Computing the Flip Distance of Triangulations Bachelor-Kolloquium

Fabian Lipp

July 5, 2012

Contents

Introduction

- Motivation of the Problem
- Definitions
- 2 Exact Algorithms
 - Breadth-First Search
 - Improvements
 - Effects of the Improvements

3 Heuristics

- Variants
- Comparing to other Heuristics

Conclusion

Motivation of the Problem

- Let T_1, T_2 be binary search trees
- Operations: Left rotation, right rotation

Motivation of the Problem

- Let T_1, T_2 be binary search trees
- Operations: Left rotation, right rotation

• Task: Find a shortest sequence of rotations that lead from T_1 to T_2

Motivation of the Problem

- Let T_1 , T_2 be binary search trees
- Operations: Left rotation, right rotation

- Task: Find a shortest sequence of rotations that lead from T_1 to T_2
- There is no polynomial-time algorithm known for this problem, but NP-hardness is not proven

Equivalent of Rotations

Equivalent of Rotations

Equivalent of Rotations

Fabian Lipp

Rotation distance between binary trees is equivalent to flip distance between triangulations

Rotation distance between binary trees is equivalent to flip distance between triangulations

Definition (Flip Distance)

The *flip distance* $fd(\pi_1, \pi_2)$ is the minimum number of diagonal flips required to transform π_1 to π_2 .

Rotation distance between binary trees is equivalent to flip distance between triangulations

Definition (Flip Distance)

The *flip distance* $fd(\pi_1, \pi_2)$ is the minimum number of diagonal flips required to transform π_1 to π_2 .

Upper bound for two triangulations of the *n*-gon:

 $\mathsf{fd}(\pi_1,\pi_2) \leq 2n-6$

Flip Graph \mathcal{F}_6 :

fd(start, target) = 3

Flip Graph \mathcal{F}_6 :

Runtime

Number of nodes in \mathcal{F}_{n+2} :

$$C_n=\frac{1}{n+2}\binom{2n}{n}$$

fd(start, target) = 3

Flip Graph \mathcal{F}_6 :

Runtime

Number of nodes in \mathcal{F}_{n+2} :

$$C_n = \frac{1}{n+2} {\binom{2n}{n}}$$
$$C_n \sim \frac{4^n}{\sqrt{\pi n^3}}$$
$$\Rightarrow \text{Exponential}$$
runtime

fd(start, target) = 3

Simple Improvements

Simple Improvements

Two-Sided BFS

(s) (t)

Two-Sided BFS

Two-Sided BFS

- Start BFS from start and target at the same time
- Reduces the number of visited nodes

• Reduces the number of visited nodes

- Reduces the number of visited nodes
- Needs lower bound for distance from an arbitrary node to target

- Reduces the number of visited nodes
- Needs lower bound for distance from an arbitrary node to target
- Easy lower bound: number of diagonals that are not common

Effects of these improvements

Fabian Lipp

Computing the Flip Distance of Triangulations 10 / 19

Fabian Lipp Computing the Flip Distance of Triangulations 11/19

Optimal flip sequence

Fabian Lipp Computing the Flip Distance of Triangulations 11/19

Optimal flip sequence

Fabian Lipp Computing the Flip Distance of Triangulations 11 / 19

Optimal flip sequence

Fabian Lipp

Computing the Flip Distance of Triangulations 11 / 19

Input: start triangulation s, target triangulation t**Output:** short flip sequence from s to t
Variants

MostIntersections Choose diagonal with maximum #(Intersections before flipping)

Variants

MostIntersections Choose diagonal with maximum #(Intersections before flipping) FewestIntersectionsAfter Choose Diagonal with minimum #(Intersections after flipping)

Variants

MostIntersections Choose diagonal with maximum #(Intersections before flipping)

FewestIntersectionsAfter Choose Diagonal with minimum #(Intersections after flipping)

HighestDifference Choose diagonal with maximum $\Delta := \#(\text{Intersections before flipping}) - \\
\#(\text{Intersections after flipping}).$

Variants

MostIntersections Choose diagonal with maximum #(Intersections before flipping)

FewestIntersectionsAfter Choose Diagonal with minimum #(Intersections after flipping)

HighestDifference Choose diagonal with maximum

 $\Delta := #($ Intersections before flipping) - #(Intersections after flipping).

Runtime: $O(n^2)$

Comparing the Variants

• First Heuristic by Pallo (2000):

- Works on weight sequences representing binary trees
- Constructs a lattice containing the trees
- Length of path in lattice is upper bound for rotation distance

- First Heuristic by Pallo (2000):
 - Works on weight sequences representing binary trees
 - Constructs a lattice containing the trees
 - Length of path in lattice is upper bound for rotation distance
- Heuristic by Baril and Pallo (2006):
 - Works on triangulations
 - Local transformation to create an additional common edge
 - Provides Upper and Lower Bound for the Flip Distance

• First Heuristic by Pallo (2000):

- Works on weight sequences representing binary trees
- Constructs a lattice containing the trees
- Length of path in lattice is upper bound for rotation distance
- Heuristic by Baril and Pallo (2006):
 - Works on triangulations
 - Local transformation to create an additional common edge
 - Provides Upper and Lower Bound for the Flip Distance
- Runtime: $O(n^3)$

Comparing to other Heuristics

n = 50

Comparing to other Heuristics

Comparing to other Heuristics

Computing the Flip Distance of Triangulations 17/19

Conclusion

Summary

- Exact Algorithms: Improvements to BFS
- Heuristics: HighestDifference
 - Efficient compared to other heuristics
 - Easy to implement

Open Problems

- Polynomial-time algorithm
- NP-hardness proof
- Algorithms with approximation ratio < 2

References

Jean-Luc Baril and Jean-Marcel Pallo.

Efficient lower and upper bounds of the diagonal-flip distance between triangulations.

Information Processing Letters, 100(4):131–136, 2006.

Jean Pallo.

An efficient upper bound of the rotation distance of binary trees.

Information Processing Letters, 73(3-4):87-92, 2000.

Daniel D. Sleator, Robert E. Tarjan, and William P. Thurston. Rotation distance, triangulations, and hyperbolic geometry. *Journal of the American Mathematical Society*, 1(3):647–681, 1988.