Julius-Maximilians-Universitat Wiirzburg
Institut fir Informatik
Lehrstuhl fur Informatik I

Master’s Thesis

Boundary Labeling for Annotations in Texts

Fabian Lipp

August 19, 2014

Supervisors:
Prof. Dr. Alexander Wolff
Dipl.-Inform. Philipp Kindermann

Abstract

We present a tool for annotating Latex documents with comments. Our annotations
are placed in the left, right, or both margins, and connected to the corresponding
positions in the text with arrows (so-called leaders). Problems of this type have
been studied under the name boundary labeling. We consider various leader types
(straight-line, rectilinear, and Bézier) and modify existing algorithms to allow for
annotations of varying height. Our algorithms draw the leaders without crossings,
some of them try to minimize the total leader length. We have implemented our
algorithms in Lua; they are available for download as an easy-to-use Lualatex package.
This package is designed modular so that it can easily be extended by new algorithms.

Zusammenfassung

Wir stellen eine Méglichkeit fiir Latex vor, mit der Dokumente mit Kommentaren
versehen werden kénnen. Die Anmerkungen werden im linken, rechten oder in beiden
Seitenrdndern platziert und durch eine Linie mit der entsprechenden Position im
Text verbunden. Dieses Problem ist unter dem Namen boundary labeling bekannt.
Wir untersuchen verschiedene Typen von Verbindungslinien (geradlinig, rechtwinklig
und Bézier-Kurven) und verdndern bestehende Algorithmen, um Anmerkungen mit
unterschiedlichen Héhen zu unterstiitzen. Unsere Algorithmen zeichnen die Linien
ohne Kreuzungen, einige davon versuchen deren Gesamtldnge zu minimieren. Die
Algorithmen sind in Lua implementiert. Sie sind als Lualatex-Paket verfiighar, das
einfach eingesetzt werden kann. Dieses Paket ist modular gestaltet, so dass es um
neue Algorithmen erweitert werden kann.

Contents

(1. Introduction|

2.

Implementation|

[2.1. Actions when a \todo command occurs|

[2.2. Actions on page shipout|
[2.3. Package options|.

3.

Algorithms for Label Placement]|

13.3. opo-leaders and os-leaders|
[3.4. po-leaders|

Improvements|

4.1. Label clustering/.
|4.2. Two-sided label placement|
[4.3. Highlighting portions of text|

. Experimental Results|

. Conclusion and Open Problems|

. Example Documents|

10
10
12
12
13

16
16
17
17

19
21

23

1. Introduction

Many word processing systems support annotations for the text. The most common
case for this annotations are comments, which can be inserted in arbitrary positions
inside the text. The comments themselves are placed as labels in the margin next to
the text and connected to the corresponding position, called site, by a line called leader.
The endpoint of a leader at a label is called a port. Such comments are available, for
example, in LibreOffice (see Figure and Microsoft Word. This task can be expressed
in the boundary labeling notion introduced by Bekos et al. [BKSWO07]: the sites to be
annotated lie inside the text area and the labels are to be placed outside the text area.
They describe several types of leaders, such as straight-line leaders (s-leaders), rectilinear
leaders with one bend (po-leaders) and rectilinear leaders with two bends (opo-leaders).

Previous work. Boundary labeling has been extensively investigated in the last few years,
see a survey on the interaction between cartography and graph drawing [Wol13|]. For labels
of uniform size, the problem is well-studied. Most algorithms try to minimize the total
leader length. For s-leaders, it suffices to compute a minimum-weight perfect matching,
which can be done in O(n?¢) time [AES99]. For opo-leaders, Bekos et al. [BKSW07] gave
three different algorithms for the number of sides used by the labels, with running times
O(nlogn) (one-sided), O(n?) (two-sided), and O(n?log®n) (four-sided). Further, they
presented an O(n?)-time algorithm for po-leaders that lie on one side or on two opposite
sides of the text. The result for po-leaders was improved by Benkert et al. [BHKNQ9] for
the one-sided case. They gave an O(nlogn)-time algorithm for length minimization and
an O(n3)-time algorithm for a very general class of objective functions, including, for
example, bend minimization. They also studied leaders that contain a diagonal part and
gave an O(n?)-time algorithm for the one-sided case. This result was extended by Bekos
et al. [BKNSI0] to more than one side. Recently, Kindermann et al. [KNR¥13| gave the
first efficient algorithms for po-leaders that decide whether an instance with labels on
two adjacent, three, or four sides has a crossing-free solution (and, if yes, compute one).
Boundary labeling for non-uniform labels is still largely unexplored. Bekos et al. [BKPS06]
showed that it is NP-hard to find a crossing-free labeling if the labels have to be placed
on two sides (or two stacks on the same side). Huang et al. [HPL14] considered a version
of the problem that is always feasible: labels are placed into the right margin or into both
margins, which are not bounded from below or above. For this model, opo-leaders, and
labels of non-uniform size, they gave an O(n?)-time algorithm that minimizes the total
leader length in the one-sided case. For the two-sided case, they showed NP-hardness.

Available Latex packages. In this thesis, we focus on comments for Latex documents.
There are some packages that support the placement of textual comments in the margin,

;Firstcommant
!

i

lUser

! -

The following text is taken from the blindtext package for | Heute, 17:34

LaTeX. ! [The second commentis a bit
Hello, here is some text without a meaning. This text should ! llonger.

show what a printed text will look like at this place. If you read H

this text, you will get no information. Really? Is there no }1[user -

! | Heute, 17:35
1

1 r"Mo re comments.

information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift -- not at all! A blind

text like this gives you information about the selected font, how '.‘I h
the letters are written and an impression of the look. This text i

should contain all letters of the alphabet and it should be i1 e -

/1 Heute, 17:38
written in of the original language. There is no need for special
content, but the length of words should match the language.
Hello, here is some text without a meaning, This text should
show what a printed text will look like at this place. If you read

this text, you will get no information. Really? Is there no
information? Is there a difference between this text and some

.‘I""‘ Jlshort

-

nonsense like “Huardest gefburn™? Kjift -- not at all! A blind i/ Itneeds more lines of text than
text like this gives you information about the selected font, how i/ the previous

the letters are written and an jmpression of the look. This text / ones.

should contain all letters of the alphabet and it should be ’ :Sert — -
written in of the original language. There is no need for special) Elf e.') S
content, but the length of words should match the language. .~ This s the last comment in this
A e -2 8 _________ paragraph.

Hello, here is some text without a meaning. This text should
show what a printed text will look like at this place. If you read T
this text, you will get no information. Really? Is there no Heute, 17:38 =
information? Is there a difference between this text and some

Figure 1.1.: Screenshot of comments in a document in LibreOffice 4.1.5.

namely todonotes [Mid12], fixme [Verl3] and fixmetodonotes [Barl3]. They have in
common that they use Latex’s \marginpar command to print the note as soon as the
corresponding command is encountered in the source of the document. The drawback of
this approach is that the positions of the following comments are not known and cannot
be considered when placing a note. The first label is placed beside the first site, and the
following ones are placed below. Often it happens that a lot of free space is wasted above
the topmost label, while the bottommost label is only partially visible (if at all), see
Figure[A.1]in the appendix. Another disadvantage is that the \marginpar method cannot
be used inside floating environments such as tables or algorithms. While the packages
fixme and fixmetodonotes do not draw any leaders, todonotes uses opo-leaders. With
this leader style it is hard to match a note to its corresponding site in the text when
there are many comments in a short piece of text. A similar problem occurs with the
leader style used by LibreOffice; see Figure

Other Latex packages support annotations as metadata for PDF documents, for
example, pdfcomment [Klel2]. The drawback of this package is that the user needs
a compatible PDF viewer and that the annotations cannot be printed with the text.
Packages such as easy-todo [RV14] don’t place annotations in the margins, but insert a

marker into the text and list all comments at the end of the document. With all of these
packages the notes refer to a single point in the text only, not to a portion of the text,
which should be annotated.

