of edge directions. Secondly, two endpoints of an
edge can be in disagreement about the port of the edge, since we optimise
the directions separately for each vertex. This will most likely lead to a
non-octilinear placement of the edge. This issue could be avoided by running
the port optimisation on the whole graph; however, we are not sure if this
problem is solvable in polynomial time.

Open problem. Find a polynomial-time algorithm which assigns every
edge of a graph a distinct octilinear port, while minimising the direction
discrepancies in a least-squares sense; or, prove that the problem is N'P-hard.

Additionally, the event constraints from [22] and the later introduced prox-
imity constraints (Sect. [5.1)) may interfere with the octilinear placement of
edges.

4.3 Runtime improvement

We propose a simple tweak to our angular resolution and octilinearity con-
straints to improve the runtime our algorithm. Consider the calculation
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Figure 4.6: Mean direction d for an edge which vertexes prefer two different
directions d and d'.

of edge directions for angular resolution as well as octilinearity constraints.
Both work vertex-wise, calculating two, possible different, directions d and
d' for every edge. Our first approach was to just use two sets of constraints
for each edge; this doubles the number of constraints.

A better way to handle this problem is to combine those two directions into
one, so we only get a single set of constraints per edge. The straightforward
choice is the “mean” direction d of d and d’; where d is the direction which
has (the shorter) equal discrepancy to both d and d’ (Fig. [£.6). Not only
does this speed up our algorithm, but we will also show that it results in an
equivalent optimisation problem according to the non-linear error function

b} polar (see (3.3)).

Theorem 3. Optimising an edge e for two directions d and d' in a least-
squares sense according to the non-linear error function fpeir is equivalent
to optimising for the mean d of these directions.

Proof. We calculate the length and direction errors for both optimisations
and show their equivalence.

Length error. Let Ar, be the discrepancy of the length constraint for edge e.
Then we get the error term

Elen,two =2 Wr(Le) A7"62
for the two directions d and d’ and the error term
Elen,mean - Wr(Le) Arez

for the mean direction d. Note that both error terms are the same apart
from a constant factor of 2 of Ejen two-

Direction error. Let Aa, be the discrepancy of e’s direction constraint for
direction d and § the absolute discrepancy between d and d. Note ¢ is also
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[ ]

d

Figure 4.7: Geometry for calculating the direction error terms.

the absolute discrepancy between d and d’. Then the error term with two
directions amounts to

Edir,two = Wa(Le) (5 + Aae)Q + Wa(Le) (5 - Aae)Q
=2 Wa(Le) 62 42 - Wo(Le) Aa?

and the error term for the optimisation on d is
Edir,mean - Wa(Le) Aae2 .

Figure [£.7 shows the geometry involved in the calculation. Notice that the
error term for two directions is independent of the sign of Aqe; it does
not matter if the error is clockwise or counter-clockwise of d. Furthermore
the term 2 - W, (L) 5% in Egir two is constant and can be ignored for the
optimisation. The remaining error terms again only differ by a constant
factor of 2 on Egiy two-

Since the error terms of both, the length and direction error, only differ
by the same, constant factor on the side of the two directions, it follows that
both optimisation problems are equivalent. O

It is to be noted that the Theorem (3| only holds if we exclusively use
the proposed set of edge constraints. If we want to use different types of
constraints, we would have to multiply them by factor 2 to get an equivalent
optimisation problem in the two directions case. However, we only use the
constraints with mean direction for every edge, so we do not have to worry
about that.
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4.4 Weight adjustments

Here we introduce adjustments for our weights to focus on realising edge di-
rections. There are instances where we mostly care about realising prescribed
directions and not so much about the length of edges; this is especially the
case if we ask for an octilinear drawing. We can achieve this behaviour
by changing the weights W) and W/, so that they put more emphasis on
the direction discrepancy when computing octilinear drawings. For the new
weights we decide that a direction error of 7/30 radians is already as bad
as a length error of 50% (instead of 7/4 radians earlier). This leads to the
following weight W, (L) for direction discrepancies:

Wa@).(W)Q:l.(L)z w2

30 L 2 2

The weight Wy (L) = 1 stays the same.
We then calculate W) and W, analogous to the values in (3.7)). Since the
adjusted weights will put more emphasis on the direction discrepancy, we

expect direction errors to be smaller than before. Therefore we also redo the
integral with the bounds a € [~Z5; 2] and 7 € [—~%; £]. Next we minimize

this integral over W, and W) for W,(L) = % and Wy(L) = % This gives
us the following adjusted weights:

~15.2343 1.13797

Wi (L) 7 and W) (L) = T

We scale these weights to make them behave similarly to the original
weights. We decide that the weight for the length discrepancy should be the
same for both sets of weights; this gives us a scale factor of 1.0039/1.13797.
The square root of this factor is then applied to every set of edge constraints
that use the adjusted weights.

