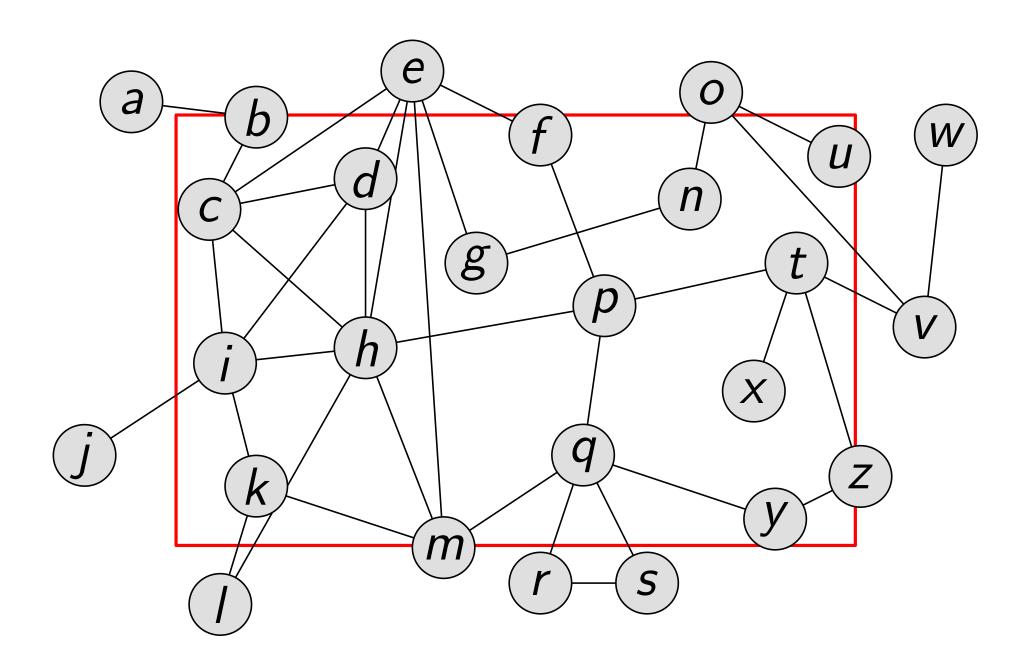
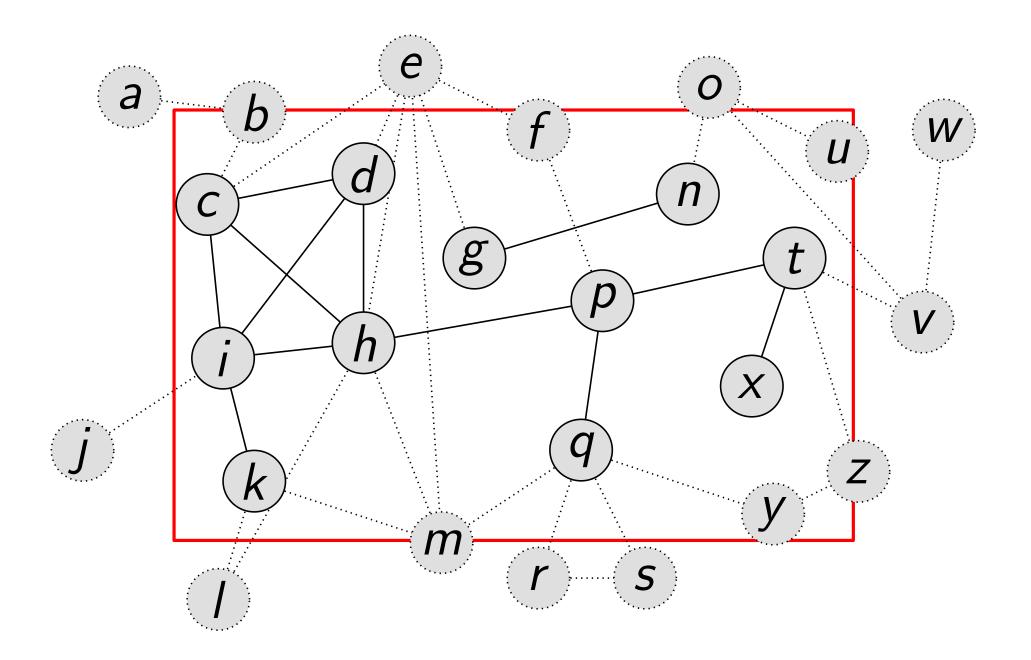
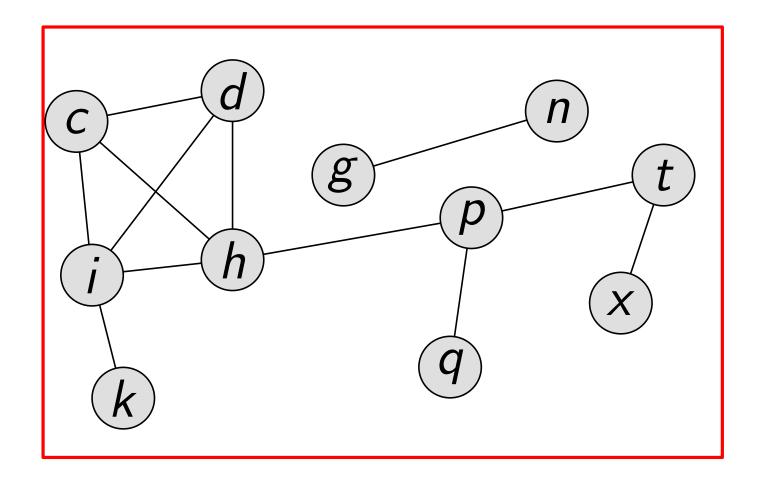
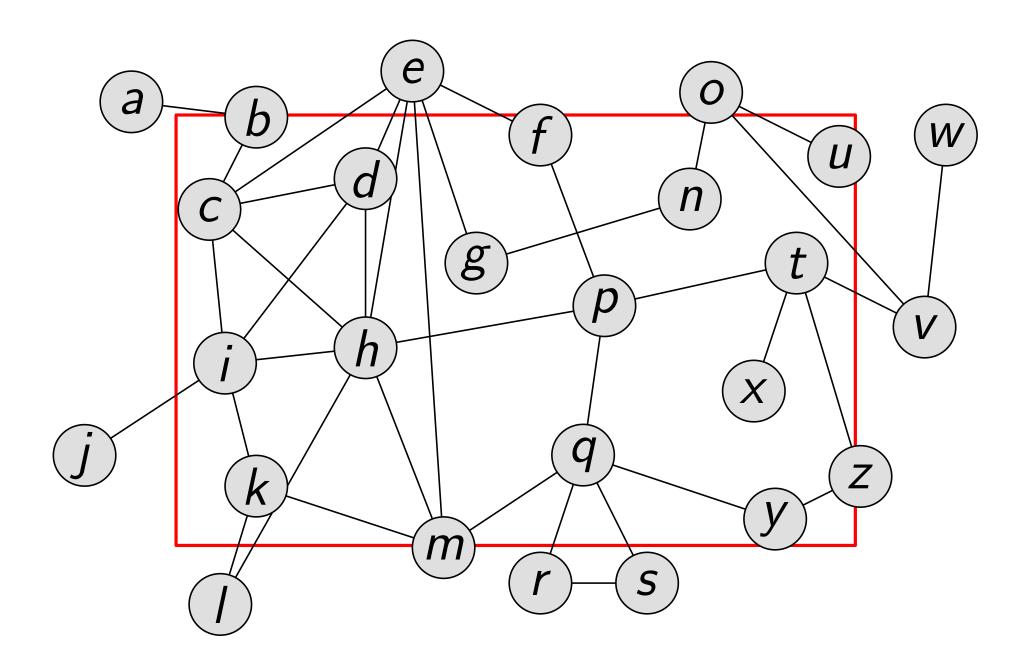
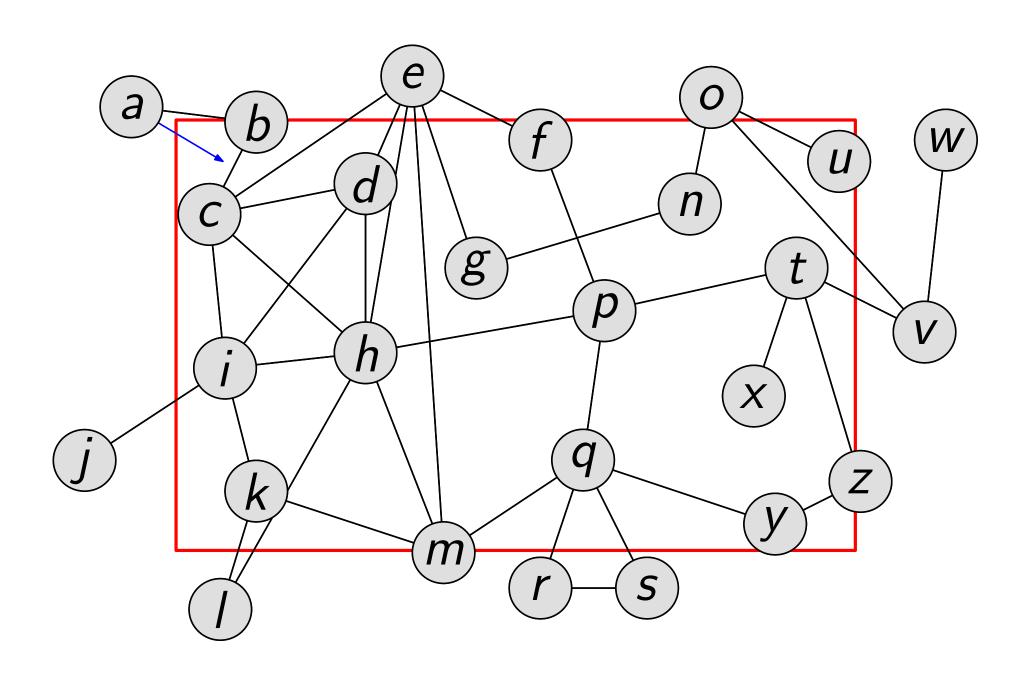