Our contribution. Our approach is different from all those listed above in that we
collect the comments for a whole page and then compute a good placement for the labels.
Of course, this computation needs more resources than the ad-hoc placement of the
existing packages. Additionally, our Latex package supports different leader types, which
the user can select when loading the package. We explain some of the technical details of
the package in Section

As the heights of our labels vary with the length of the texts placed inside them we
cannot use the algorithms for uniform labels found in the literature. We give several
algorithms for non-uniform labels, most of which are extensions of existing algorithms for
the uniform case; see Section [3 We improve upon these basic algorithms by considering
label clustering, the two-sided case, and annotating portions of text instead of single
points inside the text; see Section |4, We have implemented all of our algorithms and have
evaluated them experimentally; see Section [5, We conclude with some open problems;
see Section [6]

The Latex package is available for download on CTAN ﬂ Included in the package is an
extensive documentation describing the available commands and options.

Ihttp://ctan.org/pkg/luatodonotes

http://ctan.org/pkg/luatodonotes

2. Implementation

We have implemented the algorithms in Lua and have bundled them into a package for
Lualatex, which we call luatodonotes. The package requires the modern Tex-processor
Luatex [HHH], which allows us to embed Lua code inside our Tex sources. This gives
us access to a high-level programming language for implementing our label-placement
algorithms. From the user’s point of view, this does not change much. Luatex is part of
every modern Tex installation, for example, Tex Live. Assuming such an installation, the
difference in usage is simply that instead of calling (pdf)latex, the user calls lualatex.

The Lua engine in Luatex provides special objects to access the Tex engine. At any
time, we can write some text to Tex, which is then interpreted as if it occurred in the
input file. Additionally, we have methods to access the data structures used by Tex. For
example, it is easy to read and modify the values of Tex counters and dimensions. With
more involved functions we can read the contents of boxes (the basic structure out of
which pages are built in Tex) and manipulate them. We are even able to install our
own functions in the Tex workflow: for example, we can write a custom line breaking
algorithm in Lua that is used instead of the original one.

Moreover, Luatex implements some modern features missing in classical Tex interpreters:
For example, it supports Unicode without requiring additional packages and can use
advanced features of modern OpenType fonts.

Our package is based on the todonotes package (see Section . It is downward
compatible as it provides the same commands and options to the user as the origi-
nal package. Usage is quite simple: the user loads the package with the command
\usepackage{luatodonotes} and inserts a comment into the text with the command
\todo{comment text}. Additionally we provide the macro \todoarea to annotate a
portion of text with a comment, which is described in Section In the following
sections we explain how our package works.

2.1. Actions when a \todo command occurs

Wherever the user inserts a \todo command in the text, we store its position and its
argument (that is, the comment) in a Lua list, but we do not print anything in this
moment. Additionally, we store some of the options given to the command (for example,
the colors for the label and the leader) and the font size in the current paragraph. We
need this information later when drawing the labels and leaders.

There is no obvious way to store the comment in our Lua data structures for later use.
When the argument contains Latex macros, the user expects our package to see their
current value in the note. If the macro is redefined later the original value is lost and

we would print the new value. So we need to expand the macros at the time the \todo
command appears in the text. To achieve this we write the text into a temporary box,
which is later accessed by Lua. Unfortunately, there are some macros that are not fully
expandable and that will not work as expected in \todo commands. This can apply to
some commands changing the formatting of the notes (for example, the font size or line
spacing).

These difficulties do not appear with the classical todonotes package as the comment
is written instantly when it occurs and has not to be saved for later.

We expect that the values of options can be fully expanded as they only contain a
string (like the name of a color). Thus we can write them into a temporary token register.
We can read its contents from Lua and store them in a variable.

2.2. Actions on page shipout

When a page is finished (“shipped out” in Tex terminology), we compute the position of
the labels and draw them. Before calling our label-placement algorithm, we have Tex
determine the label heights. For that, we take the contents of the box that was saved for
the note and put them into a box with the required width. With this the text is broken
into lines and we can write the height of the box into a Tex dimension, which we can
read in Lua later.

To determine the absolute positions of the sites, we use PGF/TikZ [Tan], a widely
used Tex package for producing vector graphics. This package can locate the position of
a site on the page where the \todo command was inserted using the remember picture
option, even when the command occurs inside a floating environment (such as a figure or
a table).

For each label, the placement algorithm computes the absolute coordinates on the page
on which the label is to be placed. Then, we use TikZ to draw the labels and the leaders
that connect the labels with their corresponding sites in text. Finally, a mark is placed
at each site. This modular design simplifies the implementation of new algorithms and
makes the package extensible. Placement algorithms and leader drawing algorithms are
implemented as simple Lua functions. The user can specify an optional parameter for
the Latex package to select which functions should be used.

The size and position of the rectangles that contain the label texts depend on the
current page layout. Our Lua code reads the relevant Tex dimensions to compute the
position of these areas. We provide options to control the distances between the labels
and the text (distanceNotesText) and between the labels and the border of the page
(distanceNotesPageBorder). The algorithms can place labels in the left and in the right
margin (see Section , but a margin is used only if it is wide enough to accomodate a
label, that is, if the label can be at least of width minNoteWidth. Our algorithms assume
that the margin is free of other elements when placing the labels. When marginal notes
(placed with \marginpar) are used in the document they can conflict with our notes.
The classical todonotes package does not have this issue as it uses \marginpar itself to
place its labels.

2.3. Package options

When loading the package with \usepackage{luatodonotes}, optional arguments can
be specified in square brackets. The most relevant options are (a) the algorithm for label
placement (positioning) and (b) the leader type (leadertype). Other options control
the layout: the minimum vertical distance of the labels (interNoteSpace), the distance
from the contents of the label to its border (noteInnerSep) and the color of the leaders
(linecolor). Moreover, there are options that only apply for certain algorithms. They
are explained at the appropriate place in Section

Additionally, we accept all options supported by todonotes. For example, bordercolor
and backgroundcolor can be used to control the colors of the notes. We can even set
options for individual notes, for example, to change their textsize or color.

3. Algorithms for Label Placement

In the following, the algorithms are categorized by the leader type that they support. In
principle, our package allows the user to combine any label-placement algorithm with
any leader type. Still, some algorithms have been designed with certain leader types in
mind. Other combinations will probably yield unwanted results, such as label overlap or
crossing leaders.

In the descriptions of our algorithms below, we assume that labels are placed on the left
side of the text, but this is not a restriction of our actual implementations. Additionally,
we try to place the labels without gaps between them, while in reality we want to preserve
a certain minimum distance between them. Clearly, this is easy to achieve.

