Labeling Streets Along a Route
in Interactive 3D Maps Using Billboards

Nadine Schwartges, Benjamin Morgan, Jan-Henrik Haunert, and Alexander Wolff

Abstract We consider the problem of labeling linear objects, such as streets, in
interactive 3D maps, where the user can continuously pan, zoom, and rotate a per-
spective view of the scene. We dynamically annotate streets that belong to a user’s
route, assuming that the future course of the route, within the currently visible part
of the map, is known or well predicted. We use billboards as annotations, that is,
each label is a rectangle holding the annotation text, is oriented towards the user,
placed at some distance above the midpoint of the street to be labeled, and con-
nected to the point by a vertical line segment, the leader.

Our goal is to maintain an overlap-free labeling that reacts to changes of the view
in real time. To this end, we dynamically vary the lengths of the leaders. In order
to achieve that labels move smoothly, we do not strictly forbid label-label overlaps.
We present a force-directed algorithm that applies forces to labels to cause over-
lapping labels to repel each other, while keeping leaders as close to their desired
length as possible. On real-world data, with a realistic number of labels, we obtain
frame rates of more than 400 frames per second, while drastically reducing the total
overlapped area per frame, compared to an algorithm with fixed leader lengths.

Key words: Dynamic maps, Interactive maps, Map labeling, Street labeling, Bill-
boards

N. Schwartges (<) - B. Morgan - A. Wolff
Chair of Computer Science I, University of Wiirzburg, Germany
URL: http://wwwl.informatik.uni-wuerzburg.de/en/staff

B. Morgan
e-mail: benjamin.morgan@stud-mail .uni-wuerzburg.de

J.-H. Haunert
Institut fiir Geoinformatik und Fernerkundung, University of Osnabriick, Germany
URL: http://www.igf.uos.de/en/institute/staff

F. Bagdo et al. (eds.): AGILE 2015, Geographic Information Science as an Enabler
of Smarter Cities and Communities, LNG&C, 2014.
(© Springer International Publishing Switzerland 2015

http://www1.informatik.uni-wuerzburg.de/en/staff
mailto:benjamin.morgan@stud-mail.uni-wuerzburg.de
http://www.igf.uos.de/en/institute/staff

2 Nadine Schwartges et al.

1 Introduction

Interactive maps commonly allow users to zoom, pan, and rotate the map. Exam-
ples of such maps are Google Mapsﬂ or digital devices with navigation software.
Some interactive maps provide only a two-dimensional (2D) view whereas others,
for instance, Google Eart provide a perspective 3D view. Such tools help users to
orient themselves in an unknown environment.

Mobile devices with interactive maps commonly provide a map mode with which
users can freely move about (literally, users travel with their fingers on the map).
Additionally, the same devices offer a navigation mode, a route planner, that leads
users from their current locations to specified destinations. Sometimes, it is even
possible to interact with the map in navigation mode. To aide users in orienting
themselves, independent of the mode, map objects are usually annotated by textual
or pictorial labels.

There are three types of objects represented in maps: points, such as a cities (in
small-scale maps) and points of interest; /ines, such as streets and rivers; and areas,
such as countries and lakes. In this work we consider the problem of labeling streets,
but our results can also be used for labeling point features (without any changes) or
area features (assuming that we are given a suitable point in each area).

In printed large-scale maps, streets are commonly labeled embedded, that is, the
label is placed inside the area occupied by the street and follows the curvature of the
street. In interactive 3D maps, embedded labels are rendered with perspective dis-
tortion, as in Fig.[TI(a)] or they are rendered parallel to the view plane, as in Fig.[I(b)]
Sometimes, labels are placed straight—neglecting the exact course of the street—as
in Fig. in order to save computation time and to improve the readability of the
label text. It is also quite common to make use of billboards; examples can be found
in some built-in car navigation systems. Our billboards consist of (i) a label, that
is, a rectangle that is oriented towards the user and holds the label text, and (ii) a
leader that connects the point to be labeled, the reference point, with the label. The
leader of a billboard can be a line, as in Fig. or a more complex object, such as
a triangle or arrow. This paper focuses on placing billboards on streets in interactive
maps that are in navigation mode.

