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Abstract

Given two binary trees, it is an interesting question how many tree rotations are
needed to transform one tree into the other. This problem is equivalent to the flip
distance of two triangulations of a convex polygon, that is, the number of diago-
nal flips needed to transform one triangulation into a given other one. There is
no polynomial-time algorithm known that computes the flip distance of two arbi-
trary triangulations. We use breadth-first search to compute the flip distance in
exponential time and afterwards present some improvements to reduce runtime and
memory consumption. We develop a polynomial-time algorithm that computes an
upper bound for the flip distance.

We present a simple technique to generate uniformly distributed random triangu-
lations. We use this technique to generate huge sets of random triangulations and
compare the upper bound computed by our algorithm to upper bounds found in the
literature. Especially for triangulations of polygons with a large number of vertices
our heuristic seems to be superior to those found in the literature.

Zusammenfassung

Es ist eine interessante Frage, wie viele Rotationen notwendig sind, um einen vor-
gegebenen Binärbaum in einen anderen gegebenen Binärbaum zu überführen. Dieses
Problem ist äquivalent zur Flip-Distanz zweier Triangulierungen eines konvexen Po-
lygons, das heißt der Anzahl an Diagonalen, die geflippt werden müssen, um die eine
Triangulierung in die andere zu überführen. Es ist kein Polynomialzeit-Algorithmus
bekannt, der die Flip-Distanz zweier beliebiger Triangulierungen berechnet. Wir
verwenden eine Breitensuche, um diese Distanz in exponentieller Zeit zu berech-
nen und präsentieren anschließend einige Verbesserungen, die die Laufzeit und den
Speicherbedarf dieses Algorithmus verringern. Wir entwickeln einen Polynomialzeit-
Algorithmus, der eine obere Schranke für die Flip-Distanz berechnet.

Wir beschreiben eine einfache Methode, mit derene Hilfe gleichverteilt zufällige
Triangulierungen eines konvexen Polygons erzeugt werden können. Wir verwenden
diese Methode um eine große Menge zufälliger Triangulierungen zu erzeugen und
vergleichen die obere Schranke, die unser Algorithmus liefert, mit oberen Schranken
aus anderen Artikeln. Insbesondere für Triangulierungen von Polygonen mit einer
großen Anzahl an Ecken scheint unsere Heuristik denen aus der Literatur überlegen
zu sein.
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1 Introduction

Binary trees play an important role as a data structure, for instance as binary search
trees. To guarantee an efficient upper bound for the runtime it is essential for most
applications that this tree is reasonably balanced, that is, its height is limited by𝒪(log 𝑛),
where 𝑛 is the number of nodes in the tree. After the insertion of nodes into the tree this
property possibly is violated, and thus the tree needs to be restructured. Frequently used
implementations of binary search trees (like AVL trees or red-black trees) use the tree
rotation to achieve this reorganisation [CLRS09, Section 13.2]. It is a natural question to
ask how many of these rotations are needed to transform an arbitrary tree containing 𝑛
internal nodes into another one with the same number of nodes. The minimum number
of rotations needed is called the rotation distance of the two trees.

One of the most important article in this field of research is that of Sleator, Tarjan
and Thurston [STT88]. They use a bijective mapping between binary trees with 𝑛 − 2
internal nodes and triangulations of a convex polygon with 𝑛 vertices. These vertices are
labeled with the numbers from 1 to 𝑛. A diagonal flip in the triangulation corresponds to
a rotation in the tree. They found working on these triangulations more natural. So the
rotation distance between two arbitrary trees with 𝑛− 2 internal nodes is equivalent to
the flip distance between two triangulations of the 𝑛-gon, that is, the minimum number of
diagonal flips needed to transform one triangulation into the other one. In the following
we will only use the system of triangulations and diagonal flips instead of trees and
rotations.

Lucas [Luc87] expected as far back as 1987 that her results will lead to a polynomial
time algorithm for finding a shortest flip sequence. Up to date, however, neither does
there exist a polynomial-time algorithm nor an NP-hardness proof for this problem. In
this thesis, we focus on triangulations of convex polygons because under flipping they
behave like binary trees under rotations. The flip distance, however, is also of interest for
triangulations of point sets that are not in convex position. In their textbook on discrete
and computational geometry Devadoss and O’Rourke [DO11] state that developing a
polynomial-time algorithm for finding a shortest flip sequence in this generalisation is
an unsolved problem.

Upper bounds Culik and Wood [CW82] showed an upper bound of 2𝑛 − 6 for the
flip distance of two arbitrary triangulations of the 𝑛-gon. They prove this result using
binary trees. In terms of triangulations of polygons their construction works in the
following way: If there are diagonals that are not adjacent to the vertex 𝑛 in the start
triangulation, there is at least one of them which has 𝑛 as an endpoint after it is flipped.
On this way while flipping each diagonal at most once, a fan triangulation can be created,
that is, a triangulation in that each diagonal is adjacent to a certain vertex of the polygon
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(here 𝑛). The target triangulation is transformed into the fan in the same way. As the
triangulation contains 𝑛 − 3 diagonals, the constructed flip sequence contains at most
2𝑛− 6 flips.

Sleator et al. [STT88, Lemma 2] improved the upper bound to 2𝑛 − 10 if 𝑛 > 12.
They showed that there is a vertex 𝑥 that is adjacent to at least four diagonals (counting
diagonals of both triangulations). They used an approach similar to that of Culik and
Wood, but build the fan at vertex 𝑥 instead of vertex 𝑛. In this way they save up to
four diagonal flips and thus gain a better upper bound. Furthermore they show that
this bound is tight for sufficiently large values of 𝑛.