Bachelor-Kolloquium

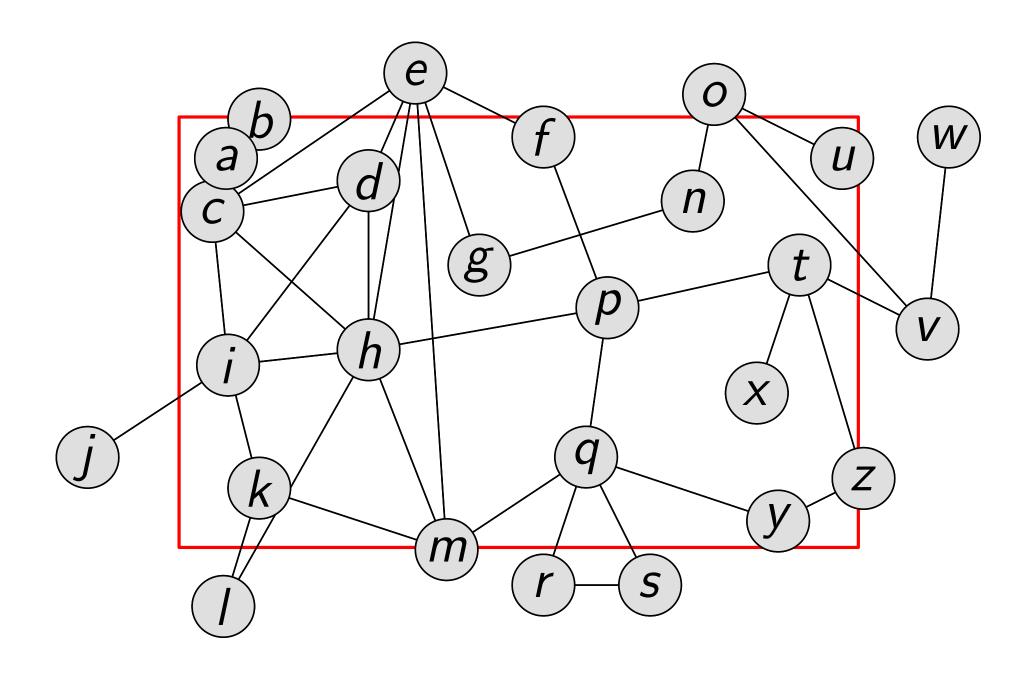

Visualisierung von gewichteten Graphen unter Platzbeschränkung

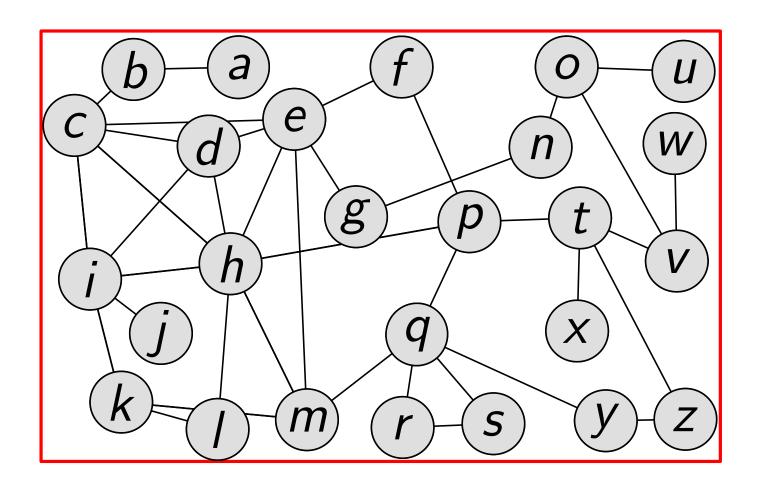

Maximilian Aulbach 20.03.2014


Betreuer:


Prof. Dr. Alexander Wolff Dipl.-Inf. Martin Fink







Problemstellung

- Gegeben: Graph mit gewichteten Knoten und Kanten
 - vorgegebene Knotenform (Kreis, Rechteck)
 - Höhe und Breite der Zeichenfläche
 - gewünschte Kantenlänge l_{unit}
 - vorgegebene Schriftgröße

Problemstellung

- Gegeben: Graph mit gewichteten Knoten und Kanten
 - vorgegebene Knotenform (Kreis, Rechteck)
 - Höhe und Breite der Zeichenfläche
 - gewünschte Kantenlänge l_{unit}
 - vorgegebene Schriftgröße

Gesucht: Zeichnung eines Teilgraphen:

- möglichst hohes Knoten- und Kantengewicht
- möglichst wenige Kantenkreuzungen
- keine Kantenüberdeckungen
- Zeichnung in vorgegebener Zeichenfläche

Problemstellung

- Gegeben: Graph mit gewichteten Knoten und Kanten
 - vorgegebene Knotenform (Kreis, Rechteck)
 - Höhe und Breite der Zeichenfläche
 - gewünschte Kantenlänge l_{unit}
 - vorgegebene Schriftgröße

Gesucht: Zeichnung eines Teilgraphen:

- möglichst hohes Knoten- und Kantengewicht
- möglichst wenige Kantenkreuzungen
- keine Kantenüberdeckungen
- Zeichnung in vorgegebener Zeichenfläche

Lösung: modifiziertes kräftebasiertes Verfahren

• es existieren keine Verfahren für Problemstellung

Ziel: übersichtliche Zeichnung des Graphen

Ziel: übersichtliche Zeichnung des Graphen

- Idee: Berechnung von Kräften, die auf Zeichnung einwirken
 - Verschiebung der Knoten nach ihrem Gesamtvektor
 - Kriterium der gewünschten Kantenlänge
 - lokale Verbesserung wird erreicht
 - nach vielen Iterationen ensteht Kräftegleichgewicht

Ziel: übersichtliche Zeichnung des Graphen

- Idee: Berechnung von Kräften, die auf Zeichnung einwirken
 - Verschiebung der Knoten nach ihrem Gesamtvektor
 - Kriterium der gewünschten Kantenlänge
 - lokale Verbesserung wird erreicht
 - nach vielen Iterationen ensteht Kräftegleichgewicht

Ablauf:

1. berechne die wirkenden Kräfte für alle Knoten

Ziel: übersichtliche Zeichnung des Graphen

- Idee: Berechnung von Kräften, die auf Zeichnung einwirken
 - Verschiebung der Knoten nach ihrem Gesamtvektor
 - Kriterium der gewünschten Kantenlänge
 - lokale Verbesserung wird erreicht
 - nach vielen Iterationen ensteht Kräftegleichgewicht

- 1. berechne die wirkenden Kräfte für alle Knoten
- 2. verschiebe Knoten entsprechend ihrer Kräfte

Ziel: übersichtliche Zeichnung des Graphen

- Idee: Berechnung von Kräften, die auf Zeichnung einwirken
 - Verschiebung der Knoten nach ihrem Gesamtvektor
 - Kriterium der gewünschten Kantenlänge
 - lokale Verbesserung wird erreicht
 - nach vielen Iterationen ensteht Kräftegleichgewicht

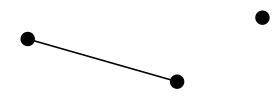
- 1. berechne die wirkenden Kräfte für alle Knoten
- 2. verschiebe Knoten entsprechend ihrer Kräfte
- 3. Gleichgewicht erreicht?

Ziel: übersichtliche Zeichnung des Graphen

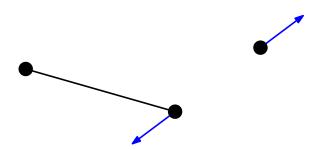
- Idee: Berechnung von Kräften, die auf Zeichnung einwirken
 - Verschiebung der Knoten nach ihrem Gesamtvektor
 - Kriterium der gewünschten Kantenlänge
 - lokale Verbesserung wird erreicht
 - nach vielen Iterationen ensteht Kräftegleichgewicht

- 1. berechne die wirkenden Kräfte für alle Knoten -
- 2. verschiebe Knoten entsprechend ihrer Kräfte
- 3. Gleichgewicht erreicht?

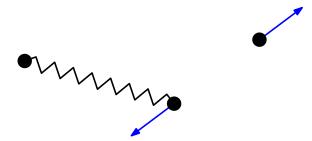
Ziel: übersichtliche Zeichnung des Graphen

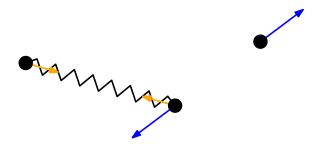

- Idee: Berechnung von Kräften, die auf Zeichnung einwirken
 - Verschiebung der Knoten nach ihrem Gesamtvektor
 - Kriterium der gewünschten Kantenlänge
 - lokale Verbesserung wird erreicht
 - nach vielen Iterationen ensteht Kräftegleichgewicht

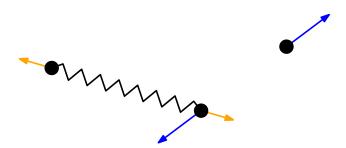
Ablauf:


- 1. berechne die wirkenden Kräfte für alle Knoten
- 2. verschiebe Knoten entsprechend ihrer Kräfte
- 3. Gleichgewicht erreicht?