& a leader — L1
Q[&y label

a perspective b parallel C straight and parallel d billboard

Fig. 1 Different ways of labeling streets in a large-scale 3D map. Our approach uses billboards

Unttps://maps.google.com/} accessed Oct. 1, 2014
2https://earth.google.com/, accessed Oct. 1, 2014

https://maps.google.com/
https://earth.google.com/

Labeling Streets Along a Route in Interactive 3D Maps Using Billboards 3

When the navigational device leads a user to a destination, the route which the
user has to follow is usually highlighted. We call this route and the corresponding
streets active. Accordingly, we refer to streets that are not contained in the active
route as inactive. By using billboards instead of embedded labels for the active route,
we highlight active streets. Moreover, horizontally oriented text can be read faster
than rotated text (Larson et al, |2000; [Wigdor and Balakrishnan, 2005). We thus
improve the readability of those labels that are, at any given time, the most important
ones for the user. For labeling the remaining streets, our algorithm can be combined
with our algorithm that embeds labels into streets in large-scale interactive maps
(Schwartges et al, 2014).

Our Model We consider a dynamic scenario where the user follows a route in
an interactive navigation mode. To this end, we consider a time interval [0,7] in
which either the navigational device automatically manipulates the map, or the user
manually interacts with it. During this time interval, the content of the display of
the navigational device is redrawn repeatedly; the content between two updates is a
frame. Accordingly, we discretize the time interval into a sequence t1,%, ..., (with
1 =0<t <--- <ty =T) of points in time that correspond to frames. At any given
time #;, the user can see a trapezoidal region R; of the map. This is the image of
a projection (whose center is the camera) of the rectangular, vertical screen on the
horizontal map. When panning, R; is translated on the map; when zooming, R; is
scaled; when rotating, R; is rotated; and when changing the camera angle of the 3D
view, we transform R; perspectively, more precisely, if we change the camera angle
such that we can see more of the map at the horizon, the edge of R; that corresponds
to the bottom edge of the view gets shorter, the other base edge gets longer, the two
angles at the shorter base edge of R; gets larger, and the legs get longer; and vice
versa.

For our model, we lean on the physical principle of a thermodynamic equilib-
rium. We assume that in each frame there might be a label-label overlap, because
either a new label has come into the view, or an overlap of the preceding frame
has not been completely solved, or a solved overlap from the preceding frame has
caused another overlap. Each label-label overlap induces a force Fyyerlap. Moreover,
we define a desired leader length. A leader that is too long or too short induces a
force Fieader- As we assume that we only know the currently visible part of the map,
we solve overlaps only from one frame to the next. We can translate the goal of es-
tablishing an overlap-free labeling in one frame to the goal of minimizing the acting
force

F= Z |Foverlap| + Z |Fieader|

in that frame. More precisely, we aim to minimize each individual force, as some
forces of the same label might cancel each other out, even though there is still a
label-label overlap (which happens, for example, if a label A pushes label B down,
but B is also pushed up by the force from having a too short leader). With the appli-
cation of a physical model, we expect the movements of labels to look natural—as
if they were subjected to physical laws.

4 Nadine Schwartges et al.

Our Contribution We start with a motivation why it is reasonable to design an
algorithm for placing billboards to streets (see Sect. [3). To this end, we present the
results of a survey asking for the aesthetic and practicability of such labelings. Next,
we present our force-directed algorithm for labeling streets with billboards in an in-
teractive navigation mode (see Sect. [). Throughout the navigation, the algorithm
maintains an aesthetic and practical labeling; it uses repelling forces for resolving
overlaps and both attracting and repelling forces for keeping leaders as close to their
desired length as possible. All label movements are smooth. Tests of the implemen-
tation of the algorithm on real-world data show that our algorithm yields interactive
frame rates of more than 400 FPS (see Sect.[5). A video that shows our algorithm in
action is available at http://lamut.informatik.uni-wuerzburg.de/
dynaroutelab.html.

