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Zusammenfassung

Der Begriff map matching bezieht sich auf das Problem, zu einer gegebenen
Folge von Positionspunkten (z.B. GPS-Punkten) auf einer Straßenkarte den
zurückgelegten Weg zu rekonstruieren. In dieser Bachelorarbeit wird ein
innovativer, selbst entwickelter Algorithmus vorgestellt, der map matching
auch auf unvollständigem Kartenmaterial und für Bewegungen abseits der
Straßen durchführen kann.

Zunächst werden in einem Überblick verwandte Arbeiten zum Thema map
matching im Allgemeinen und für unvollständige Karten im Besonderen
präsentiert. Anschließend wird das von Lou et al. im Jahr 2009 präsentierte
System erläutert, auf dem der in dieser Arbeit vorgestellte Algorithmus basiert.
Zu diesem System werden außerdem verschiedene Verbesserungsvorschläge
eingeführt und getestet.

Auf dem verbesserten System setzen die Erweiterungen für die Verarbeitung
von GPS-Trajektorien auf unvollständigem Kartenmaterial auf. Sie erlauben
es, Bewegungen abseits des Kartenmaterials zuverlässig zu erkennen und
korrekt darzustellen, was dem Basissystem gänzlich unmöglich ist.

Im Weiteren wird das neu eingeführte System in verschiedenen Versuchen
auf die Qualität seiner Resultate getestet. Dafür werden unter anderem
über tausend zufällig veränderte Straßenkarten herangezogen. Die Ergebnisse
zeigen, dass der in dieser Arbeit eingeführte Algorithmus auch unter subopti-
malen Bedingungen hervorragende Ergebnisse erzielt.

Nach einer formalen Laufzeitanalyse werden abschließend die neuen Erkennt-
nisse zusammengefasst und noch offene Probleme sowie zukünftige Er-
weiterungsmöglichkeiten benannt.
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1 Introduction

In the last years, a proliferation of GPS-embedded devices has taken place: automotive navigation
systems are widely available both as original factory equipment and as portable handheld devices,
and GPS-enabled smartphones seem to be omnipresent. This leads on the one hand to an increasing
demand of good corresponding software and on the other hand emerges a vast source for collected
GPS data ready for examination.

Various applications, for example the analysis of traffic streams in large cities as described by
Pang et al. (2011), take advantage of the latter. The features of navigation software, both installed
in vehicles and running on smartphones or other handhelds, are already widely known. What is
common with almost all the GPS-driven navigation and analysis approaches is the reliance on an
accurate map matching algorithm.

The term map matching describes the problem of recognizing the roads a GPS receiver was carried
along. The only information available for this are the GPS logs that have been recorded on the
way and a digital map. In this thesis, we want to create a system that can deal with off-road
movements as well as with travelling on roads.

Figure 1.1: Map matching on incomplete road database.
Imagery c©2012 AeroWest, GeoBasis-DE/BKG, Google

In Figure 1.1, we can see an example of this. The brown points have been logged by a GPS receiver
that was carried along by a pedestrian. For each of the points, our system determines the nearest
road (yellow arrows) and recognizes it as taken by the walker (blue dotted path). However, the two
brown/green GPS points can not be associated, because the small footpath taken is not covered
by our map (yellow). In this case, our algorithm assumes them to be off-road points and connects
them (green dotted path) with each other and with the on-road path (blue dotted).

Our system, as introduced in this thesis, is an innovative contribution for map matching on in-
complete road databases. It provides advantages as well to navigation systems for bicyclists and
walkers as to post-processing applications. One example for this is a collaborative map construc-
tion with a large quantity of involved users as mentioned by Pereira et al. (2009). In addition, our
system can cope well with networks where neuralgic roads are missing (e.g. newly built bridges),
producing still excellent matching results. This is beneficial for car navigation, too.

In the following, we first present some related work (Chapter 2), then revisit a map matching
algorithm introduced by Lou et al. (2009) (Chapter 4) and propose improvements for it (Chap-
ter 5). Afterwards, we introduce our off-road extensions to the system (Chapter 6) and evaluate it
(Chapter 7). Last but not least, we draw a conclusion and point out future work (Chapter 8).
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2 Related work

As demonstrated in the introduction, the map matching problem is of fundamental importance
to several applications processing raw GPS data. Thus, it was the object of research in various
papers in the past two decades. In this chapter, we will have an overview of the recent research
papers. An excellent summary of prior related work (and its limitations) is available from Quddus
et al. (2007).

2.1 Classification of map matching approaches

Many authors concerned with map matching differentiate between on-line and off-line matching.

The first term describes the problem of immediately finding a fitting map point for the latest
captured GPS point. Consequently, only GPS points that have been collected before can be taken
into account when searching for a match. Applied successively to each obtained GPS point, this
approach is an incremental method for map matching. Algorithms following this principle have
been introduced by Wenk et al. (2006), Chawathe (2007) and many others. Possible applications
for on-line matching algorithms are navigation systems for cars and other vehicles. The current
position of the GPS receiver has to be displayed on the internal map as fast as possible, and future
GPS points are thereby naturally not available. Nevertheless, only a single GPS trajectory has
to be analysed and the systems do not have to perform faster than real-time, which allows higher
running times for on-line algorithms in comparison to the following class.

In contrast, with off-line matching it is possible to make use of the whole GPS trajectory when
computing the matched path. The final result is obtained directly from one computation with the
whole data available. Several recent papers by Lou et al. (2009), Marchal et al. (2005), Pereira
et al. (2009) and a number of other authors focus on this topic applying various strategies. Such
algorithms are often deployed in environments where a large quantity of trajectories is analysed,
which is the reason why some authors call for fast running times. The results of their computation
are of vital importance to traffic analysis and road planning tasks. For example, Lou et al. (2009)
employed their algorithm to analyse the routes taken by taxis in Beijing.

Additionally, statistical methods using the Viterbi algorithm and Hidden Markov Models are avail-
able, like the one proposed by Newson and Krumm (2009). As Lou et al. (2009) state, such models
are especially apt to deal with GPS measurement errors and can be combined advantageously with
other approaches. However, it is difficult to modify these methods for operation on incomplete
road databases.