Exact computation The exact flip distance between two triangulations can easily be
found by a breadth-first search in the flip graph, that is, the undirected graph that
contains all triangulations of the 𝑛-gon where two triangulations are adjacent if they can
be transformed in each other by a diagonal flip. As the size of this graph is exponential
in 𝑛, breadth-first search needs exponential time in general.

Fixed-parameter tractability Cleary and St. John [CJ09] showed that flip distance is
fixed-parameter tractable in the parameter 𝑘, the flip distance. They reduce the initial
trees to trees that contain at most 5𝑘 nodes. Lucas [Luc10] improved their approach
using triangulations instead of binary trees and reduced the kernel size to 2𝑘. She states
a worst-case runtime of 𝒪(𝑘𝑘) for her algorithm. Brandes et al. [BFH+11] developed
a simpler and faster algorithm that decides whether the rotation distance between two
binary trees is at most 𝑘 in time 𝒪(𝑛 + 4𝑘/

√
𝑘).

Approximation algorithms There are several approximation algorithms. Cleary and
St. John [CJ10] presented a simple linear-time 2-approximation based on the upper
bound of Culik and Wood.

Li and Zhang [LZ98] used a more involved technique to achieve an approximation ratio
that is better than 2. They developed an algorithm with an approximation ratio of

2− 2
4(𝑑− 1)(𝑑 + 6) + 1

for two triangulations in which each vertex of the convex polygon is incident to at most
𝑑 diagonals. Furthermore they present algorithms with better approximation ratios
for triangulations that fulfil certain conditions (for example a 1.97-approximation for
triangulations without internal triangles).

Triangulations of restricted forms Lucas [Luc04] presented a polynomial-time algo-
rithm to compute the flip distance if both triangulations are of a restricted form. If the
first input is described as a tree, every node has at most one child. The second triangu-
lation is of an even more restricted nature. Wang et al. [WWLZ08] designed linear-time
algorithms to compute the flip distance between certain types of triangulations. The
first of these types are fan triangulations. The other types are created by flipping one
of the outmost diagonals in a fan triangulation.
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Computing lower and upper bounds Baril and Pallo [BP06] developed an algorithm
that computes a lower and an upper bound for the rotation distance in polynomial time.
They did not prove an approximation ratio, but present statistical results that show the
efficiency of these bounds. They state that the upper bounds obtained by an earlier
algorithm of Pallo [Pal00] are often better than those of the newer one.

Contribution In this thesis, we discuss an algorithm to compute the exact flip distance
using a breadth-first search with some optimisations; see Section 3. Afterwards, we show
a simple technique to generate uniformly distributed random triangulations. Our main
result is an experimental comparison for a number of heuristics for computing the flip
distance, including the heuristics of Baril and Pallo [Pal00, BP06]; see Section 4.
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2 Preliminaries
Let 𝒯𝑛 denote the set of all triangulations of the labeled, convex 𝑛-gon. In the following,
we always assume that polygons are convex and labeled.
Definition 1. Let 𝜋 be a triangulation, and let 𝑑 be a diagonal in 𝜋. Consider the
two triangles adjacent to 𝑑. Let 𝑎 and 𝑏 be the vertices of these triangles that are not
adjacent to 𝑑. Flipping the diagonal 𝑑 means replacing it with the new diagonal (𝑎, 𝑏).
The points 𝑎 and 𝑏 are called triangle points for 𝑑.
Definition 2. Let 𝑛 ∈ N. The flip graph is the undirected graph ℱ𝑛 = (𝒯𝑛, 𝐸) with

𝐸 = {{𝜋1, 𝜋2} ∈ 𝒯𝑛×𝒯𝑛 | 𝜋1 can be transformed to 𝜋2 with exactly one diagonal flip} .

Let 𝜋1 and 𝜋2 be two triangulations of the 𝑛-gon. The flip distance fd(𝜋1, 𝜋2) is the
minimum number of diagonal flips required to transform 𝜋1 to 𝜋2, or equivalently the
distance of 𝜋1 and 𝜋2 in the flip graph.
Definition 3. Let 𝜋1, 𝜋2 ∈ 𝒯𝑛.
a) A diagonal 𝑑 is called a common diagonal if it is contained in 𝜋1 and 𝜋2.

b) A diagonal 𝑑 in 𝜋1 is called a flip-to-match diagonal if it can be flipped to make it
match a diagonal of 𝜋2 [BP06].

To determine the number of triangulations for a polygon of a given size 𝑛 we need
the sequence of Catalan numbers. This sequence, named after Eugène Charles Catalan
(1814–1894), arises in various counting problems.
Definition 4 ([Dow00]). The Catalan numbers are defined by the recurrence relation

𝐶𝑛+1 =
𝑛∑︁

𝑖=0
𝐶𝑖𝐶𝑛−𝑖, for 𝑛 ≥ 0

with 𝐶0 = 1.
Lemma 2.1 ([Dow00]). The Catalan numbers can be calculated by the explicit formula

𝐶𝑛 = 1
𝑛 + 1

(︃
2𝑛

𝑛

)︃
.

Lemma 2.2 ([Dow00]). The asymptotic behaviour of the Catalan series is

𝐶𝑛 ∼
4𝑛

√
𝜋𝑛3

.