4. Kräftebasiertes Verfahren terminiert

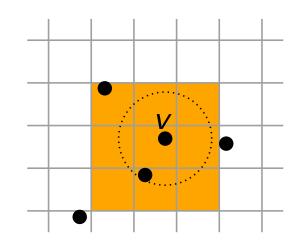

- Abstoßung zwischen nicht adj. Knoten
- Federkraft zwischen adj. Knoten

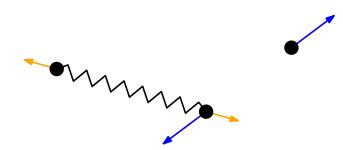

- Abstoßung zwischen nicht adj. Knoten
- Federkraft zwischen adj. Knoten


- Abstoßung zwischen nicht adj. Knoten
- Federkraft zwischen adj. Knoten

- Abstoßung zwischen nicht adj. Knoten
- Federkraft zwischen adj. Knoten

- Abstoßung zwischen nicht adj. Knoten
- Federkraft zwischen adj. Knoten



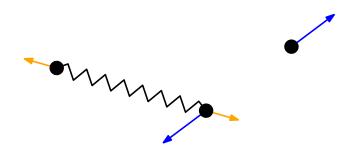

Eades (1984): Spring Embedder

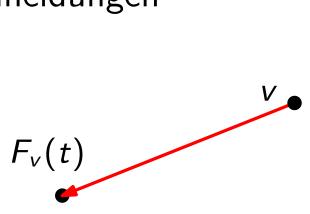
- Abstoßung zwischen nicht adj. Knoten
- Federkraft zwischen adj. Knoten

Fruchterman und Reingold (1991):

- alle Knoten stoßen sich gegenseitig ab
- Vernachlässigung schwacher abstoßender Kräfte
- zeitabhängige Verschiebungslänge (Simulated Annealing)

Eades (1984): Spring Embedder


- Abstoßung zwischen nicht adj. Knoten
- Federkraft zwischen adj. Knoten

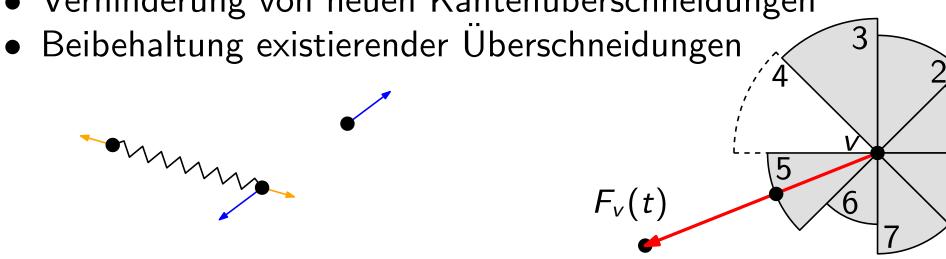

Fruchterman und Reingold (1991):

- alle Knoten stoßen sich gegenseitig ab
- Vernachlässigung schwacher abstoßender Kräfte
- zeitabhängige Verschiebungslänge (Simulated Annealing)

Bertault (2000): PrEd (preserve edge crossing properties)

- Verhinderung von neuen Kantenüberschneidungen
- Beibehaltung existierender Überschneidungen

Eades (1984): Spring Embedder


- Abstoßung zwischen nicht adj. Knoten
- Federkraft zwischen adj. Knoten

Fruchterman und Reingold (1991):

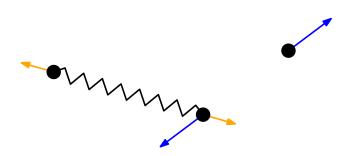
- alle Knoten stoßen sich gegenseitig ab
- Vernachlässigung schwacher abstoßender Kräfte
- zeitabhängige Verschiebungslänge (Simulated Annealing)

Bertault (2000): PrEd (preserve edge crossing properties)

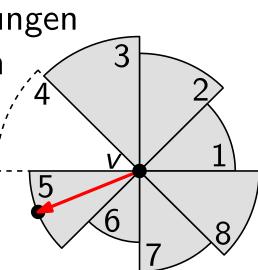
Verhinderung von neuen Kantenüberschneidungen

Eades (1984): Spring Embedder

- Abstoßung zwischen nicht adj. Knoten
- Federkraft zwischen adj. Knoten

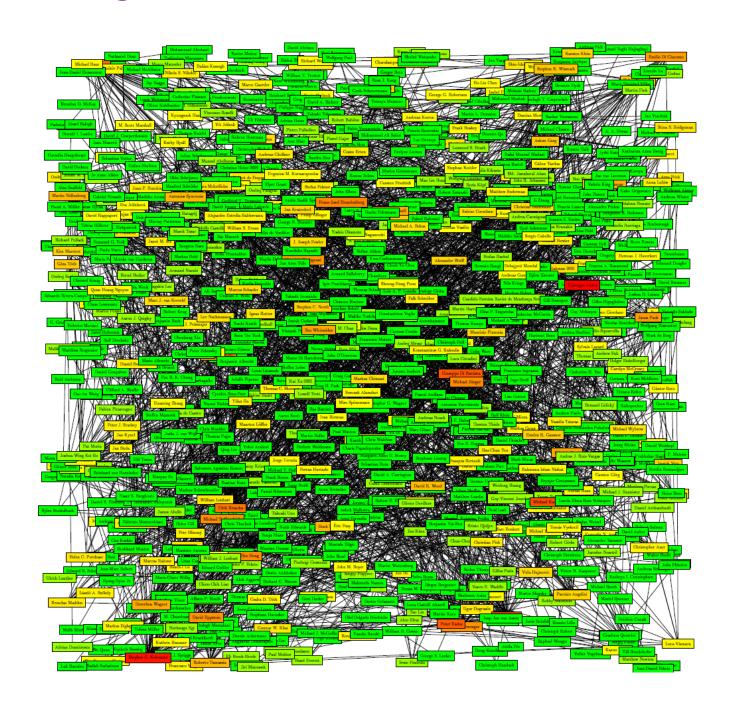

Fruchterman und Reingold (1991):

- alle Knoten stoßen sich gegenseitig ab
- Vernachlässigung schwacher abstoßender Kräfte
- zeitabhängige Verschiebungslänge (Simulated Annealing)


Bertault (2000): PrEd (preserve edge crossing properties)

Verhinderung von neuen Kantenüberschneidungen

• Beibehaltung existierender Überschneidungen



Ablauf:

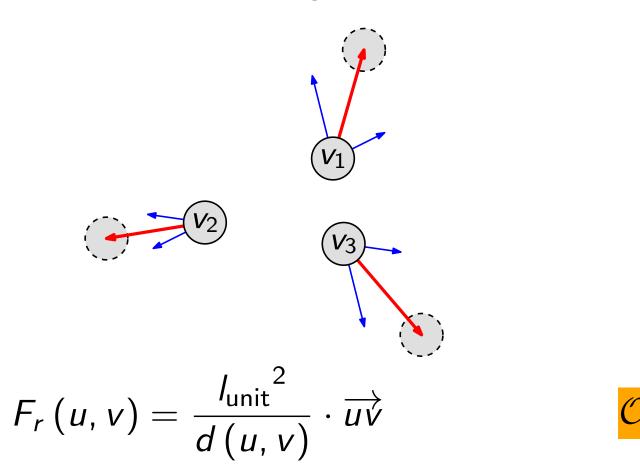
1. lese Graph G ein

- 1. lese Graph G ein
- 2. erstelle zufällige Startzeichnung Z

- 1. lese Graph G ein
- 2. erstelle zufällige Startzeichnung Z

- 1. lese Graph G ein
- 2. erstelle zufällige Startzeichnung Z
- 3. berechne einen Gleichgewichtszustand

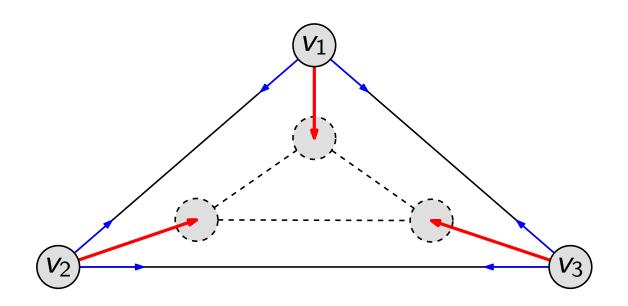
Berechnung des Kräftegleichgewichts


Ablauf:

1. berechne alle Kräfte für alle Knoten

Abstoßende Kraft zwischen Knotenpaaren

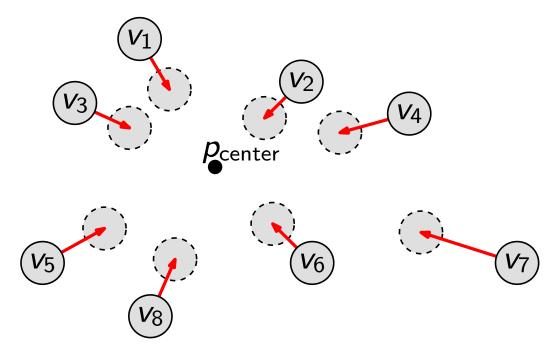
Ziel: Knoten verteilen sich gleichmäßig in der Zeichenfläche