Figure 1.8 compares the approximately octilinear drawing with original
weights of Fig. to the drawing calculated with the adjusted weights.
We can see that our adjusted weights lead to better realisations of the
octilinear directions; so that the drawing computed with adjusted weights
almost reaches full octilinearity. Therefore we will use the adjusted weights
for all future computations that include octilinearity constraints. Note that
we can also get weights W and W), for other compromises between direction
and length discrepancy by analogous calculations.

Of course the improvement in direction realisation comes with the cost of
higher length discrepancy, since we always have a trade-off between direction
and length error. However, often the exact realisation of the edge length is
not needed, but rather more precise edge directions; for example on octilinear
drawings of metro maps.

The chosen ports for the edges can have crucial impact on the length
realisation, especially when we use the adjusted weights. Figure illustrates
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(a) Original weights (b) Adjusted weight

Figure 4.8: Comparison of drawings computed using octilinearity constraints
with original and adjusted weights.

T

a) Input network ) Drawing using octi- (¢) Drawing using octi-
hnearlty constraints with  linearity constraints with
original ports modified ports

Figure 4.9: Input drawing for port calculation. Drawing using octilinearity
constraints with these ports. Drawing using octilinearity constraints with
eastern port for edge e.

this. The octilinear drawing [(b)] is computed by our algorithm with the
network @ as input; the algorithm assigns edge e to the north-eastern port.
If we give the hint that the eastern port is better for e, we get drawing
with much better compromise on length discrepancy. This shows that the
ports of minimal discrepancy to the original directions do not always lead to
the best drawings. We leave the research for algorithms that resolve such
situations to future work.
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Application: metro maps

Now we apply our algorithm to compute metro map drawings. It is typically
part of the design of a metro map that edges have approximately uniform
length; this is, for example, design rule (R5) of Nollenburg and Wolff [19].
Wang and Chi [23] use a small set of different edge lengths to create focus
on a specific route through the network. Another approach is to use fo-
cusmap algorithms to scale part of the map (see for example Merrick and
Gudmundsson [I7]). This is used to enlarge the city centre and compress the
suburbs, which is often necessary for a good metro map. A unit-length linear
cartogram is a more direct way to achieve this: it automatically does what
needs to be done (using more space where the network needs it) instead of
using a roundabout step with a scale factor.

Now we combine both of our contributions: we draw a linear cartogram of
the metro map with uniform edge length while using the angular-resolution
improvement. Figure [5.1] shows the geographic input network and the
computed metro map of Sydney as an example. The magnified circle in
Fig. @, where vertex v gets very close to edge e, shows an issue with our
approach. This happens, because e and the edge of v do not intersect just yet,
so the algorithm does not add a constraint for intersection prevention. To fix
the issue we introduce a new set of constraints called proximity constraints.

5.1 Proximity constraints

As seen in Fig. one issue of linear cartograms with event constraints
from [22] is that vertexes can get arbitrarily close to edges. For edges that
are nearby in the network the angular resolution deals with this. The now
introduced proximity constraints will do the same for vertexes and edges
that are further apart in the network; they will also be used as a replacement
for the event constraints.

We add a set of proximity constraints to the algorithm if a vertex v is in
close proximity to an edge e. Similar to event constraints the optimisation

23
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(a) Geographical input network

(b) Metro map

Figure 5.1: Geographical input network and metro map of Sydney computed
with our algorithm using uniform edge length and angular resolution.
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(a) (b)

Figure 5.2: Euclidean distance dist(v, e) between a point v and an edge e as
dashed line.
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Figure 5.3: Network distance distyet(v, €) between a point v and an edge e
as dash dotted line. The numbers indicate the contribution of the edges to
the network distance.

will be rerun if proximity constraints were added, for up to 15 iterations. We
consider v and e to be in close proximity if:

e they intersect

o their Euclidean distance dist(v,e) is smaller than the uniform edge
length and the following holds for dist(v, e) and their network distance
distpet (v, €):

_dist(v.e) 05 (5.1)

distpet (v, €)

The Euclidean distance dist(v, e) is naturally the distance between the

point v and closest point = of edge e. We define the network distance

distpet (v, €) as the minimal number of hops from v to one of the endpoints

of e plus the fraction of e from this endpoint to z. Figures [5.2] and [5.3] show
examples for Euclidean and network distance.