Lemma 2.3 ([Dow00]). For any 𝑛 ∈ N, the number of distinct triangulations of the
𝑛-gon is |𝒯𝑛| = 𝐶𝑛−2.
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Used data structures In the following algorithms, a diagonal is represented by the
indices of its endpoints. To simplify flipping we additionally store for each diagonal the
indices of its triangle points. A triangulation is stored as the set of its diagonals. We
assume that the basic operations on sets (search, insert, delete) can be performed in log-
arithmic time (for example using a red-black tree) [CLRS09, Chapter 13]. Furthermore
we use priority queues that execute the operations Insert, ExtractMin and DecreaseKey
in logarithmic time [CLRS09, Section 6.5].
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3 Exact Algorithms
In this section we present a simple algorithm that computes a shortest flip sequence
between two given triangulations. Because of its exponential runtime and memory con-
sumption, this algorithm is only feasible for triangulations of relatively small polygons
(𝑛 ≤ 15). Afterwards we present some improvements to this algorithm that reduce its
running time and its memory consumption.

3.1 Simple Breadth-First Search
An intuitive approach to find a shortest path between two triangulations is to perform
a breadth-first search (BFS) in the flip graph. The flip graph consists of 𝐶𝑛−2 vertices.
Therefore its size and thus the worst case runtime of BFS is exponential in 𝑛.

The pseudocode for the simple BFS is shown in Algorithm 3.1. The queue 𝑄 keeps
track of the triangulations that need to be visited. The set 𝐹 contains all triangulations
that were found during the search. The triangulations are interpreted as a set of diago-
nals. For each triangulation 𝑥, the distance from 𝑠 is stored in 𝑥.d and the predecessor
on a shortest path from 𝑠 to 𝑥 is stored in 𝑥.𝜋. After the termination of the algorithm
a shortest path can be obtained by following the 𝜋-pointers from 𝑡 until 𝑠 is reached.
Because of its huge memory consumption, this approach can only be used for polygons
with a small number of vertices.

3.2 Improvements to Breadth-First Search
The limit of the algorithm can be raised by decreasing the search space. In the following
we present some methods to achieve this. For two of these improvements we use a lemma
of Sleator et al.:

Lemma 3.1 ([STT88, Lemma 3]). Let 𝜋1 and 𝜋2 be triangulations of the 𝑛-gon.

a) If 𝜋1 contains a flip-to-match diagonal 𝑑, then there is a shortest 𝜋1– 𝜋2 path in ℱ𝑛

where 𝑑 is flipped first.

b) If 𝜋1 and 𝜋2 have a diagonal in common, then this diagonal is never flipped on a
shortest 𝜋1– 𝜋2 path.

Common diagonal We check for each diagonal in the for-each loop whether it is con-
tained in the target triangulation. In this case the triangulation that is reached by
flipping this common diagonal is not added to the queue because this triangulation can-
not be on a shortest path from the current triangulation to the target (Lemma 3.1 b).
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Algorithm 3.1: Simple breadth-first search
Input: start triangulation 𝑠, target triangulation 𝑡
Output: flip distance between 𝑠 and 𝑡

1 𝑄← new Queue() // for triangulations
2 𝐹 ← new Set() // for triangulations
3 𝑠.d← 0
4 𝑠.𝜋 ← nil
5 𝑄.Enqueue(𝑠)
6 𝐹 .Add(𝑠)
7 while 𝑄 ̸= ∅ do
8 𝑐𝑢𝑟 ← 𝑄.Dequeue()
9 foreach 𝑑𝑖𝑎𝑔 ∈ 𝑐𝑢𝑟 do

10 𝑛𝑒𝑥𝑡← triangulation that arises from 𝑐𝑢𝑟 by flipping 𝑑𝑖𝑎𝑔
11 if 𝑛𝑒𝑥𝑡 /∈ 𝐹 then
12 𝑛𝑒𝑥𝑡.d← 𝑐𝑢𝑟.d + 1
13 𝑛𝑒𝑥𝑡.𝜋 ← 𝑐𝑢𝑟
14 𝑄.Enqueue(𝑛𝑒𝑥𝑡)
15 𝐹 .Add(𝑛𝑒𝑥𝑡)
16 if 𝑛𝑒𝑥𝑡 == 𝑡 then
17 return 𝑛𝑒𝑥𝑡.d

Flip-to-match diagonal The second part of the lemma can be used, too: Whenever
a triangulation is taken from the queue, the modified algorithm checks whether one of
its diagonals is a flip-to-match diagonal. In this case the triangulation that is created
by flipping this flip-to-match diagonal is the only one that is appended to the queue
(according to Lemma 3.1 a).

A* search algorithm The number of visited nodes can be reduced further using the A*
algorithm [HNR68]. It needs a heuristic that provides a lower bound for the distance to
the target for every triangulation. A lower bound, which is easy to compute, is 𝑛−𝑐−3,
where 𝑛 is the number of vertices in the polygon and 𝑐 is the number of diagonals that
the triangulation has in common with the target [CJ10, Theorem 1]. The A* algorithm
does not visit the nodes in the order in which they are found (as BFS), but chooses the
node for which the sum of the distance from the start and the lower bound computed by
the heuristic is minimum. Expressed graphically, the search moves in a more directed
fashion from the start to the target triangulation.

More compact structure for triangulations An additional way to reduce the amount
of allocated memory is a more compact format to store the triangulations. There are a
lot of interpretations of the Catalan numbers which are in one-to-one-correspondence to
triangulations of a 𝑛-gon, for example, the well-formed sequences of parentheses involving
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𝑛 − 2 left and 𝑛 − 2 right parentheses [Dow00, Dow91]. With this representation, a
triangulation of the 𝑛-gon can be stored in less than 2𝑛 bits.