2 Related Work

In his seminal work on label placement (for printed maps), the Swiss cartographer
Imhof| (1975)) establishes many rules for good label placement. His two most im-
portant rules are that labels should be legible (R1) and always yield a correct label—
object association (R2). We fulfill these rules since we align labels horizontally, we
connect the label and the reference point by a leader, and we avoid overlaps.

Imbhof also says that a label should reflect its object’s importance (R3). In our
setting, where we want to label streets on the active route, Imhof’s rule is auto-
matically fulfilled since our perspective view draws the closer (and, hence, in that
moment more important) labels in the foreground larger than the distant (and less
important) labels in the background. Further, Imhof states that labels should occlude
the map background as little as possible (R4). Currently, we do not take this rule into
account. This can, however, be achieved by making labels semi-transparent (at the
cost of reducing legibility). In order to avoid label clusters, Imhof suggests care-
fully selecting the objects to be labeled (R5). In our navigation-mode scenario, we
simply select the next n streets on the route to be labeled. Among these, we show
all labels that fall into the current view; we avoid clusters by changing the leader
lengths.

For drawing graphs aesthetically, [Eades| (1984) introduces an algorithm which
is based on a physical model using forces. He considers a drawing aesthetic if the
edges of the graph have similar lengths and the graph is as symmetric as possible. To
this end, the vertices of the graph may move in any direction. Adjacent vertices are
supposed to keep a certain distance from each other, non-adjacent vertices repel each
other. In our model, by contrast, the reference point of a label is fixed and the point
where leader and label touch can move only vertically. Similar to the edges in[Eades]
approach, our leaders try to have a certain length. The author states that he does not
use Hooke’s law (as we do) but a logarithmic function to obtain the edge lengths
because a logarithmic function works better for vertices that are far apart. [Eades/
algorithm computes the forces and thus the new positions of the vertices several

http://lamut.informatik.uni-wuerzburg.de/dynaroutelab.html
http://lamut.informatik.uni-wuerzburg.de/dynaroutelab.html

Labeling Streets Along a Route in Interactive 3D Maps Using Billboards 5

times. Our approach is also iterative: in each frame, we recompute the lengths of the
leaders if the corresponding labels overlap or are not at their desired lengths.

Table([T] gives an overview about our algorithm and some of the related work that
we discuss in the following.

Vaaraniemi et all (2012) give a force-directed algorithm that is, to some extent,
similar to ours. Their algorithm labels points and areas horizontally. Depending on
the current perspective, a street label is either placed horizontally or is aligned to a
straight line that approximates the course of the street. In contrast to our approach,
their algorithm operates in what we call map mode and they allow any leader di-
rection. The main difference between the two approaches is that while we always
display all labels that fall into the view,|Vaaraniemi et al remove labels in two situa-
tions, namely if a label moves too fast or if a label is overlapped such that the forces
acting on it cancel each other. While we label only the active streets, [Vaaraniemi
et al|label all types of objects within the view. As they resolve overlaps by moving
and selecting labels, we expect a lot of changes on the screen, which may be dis-
tracting (for example, for a car driver using a GPS). In terms of speed, |Vaaraniemi
et al report that their algorithm computes the layout for 512 objects within 5.5ms
(this corresponds to 180 FPS without rendering.)

Gemsa et al| (2013) investigate the off-line version of a point-labeling selection
problem (in 2D) with respect to an active route. They assume that the entire active
route is given in advance and fixed (while it may change in our case). They do not
use leaders, but they assume that each label has a fixed position relative to the point
it labels. As in our setting, they have a fixed camera above the active route and
a map that turns and translates such that the direction of movement appears to be
upwards/North. Each label may be visible during several intervals. In order to reduce
flickering, for each of these intervals, (Gemsa et al| allow for selecting a connected
(sub)interval in which the corresponding label is finally visible. The authors aim for
an overlap-free labeling for the entire route that maximizes the total length over all
selected (sub)intervals.