3.1. s-leaders

Our algorithms designed for s-leaders have a common property: they draw the leaders
without crossing each other. Their common objective is to place the labels one below the
other on the boundary while avoiding gaps between them. They differ in the position of
the ports, that is, the position on the label boundary to which the leader is attached.
A pleasant position for the port would be the center of the right side of the label.
Unfortunately, we don’t have an algorithm that can place the labels without gaps using
this port position. We don’t even know whether every instance of site positions and label
heights is feasible with respect to these criteria; see Section [6]

We don’t give algorithms that minimize the total leader length here, but concentrate
on drawings without crossings. The clustering approach described in Section can
decrease the leader length as labels are placed closer to their corresponding sites.

NorthEast. We use an algorithm of Bekos et al. [BKSWOQ7] for fixed labels, which can
easily be adopted to our problem with labels of non-uniform heights: The upper
right corner of each label is used as its port. The labels are placed consecutively
from the top of the page to the bottom. In each step, we emit a ray from the
port of the next label vertically to the top and rotate it clockwise until the first
unlabeled site is hit. Obviously, by connecting this site to a label at the current
position, we don’t hide any other sites and can label the remaining sites without
crossings.

NorthEastBelow. This algorithm is based on the preceding one. The difference is that
we lower the port from the corner by a constant offset. In our opinion the result
looks better if the leader is not attached directly at the corner. A good value for
this offset is half of the height of the smallest label. As we know the position

10

for each port while placing the label, we can still use the ray construction of the
preceding algorithm to place the labels without spaces between them.

East. In this algorithm the port of every label is located at the center of its right side.

When we try to find the next unlabeled site to be labeled, we do not know the
port position as it depends on the height of the label. Therefore, we cannot use the
ray construction from the previous algorithms. Algorithm is a heuristic that
guarantees crossing-free leaders while trying to avoid gaps between the labels. It
can usually handle real-world inputs without additional gaps.

An instance that is not handled optimally by the heuristic is depicted in Figure
The sites can be labeled without gaps when placing the labels in the order 2, 1, 3.
As mentioned above it is an open question if this is possible for all instances.

Algorithm 3.1: Placing labels using east anchors

1
2

3
4
5
6
7

10

11
12
13
14

15
16
17

Input: pi1,...,p, are the sites in the text
Output: y-coordinate yi,...,y, of the top edge of each label
P« {p1,...,pn}
L < []// list contains labels in the order in which they have been
placed
lastY <0
while P # () do
H « {height(p;) | i =1,...n}
foreach h € H do // H sorted ascending
emit a ray from the port of a label of height h placed directly below the last
label
1 < index of first point in P that is hit by the ray when rotated clockwise
if height(p;) < h then
L break

y; < lastY — (h — height(p;))/2
Ladd(pl)

P« P —{pi}

lastY < y; — height(p;)

// Postprocessing: try to shrink gaps
foreach [€ L do
if there is a gap above [then
L move [up as far as possible without creating any new intersection between
leaders

11

Figure 3.1.: An instance where the East algorithm does not yield a drawing without gaps. Left:
label positions before postprocessing; Right: after postprocessing.

3.2. Bézier curves as leaders

We base our Bézier curves on s-leaders using a force-directed algorithm described by
Fink et al. [FHS™12]. We use cubic Bézier curves that are required to enter the port at
the label horizontally. This means that the first control point has to stay on the same
horizontal line as the port and can only be moved to the left or the right. The second
control point is always placed in the center between the first control point and the site.

In the first iteration of the algorithm, the control points are placed on the endpoints
of the leader, that is, it starts as a straight line. Later, the first control point of each
curve is moved by applying forces to it. We use a force that pulls the control point to its
optimal point, which is computed beforehand and usually yields a good-looking curve.
Other forces try to increase the distance between curves. In every iteration the forces on
every point are limited by the distance to the nearest curve to inhibit new intersections
between leaders. Therefore, the algorithm guarantees crossing-free Bézier curves when
starting with straight-line leaders without intersections.

The runtime of this algorithm is dominated by the calculation of the distances between
each pair of curves. This calculation is done by an approximation of the curves. We need
the distances to update the forces in every iteration.

3.3. opo-leaders and os-leaders

Positioning the labels for crossing-free opo-leaders is simple as Bekos et al. [BKSW07]
show: we place the labels in the order given by the y-coordinates of their sites. Sites with
identical y-coordinates are processed from left to right. The vertical parts of the leaders
are drawn in the track routing area, that is, the vertical strip between text and labels.
The width of this track routing area is specified using the option routingAreaWidth of
the package. We use Algorithm to split the labels into groups, with labels sharing a
common vertical segment being put in the same group. This can be done by a simple
linear-time algorithm. Thus the vertical segments of the leaders in each group must be

12

Algorithm 3.2: Drawing opo-leaders

1 G« (// set of all groups

2 G+ (// current group
3 lastDir < nil
4 foreach note n do // from top of page to bottom
5 if port for label of n lies above the corresponding site in text then
6 ‘ dir < down
7 else if port for label of n lies below the corresponding site in text then
8 ‘ dir <+ up
9 else
10 L dir < nil
11 if dir = lastDir and
((dir = down and port of label n lies above the previous label’s site in text) or
(dir = up and site of label n lies above of he previous label’s port)) then
12 ‘ G+ GU{n}
13 else
14 g« GU{G}
15 G + {n}
16 lastDir < dir

placed side by side. We draw the vertical segments in one group with equal distances
between them, using the whole width of the track routing area.

The algorithm is even easier for os-leaders, a leader style that was not discussed until
now. We list it here because this is the style that, for example, LibreOffice uses (see
Figure . Labels are placed in the same order as for opo-leaders. For the leaders, we
connect the site with a horizontal line segment that extends to a fixed x-coordinate inside
the margin. Then we connect the end of the horizontal segment to the label’s port with
a straight-line segment.

3.4. po-leaders

Benkert et al. [BHKNQ9] developed an algorithm to compute an optimal crossing-free
labeling using po-leaders with respect to an arbitrary badness function. This algorithm,
which uses a dynamic programming approach, is designed for uniform labels only. It
needs O(n?) running time and O(n?) space.

For our application, we extend the algorithm of Benkert et al. to non-uniform labels.
To be able to work with the arbitrary heights of the labels, we need to raster the page,
that is, we define the y-coordinates on which labels may be placed. Our algorithm yields
a labeling respecting this raster with minimum total leader length. The height of the
raster can be chosen using the parameter rasterHeight of the Latex package. The port
for each label can be chosen arbitrarily. In the following, the ports are fixed to the center

13

Figure 3.2.: The labeling problem for T'[t,b, 7, 8, k] is split into two independent subproblems
by fixing the label position of r(¢, b, k). The dashed lines show the raster slots. The
light gray area indicates the slots from r, to rg. The dark gray area shows the
sites between p; and pp.

of the right side of the labels.

Let p1,...,pn denote the sites from top to bottom and let ry,...,r, be the slots
obtained by rasterizing the page from top to bottom. We use a 5-dimensional table in our
dynamic program. The entry T'[t,b, 7, 3, k] represents the minimum length of a labeling
of the k leftmost sites in {p;,...,py} using only the raster slots r-,...,73. The labels
must lie completely inside the given slots.