Apart from these classes, the multitude of proposed systems differs in various internal concepts.
Some approaches rely on special distance measures to determine the discrepancy between GPS
trajectories and possible paths on the road network, for example, the work of Chen et al. (2011)
makes use of the Fréchet distance. Lou et al. (2009) proposed a strategy using spatio-temporal
analysis, which was improved regarding running times by Eisner et al. (2011). Their concept
identifies a set of possible match points for every GPS log. Two consecutive candidate points are
then connected with a shortest path. Finally, the most suitable ones will be chosen. Thereby,
operation on low sampling rates is possible, too.

The recent approach of Dalumpines and Scott (2011) follows its own way, searching for a short-
est path in an area engirding the GPS trajectory. Unlike Lou et al. (2009), they assume that
start and end point of the complete trajectory are connected by a shortest path, not only two
consecutive candidate points. However, this procedure disregards lots of given information, as the
computation of the matched path is rather indistinct and relies heavily on high sampling rates and
straightforward movement on the trajectory.
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2.2 Algorithms for incomplete road databases

The topic of map matching on incomplete road databases, which demands algorithms that support
parts of the trajectory not being matched to the road network, is given considerably less attention
in the literature available.

Nevertheless, a small selection of research papers is at hand, featuring algorithms for incomplete
networks based on some of the different map matching strategies described in Section 2.1.

Pyo et al. (2001) introduced a probabilistic approach, which uses a multiple hypothesis technique-
based algorithm for map matching and is able to recognize off-road movements in probabilistic
terms. When the road network is left, the system returns the logged GPS coordinates as matching
output. However, the system is designed for on-line map matching and makes use of Dead Reck-
oning features as well as path prediction to improve matching quality in case of a blocked GPS
signal. This is not suitable for the off-line matching system for incomplete road databases our
thesis focuses on.

Pereira et al. (2009) discussed the same topic, proposing a by far more complex system based on
the combination of two different algorithms: the global map matching algorithm by Marchal et al.
(2005), which iteratively rates the quality of a set of candidate paths, and a newly introduced
genetic algorithm called GEMMA. Due to excessive time consumption, GEMMA is only used to
analyse areas where Marchal’s algorithm produces inadequate results.

Although the approach by Pereira et al. (2009) supports incomplete road databases and is designed
as a post-processing system, it has drawbacks that justify the introduction of other systems, as the
one described in this thesis. The additional employment of GEMMA to overcome limitations in the
algorithm by Marchal et al. (2005) comes with a heavy impact on the system’s complexity, both
in terms of running time and implementation. Though the combination leads to good matching
results, the scalability of the system when analysing larger numbers of trajectories is uncertain.
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3 Preliminaries

In this chapter, we will review important preliminaries and thereby give a more formal definition of
the map matching problem. Several of the following definitions are loosely based on the definitions
proposed by Lou et al. (2009) and are similar to those of other recent papers on the topic.

Definition 1 (GPS point)

A GPS point pGPS is a set of data acquired in a single position computation by a GPS
receiver. It contains the determined latitude pGPS.lat and longitude pGPS.lon, as well as
additional data like the elevation and a timestamp.

In this thesis, the timestamp is implicitly used by ordering the GPS points consecutively. Fur-
thermore, we apply the UTM projection to the GPS points, which are originally described by
geographic latitude and longitude. As a result, we are able to compute Euclidean distances be-
tween GPS points later on.

In typical map matching cases, GPS points are collected by a moving vehicle or other objects
equipped with a GPS receiver. These sensors may differ regarding their measurement noise and
sampling rates. In order to track the way the receiver took, obviously more than one GPS point
must be available, which leads to the next definition.

Definition 2 (GPS trajectory)

A GPS trajectory is a sequence T = {p1GPS, p
2
GPS, ..., p

n
GPS} of n GPS points in ascending

order of their timestamps. GPS trajectories are used to represent the data collected by a GPS
receiver logging GPS points over spatial and temporal distance.

p1GPS p2GPS
p3GPS

p4GPS

p5GPS
p6GPS

latitude: 49.79127
longitude: 9.954161

timestamp: 12:01:43

latitude: 49.79126
longitude: 9.953262

timestamp: 12:01:38

Figure 3.1: A short GPS trajectory. GPS data of start and end point listed.

The distance between two consecutive GPS points of a trajectory depends on the sampling rate of
the GPS receiver in use and the speed of movement. Generally speaking, map matching algorithms
tend to produce better results with trajectories of higher resolution. Nevertheless, approaches like
those of Lou et al. (2009) can cope with sampling rates as low as one point every 5 minutes from
a moving car—assuming that the driver prefers shortest paths. In the following, we speak of low
sampling rates when the distances between the GPS points lie in the order of 100 meters, of medium
sampling rates for distances in the order of 10 meters and of high sampling rates with spaces in
the order of 1 meter.

Having defined sufficient terms to describe the measurement data that forms the input to map
matching algorithms, it is now necessary to introduce their counterpart, the road network, in
relation to which the captured paths shall be matched.
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Definition 3 (Road vertex)

A road vertex v is a vertex of a polyline that represents a road. It is defined by its latitude
v.lat and its longitude v.lon. Additionally, it is associated with the road segment v.seg on
which it lies.

The road vertices can have degrees of 1 (in case of a dead end), of 2 (modelling a bend of the road)
and any higher (at junctions).

Definition 4 (Road segment)

A road segment seg is a segment of a polyline representing a road. Is is defined as a
directed edge starting in the road vertex seg.start and ending in the road vertex seg.end.
It furthermore holds its length seg.length, which is the length of the way from seg.start to
seg.end travelling on the road segment.

Definition 5 (Map point)

A map point pmap is a point lying on a road segment. It is defined by its latitude pmap.lat
and its longitude pmap.lon. Additionally, it is associated with the road segment pmap.seg on
which it lies.

With definitions for vertices and corresponding edges at hand, we now define the road network:

Definition 6 (Road network)

The road network is a weighted, directed multigraph RN = (V,E). The vertices in V are
the road vertices, while the road segments as edges form the set E. Every edge is weighted
by its length. The source material in use is called the road database.