The set of added proximity constraints demands that vertex v should

stay on a parallel of edge e with distance of the uniform edge length. The

chosen parallel is the one on the side of v (see Fig. [5.4).
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Figure 5.4: Parallel to edge e for the proximity constraint between point v
and e.

The constraints are a variation of our edge constraints. We just take the
parallel part of the constraints for an edge between v and z with uniform
edge length. This is sufficient; v has to stay on the proposed parallel to e if
we do not have a parallel error on that (imaginary) edge.

Figure [5.5] shows our metro map of Sydney when we add proximity
constraints to the linear cartogram with uniform edge length and angle
resolution. We can see that the proximity constraints did push v and e apart,
just as anticipated.

5.2 All-pairs metro maps

We introduce another variation of our algorithm for metro map drawing. It
keeps the uniform edge length for every edge in the network, but there are
also edge constraints put in for every other pair of vertices in the network.
We set the prescribed length of every edge induced by such a pair of vertices
to the minimal number of hops between the vertices in the network; note
that the number of hops between edges in the network is 1. This approach
is known from general graph drawing [14]. Similarly, Inoue and Shimizu [21]
use the travel times between all pairs of vertices of Japan’s railway network to
compute complete network linear cartograms. We call our approach all-pairs
metro maps.

Our intent behind the additional edge constraints for every pair of vertices
is to keep the branches of the network apart; they act as an alternative
to angular resolution and proximity constraints. They should also help
preserving the mental map of the network. Figure [5.6|shows the geographical
input network and the all-pairs metro map of Karlsruhe computed by our
algorithm. The encircled area highlights the main flaw of this approach: the
realised length of network edges can be quite bad.

To handle this problem, we apply a weighting function to the edge
constraints to put less weight on longer edges. Inoue and Shimizu take a



5.2. All-pairs metro maps 27

Figure 5.5: Metro map of Sydney computed as linear cartogram with uniform
edge length, angular resolution and proximity constraints.

similar approach with their combined linear cartograms. They, however, use
fixed weights, whereas we choose weights dependent on the prescribed length
L, for every edge e. We tested the following weighting functions:

L.—1
maxe Le

flinear(Le) =1-

1 .
freciprocal,x(Le) = (f)w with z € N
e

1 if L, <3
fdelayedRec(Le) = { 1

iy ifLe>3

Only freciprocal,z for > 2 led to good length realisations for network edges.
In our opinion, the best metro maps of this approach are achieved for xz = 3.

Figure shows the all-pairs metro map of Karlsruhe computed with
freciprocal,3 as weighting function. This metro map has approximately the
quality of our metro map using angular resolution and proximity constraints
(Fig. |5.7(b)). However, the all-pairs approach has two downsides: Firstly, we
get a significant increase in runtime, even without detecting intersections,
since we use edge constraints for all-pairs of vertices in the network. Secondly,
it is not clear, how exactly the all-pair edge constraints affect the layout of
the drawing. Therefore we prefer the approach using angular resolution and
proximity constraints.
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(a) Geographical input network

(b) All-pairs metro map of Karlsruhe

Figure 5.6: Geographical input network and all-pairs metro map of Karlsruhe
computed by our algorithm.
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(a) All-pairs metro map with weighting function freciprocal,3

(b) Metro map using angle resolution and proximity constraints

Figure 5.7: All-pairs metro map of Karlsruhe computed with freciprocal,3 @s
weighting function and metro map of Karlsruhe using angular resolution and
proximity constraints.
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Figure 5.8: Metro map of Sydney computed by our algorithm using uniform
edge length, proximity and octilinearity constraints. The port assignments
were calculated based on the network of Fig. [5.5