Improved algorithm The improvements that we just presented are combined in Algo-
rithm 3.2. The priority queue 𝑄 keeps track of the triangulations that need to be visited.
It has the method 𝑄.Insert(𝑥, 𝑣) which inserts the new element 𝑥 with a value of 𝑣. The
operation 𝑄.ExtractMin() removes the element 𝑥 ∈ 𝑄 with minimum value. The number
of common diagonals in the triangulations 𝑥 and 𝑡 is given by |𝑥 ∩ 𝑡|. The for-each loop
in lines 9–17 checks the presence of a flip-to-match diagonal. Line 19 checks whether the
current triangulation has a diagonal in common with the target.

Further possible improvements There are several ways how this algorithm could be
further improved: A better heuristic for the lower bound would cause the algorithm to
visit fewer nodes and thus save memory and runtime. Furthermore the A* algorithm
can be generalised to a bidirectional search algorithm and still be guided by a heuristic
[SdC77]. Finally, nodes that have already been visited (in the sense that they have been
removed from the (priority) queue in BFS) could be dropped to reduce the memory
consumption. With this modification it would not be possible to determine a shortest
path, but the algorithm would still yield the exact flip distance.

3.3 Runtime
We show an upper bound for the worst-case runtime of the improved algorithm (Al-
gorithm 3.2). The set 𝐹 contains all nodes of the flip graph ℱ𝑛 in the worst case,
that is, |𝐹 | ≤ 𝐶𝑛−2. The procedure AddSuccessor (lines 25–35) needs time 𝒪(𝑛) to
compute |𝑛𝑒𝑥𝑡 ∩ 𝑡|, 𝒪(log |𝐹 |) for the check in line 26 and 𝐹 .Add, and 𝒪(log |𝑄|) for
𝑄.Insert or 𝑄.DecreaseKey. Therefore AddSuccessor requires a worst-case runtime of
𝒪(𝑛 + log 𝐶𝑛−2) = 𝒪(𝑛) (using Lemma 2.2).

The while loop (line 7) is repeated at most 𝐶𝑛−2 times. In each of these repetitions
the procedure AddSuccessor is called at most once for each diagonal in the triangulation,
that is, at most 𝑛 − 3 times. This leads to a total worst-case runtime of 𝒪(𝑛2 𝐶𝑛−2).
Using the estimation of Lemma 2.2 we get an exponential runtime of 𝒪(

√
𝑛 4𝑛).

3.4 Effects of the Improvements
Finally, we present the results of computer experiments that show the effects of the
improvements discussed in Section 3.2. We created a set of 100 random pairs of trian-
gulations for each tested value of 𝑛 and computed the flip distance using BFS with and
without the improvements. The algorithms were implemented in Java. The following
variants of BFS were tested:

1. Simple breadth-first search (Algorithm 3.1). Triangulations are stored as a TreeSet.
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Algorithm 3.2: A* search algorithm
Input: start triangulation 𝑠, target triangulation 𝑡 of the 𝑛-gon
Output: flip distance between 𝑠 and 𝑡

1 𝑄← new PriorityQueue() // for triangulations
2 𝐹 ← new Set() // for triangulations
3 𝑠.d← 0
4 𝑠.𝜋 ← nil
5 𝑄.Insert(𝑠, 𝑛− |𝑠 ∩ 𝑡| − 3)
6 𝐹 .Add(𝑠)
7 while 𝑄 ̸= ∅ do
8 𝑐𝑢𝑟 ← 𝑄.ExtractMin()

// check whether 𝑐𝑢𝑟 has a flip-to-match diagonal
9 foreach 𝑑𝑖𝑎𝑔 ∈ 𝑐𝑢𝑟 do

10 𝑑𝑖𝑎𝑔′ ← flipped counterpart of 𝑑𝑖𝑎𝑔
11 if 𝑑𝑖𝑎𝑔′ ∈ 𝑡 then
12 𝑛𝑒𝑥𝑡← triangulation that arises from 𝑐𝑢𝑟 by flipping 𝑑𝑖𝑎𝑔
13 if 𝑛𝑒𝑥𝑡 /∈ 𝐹 then
14 AddSuccessor(𝑐𝑢𝑟, 𝑛𝑒𝑥𝑡)
15 if 𝑛𝑒𝑥𝑡 == 𝑡 then
16 return 𝑛𝑒𝑥𝑡.d

17 continue while

18 foreach 𝑑𝑖𝑎𝑔 ∈ 𝑐𝑢𝑟 do
19 if 𝑑𝑖𝑎𝑔 /∈ 𝑡 then
20 𝑛𝑒𝑥𝑡← triangulation that arises from 𝑐𝑢𝑟 by flipping 𝑑𝑖𝑎𝑔
21 if 𝑛𝑒𝑥𝑡 /∈ 𝐹 then
22 AddSuccessor(𝑐𝑢𝑟, 𝑛𝑒𝑥𝑡)
23 if 𝑛𝑒𝑥𝑡 == 𝑡 then
24 return 𝑛𝑒𝑥𝑡.d