- jedes Paar von Knoten stößt sich gegenseitig ab
- je kleiner der Abstand, desto größer die Kraftwirkung

Anziehende Kraft für benachbarte Knoten

Ziel: benachbarte Knoten sollen nahe beieinander liegen

- benachbarte Knoten ziehen sich gegenseitig an
- je größer der Abstand, desto größer die Kraftwirkung

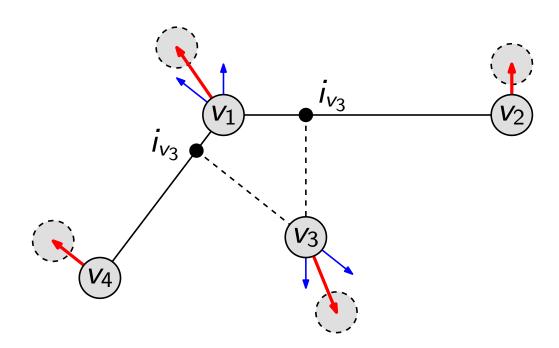

$$F_a(u, v) = \frac{d(u, v)^2}{I_{\text{unit}}} \cdot \overrightarrow{vu}$$

 $\mathcal{O}\left(|E|\right)$

Anziehende Kraft zum Zeichenflächenzentrum

Ziel: verhindert beliebige Ausbreitung der Knoten in der Fläche

- jeder Knoten wird zum Mittelpunkt hingezogen
- je größer der Abstand zum Mittelpunkt, desto größer die Kraftwirkung


$$F_g(v) = d(v, p_{center}) \cdot \overrightarrow{vp_{center}}$$

 $\mathcal{O}(|V|)$

Abstoßungskraft zwischen Kanten und Knoten

Ziel: Kanten sollen nicht durch oder nahe an Knoten verlaufen

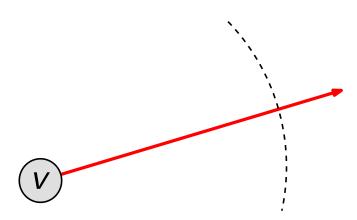
- der Knoten und die Endpunkte der Kante stoßen sich gegenseitig ab
- je kleiner der Abstand, desto größer die Kraftwirkung

$$F_e(v, (a, b)) = (I_{unit} - d(v, i_v))^2 \cdot \overrightarrow{i_v}v$$

 $\mathcal{O}(|V|\cdot|E|)$

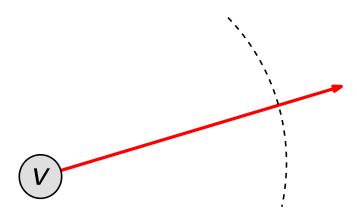
Ablauf:

1. berechne alle Kräfte für alle Knoten

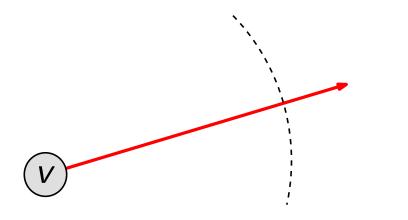

Ablauf:

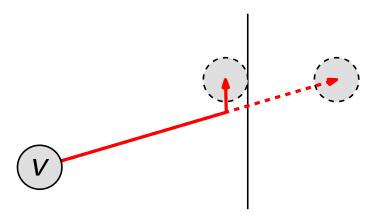
 $\mathcal{O}(|V| \cdot (|V| + |E|))$

1. berechne alle Kräfte für alle Knoten

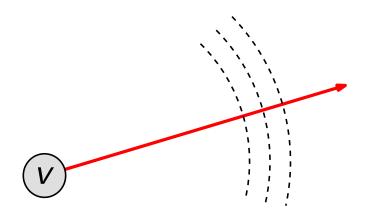

Ablauf:

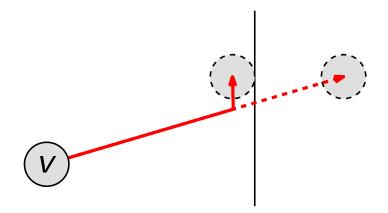
- 1. berechne alle Kräfte für alle Knoten
- 2. wenn nötig, verkleinere Gesamtkraftvektoren


Ablauf:


- 1. berechne alle Kräfte für alle Knoten
- 2. wenn nötig, verkleinere Gesamtkraftvektoren
- 3. verschiebe die Knoten entsprechend ihrer Vektoren

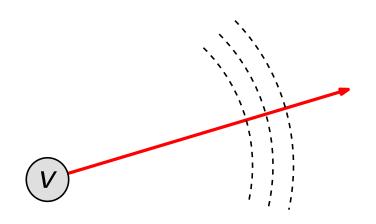
Ablauf:

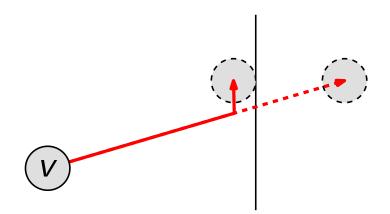

- 1. berechne alle Kräfte für alle Knoten
- 2. wenn nötig, verkleinere Gesamtkraftvektoren
- 3. verschiebe die Knoten entsprechend ihrer Vektoren
- 4. falls nötig, stutze die Koordinaten der Vektoren



Ablauf:

- 1. berechne alle Kräfte für alle Knoten
- 2. wenn nötig, verkleinere Gesamtkraftvektoren
- 3. verschiebe die Knoten entsprechend ihrer Vektoren
- 4. falls nötig, stutze die Koordinaten der Vektoren
- 5. verkleinere die maximal zulässige Vektorlänge (SA)

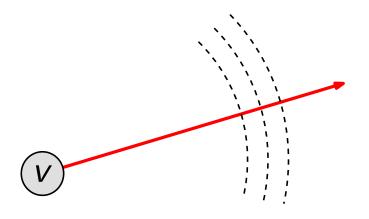


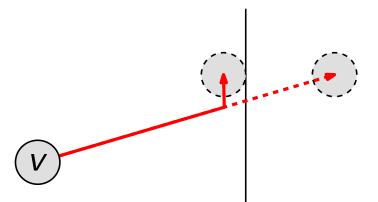


Ablauf:

 $\mathcal{O}\left(|V|\cdot(|V|+|E|)\right)$

- 1. berechne alle Kräfte für alle Knoten
- 2. wenn nötig, verkleinere Gesamtkraftvektoren
- 3. verschiebe die Knoten entsprechend ihrer Vektoren
- 4. falls nötig, stutze die Koordinaten der Vektoren
- 5. verkleinere die maximal zulässige Vektorlänge (SA)
- 6. Gleichgewicht erreicht?

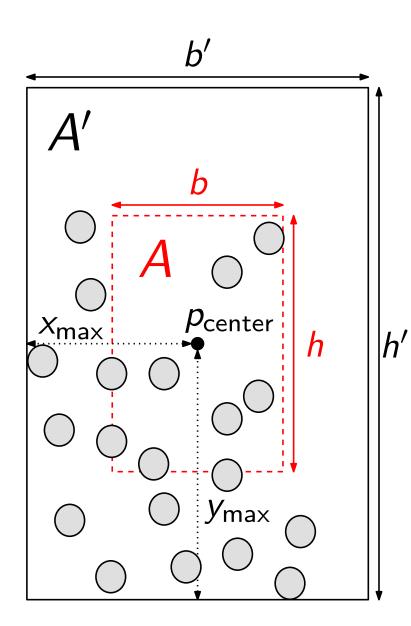



Ablauf:

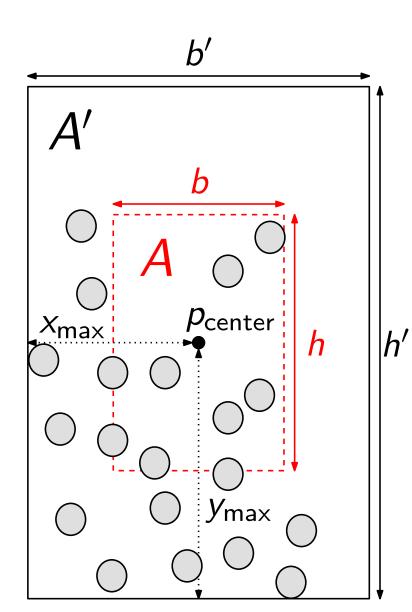
 $\mathcal{O}(|V|\cdot(|V|+|E|))$

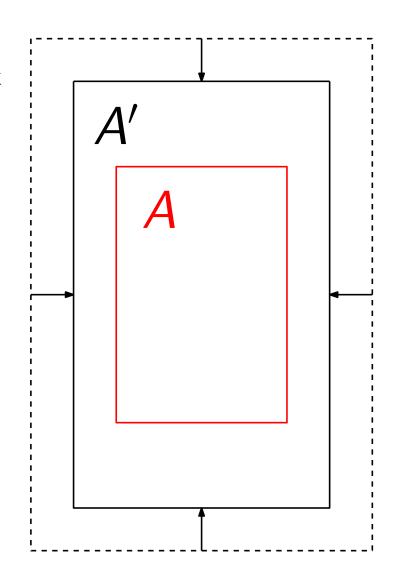
- 1. berechne alle Kräfte für alle Knoten
- 2. wenn nötig, verkleinere Gesamtkraftvektoren
- 3. verschiebe die Knoten entsprechend ihrer Vektoren
- 4. falls nötig, stutze die Koordinaten der Vektoren
- 5. verkleinere die maximal zulässige Vektorlänge (SA)
- 6. Gleichgewicht erreicht?

