Computing the Flip Distance of Triangulations Bachelor-Kolloquium

Fabian Lipp

July 5, 2012

Contents

(1) Introduction

- Motivation of the Problem
- Definitions
(2) Exact Algorithms
- Breadth-First Search
- Improvements
- Effects of the Improvements
(3) Heuristics
- Variants
- Comparing to other Heuristics

4 Conclusion

Motivation of the Problem

- Let T_{1}, T_{2} be binary search trees
- Operations: Left rotation, right rotation

Motivation of the Problem

- Let T_{1}, T_{2} be binary search trees
- Operations: Left rotation, right rotation

- Task: Find a shortest sequence of rotations that lead from T_{1} to T_{2}

Motivation of the Problem

- Let T_{1}, T_{2} be binary search trees
- Operations: Left rotation, right rotation

- Task: Find a shortest sequence of rotations that lead from T_{1} to T_{2}
- There is no polynomial-time algorithm known for this problem, but NP-hardness is not proven

Transformation of the Problem

Represent a binary tree with $n-2$ nodes as a triangulation of a polygon with n corners

Transformation of the Problem

Represent a binary tree with $n-2$ nodes as a triangulation of a polygon with n corners

Transformation of the Problem

Represent a binary tree with $n-2$ nodes as a triangulation of a polygon with n corners

Transformation of the Problem

Represent a binary tree with $n-2$ nodes as a triangulation of a polygon with n corners

Transformation of the Problem

Represent a binary tree with $n-2$ nodes as a triangulation of a polygon with n corners

Transformation of the Problem

Represent a binary tree with $n-2$ nodes as a triangulation of a polygon with n corners

Transformation of the Problem

Represent a binary tree with $n-2$ nodes as a triangulation of a polygon with n corners

Transformation of the Problem

Represent a binary tree with $n-2$ nodes as a triangulation of a polygon with n corners

Transformation of the Problem

Represent a binary tree with $n-2$ nodes as a triangulation of a polygon with n corners

Transformation of the Problem

Represent a binary tree with $n-2$ nodes as a triangulation of a polygon with n corners

Equivalent of Rotations

Equivalent of Rotations

Equivalent of Rotations

Fabian Lipp

Flip Distance

Rotation distance between binary trees is equivalent to flip distance between triangulations

Flip Distance

Rotation distance between binary trees is equivalent to flip distance between triangulations

Definition (Flip Distance)

The flip distance $\mathrm{fd}\left(\pi_{1}, \pi_{2}\right)$ is the minimum number of diagonal flips required to transform π_{1} to π_{2}.

Flip Distance

Rotation distance between binary trees is equivalent to flip distance between triangulations

Definition (Flip Distance)

The flip distance $\mathrm{fd}\left(\pi_{1}, \pi_{2}\right)$ is the minimum number of diagonal flips required to transform π_{1} to π_{2}.

Upper bound for two triangulations of the n-gon:

$$
\mathrm{fd}\left(\pi_{1}, \pi_{2}\right) \leq 2 n-6
$$

Breadth-First Search

Flip Graph \mathcal{F}_{6} :

Breadth-First Search

Flip Graph \mathcal{F}_{6} :

$\mathrm{fd}($ start, target $)=3$

Breadth-First Search

Flip Graph \mathcal{F}_{6} :

Runtime

Number of nodes in

$$
\mathcal{F}_{n+2}
$$

$$
C_{n}=\frac{1}{n+2}\binom{2 n}{n}
$$

Breadth-First Search

Flip Graph \mathcal{F}_{6} :

Runtime

Number of nodes in

$$
\mathcal{F}_{n+2}
$$

$$
\begin{aligned}
& C_{n}=\frac{1}{n+2}\binom{2 n}{n} \\
& C_{n} \sim \frac{4^{n}}{\sqrt{\pi n^{3}}}
\end{aligned}
$$

\Rightarrow Exponential runtime

Simple Improvements

Simple Improvements

Flip-to-Match Diagonal

Flip only this diagonal in BFS

Two-Sided BFS

(5)
(t)

Two-Sided BFS

- Start BFS from start and target at the same time

Two-Sided BFS

- Start BFS from start and target at the same time

Two-Sided BFS

- Start BFS from start and target at the same time

Two-Sided BFS

- Start BFS from start and target at the same time

Two-Sided BFS

- Start BFS from start and target at the same time

Two-Sided BFS

- Start BFS from start and target at the same time

Two-Sided BFS

- Start BFS from start and target at the same time

Two-Sided BFS

- Start BFS from start and target at the same time
- Reduces the number of visited nodes