Let r(t,b, k) the k-th point from the left in the set {p;,...,pp}. The length of the
shortest po-leader from the site p to its corresponding label beginning in slot r, is denoted
by I*(p,o0). The entries of the table are computed using the following decomposition
(illustrated in Figure [3.2)):

Tlt,b,7, B, k] = i I (r(t, b, k Tt ~ 1k
[7 ’T7B,] feasiblen;IGI}{T,...,,B} (T(, ’ >70-)+ [’S,T,O’ ’ 1]

+T[S+1ab70+h7ﬂak2]

In this formula ps is the lowest point that lies above the leader arm (the horizontal part
of the leader), when the label for r(¢,b, k) is placed at slot r,. Let h the height of this
label. The number of sites from {py,...,pp} lying left of r(¢,b, k) and above resp. below
the leader arm is denoted by k; resp. ko.

A position for the label is feasible, if both partial solutions (above and below the leader
arm) are feasible, that is, there are enough slots to label the contained sites.

Clearly, T'[1,n, 1, m,n] is the optimal labeling of the whole instance. With this algorithm
we can compute an optimal solution in O(n*m3) time with O(n3m?) space, where n is
the number of sites to be labeled and m is the number of slots in the raster on the page.

The quality of the result depends on the chosen raster height. For example, when the
height of the labels is slightly greater than the raster, there will be large gaps between

14

them. We cannot reduce the raster height arbitrarily because this will strongly increase
the running time and memory consumption.

Avoid overlappings with text lines. The algorithm described above does not take the
position of the text lines of the document into account. Thus it can happen that a line
gets striked out by the horizontal segment of a leader. We modified the algorithm to
move the port up or down by a small offset to avoid such overlappings and place the
leader into the gap between the lines.

It is quite hard to determine the positions of the lines in Tex because they are not fixed
until the document is written to the output file. But in Luatex we can modify the line
breaking algorithm such that it inserts special nodes into the data structures of Tex that
write the position of every line into a text file when typesetting the page. In a second
Tex run we can read the line positions from this file and use them for our algorithm.

15

4. Improvements

In this section we discuss some general improvements that can be used by every algorithm
described in the previous section. They are already implemented in our package.

4.1. Label clustering

Most of the algorithms described in the previous section place labels in a single stack
(that is, without gaps between them) beginning at the upper margin of the page. This
can produce unnecessarily long leaders, for example when the text contains a single site
near the end of the page. We split the labels into separate clusters and place each of
them near the corresponding sites in the text. An algorithm for clustered labeling is also
described by Néllenburg et al. [NPS10]. Our approach is simpler but slower.

To group the labels into clusters we use Algorithm It repeatedly joins adjacent
clusters as long as they intersect each other. To test if two clusters intersect we place the
contained labels as a stack each beneath the arithmetic mean of the sites in the cluster.
The clusters intersect if their corresponding stacks overlap.

The positioning algorithm is executed independently for each of the identified clusters.
The intended position is passed to the algorithm as a parameter.

Algorithm 4.1: Clustering labels
Input: py,...,p, are the sites in the text ordered by their y-coordinate from top to
bottom
Output: list of clusters §
S« [{p1} o} Apa)]
11
while i <#5 —1 do
if clustersIntersect(S[i], S[i + 1]) then
Sli] < S[i] U S[i + 1]
S.delete(i + 1)
// as the size of stack ¢ has increased we check again for
intersection with the previous stack in next iteration
7 i+ max{l,i— 1}
else
| i—i+1

S A W

10 return S

16

4.2. Two-sided label placement

On some page layouts there is enough space to place labels in the margins on the left
and the right side of the text. There are algorithms for uniform labels that minimize the
total leader length for certain leader types placing the labels on both sides, some of them
mentioned in Section

We don’t use such algorithms here, but give simple heuristics that yield a partition of
the labels into two sets. We have to decide for each label on which side of the text it
should be placed. Our approach is to split the sites by a vertical line through the text.
The sites which are left of this split line are labeled on the left side, those right of the
split line are labeled in the right margin.

There are several ways to determine the position of this split line. For most cases
using the weighted median is the best option. It splits the sites such that the sum of the
label heights on the left side is approximately equal to that of the right side. With this
algorithm it is not an issue if the widths of the two margins are different (which means
that the height of a label depends on the side on which it is placed). Another option is
splitting the sites at the middle of the text area. This is especially useful for documents
typeset in two columns: the notes for the left column are placed in the left margin, those
of the right column in the right margin.

4.3. Highlighting portions of text

In the previous sections we connected every note to a specified point inside the text.
However it is often useful to mark to which portion of text the note refers to. Our
package provides the additional command \todoarea, which inserts a note connected
to a highlighted text passage. This command can be used with every label placement
algorithm and every leader type.

The specified text is highlighted by a colored background, which is quite hard to
implement in Latex. We use the soul and soulpos package for this task. They are
easy to use, but the negative side is that they require an additional Latex run. If the
highlighted text contains line breaks, we indicate this by special marks at the beginning
and end of the line (see Figure . In the current implementation we always connect
the leader to the begin of the selected text. If the leader would intersect the highlighted
text, it is cropped.

Of course, this is not the only reasonable anchor for the leader. When the label is below
the selection, it makes more sense to connect the label to the end of the highlighted text.
When the label is directly beside the text, a leader to the nearest point of the highlighted
area would be better. These options are illustrated in Figure Of course, other points
on the boundary are conceivable as well. If the selected text contains a page break, we
get even more options as the note could also be moved to the next page.

17

First
highlighted
text segment
over

The following text is taken from the blindtext
package for LaTeX.

Hello, here-is_some text without a meaning.
This text should show what-a printed text will

multiple look like at this place. If you read this text,
lines you will get no information. Really? Is the-

re no information? Is there a (difference bet-
First note ween this text and some-monsense like “Huar-
without dest-gefburn™? Kjift — not at alll A blind text
highlighted like this gives you information about the selec-

text ted font, how the letters are written and an

impression of the look. This text should con-

tain all letters of the alphabet and it should

be written in of the original language. There is

line no need for special content, but the length of
words should match the language.

only in one

Figure 4.1.: Example for notes with highlighted text. The highlighted text for the first note
spans several lines; this is indicated by special marks at the beginning and end of
the lines.

|

~

Figure 4.2.: Illustration of various anchor points on a highlighted portion of text. The rectangles
on the right show one selection of text, which spans several lines. On the left there
are different labels, which could be connected to the text. Depending on the label
position different anchors at the text should be used to connect the leader.

18

5. Experimental Results

We first give a qualitative comparison of the presented algorithms based on an example
document. We would have liked to introduce a numerical value that measures the drawing
quality of the different algorithms, but it is not obvious how to find an appropriate
indicator, which is suitable for all of the available leader types. So we stick to a subjective
comparison of the results. After that, we compare the running times of the algorithms
on some documents.

We compare the leader styles presented in the previous sections on an example document
with nine comments in it. This document stays the same, only the options of our package
are modified to switch between the available algorithms. The results of these algorithms
are depicted in the appendix. We used the label clustering approach described in
the previous section for all examples except for that of the po-leader algorithm. For
comparison, we also processed the document with the todonotes package (see Figure.