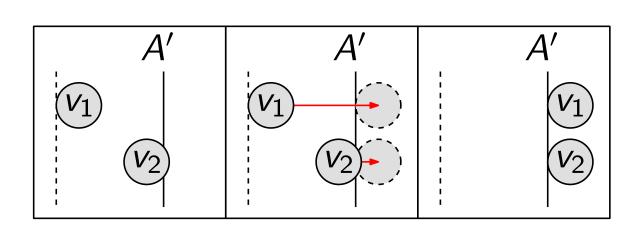
nein

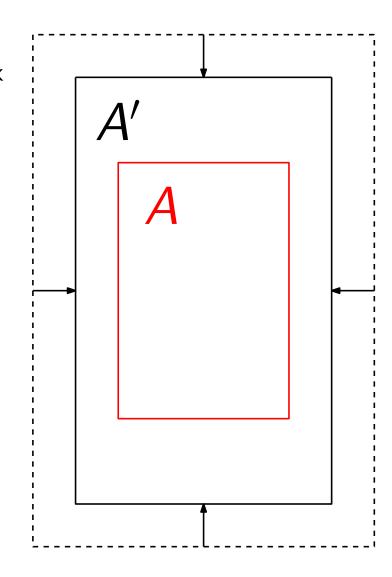

- 1. lese Graph G ein
- 2. erstelle zufällige Startzeichnung Z
- 3. berechne einen Gleichgewichtszustand

- 1. lese Graph G ein
- 2. erstelle zufällige Startzeichnung Z
- 3. berechne einen Gleichgewichtszustand
- 4. lege einen Begrenzung A' um Z


• Berechnung von p_{center} aus der Startzeichnung


- Berechnung von p_{center} aus der Startzeichnung
- Berechnung der Abweichungen x_{max} und y_{max}


- Berechnung von p_{center} aus der Startzeichnung
- Berechnung der Abweichungen x_{max} und y_{max}
- Startbegrenzung A' wird erstellt



- Berechnung von p_{center} aus der Startzeichnung
- Berechnung der Abweichungen x_{max} und y_{max}
- Startbegrenzung A' wird erstellt
- iterative Verkleinerung von h' und
 b' um einen konstanten Wert

- Berechnung von p_{center} aus der Startzeichnung
- Berechnung der Abweichungen x_{max} und y_{max}
- Startbegrenzung A' wird erstellt
- iterative Verkleinerung von h' und
 b' um einen konstanten Wert
- Knoten werden falls nötig in die Flächenbegrenzung hieneingedrückt

- 1. lese Graph G ein
- 2. erstelle zufällige Startzeichnung Z
- 3. berechne einen Gleichgewichtszustand
- 4. lege einen Begrenzung A' um Z

- 1. lese Graph G ein
- 2. erstelle zufällige Startzeichnung Z
- 3. berechne einen Gleichgewichtszustand
- 4. lege einen Begrenzung A' um Z
- 5. berechne einen Gleichgewichtszustand

- 1. lese Graph G ein
- 2. erstelle zufällige Startzeichnung Z
- 3. berechne einen Gleichgewichtszustand
- 4. lege einen Begrenzung A' um Z
- 5. berechne einen Gleichgewichtszustand
- 6. verkleinere A'

- 1. lese Graph G ein
- 2. erstelle zufällige Startzeichnung Z
- 3. berechne einen Gleichgewichtszustand
- 4. lege einen Begrenzung A' um Z
- 5. berechne einen Gleichgewichtszustand
- 6. verkleinere A'
- 7. berechne einen Gleichgewichtszustand

- 1. lese Graph G ein
- 2. erstelle zufällige Startzeichnung Z
- 3. berechne einen Gleichgewichtszustand
- 4. lege einen Begrenzung A' um Z
- 5. berechne einen Gleichgewichtszustand
- 6. verkleinere A'
- 7. berechne einen Gleichgewichtszustand
- 8. prüfe ob Graphelemente gelöscht werden müssen

Ablauf:

4. ist Zeichnung zu sehr zusammengedrückt?

Ablauf:

1. ist die durchschnittliche Kantenlänge zu klein?

4. ist Zeichnung zu sehr zusammengedrückt?

ja

Ablauf:

1. ist die durchschnittliche Kantenlänge zu klein?

ja

2. lösche Knoten aus G

4. ist Zeichnung zu sehr zusammengedrückt?

ja

Ablauf:

1. ist die durchschnittliche Kantenlänge zu klein?

2. lösche Knoten aus G lösche Kante aus G

Ja

nein

4. ist Zeichnung zu sehr zusammengedrückt?

Ja

Ablauf:

1. ist die durchschnittliche Kantenlänge zu klein?

ja • nein —

Ja

2. lösche Knoten aus G

- lösche Kante aus G
- 3. berechne einen Gleichgewichtszustand
- 4. ist Zeichnung zu sehr zusammengedrückt?

Ablauf:

- ist die durchschnittliche Kantenlänge zu klein?

 ja nein
 lösche Knoten aus G lösche Kante aus G

 berechne einen Gleichgewichtszustand
 ist Zeichnung zu sehr zusammengedrückt?
- Wie entscheidet man nun welcher Knoten entfernt werden soll?

Ja

Ablauf:

- 1. ist die durchschnittliche Kantenlänge zu klein? nein 2. lösche Knoten aus G lösche Kante aus G 3. berechne einen Gleichgewichtszustand
- 4. ist Zeichnung zu sehr zusammengedrückt?

- Knoten mit größter "Unruhe" bzw. Bewegungsdrang
- Gesamtkraftvektor kann dieses Kriterium nicht ausreichend abdecken

Ablauf:

- 1. ist die durchschnittliche Kantenlänge zu klein?
 - ____ ja ←_____ nein —____
- 2. lösche Knoten aus G

- lösche Kante aus G
- 3. berechne einen Gleichgewichtszustand
- 4. ist Zeichnung zu sehr zusammengedrückt?

ja

- Knoten mit größter "Unruhe" bzw. Bewegungsdrang
- Gesamtkraftvektor kann dieses Kriterium nicht ausreichend abdecken

Ablauf:

- 1. ist die durchschnittliche Kantenlänge zu klein?
 - ja nein —
- 2. lösche Knoten aus G

lösche Kante aus G

- 3. berechne einen Gleichgewichtszustand
- 4. ist Zeichnung zu sehr zusammengedrückt?

ja

- Knoten mit größter "Unruhe" bzw. Bewegungsdrang
- Gesamtkraftvektor kann dieses Kriterium nicht ausreichend abdecken

Ablauf:

- 1. ist die durchschnittliche Kantenlänge zu klein?
 - ____ ja ←____ nein _____
- 2. lösche Knoten aus G

lösche Kante aus G

- 3. berechne einen Gleichgewichtszustand
- 4. ist Zeichnung zu sehr zusammengedrückt?

ja

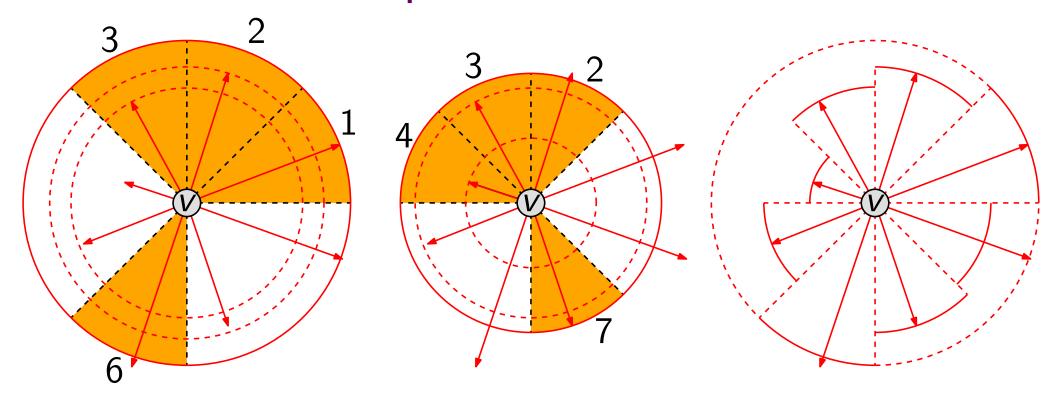
- Knoten mit größter "Unruhe" bzw. Bewegungsdrang
- Gesamtkraftvektor kann dieses Kriterium nicht ausreichend abdecken

Ablauf:

- 1. ist die durchschnittliche Kantenlänge zu klein?
- ja nein —
- 2. lösche Knoten aus G

lösche Kante aus G

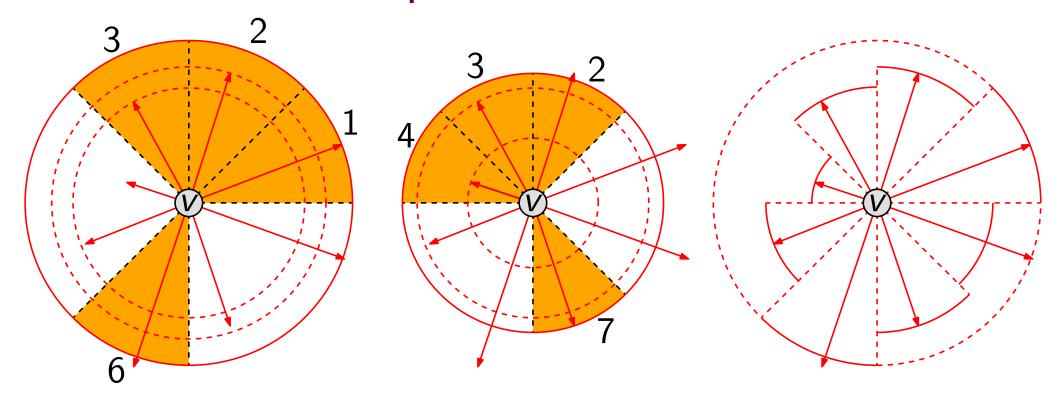
- 3. berechne einen Gleichgewichtszustand
- 4. ist Zeichnung zu sehr zusammengedrückt?