This graph is typically constructed using existing cartographic material, which is available both
commercially from services like Google Maps and Bing as well as freely from community-driven
projects like Open Street Map. If available, additional information as speed limits and one-way
roads can be taken into account, too.

road segment

road vertex

Figure 3.2: Detail of a road network for the city of Würzburg

The term map matching thus describes the procedure of reconstructing the way a moving object
took on a map using collected GPS data. In other words: with a given GPS trajectory and a given
road network, the map matching system computes the path on the map that corresponds best with
the trajectory. The question, which characteristics make a path correspond with the trajectory, is
therefore of central importance to the design of map matching algorithms.

8



4 An existing map matching approach by
Lou et al. (2009)

As this thesis mainly intends to propose new strategies for map matching on incomplete databases,
an existing map matching algorithm for complete databases has been chosen as a sound base to
work on. From the multitude of algorithms introduced by various authors in the past, we decided
to follow the approach described by Lou et al. (2009), applying several modifications explained in
Chapter 5. This approach seemed particularly appropriate to the author for three reasons.

First, it is solid regarding suboptimal conditions, e.g. missing samples and low sampling rates.
Second, the implementation is rather straight-forward and clearly arranged. This ensures quick
access to the multiple criteria featured, which can be used for fine tuning or enhanced with ad-
ditional concepts. Third, Lou et al. (2009) provide structures that are particularly suitable to be
augmented with extensions for matching on incomplete databases.

We detail the chosen approach in the following sections, starting with a short system overview.
Several improvements to the algorithm described in this chapter will be presented in Chapter 5.

4.1 Overview

The implemented system consists of four major parts. At first, the input data, which consists of
GPS logs and a geographic road map, is being parsed. Afterwards, for each GPS point a collec-
tion of possible candidate points on the road network is determined. These candidate points are
analysed in terms of their quality to represent their associated GPS point. With that information,
a candidate graph is constructed, which provides in a final step the path through the road map
that corresponds best to the trajectory.

map data

GPS log

Input parsing

Road network
construction

GPS trajec-
tory parsing

Candidate prep.

Candidate
computation

Candidate
sets

Quality analysis Optimal path

path

Observation
probability
analysis

Transmission
probability
analysis

Search for
best path

Candidate
graph

Figure 4.1: System overview

For the implementation, it is of advantage to analyse the quality of the candidate points directly
when gathering the candidate sets. This has no effect on the system’s overall performance and
correctness, though.
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4.2 Input parsing

In order to work properly, the system needs a road network as defined in Chapter 3 to operate
on. An appropriate network can be constructed from various geographic material in different data
formats. In our implementation1, ESRI shape files containing data from the Open Street Map2

project can be parsed, creating the network. Vertices of a polyline in the shape file are used as
road vertices and the road segments connecting them as edges. These are weighted according to
the Euclidean distance between start and end point. As we do not intend to limit our system to
car traffic but are especially interested in pedestrians, too, we always insert edges leading in both
directions and thus do not take driving restrictions on one-way roads into account.

To speed up computation later on, the edges of the road network are additionally stored in a
Quadtree using their bounding boxes as envelops. This ensures a quick search for roads (and map
points) close to a given GPS point when computing candidate points.

Aside from the road network, the system needs a GPS trajectory to process. As introduced in
Chapter 3, a GPS trajectory consists of a sequence of single GPS points. There exists a multitude
of data formats for GPS logs, and it is of little importance which is actually used. We implemented
a parser for GPX files, a format that is based on XML and designed to hold various GPS data.
Importing one data point after the other and creating a GPS point from each, we receive a GPS
trajectory to work with.

In contrast to the GPS trajectory, the road network has not necessarily to be constructed from
scratch every time the algorithm is run. As long as it is not out-of-date regarding the real road
system and as long as the GPS trajectory lies inside the covered area, there is no need to rebuild
the road network. Therefore, the runtime complexity of road network construction is not that
relevant when requesting multiple matching computations.

As Lou et al. (2009) do not in detail explain their procedure for input parsing, it might be slightly
different from the one presented here. Nevertheless, this question is more of technical than of
conceptional relevance.

4.3 Candidate preparation

The next major component of the system is the candidate preparation. Finding the best fitting
map point for a given GPS point requires first to find a set of possible candidates. Having used
the term vaguely before in this thesis, it is now time for a proper definition.

Definition 7 (Candidate point)

A candidate point c is a map point that is considered to be a possible matching candidate
for a given GPS point piGPS. It is associated with its corresponding GPS point c.gps = piGPS.
All candidate points to piGPS form its set of candidates Ci.

For every GPS point piGPS in the trajectory, an individual set of candidate points Ci has to be
established. Appropriate elements for Ci must lie on road segments in the vicinity of piGPS, taking
from every segment the very point with the least Euclidean distance to piGPS into the candidate
set. These formal criteria have to be met by every chosen candidate point.

1Parts of the framework code were reused and originally written by Haunert and Sering (2011).
2See http://www.openstreetmap.org/ for the Open Street Map project.
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To practically determine a set of candidate points to a given GPS point pGPS, the system first
gathers the road segments that lie within a given radius r around pGPS. This procedure contains
three steps:

1. Quadtree query returning near road segments

2. Line segment projection to find map point with minimal distance to pGPS for each road
segment

3. Verify that the obtained points lie inside the area limited by r

In the first step, the Quadtree that contains the edges of the road network is used. Queried with
a square envelope of side length 2r enclosing pGPS, the Quadtree returns all possibly intersecting
road segments. The found segments are subject to a line segment projection in a second step.
Using simple vector analysis, the nearest point in respect to pGPS on each segment is determined.
Of those points, each is finally examined whether it lies inside the area limited by the given radius
r. The points that pass the three steps form the candidate set for pGPS.

Technically speaking, some of the candidates points might actually not be vertices contained in
the road network. This is especially true for all points on road segments that are not their start
or end points. However, to be able to find shortest paths between candidate points, it is necessary
that these map points are injected as road vertices into the road network graph. They are added
together with edges representing the paths to start and end point of their road segment, thus
splitting it into two segments.

pGPS

c1
·

pGPS

c2·
pGPS

c3

Figure 4.2: Candidate points

Figure 4.2 gives an example of candidate point computation. The target area limited by radius
r around pGPS is depicted as blue, dotted circle. The coloured lines illustrate road segments
that contain points within range. On each of them, the point with the lowest distance to pGPS is
highlighted and considered a candidate. Note that the first two candidate points were originally not
vertices of the road map graph. The grey elements are of no importance for candidate computation,
as they do not contain points within the search radius.