5.3 Octilinearity

We now combine our metro map algorithm with octilinearity constraints
(Sect. to get approximately octilinear metro maps. Note that deciding
if a network can be drawn as an exactly-octilinear, planar metro map with
preserved embedding is NP-hard, as shown by Nollenburg [18]. Figure
shows the metro map of Sydney computed by our algorithm using uniform
edge length, proximity and octilinearity constraints. The network of Fig. [5.5
was used to compute the port assignments. Our algorithm achieves almost full
octilinearity, while the drawing still resembles the geographic input network
very closely. For the metro maps of London computed by our algorithm with
and without octilinearity constraints see Appendix [A]

Next, we want to demonstrate how well proximity and octilinearity con-
straints with adjusted weights interact. Figures|5.9(b)[and [5.9(c)| shows two
clippings of metro maps; both were calculated with uniform edge length and
octilinearity constraints and both used as input for port assignments.
However, the second one does use proximity constraints, while the first does
not. Without proximity constraints some vertices get very close to realise the
octilinear directions in Fig. @ To prevent this our algorithm inserts two
proximity constraints in Fig. (dotted lines); they keep these vertices apart.
We still get a reasonable approximation of an octilinear drawing: due to the
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(a) Input network

(b) Metro map using octilinearity con- (¢) Metro map using octilinearity con-
straints straints and proximity constraints

Figure 5.9: Input network for port calculations. Metro maps calculated with
uniform edge length and octilinearity constraints. One with and the other
without proximity constraints (dotted lines in .

adjusted weights of octilinearity constraints towards direction realisation the
algorithm is able to change the length of the appropriate edges.






Chapter 6

Experimental evaluation

We have implemented the described algorithm in C'++4-, using the library
FEigen [12] for sparse linear algebra. Figure shows a screen shot of our
graphical user interface on Windows 7. All experiments have been run on
a desktop PC with an AMD Phenom™ II X6 1090T CPU at 3.20GHz.
Memory usage is not an issue in these experiments, since we use a sparse
representation of the matrices.

2] Cartogram Window | = e )
cPar: 1.003900

cPerp: 0.413051
Max. Arc Error: 0.000000
Max. Rad Error: 0.000000
Avg. Arc Error: 0.000000
Avg. Rad Error: 0.000000
Error: 0.000000
Scale Factor: 1.000000
Displacement Time: 1.000000
Reset
Calclate metro ma
T Angular resolution
I~ Proximity constraints.
I~ Octilinearity

Figure 6.1: Graphical user interface of our implementation on Windows 7.

33
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(a) Original (b) Uniform edge  (c¢) Plus angular ~ (d) Plus octilin-
length resolution earity

Figure 6.2: The results of our algorithm applied on a network of three lines
with uniform edge length, angular resolution and octilinearity constraints
getting cumulatively added.

6.1 Simple examples

Firstly, we test the behaviour of our algorithm on simple examples. Uniform
edge length, angular resolution and octilinearity constraints get examined.
We use the event constraints from [22] to prevent intersections if necessary.
Proximity constraints are not relevant here, since the network distance is not
high enough in these examples.

The first network we try are three edges of different length sharing one
common vertex. Figure shows the original network and the resulting
networks, when we cumulative add uniform edge length, angular resolution
and octilinearity constraints. The results are as expected: the algorithm and
the additions made work just as intended.

Next, we test a simple triangle similarly to the three lines (Fig. |6.3]).
When only uniform edge length is applied, the edge are only approximately
equally long, since the edge directions have to be distorted to achieve this goal.
However, when we add angular resolution, we practically get an equilateral
triangle. Also, the drawing using octilinearity constraints is good, even if it
is not fully octilinear: this is expected, since octilinearity and uniform edge
length are contradicting demands for a triangle.

Now we examine a rectangle embedded in another rectangle (see Fig. |6.4)).
In this network uniform edge length is not really possible: the achieved result
is reasonable, even though two edges are practically overlapping. Angular
resolution helps avoiding this. We get a decent drawing using octilinearity
constraints; the inner rectangle is squeezed horizontally due to intersection
prevention.
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Erardyd

a) Original b) Uniform edge ) Plus angular ) Plus octilin-
length resolutlon earlty

Figure 6.3: The results of our algorithm applied on a triangle with uni-
form edge length, angular resolution and octilinearity constraints getting

cumulatively added.
—
\

(a) Original (b) Uniform edge  (c) Plus angular ) Plus octilin-
length resolution earlty

Figure 6.4: The results of our algorithm applied on a network of a rectangle
embedded in another rectangle with uniform edge length, angular resolution
and octilinearity constraints getting cumulatively added.