ja

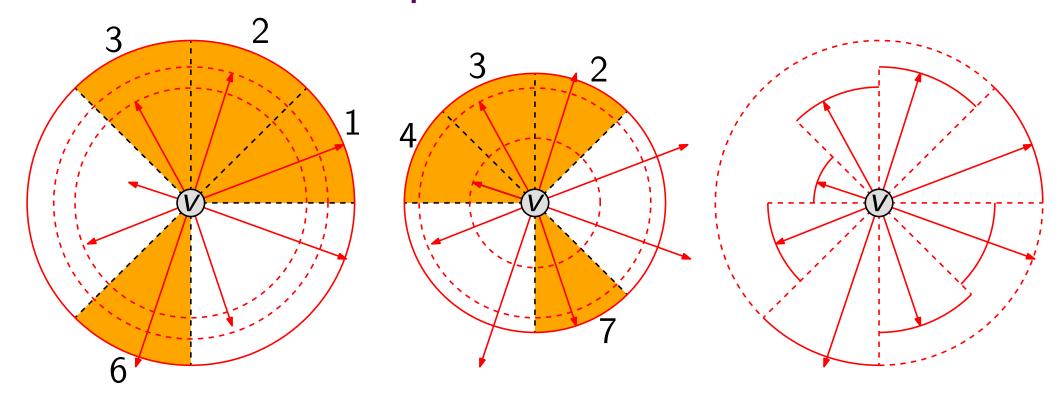
Wie entscheidet man nun welcher Knoten entfernt werden soll?

- Knoten mit größter "Unruhe" bzw. Bewegungsdrang
- Gesamtkraftvektor kann dieses Kriterium nicht ausreichend

abdecken


Knotendruck P(v)

Wie entscheidet man nun welcher Knoten entfernt werden soll?


- Knoten mit größter "Unruhe" bzw. Bewegungsdrang
- Gesamtkraftvektor kann dieses Kriterium nicht ausreichend abdecken

Knotendruck P(v)

Knotenstress:

$$S(v) = \frac{P(v)}{w(v) \cdot (d(v) + 0.001)}$$

Knotenstress:

$$S(v) = \frac{P(v)}{w(v) \cdot (d(v) + 0.001)}$$
$$S(e) = \frac{|E_i|}{w(e)} \cdot \sum_{f \in E_i} w(f)$$

$$S(e) = \frac{|E_i|}{w(e)} \cdot \sum_{f \in E_i} w(f)$$

Berechnung des Kräftegleichgewichts

Ablauf:

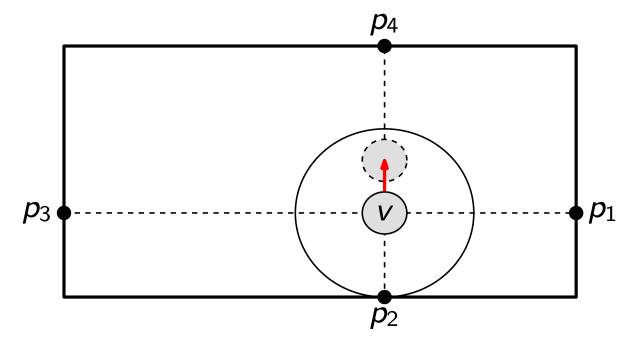
- 1. berechne alle Kräfte für alle Knoten -
- 2. wenn nötig, verkleinere Gesamtkraftvektoren
- 3. verschiebe die Knoten entsprechend ihrer Vektoren
- 4. wenn nötig, verschiebe Knoten in den Zeichenbereich
- 5. verkleinere die maximal zulässige Vektorlänge
- 6. Gleichgewicht erreicht?

nein

Berechnung des Kräftegleichgewichts

Ablauf:

- 1. berechne alle Kräfte für alle Knoten -
- 2. wenn nötig, verkleinere Gesamtkraftvektoren
- 3. verschiebe die Knoten entsprechend ihrer Vektoren
- 4. wenn nötig, verschiebe Knoten in den Zeichenbereich
- 5. verkleinere die maximal zulässige Vektorlänge
- 6. Gleichgewicht erreicht?


ja ← nein

7. berechne den Knoten- und Kantenstress

Abstoßende Kraft der Flächenbegrenzung

Ziel: Abstoßende Wirkung für Randknoten (Druckberechnung)

• je kleiner der Abstand, desto größer die Kraftwirkung

$$p_{\text{frame}} = \arg \min_{p_i \in \{p_1, p_2, p_3, p_4\}} d(v, p_i)$$

$$F_f(v) = \frac{I_{\text{unit}}^2}{d(v, p_{\text{frame}})} \cdot \overline{p_{\text{frame}}} v$$

Ablauf:

- 1. lese Graph G ein
- 2. erstelle zufällige Startzeichnung Z
- 3. berechne einen Gleichgewichtszustand
- 4. lege einen Begrenzung A' um Z
- 5. berechne einen Gleichgewichtszustand
- 6. verkleinere A'
- 7. berechne einen Gleichgewichtszustand
- 8. prüfe ob Graphelemente gelöscht werden müssen

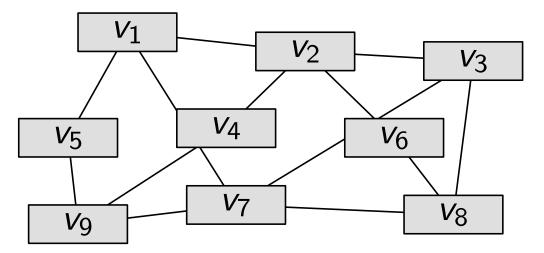
Ablauf:

- 1. lese Graph G ein
- 2. erstelle zufällige Startzeichnung Z
- 3. berechne einen Gleichgewichtszustand
- 4. lege einen Begrenzung A' um Z
- 5. berechne einen Gleichgewichtszustand
- 6. verkleinere A'
- 7. berechne einen Gleichgewichtszustand
- 8. prüfe ob Graphelemente gelöscht werden müssen
- 9. sind A' und A gleich?

Ablauf:

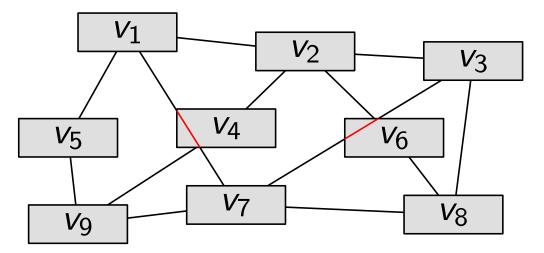
- 1. lese Graph G ein
- 2. erstelle zufällige Startzeichnung Z
- 3. berechne einen Gleichgewichtszustand
- 4. lege einen Begrenzung A' um Z
- 5. berechne einen Gleichgewichtszustand
- 6. verkleinere A' ←
- 7. berechne einen Gleichgewichtszustand
- 8. prüfe ob Graphelemente gelöscht werden müssen
- 9. sind A' und A gleich?

nein

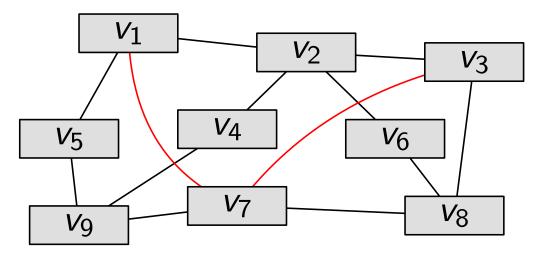

Ablauf:

- 1. lese Graph G ein
- 2. erstelle zufällige Startzeichnung Z
- 3. berechne einen Gleichgewichtszustand
- 4. lege einen Begrenzung A' um Z
- 5. berechne einen Gleichgewichtszustand
- 6. verkleinere $A' \leftarrow$
- 7. berechne einen Gleichgewichtszustand
- 8. prüfe ob Graphelemente gelöscht werden müssen
- 9. sind A' und A gleich?