The described procedure is repeated for every GPS point in the trajectory. If there are no candidate
points found for a GPS point, for example in the case of an outlier due to a measurement error, it
is no longer considered. For all other GPS points, a list of candidate points is available at the end
of this step.

4.4 Candidate quality analysis

Now that we have determined a set of candidate points for each GPS point, a selection must be
made to pick the best one in each case. As Lou et al. (2009) state, the problem now becomes to
find a path on the road network that visits one candidate for every GPS point and in addition
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best matches the GPS trajectory. To achieve this, the candidate points themselves and possible
connections between them are rated according to two quality criteria: observation probability and
transmission probability.

Definition 8 (Observation probability)

The observation probability is the probability that a candidate point c matches a GPS
point pGPS. It is computed based on the relative positions of c and pGPS. Assuming that GPS
measurement errors can be described as a normal distribution, the observation probability
N(cij) computes as

N(cij) =
1√
2πσ

e−
(xij−µ)

2

2σ2

where xij = dist(cij , p
j
GPS) is the Euclidean distance between cij and pjGPS, and with mean

µ = 0 and standard deviation σ = 20m on an empirical basis.

road map matching results

Figure 4.3: Overpass intersection. Of the large set of candidates (yellow dots), only the few beneath
the bridges are appropriate to the trajectory (red) and the matching result (green).

At first glance, this measure might seem sufficient for picking the best candidate point in each set.
However, there exist several situations in which observation probability alone can not guarantee the
best candidate choice. Especially at parallel roads or overpass intersections, unsuitable candidate
points might be located next to the examined GPS point (cf. Figure 4.3). Therefore, a second
measure is necessary, which takes the chance of transition from the point before into account: the
transmission probability.

Definition 9 (Transmission probability)

The transmission probability is defined as the probability that the shortest path from a
given candidate point ci−1j to the next candidate point cik is the correct path from pi−1GPS to

piGPS. Following Lou et al. (2009), the transmission probability V (ci−1j → cik) is computed
as

V (ci−1j → cik) =
d(i−1)→i

w(j,i−1)→(k,i)

with d(i−1)→i = dist(pi−1GPS, p
i
GPS) and w(j,i−1)→(k,i) is the length of the shortest path between

ci−1j and cik on the road network.

In Chapter 5, we will discuss shortcomings of the definition above and propose improvements. Nev-
ertheless, the consideration of transmission probabilities is important for the presented approach
and its extensions. Compare to Figure 4.3 for an example where both observation and transmission
probability are necessary.

Lou et al. (2009) also propose the temporal analysis of candidate points. With this concept,
temporal data as the average moving speed and speed limits on the road network are taken into
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account. This feature has not been implemented in our approach due to relatively little gain
in contrast to increased requirements on the cartographic material. Furthermore, the temporal
analysis cannot be applied reasonably when travelling on roads not contained in the road network.

4.5 Finding an optimal path

After the evaluation of each candidate point in terms of observation and transmission probability,
the results have to be processed. Particularly, a multitude of possible combinations of candidate
points and the paths between them must be considered to obtain the final matching result.

Definition 10 (Final matching result)

The final matching result is the path through the road network best fitting the GPS
trajectory with respect to the applied quality terms. It is defined as the path

c1 → c2 → · · · → cn with ci ∈ Ci for i = 1 . . . n

so that its associated quality rating

N(c1) · V (c1 → c2) ·N(c2) · V (c2 → c3) · ... ·N(cn−1) · V (cn−1 → cn) ·N(cn)

is maximal.

For the purpose of computing this path, the last component of the system features a special graph,
in which the candidate points and their quality ratings are represented: the candidate graph.

Definition 11 (Candidate graph)

A candidate graph is a directed acyclic graph (DAG) which represents all paths that are
considered possible final matching results for the given GPS trajectory. While the determined
candidate points serve as vertices to the candidate graph, its edges represent a link between two
candidate points on the road network. The edges are weighted according to the transmission
probability of their start and end vertices as well as the observation probability of their start
vertex. The graph furthermore contains the vertices pstart and pend, which feature edges to all
candidates of the first and the last GPS point, respectively.

...

...

...

...

...

...

...

...

...

pstart pend

c11

c12

c13

c21

c22

c23

c24

c25

cn−1
1

cn−1
2

cn−1
3

cn−1
4

cn−1
5

cn1

cn2

cn3

cn4

layer 1 layer 2 layer n− 1 layer n

Figure 4.4: Candidate graph

To clarify this definition, Figure 4.4 shows a schematic depiction of a candidate graph. Note that
each set of candidate points determined for a particular GPS point forms a layer in the candidate
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graph. Figure 4.5 shows an example of one of the candidate sets and its corresponding layer. As
we can also clearly see in Figure 4.4, almost all vertices in two consecutive layers are connected
with edges. Two vertices stay unconnected only if the road network lacks a path between the
candidates they represent.

Layer i

c1i

c2i

c3i

road network candidate graph

piGPS

ci1

ci3

ci2

Figure 4.5: Candidate set and corresponding layer

Moreover, the paths from pstart to pend through the candidate graph form the set of possible
final matching results for the trajectory. However, the edges these paths consist of are not simply
weighted with the product of the probabilities as proposed in Definition 10. Instead, we convert the
product into a sum using logarithms, and achieve simplified circumstances for later computations.

In order to obtain the final matching result, the best rated path through the candidate graph has
to be determined. This is possible under the assumption of optimal substructures using dynamic
programming as described by Cormen et al. (2009): The final matching result can be considered
a combination of smaller, optimal results for parts of the GPS trajectory. Note that the structure
of a directed acyclic graph allows an efficient search for the longest (i.e. best rated) path through
the graph.

From the final matching result, the path on the road network taken can easily be deduced, so that
the matched set of road links is available to external systems for further processing or graphical
representation.
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5 Improvements of the basic algorithm

Now that we have considered the approach by Lou et al. (2009) and assured ourselves of its
advantages, we want to discuss some of its shortcomings, too. Several problems arise out of the
algorithm’s original design for low sampling rates when applied to higher sampling rate trajectories.
In addition to our solutions to those, we suggest ideas to improve the candidate quality rating.