The authors show that their problem is NP-hard. They present an exact algorithm
(an integer linear program that solves the problem optimally; in exponential time).
They test their algorithm on 1,000 active routes at three different scales. On aver-
age, they need less than a second for optimizing the labeling of routes with about
162 labels and less than six seconds for routes with about 313 labels. A few routes,

Table 1 Our approach compared to some related work

interaction types history computation time mode technique
Vaaraniemi et all pan, zoom, rotate, 3D considered 5.5ms per update map force-based
Maass and Dollner| unknown with workaround “real time** map ILP, greedy
Gemsa et al pan, rotate considered sec to min GPS greedy
our approach pan, zoom, rotate, 3D considered > 400 FPS GPS force-based

GPS navigation mode, FPS frames per second, sec seconds, min minutes, greedy greedy
algorithm, /LP integer linear program.

6 Nadine Schwartges et al.

however, took them several minutes. The authors also give efficient approximation
algorithms, but do not include any test results.

Maass and Dollner| (2006) place billboards in interactive 3D maps that also allow
for 3D objects (such as buildings). They require that the further away the labeled ob-
ject is from the user, the smaller the label and the higher the leader. Their algorithm
subdivides the view plane into a grid and places labels incrementally. Each placed
label blocks several surrounding grid cells for other labels. The algorithm does not
consider the history of the labeling, that is, the labeling of frame f; does no take the
labeling of frame f;;; into account but computes a new labeling from scratch. In
order to avoid jumps that might confuse the user, the labeling does not change while
the user interacts with the map. If the user stops interacting, labels smoothly move
to their new positions. In contrast, we immediately react to user interaction while
taking into account the labeling of the preceding frame.

We also pursue another concept to label streets: we introduce an incremental al-
gorithm for placing embedded labels into streets in interactive maps (Schwartges
et al, 2014). Our aim is to maintain an overlap-free labeling where as many streets
as possible are labeled. We avoid placing labels on street parts that contain strong
bends. To this end, we introduce a cost function with which we evaluate any in-
teresting label position on each of the visible streets. Such an embedded labeling
complements the labeling of active streets.

Maass et al|(2007) present the results of a user study dealing with labelings in 3D
maps using billboards. The authors examine the problem of leaders inducing wrong
depth cues; for instance, a leader, whose reference point obviously lies behind a
building, is drawn over the building. Most of the participants of the user study judge
depth cues that are accurate as more comfortable. The authors finally suggest in-
troducing a parameter that measures the perceivable perspective disturbance. If the
parameter is applied in labeling algorithms, it is intend to improve the label place-
ment, but, simultaneously, it sometimes permits wrong depth cues. In our approach,
we always aim for correct depth cues.

Similarly, Vaaraniemi et al| (2012) describe an expert study. The first result is that
labels in a 3D view should shrink with distance to the user, in order to create a better
understanding of the depth. We take this result of their expert study into account in
our implementation.

Moreover, |Vaaraniemi et allask the experts if streets should be labeled embedded,
straight-line aligned, or horizontally. Four of six experts judge horizontally-placed
labels as very legible, although they also note that a high search time is required to
associate a label with its object. Again, we follow this judgement by using horizontal
labels; we improve the label-object association by using leaders. On the other hand,
five of six experts like the embedded labeling, but also point out that if labels are
situated in strong bends, they might be badly readable. Three of six experts observe
that embedded labels yield a good label-object association.

Labeling Streets Along a Route in Interactive 3D Maps Using Billboards 7

7 Duke Street
—
- Ship Street o

e —4

c arbitrarily-rotated leaders d embedded labels

Fig. 2 Figures similar to those we have shown the participants of our survey. (We do not have
permission to publish the original figures. They differ in that we removed the map background and
the embedded labels of inactive streets)

3 Survey

We conducted a small survey in order to decide which variant of our concepts to
implement first. In total, we had 19 participants (one female), aged between 19 and
26 years, all of them studying a technical subject. We asked the participants which
of the labelings shown in Fig. 2] they like most and which of them they think is the
most practicable for navigation systems. Moreover, we asked which of the labelings
shown in Fig. [3] they like most. We found out that 47% preferred the labeling in
Fig.[2(d)|and that this solution is also considered most practicable by 53%. The next
best rated possibility was Fig.[2(a)] with 32% for both questions. As we have already
published our work about labeling streets in interactive maps using embedded la-
bels (Schwartges et al,[2014), in this work, we tackle the problem of labeling streets
using billboards. To conclude, 47% preferred the labeling in Fig. [3(a)} We give the
remaining numbers in Tab. 2]