25 procedure AddSuccessor(𝑐𝑢𝑟, 𝑛𝑒𝑥𝑡):
26 if 𝑛𝑒𝑥𝑡 /∈ 𝐹 then
27 𝑛𝑒𝑥𝑡.d← 𝑐𝑢𝑟.d + 1
28 𝑛𝑒𝑥𝑡.𝜋 ← 𝑐𝑢𝑟
29 𝑄.Insert(𝑛𝑒𝑥𝑡, 𝑛𝑒𝑥𝑡.d + 𝑛− |𝑛𝑒𝑥𝑡 ∩ 𝑡| − 3)
30 𝐹 .Add(𝑛𝑒𝑥𝑡)
31 else
32 if 𝑐𝑢𝑟.d + 1 < 𝑛𝑒𝑥𝑡.d then
33 𝑛𝑒𝑥𝑡.d← 𝑐𝑢𝑟.d + 1
34 𝑛𝑒𝑥𝑡.𝜋 ← 𝑐𝑢𝑟
35 𝑄.DecreaseKey(𝑛𝑒𝑥𝑡, 𝑛𝑒𝑥𝑡.d + 𝑛− |𝑛𝑒𝑥𝑡 ∩ 𝑡| − 3)
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2. Triangulations are stored in a more compact structure using a long for each trian-
gulation.

3. Additionally the check for common diagonals is performed.

4. Additionally the check for flip-to-match diagonals is performed.

5. Use the A* search algorithm including all previous improvements (Algorithm 3.2).

For each algorithm we record the number of nodes that were visited by the search, that
is, they have been removed from the (priority) queue. The tests were executed on a
2.8 GHz CPU using a memory limit of 4 GB for the Java Virtual Machine. The results
are shown in Figure 3.1.

The graph shows clearly the benefits of the improvements. The simple BFS without
improvements is only usable for 𝑛 ≤ 15 with the given memory limit. The highest flip
distance found in the random sample for 𝑛 = 15 is 18. The A* algorithm can be used
for 𝑛 ≤ 22, the highest found flip distance is 29. The number of nodes visited by A*
is considerably smaller than the number of nodes visited by simple BFS. Note that the
y-axis in the graph has a log scale.
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Figure 3.1: The graph shows for each 𝑛 the number of nodes visited by the search algorithm for
100 randomly chosen pairs of triangulations of the given size. The improvements
described in Section 3.2 are added one after the other. Note that the y-axis has a
log scale.
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4 Heuristics

In this section we first discuss how to create uniformly distributed random triangula-
tions, on which the heuristics can be tested. We present three natural polynomial-time
algorithms that compute an upper bound for the flip distance between two triangula-
tions of a convex polygon. These algorithms are quite similar to each other. Afterwards
we compare the best one of these to upper bounds found in literature. Furthermore we
show an attempt for a straightforward 2-approximation and prove that it does not work
out.

4.1 Generating Random Triangulations
As it is not possible to test the implemented heuristics on all pairs of triangulations
with a certain amount of vertices in reasonable time, it is necessary to create random
triangulations.

A naive approach is the following greedy algorithm: to create a triangulation with
𝑛 vertices, start with an empty polygon and repeatedly add random diagonals which
do not intersect the existing diagonals. The triangulation is complete as soon as 𝑛 − 3
diagonals have been added.

The drawback of this strategy is that the resulting triangulations are not uniformly
distributed. This fact is illustrated by the following example. Consider the triangulation
𝜋 of the hexagon which is depicted in Figure 4.1. There are 6 ·3/2 = 9 possible diagonals
in a hexagon, that is, every diagonal has a probability of 1/9 to get selected as the first
diagonal by a uniformly distributed random generator. Hence there is a chance of 3/9
that the first selected diagonal is one of the diagonals of 𝜋. In the remaining pentagon
there are 5 · 2/2 = 5 possible diagonals and thus a probability of 2/5 to select one
of 𝜋. For the last diagonal there are 2 possibilities, that is, a chance of 1/2 to select
the last diagonal of 𝜋. So the probability to generate 𝜋 with the greedy algorithm is
3/9 · 2/5 · 1/2 = 1/15. There are 𝐶4 = 14 triangulations of a hexagon. Therefore the
greedy algorithm does not create a uniform distribution because the probability for 𝜋 is
only 1/15 and thus smaller than 1/𝐶4.

We use instead a more difficile technique to generate a uniformly distributed random
triangulation. Knott [Kno77] presented algorithms that establish a bijection between the
integers in [1, 𝐶𝑛] and the set of 𝑛-node binary trees (correlating to the triangulations
of a polygon with 𝑛 − 2 vertices). Therefore it is sufficient to pick an integer from
[1, 𝐶𝑛] under a uniform random distribution and transform it into the corresponding
triangulation.
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Figure 4.1: A triangulation of the hexagon which shows that the greedy algorithm for generating
random triangulations does not create a uniform distribution.

4.2 Simple Heuristics
The heuristics presented in this section are all working in a similar way. The common
basis for the heuristics is shown in algorithm 4.1. They begin with the start triangulation.
In each step one diagonal specified by the function SelectDiagonal is flipped (line 4).
This function differs in the various heuristics. The algorithm finishes when the target
triangulation is reached.

Algorithm 4.1: Simple Heuristics
Input: start triangulation 𝑠, target triangulation 𝑡 of the 𝑛-gon
Output: 𝑠–𝑡 path in ℱ𝑛

1 𝐿← new List()
2 𝑐𝑢𝑟 ← 𝑠
3 while 𝑐𝑢𝑟 ̸= 𝑡 do
4 𝑑𝑖𝑎𝑔 ← SelectDiagonal(𝑐𝑢𝑟, 𝑡)
5 flip the diagonal 𝑑𝑖𝑎𝑔 in 𝑐𝑢𝑟
6 𝐿.Add(𝑐𝑢𝑟)
7 return 𝐿

The auxiliary Function 4.2 is used by the heuristics to determine the number of diag-
onals in a triangulation that intersect a certain diagonal.