The quality of map matching results will benefit from our modifications, both with and without
using the extensions for incomplete road databases proposed in Chapter 6. In this chapter, we
want to examine shortcomings and our suggested improvements to them consecutively.

5.1 Normalisation of transmission probability

As we have seen in Chapter 4, Lou et al. (2009) defined the probability that two successive candidate
points ci−1j and cik follow each other as

V (ci−1j → cik) =
d(i−1)→i

w(j,i−1)→(k,i)
.

The appeal of this definition clearly lies in its straightforwardness; however it has the drawback
that its co-domain is not limited to the interval [0, 1]. As Figure 5.1 shows, in certain cases the road
distance between two consecutive candidate points might be smaller than the Euclidean distance
between their corresponding GPS points. This leads to a transmission probability greater than
1, which is generally an undesirable behaviour for a “probability” and problematic as its (poten-
tially high) value enters directly into the overall quality computation, together with normalised
measures.

pi−1
GPS

piGPS

ci−1
j cik

d

w

Figure 5.1: Distance w between two consecutive candidate points is shorter than distance d between
the two corresponding GPS points.

The described effect is mainly caused by the matching radius r, which – in the worst case – allows
the road distance w to be 2r shorter than the distance d between the GPS points. However, in
the setting where Lou et al. (2009) used the algorithm, this drawback has little impact due to low
sampling rates and the resulting long distances between the candidate and GPS points.

As we wish to apply the concept of transmission probability to a high sampling rate context as
well, we have to erase this shortcoming. Therefore, the following modification to the definition of
the probability is suggested.

15



Definition 12 (Transmission probability: improved definition)

The transmission probability V (ci−1j → cik) is computed as

V (ci−1 → ci) =
min{d(i−1)→i, w(j,i−1)→(k,i)}
max{d(i−1)→i, w(j,i−1)→(k,i)}

with d(i−1)→i = dist(pi−1GPS, p
i
GPS) and w(j,i−1)→(k,i) is the length of shortest path between ci−1j

and cik on the road network.

The definition of the probability as the minimum of direct distance d and length of way w divided
by the maximum of d and w guarantees probability values in the interval [0, 1], thus solving the
stated problems. In the formerly problematic cases, where w is shorter than d and the probability
was greater than 1, the value is now smaller than 1 expressing a suboptimal matching quality. The
concept of transmission probability itself remains justified and untouched.

5.2 Avoidance of loops in matched road path

Another problem we encountered is the occurrence of loops on the matched road path when using
the map matching system with high sampling rate input data. With the term “loops”, we refer to
sections of the matched road path with the path leading to a candidate point and returning on the
same road segment again to the next candidate point. This misbehaviour is mostly observed at
scenarios where the GPS trajectory deviates from the road network and is caused by flaws in the
conception of the transmission probability. Figure 5.2 shows an example for a (wrongly matched)
loop.

p1GPS

p2GPS

p3GPS

p4GPS

p5GPS

p6GPS

p7GPS

c1

c2

c3

c4

c5

c6

c7

Figure 5.2: The algorithm by Lou et al. (2009) produces a loop on the road network. Note that the
distance between c2 and c3 best fits the distance between p2GPS and p3GPS. The same
is true for the next three pairs respectively. Nevertheless, the matching result is not
satisfying, as c3 → c4 → c5 form a loop not existent in the GPS trajectory.

As the appearance of such loops in the final matching result are highly undesirable, we have to
modify the quality rating system again. While the proximity of candidate points is considered by
the observation probability and the similarity of covered distances by the transmission probability,
there is so far no mechanism to explicitly ensure correct directions of the matched road segments.
Therefore, we introduce a third measure of quality for the candidate points:
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Definition 13 (Direction probability)

The direction probability is based on the angular deviation between the line segment from
a candidate point ci−1j to the next candidate point cik and the line segment between the
corresponding GPS points. It is normalised as

D(ci−1j → cik) =
180◦ − α

180◦

where α is the angular deviation in degrees between the vector ci−1j → cik and the vector

pi−1GPS → piGPS. If one of the vectors has length 0, we define D(ci−1j → cik) = 1. The deviation
is computed using basic vector analysis.

Figure 5.3 shows an example for the computation of the direction probability. The angular devi-
ation amounts to 27◦, which leads to a direction probability of 180◦−27◦

180◦ = 0.85. The determined
direction probability enters together with observation and transmission probability into the quality
ratings represented in the candidate graph.

27◦

pi−1
GPS

piGPS

ci−1
j

cik

Figure 5.3: Angular deviation between GPS trajectory and matched road segment

Revisiting the case presented in Figure 5.2, now making use of the direction probability, we can
clearly see in Figure 5.4 that the unwanted loops have disappeared and the final matching result
is correct. It might be worth noting that, in the shown case, two GPS points share the same
candidate point on the road network. In this case, D(c4 → c5) = 1, which means the deviation is
at its optimum.

p1GPS

p2GPS

p3GPS

p4GPS

p5GPS

p6GPS

p7GPS

c1

c2

c3

c4/c5

c6

c7

Figure 5.4: Same scenario as in Figure 5.2. The improved algorithm no longer produces a loop.

This might seem like a design flaw at first glance, but actually proves that the former loop has been
penalised sufficiently. Better matching results are obtained in several cases by this behaviour.

In many situations, the direction probability is indeed sufficient to solve the loop problem. Nev-
ertheless, there are worst case scenarios where the angular deviation as basic principle is not
adequate, as we see in Figure 5.5.
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c4

c3

c2

c1

c5

p5GPS

p4GPS p3GPS

p2GPS

p1GPS

D(c1 → c2) ≈ 0.72
D(c2 → c3) ≈ 1.00
D(c3 → c4) ≈ 0.80
D(c4 → c5) ≈ 1.00

Figure 5.5: Direction probability does not in all cases prevent the occurrence of loops.

In the shown case, D(c1 → c2) ≈ 0.72, based on a angular deviation of about 50◦, while D(c3 →
c4) ≈ 0.8 and its deviation 35◦ respectively. For the remaining segments in the figure, direction
probabilities are nearly optimal and for all matched segments, transmission probabilities are high.
This combination leads to the illustrated, poor matching result.

