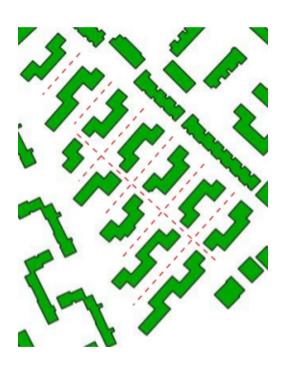
Symmetry Detection in Building Footprints

Presentation of the Master's thesis Hagen Schwaß

Introduction

Symmetry is a fundamental element of design in architecture



Building group with reflectional symmetries (building dataset of Boston)



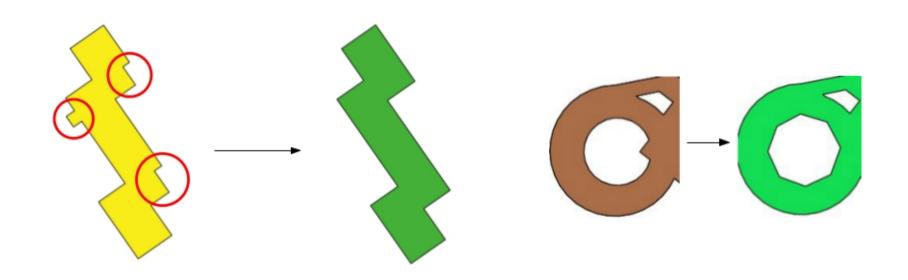
The rotational symmetric Pentagon (Google maps)

Introduction

- Applications
 - Symmetry aware building simplification
 - Preserving main characteristics
 - Recognizability
 - Aesthetic
 - Landmark selection
 - Humans are extremely good in detecting symmetries
 - Building classification according to functionality
 - Symmetry as a shape feature

Introduction

- Challenge
 - Simplification required



Simplifications obtained by "Pentagon"

Overview

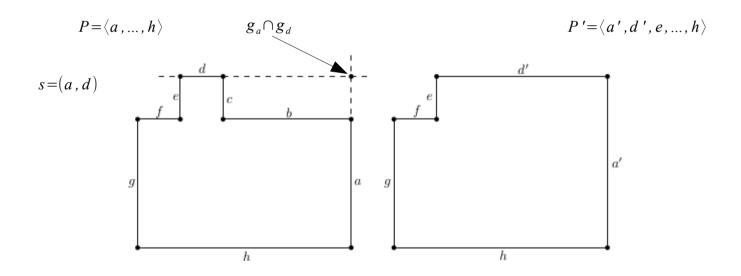
- Symmetry detection by Lladós et al.
- Simplification approach by Haunert and Wolff
- Comparison graph
- Symmetries between two different footprints
- Symmetries within one footprint
- Summery
- Open problems

Symmetry detection by Lladós et al.

- Polygons as sequences of edges in Stringrepresentation
- Comparision by dynamic programming detects symmetries
- New: operations for merging edges on the flow (simplification)
- We have a good example that will cause failing anyway
- Maybe working well for polygonally approximated shapes from image data

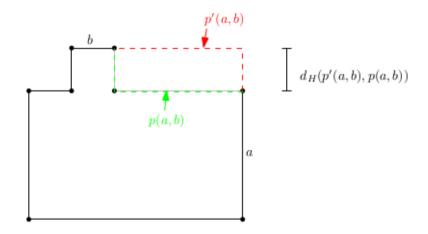
Simplification approach by Haunert and Wolff

- Polygons as sequences of edges
- Shortcuts as pairs of edges



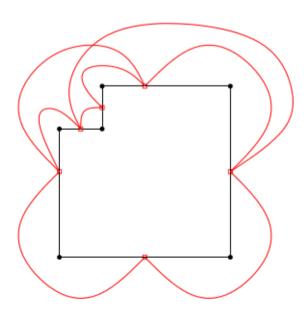
Shortcut selection

 Threshold for Hausdorff-distance between polygonal chains



Shortcut graph G

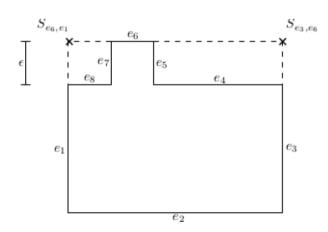
- Consider a shortcut as a graph edge
- G contains a Vertex for each polygon edge
- G contains an Edge for each shorcut
- A cycle is a simplification