4.2.1 Variants
There are some reasonable methods to select the diagonal to flip. In the following the
function SelectDiagonal is shown for each of them.

MostIntersections Select the diagonal that has a maximum number of intersections
with the target triangulation (Function 4.3).
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Function 4.2: CountIntersections(𝑑, 𝑡)
Input: diagonal 𝑑, triangulation 𝑡
Output: number of diagonals in 𝑡 that intersect 𝑑

1 𝑖← 0
2 foreach 𝑑′ ∈ 𝑡 do
3 if 𝑑 and 𝑑′ do intersect then
4 𝑖 + +

5 return 𝑖

FewestIntersectionsAfter Select the diagonal that has a minimum number of intersec-
tions after being flipped (Function 4.4).

HighestDifference Compute the difference between the number of intersections before
and after flipping for each diagonal. Select the diagonal for which this difference
is minimum (Function 4.5).

The HighestDifference heuristic was already studied by Hong and Lee [HL97]. In
contrast to this thesis, they tested it only on small polygons (𝑛 < 20).

Function 4.3: SelectDiagonalWithMostIntersections(𝑐𝑢𝑟, 𝑡)
1 𝑚𝑎𝑥← 0
2 foreach 𝑑𝑖𝑎𝑔 ∈ 𝑐𝑢𝑟 do
3 𝑖← CountIntersections(𝑑𝑖𝑎𝑔, 𝑡)
4 if 𝑖 > 𝑚𝑎𝑥 then
5 𝑚𝑎𝑥← 𝑖
6 𝑚𝑎𝑥𝐷𝑖𝑎𝑔 ← 𝑑𝑖𝑎𝑔

7 return 𝑚𝑎𝑥𝐷𝑖𝑎𝑔

Function 4.4: SelectDiagonalWithFewestIntersectionsAfter(𝑐𝑢𝑟, 𝑡)
1 𝑚𝑖𝑛←∞
2 foreach 𝑑𝑖𝑎𝑔 ∈ 𝑐𝑢𝑟 do
3 𝑖← CountIntersections(𝑑𝑖𝑎𝑔, 𝑡)
4 𝑑𝑖𝑎𝑔′ ← flipped counterpart of 𝑑𝑖𝑎𝑔
5 𝑖′ ← CountIntersections(𝑑𝑖𝑎𝑔′, 𝑡)
6 if 𝑖′ < 𝑚𝑖𝑛 and 𝑖′ < 𝑖 then
7 𝑚𝑖𝑛← 𝑖′

8 𝑚𝑖𝑛𝐷𝑖𝑎𝑔 ← 𝑑𝑖𝑎𝑔

9 return 𝑚𝑖𝑛𝐷𝑖𝑎𝑔
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Function 4.5: SelectDiagonalWithHighestDifference(𝑐𝑢𝑟, 𝑡)
1 𝑚𝑎𝑥← 0
2 foreach 𝑑𝑖𝑎𝑔 ∈ 𝑐𝑢𝑟 do
3 𝑖← CountIntersections(𝑑𝑖𝑎𝑔, 𝑡)
4 𝑑𝑖𝑎𝑔′ ← flipped counterpart of 𝑑𝑖𝑎𝑔
5 𝑖′ ← CountIntersections(𝑑𝑖𝑎𝑔′, 𝑡)
6 Δ← 𝑖− 𝑖′

7 if Δ > 𝑚𝑎𝑥 then
8 𝑚𝑎𝑥← Δ
9 𝑚𝑎𝑥𝐷𝑖𝑎𝑔 ← Δ

10 return 𝑚𝑎𝑥𝐷𝑖𝑎𝑔

4.2.2 Runtime
All of these heuristics have the same asymptotic runtime. We discuss the runtime of the
HighestDifference algorithm exemplarily. Let the input be triangulations of the 𝑛-gon.
To test two diagonals for an intersection only their endpoints have to be considered.
Therefore this check can be performed in constant time and the runtime of the function
CountIntersections (Function 4.2) is 𝒪(𝑛). Determining the flipped counterpart of a diag-
onal needs constant time as the triangle points are stored with the diagonal. Therefore
the function SelectDiagonalWithHighestDifference has a total runtime of 𝒪(𝑛2).

Flipping a diagonal requires to replace the diagonal in the set of the according trian-
gulation and updating the triangle points in the neighbouring diagonals. This can be
done in time 𝒪(log 𝑛). Hence each iteration of the loop in Algorithm 4.1 needs 𝒪(𝑛2)
time. The while loop is repeated once for each of the flips in the returned triangulation
sequence. The algorithm can be aborted if this sequence contains 2𝑛 flips and instead
return the path obtained using the construction for the upper bound of [CW82]. So the
loop is repeated 𝒪(𝑛) times leading to a total runtime of 𝒪(𝑛3).

The runtime for SelectDiagonal can be reduced to 𝒪(𝑛) by storing the difference of
the intersection counts before and after the flip for each diagonal. So the function
CountIntersections is not called within SelectDiagonal. While flipping a diagonal, this
information has to be updated for the neighbouring diagonals. That can be done in time
𝒪(𝑛). This improvement leads to a total runtime of 𝒪(𝑛2).

4.2.3 Comparison
To compare the variants we first give exhaustive results for small instances, that is,
𝑛 ∈ {5, 6, . . . , 12}. We execute the different algorithms on all pairs (𝑠, 𝑡) ∈ 𝒯𝑛 × 𝒯𝑛

and check which of the variants leads to the best results for each of them. The best
result means naturally the shortest of the computed sequences. The results are given in
Table 4.1.