As such worst case situations appear comparatively seldom, we have decided not to implement
further improvements into the presented matching system. Nevertheless, an approach to solve this
misbehaviour is proposed in Section 8.2 and is intended to be employed in future work. Anticipating
the ideas of chapter 6, we note that the described problem is solved with the introduction of off-road
points, too.
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6 Extensions for incomplete road databases

6.1 Overview

In this chapter, we want to extend the described map matching system for operations on incomplete
road databases. In doing so, we augment the current system of candidate quality rating and result
matching accordingly. This means in particular that we take an approach different to Pereira et al.
(2009), who realised a related system combining an algorithm proposed by Marchal et al. (2005)
and a new genetic algorithm named GEMMA.

The motivation for introducing map matching on incomplete databases is numerous. The most
obvious benefit—operation on a road network that is not fully mapped by cartographers—retreats
into the background: at least in industrialised countries, complete data on the road networks is
in most cases available. Instead, systems with “off-road” capability present their full potential on
scenarios like those presented in Figures 6.1 to 6.3.

10m

Figure 6.1: Crossing a large junction on foot, which is not satisfactorily modelled by edges of the
road network.
Imagery c©2012 AeroWest, GeoBasis-DE/BKG, GeoEye, Google

In Figure 6.1, we see a trajectory (pink) recorded by a pedestrian. On the road network (yellow),
the large junction displayed has to be represented by vertices and edges only, whereby information
on the width of the junction is lost. As the pedestrian walks on the pavement and takes the shortest
route through the junction, his path quite differs from the road segment on the network. Using an
off-road compatible system, the path taken can be matched adequately, though.

Another informative case is given in 6.2: the trajectory crosses the urban highway moving through
a new tunnel not yet included in the road network. Traditional map matching systems are entirely
incapable of computing an acceptable matching result, while our off-road approach delivers an
excellent result.
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p5GPS

p6GPS

p7GPS

c3

c2

c1

c5

c6
c7

Figure 6.2: Missing segments on the road network bridged by off-road segments

Such scenarios appear frequently in practice, often caused by out-of-date cartographic material
as well as the usage of temporary bypasses at road construction sites. Moreover, U-turns and
forbidden turns that do not conform to the road network can be processed with much better
results.

Last but not least, Figure 6.3 shows a trajectory that was recorded while actually moving off-road.
Despite examining an urban area, walkers and bicyclists often move on trails and passages that
are not part of the official road network. However, this rather fundamental problem can be solved
elegantly with our off-road matching system as the figure shows.

p1GPS

p2GPS

p3GPS

p4GPS
p5GPS

p6GPS

c1

c2

c3

c4
c5

c6

Figure 6.3: GPS trajectory features actual off-road passages, which are reflected by according off-
road segments.

Now that we have briefly examined common use cases for off-road matching, we take a look at the
actual implementation and conception of the proposed algorithm. As an underlying structure, the
system described in Chapter 4 and improved in Chapter 5 is used.
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6.2 Off-road points

To provide the desired off-road functionality, at first off-road points have to be injected into the
road network. Thus, the road network is extended by one additional vertex for each GPS point in
the trajectory. These new points are created as follows:

Definition 14 (Off-road point)

An off-road point p is a vertex injected into the road network, featuring the coordinates of
its associated GPS point p.gps. It is considered a candidate point to p.gps.

With that, potential candidate points outside the original road network are available. In order
to make them matchable, they need to be connected to other points. Therefore, additional road
segments with the following definition are inserted.

Definition 15 (Off-road segment)

An off-road segment seg is a road segment with either seg.start, seg.end or both being
off-road points.
If seg.end is an off-road point while seg.start lies on the road network, seg is called road
exiting. If seg.start is an off-road point and seg.end on the road map, seg is road accessing.
In the remaining case, it is called a true off-road segment.

Strictly speaking, off-road points should be reachable from every map point in the network. How-
ever, this would mean a tremendous amount of additional edges needed, of which the great bulk
is extremely unlikely to be ever used. Therefore, a more efficient concept has to be considered.

In the following approach, we assume that the path connecting two candidate points consists
either exclusively of off-road segments or exclusively of road network segments. This assumption is
supported by a closer examination of the structure of higher sampling rate trajectories, which shows
that the distance between two consecutive GPS points is short enough for reasonably reducing
potentially mixed on- and off-road paths to ones using exclusively one type of segments.

The gain of the proposed assumption is enormous. Instead of inserting edges from every vertex on
the road network to each off-road point pi, it is now sufficient to add edges from every candidate
point associated to pi−1GPS and to every candidate point associated to pi+1

GPS. In other words, the set
S of off-road segments that has to be added for a GPS trajectory with length n is

S = {s | ∃i ≤ n : s.start ∈ Ci−1 ∧ s.end = pi} ∪ {s | ∃i ≤ n : s.start = pi ∧ s.end ∈ Ci+1}

where pi.gps = piGPS.

This concept guarantees good matching results while only taking a small, but crucial fraction of
possible paths into account.

6.3 Quality analysis of off-road segments

In order to integrate the newly introduced off-road points and segments into the existing system,
a quality rating mechanism for them has to be created. Basically, the same rating algorithm as for
map points featured in the road network can be applied. Thus, the new off-road points are subject
to the analysis of transmission and direction probability as described in Chapter 4 and 5.
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The observation probability is not taken into account, as the off-road points and their GPS points
share identical coordinates, which renders a corresponding examination useless. When matching
outside the road network, the position of the logged GPS points is the only available information
anyway.

Nevertheless, several changes have to be made for an operational off-road rating method. Due to
the fact that off-road candidates exactly match their evoking GPS points, and off-road segments
connect them with minimal Euclidean distance, the existing rating system would rate the off-road
path along the trajectory as optimal matching result. That means, not matching to map points
on the road network would always be favourable to the system.