The NorthEastBelow algorithm for s-leaders (Figure is straight-forward and fast.
It is easy for the reader to match the sites to their corresponding label. Using Bézier
curves (Figure instead of the straight-line leaders yields a more aesthetic result
with the disadvantage of a significantly higher runtime caused by the iterations of the
force-directed algorithm. Using two-sided label placement with the same leader type
(Figure produces shorter leaders because the labels can be placed closer to their site.
Especially in text segments with a lot of comments this makes the relationship between
sites and their labels clearer.

Our algorithm for po-leaders (Figure has a high asymptotic runtime and space
consumption. But in practice when there are only few comments per page this is not an
issue. Among the algorithms we implemented, this is the only algorithm minimizing the
total leader length.

The opo-leaders (Figure and os-leaders (Figure are available mainly for
comparison. Clearly, it gets hard for the reader to match sites to their labels on pages
with many comments. In particular, if several sites are in the same line it is hard to tell
the matching between sites and labels. On the other hand the leaders only run between
the lines and in the track routing area and thus don’t disturb the text.

The running times of Luatex with the different leader types for some example documents
are shown in Table Note that Documents 2 and 3 with 15 resp. 25 comments on
one page are quite unrealistic. When using two-sided label placement both sides are
processed independently and thus the algorithm for po-leaders becomes feasible again.
The measured times are for a single run of Tex only. When the absolute position of a site
of a label changes, a second run is needed. When we deactivate our package, processing
still needs 1.4 seconds. This means that s- and opo-leaders cause only small extra cost
compared to a standard Latex run. With the classical todonotes package processing
needs about 1.8 seconds, too.

19

Leader type D1 D2 D3

number of margins 1 2 1 2 1 2
S 1.8 1.7 1.9 1.9 2.2 2.2
Bézier 5.7 54 33.2 11.1 322.9 116.3
po 4.8 3.0 17.7 6.2 — 276
po avoiding text lines 7.0 4.0 26.8 9.5 — 424
opo 1.8 1.7 19 1.9 2.2 2.2
classical todonotes 1.9 2.2 2.6

without luatodonotes 1.4 1.4 1.3

Table 5.1.: Running times of the different label styles on three one-page documents D1, D2, and
D3 (in CPU seconds). The times were measured using a Intel Core 2 Duo E8400 with
3.0 GHz. D1 is the instance with 9 comments shown in the figures in the appendix.
D2 has 15 comments, D3 has 25. For each document, we report two running times;
for label placement into one margin vs. both margins. We use a raster height of 1 cm
for po-leaders, resulting in 28 horizontal strips. We couldn’t use po-leaders for D3
with one margin because the algorithm needed too much memory. For comparison
we also give the running times for the classical todonotes package (which does not
support placing labels in both margins) and the running times for the document
without loading the luatodonotes package.

20

6. Conclusion and Open Problems

All our algorithms turned out to work well in practice—some of them cannot process too
many labels on a single page. Using both margins helps in terms of speed. By visual
inspection we reached the conclusion that s-leaders or Bézier leaders work better than
the os-leaders used by other type-setting programs. The reason may be that the reader’s
eye can follow leaders without bends more easily. It would be interesting to verify this in
a user study. With the modular design of our Latex package it is easy to improve the
label-placement algorithms or add additional ones.

Comparison to todonotes. Our package has some benefits compared to the classical
todonotes package: With the various leader types and algorithms the user has many
configuration options that control the layout of the labels on the page. The drawback
of some of these algorithms is that they strongly increase the running time needed to
process the document. With our method to locate the sites on the page we are able to
place the notes at almost arbitrary positions in the document, for example, inside floating
environments or footnotes. But on the other hand, this method requires a second Tex
run when the absolute position of one of the sites changes. When the page margins are
wide enough, we can place our notes on both sides. So pages with many labels on them
can be arranged more neatly opposed to the one-sided layout of todonotes.

Working with Luatex. Luatex is a major step forward compared to classical Tex
interpreters. Even if it is still in its beta phase, it is quite usable today. Besides from the
possibility to embed high-level programming code into Tex documents—which is much
more comfortable compared to traditional Latex package writing—there are powerful
methods to access internals like counters, dimensions and boxes.

But sometimes the collaboration between Lua and Tex gets really tricky, especially
when exchanging data between Lua variables and Tex registers. For some tasks you have
to pay attention to Tex basics like the category codes of characters and subtleties of the
macro expansion mechanism.

Open problems. An interesting theoretical problem remains open: Given an instance
with non-uniform label heights, is it always possible to place the labels without gaps
so that s-leaders do not cross each other even if we insist that the ports are centered
vertically at each label?

Admittedly, our dynamic program for po-leaders is quite slow. Can we save time by
computing labelings that are just feasible rather than length-minimal? For the other
leader types, on the contrary, it would be interesting to minimize the total leader length.

21

Such algorithms are known only for the case of uniform labels. Perhaps we can transfer
these results using a raster for the labels as done in the po-leader algorithm. Especially
our s-leader algorithms sometimes generate unnecessarily long leaders in the current
implementation, which could be shortened by this approach.

When minimizing the leader length in the two-sided case, one could also try to improve
the approach for partitioning the labels. Our current algorithms split the sites into two
sets by a vertical line. Depending on their positions there could be partitions that yield
better results as illustrated by Benkert et al. [BHKNQ9]. One could investigate if some
of the known algorithms for two-sided boundary labeling can be adapted to work with
non-uniform labels.

Improvements of the package. We have some ideas for further improvements of our
package. The force-directed Bézier curve algorithm is quite slow at the moment. We
think that we could speed up the computation of the distances between curves by doing
a rough estimate first and computing the fine approximation only when needed. It would
be interesting to transform the po-leaders into Bézier curves. As our algorithm yields a
length-minimal po-labeling this could produce a shorter leader length than our approach
with s-leaders. But it is not clear how to inhibit intersections between the curves.

In the current version the raster height needed for the po-leader algorithm is given as a
package option by the user. A heuristic that computes the raster height depending on
the height of the present labels would be useful.

Highlighting text portions has still room for improvements. The current implementation
using the soulpos package is quite slow as it requires several runs of Tex. One could
speed this up by finding another way to highlight the text. The other problem is to
choose the best position for the anchor, that is, the point the leader is connected to. One
solution could be to compute several candidates for the anchor point and choose the best
one when placing the labels or drawing the leaders.

22

Appendix A.
Example Documents

On the following pages we show one example document. It is processed with various
options for the luatodonotes package.

23

The following text is taken from the blindtext package for LaTeX.

Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information.
Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you
information about the selected font, how the letters are written and an impression of
the look. This text should contain all letters of the alphabet and it should be written
in of the original language. There is no need for special content, but the length of
words should match the language.

Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information.
Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you
information about the selected font, how the letters are written and an impression of
the look. This text should contain all letters of the alphabet and it should be written
in of the original language. There is no need for special content, but the length of
words should match the language.

Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information.
Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at all! A blind text like this gives you
information about the selected font, how the letters are written and an impression of
the look. This text should contain all letters of the alphabet and it should be written
in of the original language. There is no need for special content, but the length of
words should match the language.

Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information.
Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you

information about the selected font, how the letters are written and an impression of

The se-
cond com-

ment is a
bit longer.

the look. This text should contain all letters of the alphabet and it should be written it ({om—
in of the original language. There is no need for special content, but the length of ey
words should match the language. e o=
Hello, here is some text without a meaning. This text should show what a printed | [$* li

text will look like at this place. If you read this text, you will get no information. neefis o=
Really? Is there no information? Is there a difference between this text and some | [*€ limes
nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you i i
information about the selected font, how the letters are written and an impression of tha.n. the
the look. This text should contain all letters of the alphabet and it should be written E;i:mus

in of the original language. There is no need for special content, but the length of &—22
words should match the language. This is
Hello, here is some text without a meaning. This text should show what a printed | |¢he last
text will look like at this place. If you read this text, you will get no information. | | comment
Really? Is there no information? Is there a difference between this text and some | |in this pa-
nonsense like “Huardest gefburn”? Kjift — not at all! A blind text like this gives you ragraph.
information about the selected font, how the letters are written and an impression of | | The next
the look. This text should contain all letters of the alphabet and it should be written | | two para-
in of the original language. There is no need for special content, but the length of | | graphs do
words should match the language. not con-
Hello, here is some text without a meaning. This text should show what a printed | | fain any
text will look like at this place. If you read this text, you will get no information. | | comments.
Really? Is there no information? Is there a difference between this text and some | ————
nonsense like “Huardest gefburn”? Kjift — not at all! A blind text like this gives you Comment
in another
paragraph

Second
1 comment,

in same

Figure A.1.: Example document produced by the todonotes package. Note that the labels are
clipped at the bottom because they don’t fit on the page. The last comment is not
shown at all.

24

The following text is taken from the blindtext package for LaTeX.

Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information.
Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you
information about the selected font, how the letters are written and an impression of
the look. This text should contain all letters of the alphabet and it should be written
in of the original language. There is no need for special content, but the length of
wards should match the language.

This comment

t el Helte, here is some text without a meaning. This text should show what a printed
o, 1 text will [oek like at this place. If you read this text, you will get no information.
EZZ:SOT:Z; Really? Is theré~p information? Is there a difference between this text and some

nonsense like “Huar gefburn”? Kjift — not at all! A blind text like this gives you
il e information about the sel d font, how the letters are written and an impression of

previous ones.

First
comment

The second
comment is a | Really? Is there &
bit longer. nonsense likeg“Huardest gefburn”? Kjift — not at alll A blind text like this gives you
Wout the selectedyfont, how the letters are written and aggimpression of
e look. This text sh

in of the origi anguage. There is no need for specialgcontent, but the length of

fthout a meaning. This text should show what a printed

hould match the language.

Hello, heress some text without a meaning.
i isgplace. If you read this téxt, you will get no information.
ion?,ls there a difference Between this text and some

This is the ook like at this place. If you read this text, you will get no information.
last comment | Really? Is there no information? Is there a difference between this text and some
in this nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you
paragraph. information about the selected font, how the letters are written and an impression of

The next two | the look. This text should contain all letters of the alphabet and it should be written
paragraphs do | in of the original language. There is no need for special content, but the length of

not contain words should match the language.
any Hello, here is some text without a meaning. This text should show what a printed
comments. text will look like at this place. If you read this text, you will get no information.

Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you
information about the selected font, how the letters are written and an impression of
the look. This text should contain all letters of the alphabet and it should be written
riginal language. There is no need for special content, but the length of
Second words should matc]
. Hello, here-ts his text should show what a printed
comment in .

— text will look likegat this plac T is text,yo noainformation.
Really? sfe no information? Is there a difference between this text and some
Comment in nsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you

another information about the selected font, how the letters are written and an impression of
paragraph the look. This text should contain all letters of the alphabet and it should be written
in of the original language. There is no need for special content, but the length of
words should match the language.

Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information.
Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at all! A blind text like this gives you

Figure A.2.: Example document produced using the NorthEastBelow positioning algo-
rithm with s-leaders. The package was loaded with the parameters
positioning=sLeaderNorthEastBelowStacks and leadertype=s.

25

The following text is taken from the blindtext package for LaTeX.

Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information.
Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you
information about the selected font, how the letters are written and an impression of
the look. This text should contain all letters of the alphabet and it should be written
in of the original language. There is no need for special content, but the length of

itk ot atch the language.

is much

Hello, here is some t without a meaning. This text should show what a printed

o, 1 text will look like at this ce. If you read this text, you will get no information.
EZZ:SOT:Z; Really? Is there no information™ls there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you

il e information about the selected font, how letters are written and an impression of

previous ones.

the look. This text should contain all letters ofthe alphabet and it should be written
in of the original language. There is no need forspecial content, but the length of
words s match the language.
Hello, here is e text without a meaning. This text“should show what a printed
The second i like at thiggplace. If you read this text, youyill get no information.
comment is a | Really? Is there no in i s there a difference between_this text and some
bit longer. nonsense likeg“Huardest gefburn”? Kjift — not at alll A blind textNike this gives you
Wout the selectedyfont, how the letters are written and awgimpression of
e look. This text shouls ntain all letters of the alphabet and it should be written
in of the origina guage. There is no need for specialcontent, but the length of
match the language.
Hello, here is some text wi

1eaning. This text should show what a printed

This is the © at this place. If you read this text, you will get no information.
last comment | Really? Is there no information? Is there a difference between this text and some
in this nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you
paragraph. information about the selected font, how the letters are written and an impression of

The next two | the look. This text should contain all letters of the alphabet and it should be written
paragraphs do | in of the original language. There is no need for special content, but the length of

not contain words should match the language.
any Hello, here is some text without a meaning. This text should show what a printed
comments. text will look like at this place. If you read this text, you will get no information.

Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you
information about the selected font, how the letters are written and an impression of
the look. This text should contain all letters of the alphabet and it should be written
in of the origt e. There is no need for special content, but the length of
Second words should match the language:

. Hello, here is some ti i should show what a printed
comment in

— text will look likegat this plac 7 e - Losinformation.
Really? Is_therc¢ no information? Is there a difference between this text and some
Comment in Se like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you

another information about the selected font, how the letters are written and an impression of
paragraph the look. This text should contain all letters of the alphabet and it should be written
in of the original language. There is no need for special content, but the length of
words should match the language.

Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information.
Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at all! A blind text like this gives you

Figure A.3.: Example document produced using the NorthEastBelow positioning algo-
rithm with Bézier leaders. The package was loaded with the parameters
positioning=sLeaderNorthEastBelowStacks and leadertype=sBezier.

26

The second
comment is a

Second
comment in
same line

Comment in
another
paragraph

bit longer. nonsense likey“Huardest gefburn”? K‘]lft - not at all! A bhnd text
Wout the selectedyfont, how the letters are written

The following text is taken from the blindtext package for LaTeX.

Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information.
Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you
information about the selected font, how the letters are written and an impression of
the look. This text should contain all letters of the alphabet and it should be written
in of the original language. There is no need for special content, but the length of
words should match the language.

Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information.
Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you
information about the selected font, how the letters are written and an impression of
the look. This text should contain all letters of the alphabet and it should be written
in of the original language. There is no need for special content, but the length of

Really? Is there no ii

€ look. This text shouls ntain all letters of the alphabet it s d be written
in of the original

text wlll look like at this place. If you read t‘hls text, you will get no information.
Really? Is there no information? Is there a difference between this text and $
nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you
information about the selected font, how the letters are written and an impression of
the look. This text should contain all letters of the alphabet and it should be written
in of the original language. There is no need for special content, but the length of
words should match the language.

Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information.
Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you
information about the selected font, how the letters are written and an impression of
the look. This text should contain all letters of the alphabet and it should be written
in of the original language. There is no need for special content, but the length of
words should match the languagc
out a meaning. Thl§ text should show what a printed

text w111 look hke t t s plac you will get noginformation.
Really? Is t no information? Is there a difference between this text and some 1r¢ one

€ like “Huardest gefburn”? Kjift — not at all! A blind text like this gives you
information about the selected font, how the letters are written and an impression of
the look. This text should contain all letters of the alphabet and it should be written
in of the original language. There is no need for special content, but the length of
words should match the language.

Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information.
Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at all! A blind text like this gives you

This is the

This comment

previous ones.

last comment
in this
paragraph.
The next two
paragraphs do
not contain
any
comments.

is much
longer. It
needs more
lines of text
than the

Figure A.4.: Label

Bézier leaders.
the weighted median.
positioning=sLeaderNorthEastBelowStacks,

placement produced by the NorthEastBelow
The comments were partitioned left and right using
The package was loaded with the parameters
leadertype=sBezier and

splitting=weightedMedian.

27

algorithm using

This comment
is much
longer. It

The following text is taken from the blindtext package for LaTeX.

Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information.
Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you
information about the selected font, how the letters are written and an impression of
the look. This text should contain all letters of the alphabet and it should be written

needs more
lines of text
than the
previous ones.

The second
comment is a

in of the original language. There is no need for special content, but|the length of
words should match the language.

Hello, here is some text without a meaning. This text should show v
text will look like at this place. If you read this text, you will get na
Really? Is there no information? Is there a difference between this t
nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like
information about the selected font, how the letters are written and an

hat a printed
information.
ext and some
this gives you
impression of

bit longer.

1d be written
the length of

the look. This text should contain| all letters of the alphabet and it sho
in of the original language. Theré is no need for special content, but
words should match the language

First
comment

nonsense likef"Huardest gefburn”? Kjift — not at all! A blind text like

hat a printed

information.
ext and some
this gives you
information about the selectedgfont, how the letters are written and anjimpression of
the look. This text should contiin all letters of the alphabet and it should be written
in of the original language. There is no need for specialgcontent, but the length of
words should match the language.

Hello, here is some text [without| a meaning. This text should show w
text will look like at thisjplace. If you read this text, you will get n
Really? Is there no information? \Is there a difference between this t

short

This is the
last comment
in this
paragraph.

Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, ygu will get no information.
Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you
information about the selected font, how the letters are written and an impression of
the look. This text should contain all letters of the alphallet and it should be written

The next two
paragraphs do
not contain
any
comments.

in of the original language. There is no need for special content, but the length of
words should match the language.

Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information.
Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you
information about the selected font, how the letters are written and an impression of
the look. This text should contain all letters of the alphabet and it should be written
in of the original language. There is no need for special content, but the length of

Third one

Comment in
another
paragraph

Second

words should match the language.

Hello, here is some text without a meaning. This text should show what a printed

text will look likerw t this place. If you read this text, gyou will get n(ﬂ&nformation.

between this text and some
blind text like this gives you
written and an impression of
abet and it should be written

Really? Is there no information? Is there a difference
nonsense like “Huardest gefburn”? Kjift — not at all! Al
information about the selected font, how the letters are|
the look. This text should contain all letters of the alpl

comment in
same line

in of the original language. There is no need for special content, but the length of
words should match the language.

Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information.
Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at all! A blind text like this gives you

Figure A.5.: Example document produced using po-leaders. The package was loaded with the
parameters positioning=poLeadersAvoidLines and leadertype=po.

28

The following text is taken from the blindtext package for LaTeX.

Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information.
Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you
information about the selected font, how the letters are written and an impression of
the look. This text should contain all letters of the alphabet and it should be written
in of the original language. There is no need for special content, but the length of
words should match the language.

Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information.
Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you
information about the selected font, how the letters are written and an impression of
the look. This text should contain all letters of the alphabet and it should be written
in of the original language. There is no need for special content, but the length of
words should match the language.

The second
comment is
a bit longer.

This

comment is Hello, here is some text without a meaning. This text should show what a printed
much text will look like at thisgplace. If you read this text, you will get no information.
e, T Really? Is there no information?,Is there a difference between this text and some

nonsense likey*Huardest gefburn”? Kjift — not at all! A blind text like this gives you
information about the selectedgfont, how the letters are written and angimpression of
the look. This text should contain all letters of the alphabet and it should be written

needs more -|
lines of text

than the

. in of the original language. There is no need for specialgcontent, but the length of
previous

words should match the language.

ones. . : . . .
— Hello, here is some text without a meaning. This text should show what a printed
This is the text will look like at this place. If you read this text, you will get no information.
last Really? Is there no information? Is there a difference between this text and some
comment in nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you
this information about the selected font, how the letters are written and an impression of
paragraph. the look. This text should contain all letters of the alphabet and it should be written
The next in of the original language. There is no need for special content, but the length of
two words should match the language.
paragraphs Hello, here is some text without a meaning. This text should show what a printed
do not text will look like at this place. If you read this text, you will get no information.
contain any Really? Is there no information? Is there a difference between this text and some
comments. nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you

information about the selected font, how the letters are written and an impression of
— thelook. This text should contain all letters of the alphabet and it should be written
Comment in of the original language. There is no need for special content, but the length of
in another words should match the language.

paragraph —‘ Hello, here is some text without a meaning. This text should show what a printed
text will look likegat this place. If you read this text,gyou will get noginformation.

Second . J Really? Is there no information? Is there a difference between this text and some
commle-nt n nonsense like “Huardest gefburn”? Kjift — not at all! A blind text like this gives you
same line

e e A information about the selected font, how the letters are written and an impression of
the look. This text should contain all letters of the alphabet and it should be written

in of the original language. There is no need for special content, but the length of
words should match the language.

Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information.
Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at all! A blind text like this gives you

Figure A.6.: Example document produced using opo-leaders. The package was loaded with the
parameters positioning=inputOrderStacks and leadertype=opo.

29

The following text is taken from the blindtext package for LaTeX.

Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information.
Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you
information about the selected font, how the letters are written and an impression of

First the look. This text should contain all letters of the alphabet and it should be written
i in of the original language. There is no need for special content, but the length of
e ceeel words should match the language.

Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information.
Really? Is there no information? Is there a difference between this text and some

More nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you
comments. information about the selected font, how the letters are written and an impression of
the look. This text should contain all letters of the alphabet and it should be written
in of the original language. There is no need for special content, but the length of

comment is
a bit longer.