6.2 Experimental setup

Here we describe our experimental setup. We have used real-world road
networksﬂ and metro mapsﬂ In these maps, we chose a set of affected edges
and ask for their length to change; for the other edges we ask for the length
to remain the same. Unless otherwise noted, we have chosen to affect all
edges and set each L, to the original length multiplied by a random factor
between 1 and 4.

We first examine the impact of the parallel and perpendicular weights

!OpenStreetMap-based shapefiles from http://download.geofabrik.de/.
ZWe would like to thank Martin Néllenburg for providing the geographic public-transport
networks of various cities.
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on the resulting direction and length discrepancies. Next we compare our
approach to one iteration of by-the-book non-linear least squares. Finally
we test the runtime on maps of different complexity.

We measure the direction error Eg; and length error Eje, as the average
of their respective part of the original non-linear objective function fpolar

in (3.2). That is:

D occE Wa(Le) - AO‘e2

Edir -
|E]
oy decE Wi (Le) - AreQ
len — |E|

The owverall error is determined with

ZeeE fpolar(Aaea Area Le)
|E]

Eoverall =

Notice that those errors are not scale invariant, because here they are not
used as objective functions. However, this is not a problem, since we only use
them for comparisons based on identical input maps. For Sect. where
we do not do comparisons, we measure the direction error and the (relative)
length error as follows:

o een|Aac

B} = %

X — >ecr (|Are| /L)
len — ‘E|

All reported average errors are calculated over 100 runs with different random
lengths.

6.3 Direction and length weights

Here we test the ability of our perpendicular weight W, and parallel weight
W|| to actually effect a priority for correct directions or correct length. We
also verify that the values of W, and W) in are near optimal for our
linear approximation fji, of the non-linear objective function fyolar With
weights W, and W, (see Chap.|3). We do this by changing the ratio of W),
to W, by factors % to 3 and measuring the effect on direction error, length
error and the overall error. Notice that our basic algorithm only depends of
the ratio between those weights, not their actual values. Hence, if we alter
the ratio with a factor greater than 1 the length error should go down; for
factors less than 1 the direction error should go down. The overall error
should be minimal for our chosen weights W, and W),.



6.4. Comparison to non-linear least squares 37

Figure shows the results of the experiment for the public transporta-
tion network of Sydney and London. The normalised values of direction,
length and overall errors are shown on the y-axis and the factor with which
the ratio of W), (Whpar) and W, (Wperp) was altered on the z-axis. Every
data point was averaged over 100 runs with random edge lengths, as specified
in the experimental setup. We see that for both maps the direction error and
length error behave as expected: if we increase their weight, the respective
error goes down. Also, the overall error is near the minimum for factor 1 in
both cases: the chosen values of W, and W) lead to good approximation of

fpolar-

6.4 Comparison to non-linear least squares

We compare our approach to one iteration of standard non-linear least squares
on fpolar, using a Jacobian linear approximation (see Sect. . We take 100
runs with random edge lengths for the metro map of Sydney and London
and calculate the error Egyeran of our algorithm as well as the error Enris
of one Jacobian step.

Figure[6.6]shows histograms of the ratio of the error Enprg of one iteration
of standard non-linear least squares to the error Egyeran of our algorithm
over 100 runs. We can see that our approach has smaller errors in all cases:
For Sydney we get improvements from 20 to 100 percentage points. For
London the improvements are in the range of 27.5 to 60 percentage points. A
Wilcoxon test [16] showed in both cases that the overall error is significantly
lower for our algorithm (p-value < 0.01, one-tailed test, W (100) = 0). We
noticed that non-linear least squares often still has lower direction error, in
exchange for much worse length error.

The average runtime of our approach is 0.5 ms for Sydney and 0.8 ms for
London as opposed to 0.4 ms and 0.7 ms for one iteration of non-linear least
squares. We can conclude that our method is an improvement to standard
non-linear least squares, at the cost of a small increase in runtime.