A* search algorithm

- Reduces the number of visited nodes

A* search algorithm

- Reduces the number of visited nodes
- Needs lower bound for distance from an arbitrary node to target

A* search algorithm

- Reduces the number of visited nodes
- Needs lower bound for distance from an arbitrary node to target
- Easy lower bound: number of diagonals that are not common

Effects of these improvements

Fabian Lipp

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

HighestDifference

Optimal flip sequence

Fabian Lipp

HighestDifference

Optimal flip sequence

Fabian Lipp

HighestDifference

Optimal flip sequence

Fabian Lipp

Variants of the Heuristic

Input: start triangulation s, target triangulation t
Output: short flip sequence from s to t

Variants of the Heuristic

Input: start triangulation s, target triangulation t
Output: short flip sequence from s to t
Variants
MostIntersections Choose diagonal with maximum \#(Intersections before flipping)

Variants of the Heuristic

Input: start triangulation s, target triangulation t
Output: short flip sequence from s to t

Variants

MostIntersections Choose diagonal with maximum \#(Intersections before flipping)
FewestIntersectionsAfter Choose Diagonal with minimum \#(Intersections after flipping)

Variants of the Heuristic

Input: start triangulation s, target triangulation t
Output: short flip sequence from s to t

Variants

MostIntersections Choose diagonal with maximum \#(Intersections before flipping)
FewestIntersectionsAfter Choose Diagonal with minimum \#(Intersections after flipping)
HighestDifference Choose diagonal with maximum
$\Delta:=\#($ Intersections before flipping $)$ \#(Intersections after flipping).

Variants of the Heuristic

Input: start triangulation s, target triangulation t
Output: short flip sequence from s to t

Variants

MostIntersections Choose diagonal with maximum \#(Intersections before flipping)
FewestIntersectionsAfter Choose Diagonal with minimum \#(Intersections after flipping)
HighestDifference Choose diagonal with maximum
$\Delta:=\#($ Intersections before flipping $)$ \#(Intersections after flipping).

Runtime: $O\left(n^{2}\right)$

Comparing the Variants

Heuristics of Baril and Pallo

- First Heuristic by Pallo (2000):
- Works on weight sequences representing binary trees
- Constructs a lattice containing the trees
- Length of path in lattice is upper bound for rotation distance

Heuristics of Baril and Pallo

- First Heuristic by Pallo (2000):
- Works on weight sequences representing binary trees
- Constructs a lattice containing the trees
- Length of path in lattice is upper bound for rotation distance
- Heuristic by Baril and Pallo (2006):
- Works on triangulations
- Local transformation to create an additional common edge
- Provides Upper and Lower Bound for the Flip Distance

Heuristics of Baril and Pallo

- First Heuristic by Pallo (2000):
- Works on weight sequences representing binary trees
- Constructs a lattice containing the trees
- Length of path in lattice is upper bound for rotation distance
- Heuristic by Baril and Pallo (2006):
- Works on triangulations
- Local transformation to create an additional common edge
- Provides Upper and Lower Bound for the Flip Distance
- Runtime: $O\left(n^{3}\right)$

Comparing to other Heuristics

[^0]
Comparing to other Heuristics

[^1]
Comparing to other Heuristics

Conclusion

Summary

- Exact Algorithms: Improvements to BFS
- Heuristics: HighestDifference
- Efficient compared to other heuristics
- Easy to implement

Open Problems

- Polynomial-time algorithm
- NP-hardness proof
- Algorithms with approximation ratio <2

References

冨 Jean-Luc Baril and Jean-Marcel Pallo.
Efficient lower and upper bounds of the diagonal-flip distance between triangulations.
Information Processing Letters, 100(4):131-136, 2006.
Jean Pallo.
An efficient upper bound of the rotation distance of binary trees.
Information Processing Letters, 73(3-4):87-92, 2000.
㞒 Daniel D. Sleator, Robert E. Tarjan, and William P. Thurston. Rotation distance, triangulations, and hyperbolic geometry. Journal of the American Mathematical Society, 1(3):647-681, 1988.

[^0]: ——Trivial Upper Bound
 _BarilPalloUp
 _ HighestDifference
 BarilPalloLow
 ——Trivial Lower Bound

[^1]: ——Trivial Upper Bound ——PalloUp
 ——BarilPalloUp
 _ HighestDifference
 BarilPalloLow ——Trivial Lower Bound