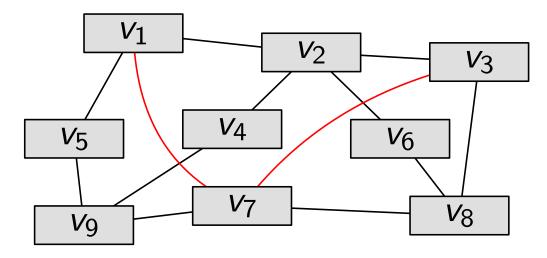
10. wandle Kanten in Bézierkurven um


Problem: rechteckige Knotenform

- es müssen viele Kanten entfernt werden
- Zeichenbereich wird nicht optimal genutzt


Problem: rechteckige Knotenform

- es müssen viele Kanten entfernt werden
- Zeichenbereich wird nicht optimal genutzt


Problem: rechteckige Knotenform

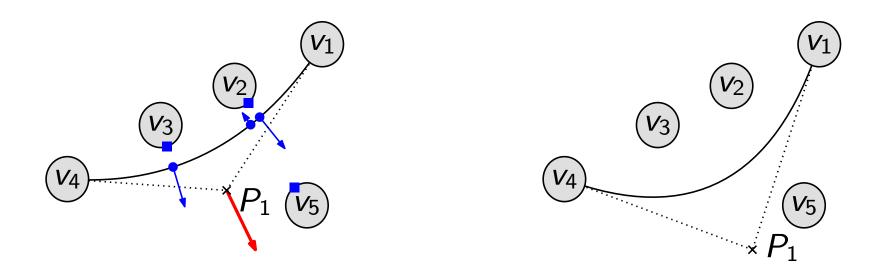
- es müssen viele Kanten entfernt werden
- Zeichenbereich wird nicht optimal genutzt

Problem: rechteckige Knotenform

- es müssen viele Kanten entfernt werden
- Zeichenbereich wird nicht optimal genutzt

Lösung: problematische Kanten als Bézierkurven zeichnen

 V_2

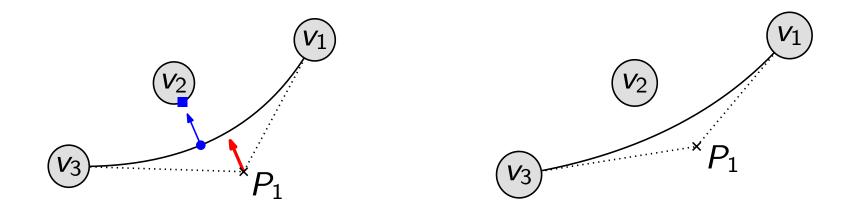

- quadratische Bézierkurven werden benutzt
- Berechnung eines Kräftegleichgewichts für die Kontrollpunkte der Kurven $\widehat{v_3}$

$$B_2(t) = (P_0 - 2P_1 + P_2) \cdot t^2 + (-2P_0 + 2P_1) \cdot t + P_0$$

Abstoßende Kraft für Kontrollpunkte

Ziel: Bézierkurven sollen nicht zu nahe an Knoten liegen

- nicht-inzidente Knoten stoßen den Kontrollpunkt der Kurve ab
- je kleiner der Abstand, desto größer die Kraftwirkung



$$F_{rc}\left(v,(a,b)\right) = \frac{b_v^2 + h_v^2}{d\left(p_v, p_{(a,b)}\right)} \cdot \overline{p_v p_{(a,b)}} \qquad \mathcal{O}\left(|V| \cdot |E|\right)$$

Anziehende Kraft für Kontrollpunkte

Ziel: Bézierkurven sollen möglichst mittig verlaufen

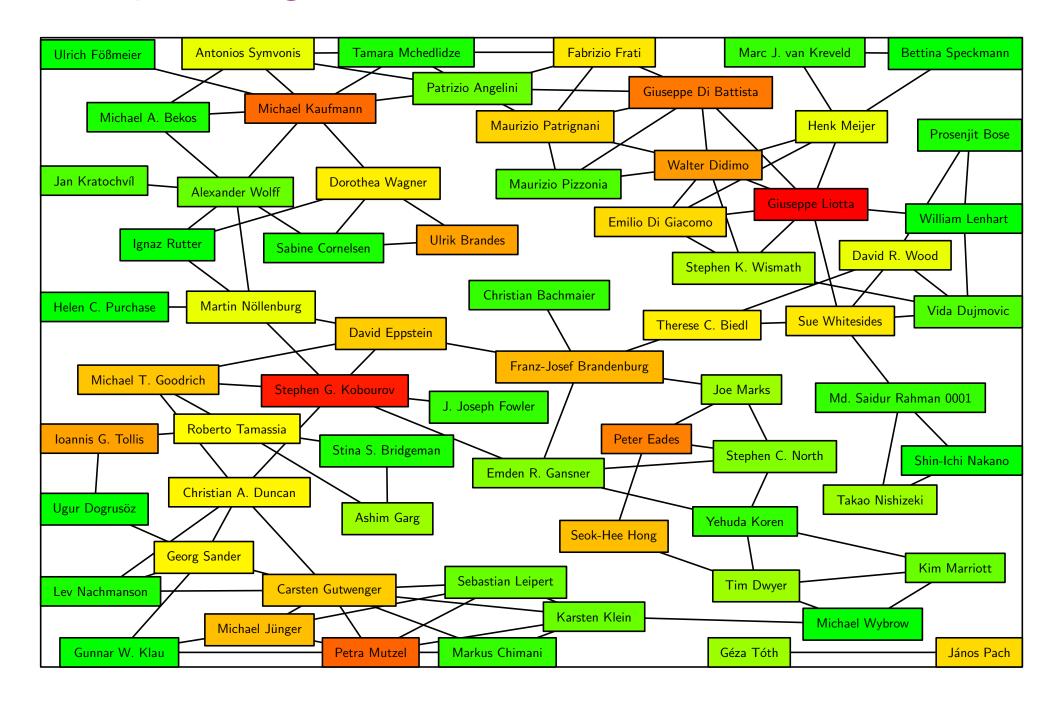
- nicht-inzidente Knoten ziehen den Kontrollpunkt der Kurve an
- je größer der Abstand, desto größer die Kraftwirkung

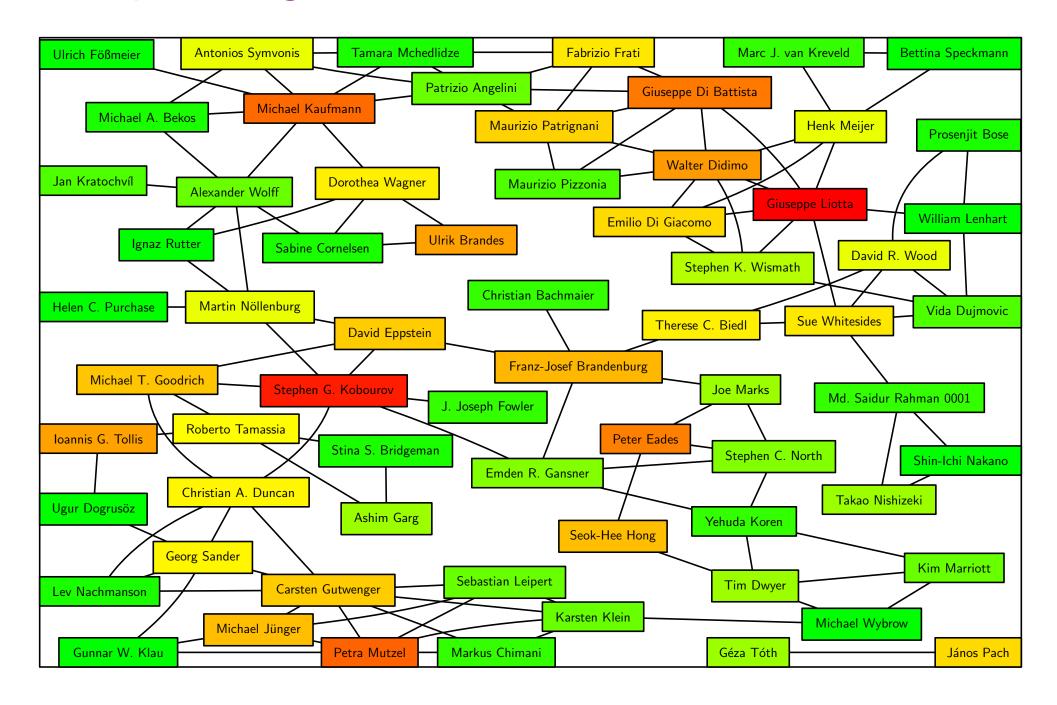
$$F_{ac}\left(v,(a,b)\right) = \frac{d\left(p_{v},p_{(a,b)}\right)^{2}}{\sqrt{b_{v}^{2} + h_{v}^{2}}} \cdot \overline{p_{(a,b)}p_{v}} \qquad \mathcal{O}\left(|V| \cdot |E|\right)$$

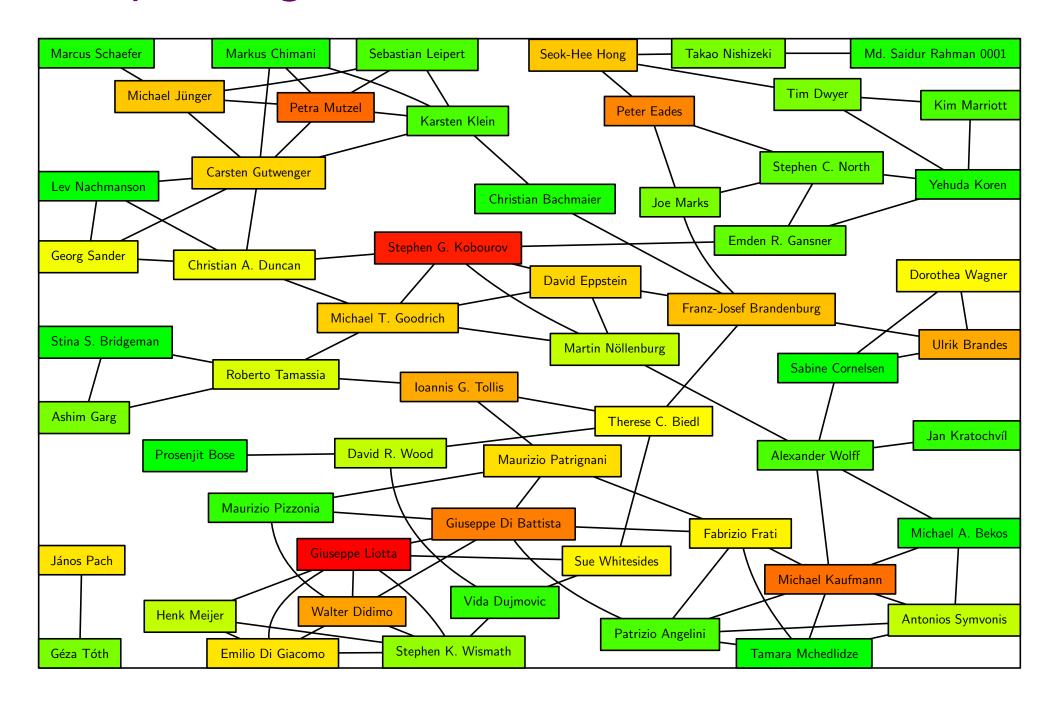
Ablauf:

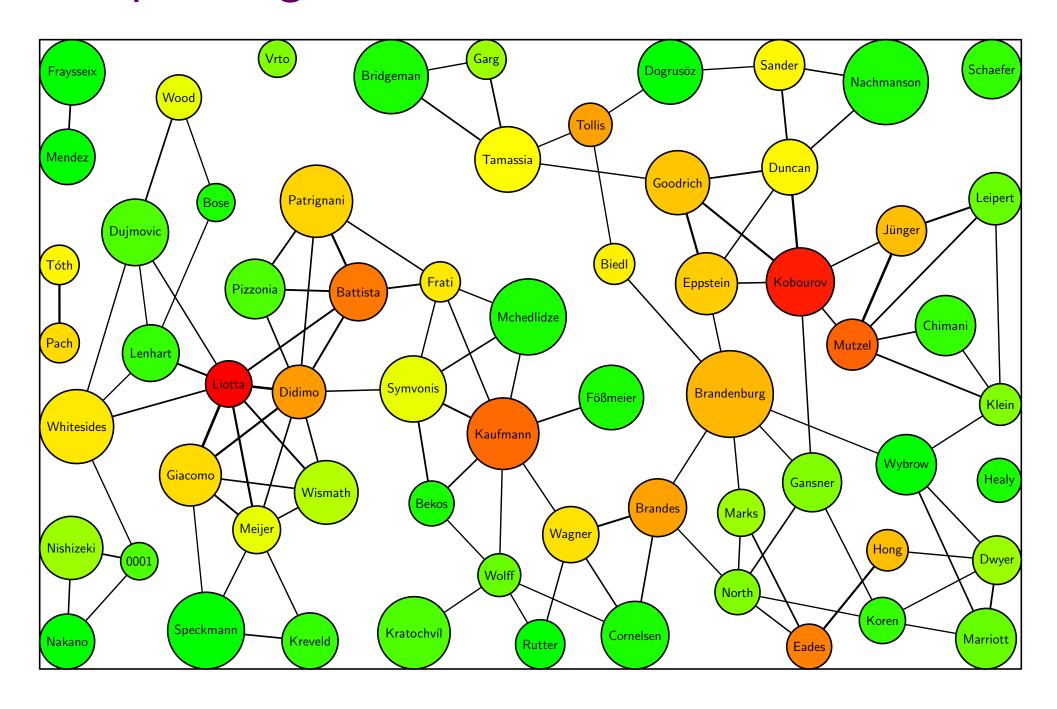
- 1. lese Graph G ein
- 2. erstelle zufällige Startzeichnung Z
- 3. berechne einen Gleichgewichtszustand
- 4. lege einen Begrenzung A' um Z
- 5. berechne einen Gleichgewichtszustand
- 6. verkleinere $A' \leftarrow$
- 7. berechne einen Gleichgewichtszustand
- 8. prüfe ob Graphelemente gelöscht werden müssen
- 9. sind A' und A gleich?

ja ← nein


10. wandle Kanten in Bézierkurven um


Ablauf:


- 1. lese Graph G ein
- 2. erstelle zufällige Startzeichnung Z
- 3. berechne einen Gleichgewichtszustand
- 4. lege einen Begrenzung A' um Z
- 5. berechne einen Gleichgewichtszustand
- 6. verkleinere $A' \leftarrow$
- 7. berechne einen Gleichgewichtszustand
- 8. prüfe ob Graphelemente gelöscht werden müssen
- 9. sind A' und A gleich?
- 10. wandle Kanten in Bézierkurven um
- 11. erstelle Ausgabe-Formate der Zeichnung


Feste Größen:

- Zeichenbereich: 736pt x 472pt (27.6cm x 17.7cm)
- Zeichenflächenanpassungen: 25
- Schriftgröße: Ipe "Normal" (LaTEX "normalsize", 10pt)
- Eingabegraph mit 951 Knoten und 2334 Kanten
- Daten über Mehrautorenschaft beim International Symposium on Graph Drawing (1994-2012)

Feste Größen:

- Zeichenbereich: 736pt x 472pt (27.6cm x 17.7cm)
- Zeichenflächenanpassungen: 25
- Schriftgröße: Ipe "Normal" (LATEX "normalsize", 10pt)
- Eingabegraph mit 951 Knoten und 2334 Kanten
- Daten über Mehrautorenschaft beim International Symposium on Graph Drawing (1994-2012)

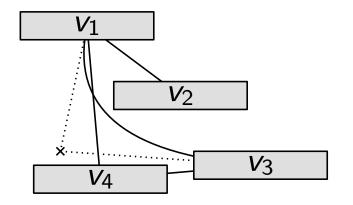
Vergleich:

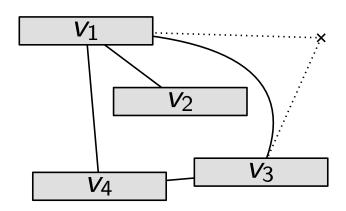
$I_{\sf unit}$	Knotenform	\ \(\sigma_{\%} \)	w(V)%	E%	w(E)%	Zeit
2.0cm	Rechteck	6.9	43.3	5.1	18.1	89.3s
2.5cm	Rechteck	5.9	40.5	4.2	15.9	67.0s
2.0cm	Kreis	7.0	42.2	4.6	15.7	36.8s

Feste Größen:

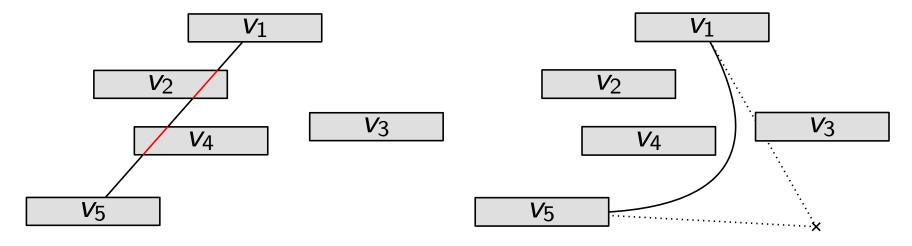
- Zeichenbereich: 736pt x 472pt (27.6cm x 17.7cm)
- Zeichenflächenanpassungen: 25
- Schriftgröße: Ipe "Normal" (LATEX "normalsize", 10pt)
- Eingabegraph mit 951 Knoten und 2334 Kanten
- Daten über Mehrautorenschaft beim International Symposium on Graph Drawing (1994-2012)

Vergleich:


I_{unit}	Knotenform	\ \(\sigma_{\gamma} \)	w(V)%	E%	w(E)%	Zeit
2.0cm	Rechteck	6.9	43.3	5.1	18.1	89.3s
2.5cm	Rechteck	5.9	40.5	4.2	15.9	67.0s
2.0cm	Kreis	7.0	42.2	4.6	15.7	36.8s


Vorverarbeitung des Eingabegraphen

- keine vergleichbaren Verfahren
 - Qualität der Ergebnisse nur schwer abschätzbar
 - Laufzeit ein kritischer Faktor


- keine vergleichbaren Verfahren
 - Qualität der Ergebnisse nur schwer abschätzbar
 - Laufzeit ein kritischer Faktor
- Zeichnungen enthalten wenige Knoten und Kanten aber ein Großteil des Gewichts

- keine vergleichbaren Verfahren
 - Qualität der Ergebnisse nur schwer abschätzbar
 - Laufzeit ein kritischer Faktor
- Zeichnungen enthalten wenige Knoten und Kanten aber ein Großteil des Gewichts
- mögliche Verbesserungen
 - Verhindern von unschönen Kantenkreuzungen

- keine vergleichbaren Verfahren
 - Qualität der Ergebnisse nur schwer abschätzbar
 - Laufzeit ein kritischer Faktor
- Zeichnungen enthalten wenige Knoten und Kanten aber ein Großteil des Gewichts
- mögliche Verbesserungen
 - Verhindern von unschönen Kantenkreuzungen
 - Herumleiten der Kanten um mehrere Knoten

- keine vergleichbaren Verfahren
 - Qualität der Ergebnisse nur schwer abschätzbar
 - Laufzeit ein kritischer Faktor
- Zeichnungen enthalten wenige Knoten und Kanten aber ein Großteil des Gewichts
- mögliche Verbesserungen
 - Verhindern von unschönen Kantenkreuzungen
 - Herumleiten der Kanten um mehrere Knoten

Vielen Dank für Ihre Aufmerksamkeit! Fragen?