To compare the efficiency of the variants on bigger instances a large set of randomly
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𝑛 5 6 7 8 9 10 11 12
MostIntersections 100 100 99.2 97.8 96.0 93.7 91.0 88.1
FewestIntersectionsAfter 100 100 99.1 97.6 95.6 93.1 90.3 87.1
HighestDifference 100 100 99.9 99.7 99.5 99.2 98.7 98.2

Table 4.1: The table lists for all 𝑛 ∈ {5, 6, . . . , 12} the percentage of pairs (𝑠, 𝑡) ∈ 𝒯𝑛×𝒯𝑛 (𝑠 ̸= 𝑡)
for which the specified heuristic provides the best result (that is, the shortest flip
sequence compared to the other two variants).

chosen triangulations is created. The results of these experiments are documented in
Figure 4.2. The graphs show clearly that HighestDifference is the best of the three
variants.

4.2.4 Non-Optimality
There are triangulations of small polygons for which the HighestDifference heuristic does
not yield an optimal result. Consider the triangulations 𝜋1 and 𝜋2 of the octagon shown
in Figure 4.3. In the first step the heuristic flips diagonal 𝑏 because it is the only one
that reduces the intersection count by 3. After that, no common diagonal can be reached
by the second flip. This means that there are no common diagonals after two flips and
therefore at least five more flips are required (one for each diagonal). Hence the sequence
constructed by the heuristic needs at least 7 flips.

But a shorter flip sequence is possible: If diagonal 𝑎 had been flipped in the first step,
with each of the following flips a common diagonal could have been reached. Hence
fd(𝜋1, 𝜋2) = 6, and so the sequence constructed by the heuristic is not optimal.

4.2.5 Approaches for Improvements
The experimental results showed that HighestDifference is clearly the best variant of
the heuristic. This brings up the question if it is possible to improve the heuristic even
further. We can first try to compare the intersection difference relative to the count
of intersections before flipping the diagonal. To be more precise we calculate (𝑖 − 𝑖′)/𝑖
in line 6 of Function 4.5 and return the diagonal for which this fraction is maximum.
Experiments show that this variation does not improve the results. Actually the original
heuristic is mostly better than the modified one.

Another idea is to consider the length 𝑙 of the diagonal (that is, the distance between
the endpoints on the polygon boundary) and prefer short diagonals if multiple diagonals
have the same intersection difference. Another option is to compare the intersection
difference relative to the length of the diagonals, that is, selecting the diagonal for which
(𝑖− 𝑖′)/𝑙 is maximum. These variants do not improve the heuristic as well.

Additionally, the algorithm could look for flip-to-match diagonals in the target trian-
gulation. But experiments give evidence that this variation does not have a big effect
on the result as well.
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(a) The graph shows for certain values of 𝑛 for each algorithm the percentage of the randomly
chosen pairs for which it provides the best results.

0 100 200 300 400 500 600 700 800 900 1,0000

500

1,000

1,500

𝑛

Av
er

ag
e

Fl
ip

D
ist

an
ce

HighestDifference
FewestIntersectionsAfter
MostIntersections

(b) The graph shows the average flip distance between the randomly chosen pairs.

Figure 4.2: For 𝑛 ∈ [15, 30] we tested 1 000 000 randomly chosen pairs, for 𝑛 ∈ [35, 200] we
tested 10 000 pairs, for 𝑛 ∈ [500, 1000] we tested 1 000 pairs.
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𝑎𝑏

Figure 4.3: Two triangulations of the octagon showing that the HighestDifference heuristic does
not always lead to optimal results. The diagonals of 𝜋1 are drawn solid, those of
𝜋2 are dashed.

4.3 Comparison to Other Heuristics
We are going to compare the upper bound for the flip distance provided by the Highest-
Difference heuristic to those proposed by Pallo and Baril. Pallo’s first heuristic [Pal00]
operates on weight sequences representing binary trees [Pal86]. Based on a restricted
tree rotation he constructs a lattice containing these trees (and thus equivalent weight
sequences). To obtain an upper bound of the rotation distance between to trees, Pallo’s
algorithm computes the lengths of paths in this lattice. Additionally he uses the flexion
of the trees, that is, rotating the corresponding triangulation by one vertex. Rotating
both the start and the target triangulation does not change the flip distance between
them, but the algorithm can possibly compute a better upper bound on the pair of ro-
tated triangulations. Pallo states a worst-case runtime of 𝒪(𝑛3) for his algorithm. We
refer to this heuristic as PalloUp in the following.

The second heuristic by Baril and Pallo [BP06] does not only provide an upper bound
but also a lower bound. In the algorithm they transform the given triangulations into
𝑇 ′ and 𝑆′ to create an additional common edge. They provide an estimation of fd(𝑇, 𝑆)
in relation to fd(𝑇 ′, 𝑆′). Using this technique recursively for 𝑇 ′ and 𝑆′ the algorithm
results finally in a lower and upper bound for fd(𝑇, 𝑆). They give a worst-case runtime
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𝑛 4 6 7 8 9 10 11 12
HighestDifference 100.0 100.0 99.4 98.3 96.8 94.9 92.8 90.6
BarilPalloUp 100.0 100.0 99.5 98.7 97.5 95.8 93.7 91.3
PalloUp 100.0 100.0 100.0 100.0 99.9 99.5 98.7 97.1

Table 4.2: The table lists for all 𝑛 ∈ {5, 6, . . . , 12} the percentage of pairs (𝑠, 𝑡) ∈ 𝒯𝑛 × 𝒯𝑛

(𝑠 ̸= 𝑡) for which the specified heuristic provides the best result (that is, the shortest
sequence compared to the other heuristics).

of 𝒪(𝑛3). We call this upper bound heuristic BarilPalloUp.
To compare these algorithms to the HighestDifference heuristic developed in the pre-

vious sections, we use experiments similar to those in Section 4.2.3. The results are
documented in Table 4.2 and Figure 4.4. These experiments show clearly that for trian-
gulations of large polygons (𝑛 ≥ 20) the HighestDifference heuristic is superior to those
of Baril and Pallo.