6.5 Quality on realistic inputs

Next, we test the quality of our algorithm on more realistic inputs. We
run two different experiments on the road network of the German city of
Wiirzburg, consisting of 2511 vertices and 2995 edges (Fig. [6.7(a)]). In the
first experiment (“point”), we pick a random point on the map and select
every edge that is no further away than 5% of the extent of the map. The
random point is rejected if fewer than 10 segments are selected. Then we
ask for these edges to be lengthened by a factor of 2 and for the other edges
to be unaffected. This might represent the travel-time effect of an accident.
Figure shows an exemplary drawing for this experiment. In the the



38 Chapter 6. Experimental evaluation

8 T T T
Direction error o
7 L Length error o RN
TaaLn, Overall error = NE
AAAAA AAAA
AAA a
S 67000 AAAAAAAAAAAAAAAA h
Q ° h
] L oooo 0P ]
= 5 o od
© o got
o [m]
g 4 + °o DDD 4
o © 5 o
£ °o 0"
« 3+ °,g” B
o 8o,
o o o
— o SIS
T o® OOOOOO 4
goof ©00o0000
[m]
1E}DDDDDDDDDD i
0 1 1 1 1 1 1 1
1/3 2/5 1/2 2/3 1 3/2 2 5/2 3
Factor applied to Wpar/Wperp
(a) Errors for Sydney’s metro map
10 . T T
Direction error o
9 Length error o LaaT
taaa, Overall error = aas?®
8 SeaaaL. Laan® ]
£} 7 ©oo, S s aapanaanst”
o J
8 Oooo
= %o
o] 6 oooo god
IS %5 gotb
- 5 F °4 gB -
o o DDD
[ %5 u}
~ 4 + %o o® e
Se
5 gt OOOoo
< 31 -] ©0o0o0o0o0o0o0
a
w DDD
2+ goo® -
oo
1E}DDDDDDDDDDD i
0 1 1 1 1 1 1 1
1/3 2/5 1/2 2/3 1 3/2 2 5/2 3

Factor applied to Wpar/Wperp

(b) Errors for London’s metro map

Figure 6.5: Normalised direction, length and overall error over 100 runs, as
a function of weight ratio factors, measured on the metro network of Sydney
and London.
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(a) Histogram for metro map of Sydney
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(b) Histogram for metro map of London

Figure 6.6: Histograms for the ratio of the error Enrrg of one iteration of

standard non-linear least squares to the overall error Egyeran of our algorithm
over 100 runs for the metro maps of Sydney and London.
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Experiment Affected edges Direction error Rel. length error

Point No 0.79° 0.007
Yes 6.33° 0.106
Strokes No 1.20° 0.012
Yes 5.73° 0.216

Table 6.1: Average direction error and average relative length error over 100
runs with edge length congested by factor 2 around a random point or on a
subset of 16 strokes of the road map of Wiirzburg with 2511 nodes and 2995
edges.

second experiment (“strokes”), we select a random subset of 16 strokes in
the road network and lengthen those in the same way, where a stroke is a
path in the network where all edges have the same real-world street name.
This represents congested traffic. We run both experiments 100 times. Event
constraints are used to prevent intersections.

Table shows the results of these experiments. We report the average
direction error E;, and the average relative length error £, = as defined in the
experimental setup. This is done separately for the affected and unaffected
edges, since the errors would always be low if we include many unaffected
edges. We see that our algorithm effectively realises the unaffected edges
with average direction errors of around 1° and relative length errors of around
1%. The effected edges are expectedly more difficult, we get direction errors
of around 6° and relative length errors of around 11% for the experiment
“point” and 22% for the experiment “strokes”. The reason for these high
errors is that many parts of the input network are very dense, so that vertices
are not able to move easily; this makes the realisation of congested edges
hard. We can also see, that it is apparently easier to expand all edges around
a point instead of edges on strokes.

Our next experiment tests the quality of our metro map approach; we
ask our algorithm for uniform edge length, angular resolution and proximity
constraints on various metro networks. Optionally, we additionally ask for
octilinearity. Table shows the results for the metro networks of Montreal,
Karlsruhe, Sydney and London. For our metro maps without octilinearity
we see relatively high direction errors between 8° and 13°; however, this
is expected, since we ask for perfect angular resolution, which is often not
possible with straight-line drawings. The requested edge lengths get realised
well with errors between 2% and 5% for the simpler metro networks, and
around 10% for the more complex network of London.

When asking for octilinearity the average direction error goes down
significantly, to between 0.3° to 1.4°: we get a very good approximation
of an octilinear drawing. We can see that the adjusted weights for the
octilinearity constraints work really well, but of course this comes with the
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(a) Road network of Wirzburg (b) Exemplary drawing for experiment
“point ”

Figure 6.7: The road network of the German city of Wiirzburg and an
exemplary drawing for our experiment “point”. The grey circle indicates the
area of the affected edges.

cost of increased length errors. Still, the average relative length error only
exceeds 6% for the metro network of London with around 15%. However, for
octilinear drawings we do not care for length discrepancy that much anyway.