To counteract such shortcomings, we have to introduce penalties for matching on off-road segments.
In case of doubt, the matching system should stay on the roads of the road network. Therefore,
we penalise all off-road segments with a certain value. To prevent the algorithm from jumping
back and forth between road network and off-road segments, edges exiting and entering the road
network are provided with an additional penalty.

p1GPS

p2GPS

p3GPS

p4GPS

c1

c4

Figure 6.4: Off-road segments connecting c1 to c4. The mixed segments c1 → p2GPS and p3GPS → c4

receive higher penalties than the true off-road segment p3GPS → p4GPS.
Imagery c©2012 AeroWest, Google

The size of the proposed penalties somewhat relies on the sampling rate and especially on the
accuracy of the GPS samples. In various tests, penalties with a value of 5− 10% in respect to the
underlying rating results have proven appropriate. Moreover, the matching quality can be further
improved by adjustment of the impact of direction probability.

6.4 Extended candidate graph

As the final matching result shall be obtained by shortest path search on the candidate graph, the
proposed extensions must have impacts on its structure. As each GPS point is provided with an
according off-road point as an additional candidate, these points have to appear in the candidate
graph. Thus, to each layer in the graph another candidate point is added.

The off-road segments injected in the road network to provide the connection to and from the
off-road points are represented by additional edges in the candidate graph. The assumptions in
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Section 6.2 require each off-road point ciGPS to feature edges from every candidate ci−1j and to every

candidate ci+1
k . Their weights are assigned according to the quality rating rules of Section 6.3, that

is, it additionally depends on whether or not the start and end points are off-road points.

Figure 6.5 shows the augmented candidate graph. The green/brown vertices illustrate the added
off-road candidates, while their connections to the remaining candidate points are modelled by
the brown edges. All other vertices and edges in the graph remain altogether unaffected by the
off-road extensions.
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Figure 6.5: Candidate graph with off-road points and edges

As we can clearly see, the fundamental structure of the candidate graph has not been touched by
the modifications: it is still acyclic, layered and directed. Therefore, the same techniques as in
Chapter 4 can be used to obtain the shortest path through the graph, returning the final matching
result. The optimal path found can now be expected to consist of road segments where possible
and off-road segments where necessary.
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7 Evaluation and running time analysis

Having presented our map matching system for incomplete databases in the chapter before, we
want to examine and evaluate its performance in this chapter. Thereby, the quality of the returned
optimal paths as well as the running time of the algorithm will be analysed. Both opportune and
disadvantageous values of external parameters like sampling rate and measurement error level have
to be tested on their impact to the matching quality.

In addition, we draw a short comparison to other approaches on incomplete databases. Taking a
look at their algorithmic conception, we point out several differences to the approach proposed in
this thesis.

7.1 Matching quality under different conditions

To examine the increase of matching capability that has been newly gained by deploying off-road
extensions, we consider the scenario given in Figure 7.1. It compares two different strategies for
handling “gaps” on the road network, that is, locations where the trajectory follows a path not
existent in the (thus incomplete) road network.
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c1

c4
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c3 c3

road segment present missing segment bypassed missing segment bridged

Figure 7.1: Strategies for handling gaps on the road network

On the left, the situation is shown on a complete road network. The system correctly matches the
GPS trajectory to the adjacent road segments using the introduced quality ratings, irrespective of
whether off-road extensions are available or not.

In the middle, the road segment connecting c2 with c4 is missing. Without off-road extensions
available, the system tries to bypass this gap on the road network. This leads to detours of
potentially immense length and thus to highly unsatisfactory matching results, as depicted in
Figure 7.2.

On the right, the road segment is still missing, but the system makes use of its off-road extensions.
Hence, the gap is bridged using the off-road candidate associated to p3GPS and the final matching
result closely resembles the result obtained on the complete road network.

This example shows that the ability to operate on incomplete databases is especially valuable when
neuralgic segments like bridges, tunnels etc. are missing in the road database. This is also the case
when newly constructed roads are not yet available in the road network.
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road segment present missing segment bypassed missing segment bridged

Figure 7.2: Implication of the different strategies on the matching result. The three scenarios
correspond to the details shown in Figure 7.1.

In the tests hitherto presented, we assumed a high-sampling-rate GPS trajectory. However, the
system produces considerably good results on medium sampling rates, too. As described in Chap-
ter 6, we rely on the assumption that two candidate points are connected with a path either
completely on-road or completely off-road. When sampling rates decrease and thus the distances
between the GPS points and their candidates increase, this assumption is no longer true in the
majority of cases. The following considerations are summed up in table 7.1.

Sampling rate Increase of quality
low no improvement
medium better handling of missing neuralgic segments
high off-road movement and missing segments fully supported

Table 7.1: Increase of matching quality when using off-road extension, ordered by sampling rate

In spite of the fact that Lou et al. (2009) designed the underlying system for low sampling rate
trajectories, our extensions for incomplete road databases cannot improve the matching quality in
such scenarios. At least as long as we consider urban areas, typical off-road movements cover only
very small distances of a few meters, e.g. bridging two existent road segments. On low sampling
rates with distances of several hundred meters between the GPS logs, such deviations can hardly
be captured and do certainly not fulfil the necessary assumption named above. Nevertheless, the
off-road extensions might produce useful results when applied on non-urban low sampling rate
trajectories that describe longer off-road trips occasionally visiting mapped road segments on the
way.

With medium sampling rate trajectories, the situation is much better. Though short deviations
from the road network can often not be recognized due to the low resolution, missing road segments
can be bridged very efficiently, producing considerably better matching results.

When high sampling rate trajectories are available, the system works best. As we have seen in
several examples before, the system is able to detect and handle short deviations from the road
network as well as missing segments with very good results.
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7.2 Performance in comparison to the base algorithm

In the following section, we want to generalise the observations we made in Section 7.1. Therefore,
we need a wider database of cases for examination. In order to generate incomplete road networks,
a certain percentage of randomly chosen roads has been dropped from a given complete network.
Afterwards, the different systems compute matching results for a given trajectory on the incomplete
network, which we can compare.

Predictably, the basic algorithm by Lou et al. (2009) returns poor results as the integrity of the
road network declines, that is, as considerable parts of the road network are missing. Our extended
algorithm works much better and returns results that are very similar to those computed on the
complete road network, as Figure 7.3 shows.

road network integrity 100%
basic system in use

red: trajectory
green: matched path

road network integrity 50%
basic system in use

red: trajectory
green: matched path

road network integrity 50%
off-road system in use

red: trajectory
green: matched path
blue: off-road segments

Figure 7.3: Comparison of performances on incomplete road networks

With this instrument of randomised testing at hand, a broad spectrum of possible scenarios and
their impacts on the computed results can be examined efficiently. In the following test, both
the basic algorithm by Lou et al. (2009) and our own extended system are on the trial. In 100
iterations for each scenario, a randomly trimmed road network has been generated, the algorithms
have been run and their average deviations from the result on a complete network as well as from
the trajectory have been recorded.