Figure 4.5 shows detailed results for a set of randomly chosen pairs of triangulations.
For each pair the results of the three heuristics are plotted. Additionally a simple upper
and lower bound is given for each pair. The lower bound is the number of diagonals
that are not common between the start and the target triangulation. The upper bound
is computed by doubling the value of the lower bound [CJ10, Theorem 1]. Furthermore
the lower bound computed by the algorithm of Baril and Pallo [BP06] is given.

4.4 Attempt for a 2-Approximation
The following conjecture would lead to a straightforward 2-approximation for the flip
distance between two triangulations:

Conjecture. It is possible to create an additional common diagonal in every pair of
triangulations by performing at most two flips. These two flips can either be applied
consecutively in one of the triangulations or one flip in each of the triangulations.

This conjecture is proven wrong by the triangulations 𝜋1 and 𝜋2 shown in Figure 4.6.
This example is symmetric since rotating the diagonals of 𝜋1 by two vertices results in 𝜋2
and rotating them by four vertices leads to 𝜋1 itself. There is no common diagonal and
each diagonal has at least three intersections with diagonals of the other triangulation.

We assume without loss of generality that the first flip is performed in 𝜋1. Observe
that after this step every diagonal still has at least two intersections with diagonals of
the other triangulation and therefore the triangulations do not have a common diagonal.
We now look at an arbitrary diagonal in 𝜋2, which is intersected by at least two diagonals
of 𝜋1. By flipping one diagonal in 𝜋1 we can only eliminate one of these intersections
and thus cannot produce a common diagonal. By an analogous argument we see that
it is not possible to generate a common diagonal via performing a flip in 𝜋2. Therefore
the triangulations do not share a common edge after two arbitrary flips.
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(a) The graph shows for certain values of 𝑛 for each algorithm the percentage of the randomly
chosen pairs for which it provides the best results. Note that the x-axis has a log scale.

0 100 200 300 400 500 600 700 800 900 1,0000

500

1,000

1,500

2,000

𝑛

Av
er

ag
e

D
ist

an
ce

HighestDifference
BarilPalloUp
PalloUp

(b) The graph shows the average flip distance between the randomly chosen pairs.

Figure 4.4: For 𝑛 ∈ [15, 30] we tested 1 000 000 randomly chosen pairs, for 𝑛 ∈ [35, 500] we
tested 10 000 pairs, for 𝑛 = 1000 we tested 1 000 pairs.
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Figure 4.5: The graphs show for 𝑛 ∈ {50, 100, 500} the results of the heuristics for 200 randomly
chosen pairs of triangulations in each case. These pairs are sorted by the flip
distance computed by the HighestDifference heuristic.

24



Figure 4.6: The triangulations of the 12-gon used to falsify the conjecture in Section 4.4. The
diagonals of 𝜋1 are drawn solid, those of 𝜋2 are dashed.
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5 Conclusion

We have presented an algorithm that computes the exact flip distance between two
triangulations of a polygon of reasonable size. This algorithm is based on breadth-first
search. Hence its worst-case runtime is exponential in the number of vertices in the
polygon. The runtime and memory consumption of the algorithm can be reduced by
decreasing the number of nodes that are visited by the search. We achieved this using
a heuristic to guide the search (A* search algorithm) and checking for common and
flip-to-match diagonals. The number of expanded nodes could be further reduced using
a better lower bound for the A* algorithm.

Following this, we have developed a polynomial-time heuristic that computes a path
between two given triangulations in the flip graph. Computer experiments show that
this algorithm yields better results (that is, shorter paths) than heuristics found in the
literature for triangulations of large polygons (𝑛 > 20). We discussed some ideas that
did not improve the heuristic.

Additionally, we have presented a simple technique to generate a set of uniformly
distributed random triangulations. We used this technique throughout the thesis to
demonstrate the exponential-time algorithm and to test the efficiency of the heuristic.

The main problem, a polynomial-time algorithm that computes the flip distance of two
arbitrary triangulations, remains unsolved. Our heuristic seems to be effective especially
for triangulations of large polygons, but we cannot guarantee a certain approximation
ratio. The approximation factor of the best algorithm known is only slightly below 2.
It would be interesting if there are algorithms that guarantee a better approximation.
Moreover, triangulations with certain properties could be considered. Exact algorithms
are known for triangulations that are rather similar to fan triangulations. Perhaps this
algorithms could be enhanced to work on a more general class of triangulations.

It could be useful to study the properties of the flip graph ℱ𝑛. Sleator et al. showed
that the diameter of this graph is 2𝑛 − 10 for sufficiently large values of 𝑛. It is also
known that this graph is hamiltonian. A better understanding of the structure of the
flip graph could lead to better approximations or even to a faster exact algorithm.

Another interesting result would be the classification of the problem in terms of com-
plexity theory. The problem is in NP obviously, but there is no proof for NP-hardness
yet. It may be possible to show that flip distance is a member of other well-known
complexity classes.
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