Table shows the results of computing a focus-and-context metro
map inspired by Wang and Chi [23]: we want every edge to have length 1,
except for a single “focus” metro line with edges of length 2. We run this
experiment with angular resolution, proximity and octilinearity constraints.
The experiment is done for each metro line and the results are then averaged
over all these runs. We see that the results are similar to our metro map

Map V| |E| Octilinearity Direction error Rel. length error
Montreal 65 66 No 8.32° 0.015

Yes 0.28° 0.056
Karlsruhe 126 132 No 9.83° 0.017

Yes 0.48° 0.047
Sydney 174 183 No 11.02° 0.045

Yes 0.25° 0.048
London 308 361 No 13.10° 0.096

Yes 1.34° 0.149

Table 6.2: Average direction error and average relative length error for metro
maps computed by our algorithm.
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Map V| |E| #Metro lines Direction error Rel. length error
Montreal 65 66 4 0.48° 0.059
Karlsruhe 123 132 10 0.26° 0.047
Sydney 174 183 10 0.44° 0.087
London 308 361 13 1.34° 0.159

Table 6.3: Average direction error and average relative length error over all
metro lines of focus-and-context metro maps computed by our algorithm.

approach with octilinearity constraints. The main difference are the higher
average relative length errors for Sydney and London, but they still remain
within reasonable range.

Figure shows an example for a focus-and-context metro map for the
public transport network of Sydney of our approach and the algorithm of
Wang and Chi. The bold edges represent the focused line. We think that
our focus-and-context metro map is more advanced, since it resembles the
geographical input map (Fig. more closely and realises the uniform
inter-station distance better in the context part.

6.6 Runtime

We measure the runtime for various maps, again averaged over 100 runs with
random edge lengths for each map as described in the experimental setup.
Table lists the maps, the number of vertices and edges as well as the
following runtimes:

e Runtime Rp with basic edge constraints

o Runtime R; with intersection prevention (using the event constraints)
e Runtime Rp with angular resolution

o Runtime Rp with octilinearity constraints

We test the different constraint types separately to see their influence on the
runtime.

We can see that the runtimes with basic edge constraints mostly just
depend on the number of edges of the map. The runtime with intersection
prevention also depends on the map itself and the probability that intersec-
tions occur. For example, the runtime for the road network of Wiierzburg
(Fig. increases significantly when we prevent intersections, since this
network is very dense and complicated. For simpler networks, however, the
runtime increase is not that drastic, even for the complex metro map of
London. Angular resolution has only a small impact on the runtime: we just
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(a) Focus-and-context metro map of our algorithm.

(b) Focus-and-context metro map of Wang and Chi.

Figure 6.8: Focus-and-context metro maps computed by our algorithm and
by Wang and Chi. The bold edges represent the focused line.
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Map #Nodes #Edges Rg Ry Ra Ro

(ms) (ms) (ms) (ms)
Montreal 65 66 0.2 0.3 0.3 1.0
Karlsruhe 126 132 0.3 0.5 0.5 1.7
Sydney 174 183 0.4 0.5 0.6 2.3
London 308 361 0.8 2.0 1.2 4.5

Wiirzburg 2511 2995 8.3 120 11.7 40

Table 6.4: Average runtimes over 100 runs with random edge lengths
as specified in Sect. with basic edge constraints (Rg), with intersection
prevention (Ry), with angular resolution (R4 ) or with octilinearity constraints
(Ro).

have to additionally calculate the optimal directions for every vertex. This
can also be done as preprocessing when loading the network. Octilinearity
constraints, on other hand, increase the runtime significantly. This is due to
the fact that we have to run our optimisation two times, since the octilinear
directions get calculated based on the network computed without octilinearity
constraints. Also, we now have to solve a minimum-cost flow network for
every vertex.