This words should match the language.
comment is Hello, here is some text without a meaning. This text should show what a printed
much text will look like at thisgplace. If you read this text, you will get no information.
e, T Really? Is there no information?,Is there a difference between this text and some
needs more || nonsense likef"Huardest gefburn”? Kjift — not at all! A blind text like this gives you
lines of text information about the selectedgfont, how the letters are written and angimpression of
than the the look. This text should contain all letters of the alphabet and it should be written
. in of the original language. There is no need for specialgcontent, but the length of
previous
ones. words should match the language.
— Hello, here is some text without a meaning. This text should show what a printed
This is the text will look like at this place. If you read this text, you will get no information.
last Really? Is there no information? Is there a difference between this text and some
comment in nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you
this information about the selected font, how the letters are written and an impression of
paragraph. the look. This text should contain all letters of the alphabet and it should be written
The next in of the original language. There is no need for special content, but the length of
two words should match the language.
paragraphs Hello, here is some text without a meaning. This text should show what a printed
do not text will look like at this place. If you read this text, you will get no information.
contain any Really? Is there no information? Is there a difference between this text and some
comments. nonsense like “Huardest gefburn”? Kjift — not at alll A blind text like this gives you
- information about the selected font, how the letters are written and an impression of
— thelook. This text should contain all letters of the alphabet and it should be written
Comment in of the original language. There is no need for special content, but the length of
in another words should match the language.
paragraph Hello, here is some text without a meaning. This text should show what a printed
text will look likegat this place. If you read this text,gyou will get noginformation.
Second . Really? Is there no information? Is there a difference between this text and some
commle-nt L nonsense like “Huardest gefburn”? Kjift — not at all! A blind text like this gives you
same line

information about the selected font, how the letters are written and an impression of
the look. This text should contain all letters of the alphabet and it should be written
in of the original language. There is no need for special content, but the length of
words should match the language.

Hello, here is some text without a meaning. This text should show what a printed
text will look like at this place. If you read this text, you will get no information.
Really? Is there no information? Is there a difference between this text and some
nonsense like “Huardest gefburn”? Kjift — not at all! A blind text like this gives you

Figure A.7.: Example document produced using os-leaders. The package was loaded with the
parameters positioning=inputOrderStacks and leadertype=os.

30

Bibliography

[AES99)

[Bar13]

[BHKNO9)

[BKNS10]

[BKPS06]

[BKSWO7]

[FHS*+12]

[HHH]

[HPL14]

[Kle12]

[KNR*13]

Pankaj K. Agarwal, Alon Efrat, and Micha Sharir: Vertical decomposition of
shallow levels in 3-dimensional arrangements and its applications. STAM J.
Comput., 29(3):912-953, 1999.

Gioele Barabucci: fixmetodonotes. http://www.ctan.org/pkg/fixmetodonotes,
2013.

Marc Benkert, Herman J. Haverkort, Moritz Kroll, and Martin Noéllenburg:
Algorithms for multi-criteria boundary labeling. J. Graph Algorithms Appl.,
13(3):289-317, 2009.

Michael A. Bekos, Michael Kaufmann, Martin Néllenburg, and Anto-
nios Symvonis: Boundary labeling with octilinear leaders. Algorithmica,
57(3):436-461, 2010.

Michael A. Bekos, Michael Kaufmann, Katerina Potika, and Antonios Symvo-
nis: [Multi-stack boundary labeling problems. In S. Arun-Kumar and Naveen
Garg (editors): Proc. Int. Conf. Foundat. Software Tech. Theor. Comput. Sci.
(FSTTCS’06), volume 4337 of LNCS, pages 81-92. Springer-Verlag, 2006.

Michael A. Bekos, Michael Kaufmann, Antonios Symvonis, and Alexander
Wolff: Boundary labeling: Models and efficient algorithms for rectangular
maps. Comput. Geom. Theory Appl., 36(3):215-236, 2007.

Martin Fink, Jan Henrik Haunert, André Schulz, Joachim Spoerhase, and
Alexander Wolff: Algorithms for labeling focus regions. IEEE Trans. Visual.
Comput. Graphics, 18(12):2583-2592, 2012.

Hans Hagen, Hartmut Henkel, and Taco Hoekwater: Luatex. http://www.lua-
tex.org/.

Zhi Dong Huang, Sheung Hung Poon, and Chun Cheng Lin: Boundary
labeling with flexible label positions. In Algorithms and Computation, pages
44-55. Springer, 2014.

Josef Kleber: pdfcomment. http://www.ctan.org/pkg/pdfcomment, 2012.

Philipp Kindermann, Benjamin Niedermann, Ignaz Rutter, Marcus Schae-
fer, André Schulz, and Alexander Wolff: Two-sided boundary labeling with
adjacent sides. In F. Dehne, R. Solis-Oba, and J. R. Sack (editors): Proc.

31

http://dx.doi.org/10.1137/S0097539795295936
http://dx.doi.org/10.1137/S0097539795295936
http://www.ctan.org/pkg/fixmetodonotes
http://dx.doi.org/10.7155/jgaa.00189
http://dx.doi.org/10.1007/s00453-009-9283-6
http://dx.doi.org/10.1007/11944836_10
http://dx.doi.org/10.1016/j.comgeo.2006.05.003
http://dx.doi.org/10.1016/j.comgeo.2006.05.003
http://dx.doi.org/10.1109/TVCG.2012.193
http://www.luatex.org/
http://dx.doi.org/10.1007/978-3-319-04657-0_7
http://dx.doi.org/10.1007/978-3-319-04657-0_7
http://www.ctan.org/pkg/pdfcomment
http://dx.doi.org/10.1007/978-3-642-40104-6_40
http://dx.doi.org/10.1007/978-3-642-40104-6_40

[Mid12]
[NPS10]

[RV14]

[Tan]

[Verl3]
[Wol13]

13th Int. Algorithms Data Struct. Symp. (WADS’13), number 8037 in LNCS,
pages 463-474. Springer-Verlag, 2013.

Henrik Skov Midtiby: todonotes. http://ctan.org/pkg/todonotes, 2012.

Martin Noéllenburg, Valentin Polishchuk, and Mikko Sysikaski: Dynamic
one-sided boundary labeling. In Proc. 18th SIGSPATIAL Int. Conf. Adv.
Geogr. Inform. Syst. (ACM-GIS’10), pages 310-319. ACM, 2010.

Juan Rada-Vilela: easy-todo. http://ctan.org/pkg/easy-todo, 2014.

Till Tantau: PGF and TikZ — Graphic systems for TeX. http://source-
forge.net/projects/pgf/.

Didier Verna: Fixme. http://ctan.org/pkg/fixme, 2013.

Alexander Wolff: Graph drawing and cartography. In Roberto Tamassia
(editor): Handbook of Graph Drawing and Visualization, chapter 23. CRC
Press, 2013.

32

http://ctan.org/pkg/todonotes
http://ctan.org/pkg/easy-todo
http://sourceforge.net/projects/pgf/
http://ctan.org/pkg/fixme

Erklarung

Hiermit versichere ich die vorliegende Abschlussarbeit selbststandig verfasst zu haben,
keine anderen als die angegebenen Quellen und Hilfsmittel benutzt zu haben, und die
Arbeit bisher oder gleichzeitig keiner anderen Priifungsbehérde unter Erlangung eines

akademischen Grades vorgelegt zu haben.

Wiirzburg, den 19. August 2014

Fabian Lipp

33

	Title
	Abstract
	Contents
	1 Introduction
	2 Implementation
	2.1 Actions when a `todo command occurs
	2.2 Actions on page shipout
	2.3 Package options

	3 Algorithms for Label Placement
	3.1 s-leaders
	3.2 Bézier curves as leaders
	3.3 opo-leaders and os-leaders
	3.4 po-leaders

	4 Improvements
	4.1 Label clustering
	4.2 Two-sided label placement
	4.3 Highlighting portions of text

	5 Experimental Results
	6 Conclusion and Open Problems
	A Example Documents
	Bibliography
	Erklärung