Combining shortcuts

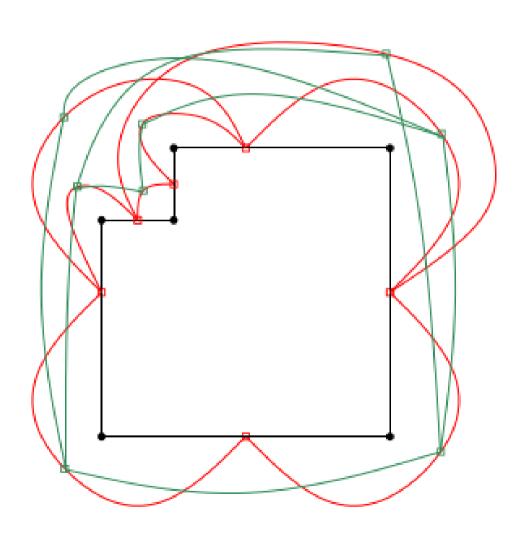
- A shortcut defines a vertex of the simplified polygon
- A combination of to consecutive shortcuts defines an edge of the simplified polygon

$$c = (s_1, s_2) = ((e_3, e_6), (e_6, e_1))$$



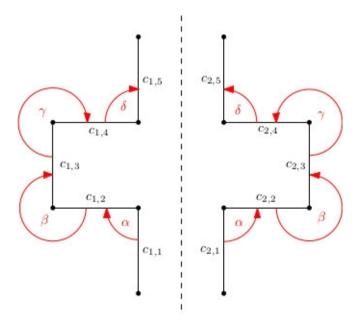
Combination graph

- Combining all consecutive shortcuts in the shortcut graph results in the combination graph
- A cycle in the combination graph is a cycle in the shortcut graph
- Consecutive combinations refer to consecutive polygon edges in the simplification



Comparing combinations

- Detecting symmetries by sequences of matching combinations
 - By length
 - By angle to predeccessor
- A comparison is a pair of combinations
- A comparison is selected if the combinations match



$$v_1 = (c_{11}, c_{21}), v_2 = (c_{12}, c_{22}), \dots$$

Comparison graph

Requires two combination graphs

Starting with a combination from each

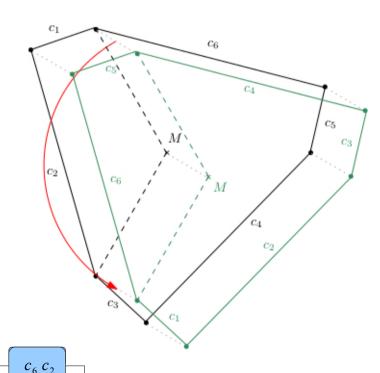
 $c_4 c_6$

 $c_5 c_1$

combination graph

 $c_2 c_4$

 Consecutive comparisons with consecutive combinations



Symmetries between two different footprints

- Comparison graph of two different footprints
 - Rotational direction
 - Identical: building matching
 - Contrary: reflections
- Searching the longest path
 - Length
 - Geometrically
 - Number of combinations
 - Minimum cost
- Any possible pair of start-combinations

Runtime

Two different polygons of lengths n and m, n>m

	Less than	At least
Combination set	n^4 , m^4	n, m
Comparison set	$O((n \cdot m)^4)$	$O(n \cdot m)$
Edges in comparison graph	$O((n \cdot m)^8)$	O(n)

 For any start-comparison compute the comparison graph and search the longest path

	Less than At least	
Compute comparison graph	$O((n \cdot m)^8)$	O(n)
Search longest path	$O((n \cdot m)^8)$	O(n)
Total amount	$O((n \cdot m)^{12})$	$O(n^2 \cdot m)$

Symmetries within one footprint

Rotational

- During the editing period of the thesis
 - Developement of a heuristical procedure
 - Discussion of exact approaches
- Today
 - Completed an exact approach discussed to an polynomial time procedure

Reflectional

 Finding a simplification that is reflectional symmetric according to a single axis

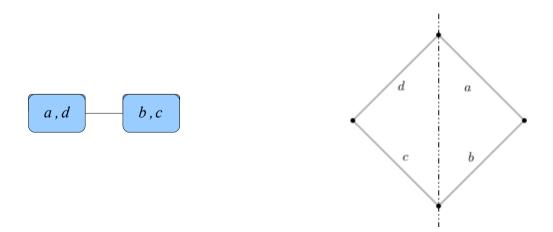
Rotational symmetries

- A cycle in the comparison graph where the preimage matches the image before and after the rotation
- Exact procedure in less than $O(n^{56})$ but at least $O(n^2)$ time where n is the polygon length

Dataset	Boston urban area, about 4500 buildings
Runtime	About 20 seconds
Result	About 20.000 comparison graphs containin rotational symmetries
Shortcut threshold	5 meters
Length tolerance	15%
Angle tolerance	1%

Reflectional symmetries

- Finding a simplification that is reflectional symmetric according to a single axis
 - A path that starts and ends at a comparison of identical or consecutive combinations
 - Runtime less than $O(n^{24})$ but at least $O(n^3)$



Summery

- Discussed symmetry detection by Lladós et al. used with building footprints
- Introduced a procedure for building matching
- Introduced a procedure for finding reflectional symmetries between buildings
- Developed a procedure for finding rotational symmetries within a building footprint
- Introduced a procedure to find a simplification that is reflectional symmetric according to a single axis

Open problems

 Analogous to the detection of rotational symmetries find a procedure that can detect a simplification within a comparison graph that is reflectional symmetric to the most possible number of axes