As the candidate points are limited to a small area around each GPS point anyway, only the
different lengths of the matched paths are of value for a comparison. The results of this testing
are shown in Table 7.2.
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system
in use

network
integrity

avg. deviation to
compl. network [m]

avg. deviation to
trajectory [m]

Off-road
ratio

no path
found

off-road 100% 0 17.20 18% 0%
off-road 90% 2.14 14.98 26% 0%
off-road 80% 3.99 13.13 34% 0%
off-road 70% 5.01 12.12 42% 0%
off-road 50% 7.73 9.39 56% 0%
off-road 25% 13.69 3.43 79% 0%
basic 100% 0 18.72 0% 0%
basic 90% 986.58 1008.60 0% 15%
basic 80% 2402.71 2429.84 0% 31%
basic 70% 3543.12 3587.69 0% 58%
basic 50% – – 0% 97%
basic 25% – – 0% 100%

Table 7.2: Results of a randomised testing of the basic and extended algorithm. System in use, road
network integrity, average deviation from result on complete network, average deviation
from trajectory as well as off-road ratio and occurred errors are listed.

As we can clearly see, both systems deviate from their results on a complete road network in the
different scenarios. However, our system for incomplete road databases computes results that con-
verge with the given trajectory, whereas the basic system produces results that become increasingly
detached from the original path. Nevertheless, our system still matches the trajectory to the road
map wherever possible, as the off-road ratio shows.

In addition, the basic system produces frequently errors, not finding a path at all, as the integrity
declines, because the road network is no longer connected – a condition that cannot be handled
properly.

To draw a conclusion, the system proposed by Lou et al. (2009) is not at all capable of operation
on incomplete road networks. Even if only 10% of the roads are missing, the algorithm returns
results that are 100 times longer than its result on a complete network. Our algorithm handles
missing roads as intended, bridging them with off-road segments and returning acceptable results
even on highly incomplete road networks.

7.3 Running time analysis

To analyse the running time of our proposed system, we have to consider the complexity of its
parts. All things considered, their complexity has not changed compared to the basic system by
Lou et al. (2009).

As defined in Chapter 3, the number of GPS points in the processed trajectory is denoted as n,
and let m denote the number of road segments in the network. Additionally, let N be the number
of road vertices and the number of candidate points for each GPS point be limited by k. This
can be justified by the fact that existing road networks do not feature infinite numbers of road
segments.

During the construction of the candidate graph, (n−1) ·k2 possible connections between candidate
points have to be examined and at most the same number of edges have to be added. In doing
so, the transmission probability has to be computed for every connection, which requires the
shortest path between start and end candidate point. We use Dijkstra’s algorithm to obtain

27



the shortest path, which runs in O(m + N logN) time, and thus come to a total complexity of
O(n · k2 · (m+N logN)).

The computation of the remaining probabilities and components is dominated by this bound: The
observation probability can be obtained in constant time for each candidate point, resulting in a
total running time in O(n·k) computing it for all candidates. The direction probability is computed
in constant time for each of the edges in the candidate graph, too. That leaves us with a running
time that lies in O(n · k2) collectively. For the other components used for the construction of the
candidate graph, similar estimates hold, so that they are dominated by O(n · k2 · (m+N logN)),
too.

The second computational intensive component of the system is the search for the final matching
result in the candidate graph. Deploying the FindMatchedSequence procedure proposed by Lou
et al. (2009), we are able to find the longest path in the candidate graph within O(n · k2), making
use of the topological order of the graph.

Combining these bounds, the system has a time complexity of O(n · k2 · (m+N logN)). Lou et al.
(2009) also propose to choose a small value for k, which holds in most practical scenarios, and
brings the complexity near to O(n · (m+N logN)).

To conclude, the complexity of the system does not change with the introduction of our off-road
extensions. Every layer in the candidate graph is extended with only one additional candidate
point, which has no impact on the asymptotic running time of the candidate graph construction
nor on that of the search for the final matching result.
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8 Conclusion and future work

8.1 Conclusion

In this thesis, a new algorithm for map matching on incomplete databases was introduced. From
the multitude of map matching systems proposed in the past, we decided to base our new system
on the algorithm by Lou et al. (2009). In a first step, this algorithm was improved by several
newly introduced modifications, which solved most of its important shortcomings. Afterwards,
we modified the system with our off-road extensions, thus allowing operation on incomplete road
databases.

In both cases, we augmented the basic system prudently, leaving its core structures intact. This
has several benefits: first, the layout of the algorithm is still well-organized and extendible. Addi-
tionally, its asymptotic running time behaviour has not changed, although the functionality and
the quality of the results has been considerably improved.

Having identified scenarios that profit from off-road capability, we tested our system in several
ways. One of the tests involved more than 1000 randomly thinned out road networks. We finally
concluded that our proposed system produces excellent results on high-sampling-rate input, and
reasonably good results with medium-sampling-rate GPS trajectories in almost all scenarios.

8.2 Future work

In the future, our system could be further extended with the following ideas and become embedded
in map generation projects as described by Pereira et al. (2009).

As already illustrated in Chapter 5, the introduced direction probability is not in all cases capable
to guarantee correct matching results. Therefore, its concept might be refined in the future,
examining the angle between incoming and outgoing paths in every candidate point in relation
to the corresponding GPS point. This should solve the few remaining problems caused by wrong
quality ratings.

Additionally, the observation probability could take the accuracy of the GPS receiver into account.
Introduced in Chapter 4 on the base of a normal distribution, the standard deviation was fixed
to 20m. Instead, information about the dilution of precision (DOP), as determined by many GPS
receivers, could provide a individual distribution for every GPS point. This could improve the
selection of candidate points.

Pereira et al. (2009) propose an interesting application for map matching on incomplete databases
that leads beyond the mere visualisation of a travelled path. In their YouTrace project, off-road
paths are collected and used for road database construction. Our algorithm could be deployed in
such environments, too, especially because it has faster running times than their system.
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