If we compare our runtime on the Sydney map with Wang and Chi [23]
(see Fig. , we observe a large improvement from 816 ms to 15ms on
comparable hardware. It should be noted that their algorithm forces the
drawing to be contained in certain boundaries, whereas we do not. However,
our drawing can be resized to fit the boundaries. The runtime reported by
Inoue and Shimizu [21] for computing a time-distance cartogram of a map
of Japan with 81 vertices and 109 edges is about 80 ms, without intersection
detection. Our algorithm would take less than 1 ms on such a map.
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Conclusion

We have introduced an algorithm for spatially-informative linear cartograms.
Our algorithm uses a single run of least-squares optimisation, while other
algorithm use iterative least-squares optimisation or some variant of multi-
dimensional scaling, which typically also utilises iterative solvers. However,
iterative solving increases runtime significantly and often has problems with
convergence and bad local optima. We believe that least-squares optimi-
sation is better suited for the computation of spatially-informative linear
cartograms: edge length and direction, as shown in this thesis, can be reason-
ably encoded in linear constraints, whereas classical multidimensional scaling
only cares about the edge length. It is also easy to incorporate modifications,
like our realisation of given edge directions and proximity constraints, into
least-squares optimisation.

Using an implementation of our proposed algorithm, we have shown that
it is both efficient and effective. With a runtime in the order of tens of
milliseconds, it is ideally suited for interactive applications, even on mobile
devices. We have furthermore shown that our algorithm is able to realise
the requested lengths and directions well in practice.

We think our results for drawing metro maps using unit-length linear
cartograms are promising; perhaps as-is, or at least as a very efficient
preprocessing step that automatically adjusts local scale to account for busy
city centres and sparse suburbs. It improves angular resolution and smooths
paths while keeping branches apart. Furthermore it can provide approximate
octilinearity. All of these are desirable properties of metro maps.

Future work

One topic for future work is our choice of edge directions for angular resolution
and octilinearity constraints, which is made vertex-wise. However, this
often leads to disagreement for the edge direction for it’s endpoints. It
would be more desirable to choose the direction based on the whole graph.

45
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Unfortunately we do not know if this problem can be solved efficiently. If this
is not the case, it would be interesting to find a way to resolve disagreements
for octilinearity in a better way than taking the mean direction. We would
rather prefer for every edge to be actually assigned to a port and not possibly
the middle between two ports.

Another topic regarding octilinearity is detecting and resolving malicious
port assignments as seen in Fig. This should be manageable especially
if one of the involved vertexes has degree 2.

Vertexes with degree 2 are also interesting for angular resolution. In the
ideal case angular resolution should evaluate paths in the network to straight
lines if they share the same general direction. Our algorithm just smooths
paths. Additional constraints for these cases should improve the results.

Proximity constraints are a big field for future work. We would like to
adapt them to general linear cartograms. However, it is not clear how to
choose the minimal margin between branches. For example, we can not take
the minimal edge length, since there can be really short edge in a general
linear cartogram. Also the considered graph distance can either be the actual
graph distance, the number of hops or a combination of those two. We would
also like to have an adapting margin for the proximity constraints, depending
on how much space is available. Albeit it is not clear how this could be
implemented.

As mentioned in Sect. angular resolution does the ‘branch resolution’
on edges that are close in the network. Actually proximity constraints would
not work for these edges; that is the reason why we introduced the dependence
on graph distance with condition . The value 0.05, however, was chosen
on experience only, because there is no clear cut-off for the impact radius of
the angular resolution. Therefore optimising this value, perhaps even based
on the network, would be preferable.



Appendix A

Metro maps of London

Here we show the metro maps of London computed with our two approaches
introduced in Chap. 5} with and without octilinearity constraints. Figure
shows the geographical input network of London’s public transport system.
See Fig. for the results of our first method utilising uniform edge length,
angular resolution, proximity constraints and optionally octilinearity con-
straints. The results of our second approach are presented in Fig. Both
approaches have difficulties realising uniform edge length and octilinearity;
however, this is expected, since the metro network of London is rather dense
and complicated. We think that our first method leads to better drawings
in this instance and that they are of reasonable quality considering the
complexity of the network.

47
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Appendix A. Metro maps of London

Figure A.1: Geographical input network of London
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(a) Metro map of London without octilinearity constraints

(b) Metro map of London with octilinearity constraints

Figure A.2: Metro maps of London computed by our algorithm with uni-
form edge length, angular resolution, proximity constraints and optionally
octilinearity constraints (Runtimes 46 ms and 68 ms).
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(a) Metro map of London without octilinearity constraints

(b) Metro map of London with octilinearity constraints

Figure A.3: Metro maps of London computed by all-pairs metro map ap-
proach with and without octilinearity constraints.
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