8 Nadine Schwartges et al.

a constant size in world space, distance de- b constant size in screen space
pendent in screen space

¢ population dependent in world space, dis- d population dependent in screen space
tance dependent in screen space

Fig. 3 Figures we showed to the participants of our survey

Table 2 Results of our survey

aesthetics practicability aesthetics

% % %

Fig. ()] 32 32 Fig. B(a) 47
Fig.[2(b)] 21 11 Fig.[3(b) 16
Fig. (c] 0 5 Fig. B(c) 0
Fig. (@) 47 53 Fig B(d)] 37

4 Algorithm

In this section, we propose a simple force-directed algorithm for preventing labels
from occluding, that is, overlapping, other labels. There are several auxiliary algo-
rithms that are needed: setting up the environment, reading and routing through a
street map, and so on; we will not cover these algorithms in depth.

Consider a street map which contains an active route from a starting location A
to a destination location B. The active route is a sequence of street polylines, where
each street polyline is only a subsection of the entire street, in the sense that one
traverses a street for only so long as to reach the intersection that leads to the next
street. We shall use the terms street polyline and street interchangeably. The route
is traversed by a pointer © which represents the user, and is typically modeled as a
triangle or vehicle (see Fig. d). The camera is placed at some distance behind the
pointer.

Our goal is to label the individual streets and prevent labels from occluding each
other. We place labels (or rather billboards) in world space, each above the refer-

Labeling Streets Along a Route in Interactive 3D Maps Using Billboards 9

Fig. 4 A street network with a route and a pointer

ence point of its street. For the sake of simplicity, we assume that each street has
only one reference point, namely at the midpoint of the polyline. Hence we label a
street only once, regardless of its length. (It is of course not difficult to overcome
this restriction.) Recall that we connect each label to its reference point with a ver-
tical leader whose length can dynamically vary. We denote by hq the default leader
height, which is the desired height. A label can move only vertically, by extending
or contracting the leader. To simplify further discussion, let us consider each bill-
board as a complete entity, denoted by A;, where i denotes the i-th reference point
on the route. The actual height of the leader of the billboard A; at any given time ¢ is
denoted by 5, (7).

Given the route R, let N := |R| denote the number of streets along the route. It
makes little sense to display every label for every street in the route at the same
time, as the user is primarily interested in the next few streets ahead. Therefore,
we upperbound the number of placed labels at any time to a constant n < N. Let
I={l,...,m) denote the queue of currently placed labels; we have |I| < n. (We have
|I] < n if the remaining part of R consists of fewer than n streets.) When the distance
of the pointer 7 from the reference point ¢; of label 4, falls below a threshold €, then
label 4; is dequeued from I, and label A1 (if it exists) is enqueued. Note that the
number n of placed labels is sometimes greater than the number of visible labels,
that is, the labels within the view. We also place labels that lie outside the view, in
addition to visible labels, for two reasons. First, we can elide checking if a label is
about to enter the view. Second, when labels do enter the view, they do not disturb
the visible labeling much, as they have already been considered by the algorithm.

4.1 Force-Directed Approach

We propose a simple force-directed algorithm. Forces are exerted on each label by
other labels and by its own leader; these forces cause the label to move in a way
minimizing the aggregate force. The leader acts as a spring, keeping the label close
to its reference point, while the labels repel each other much in the same way that
same-pole magnets do. Excess aggregate force is mapped to a change in leader
height. To prevent a label from oscillating strongly between two other labels, the

10 Nadine Schwartges et al.

force is scaled by a temperature, which is reduced when the aggregate force changes
its sign from one iteration to the next.

While the labels themselves live in 3D world space, we see them in a projection
onto 2D screen space (see Fig.[). Certain calculations, such as determining whether
two labels overlap, are therefore performed in the screen space. The screen-space
representation of a label is a rectangle; we exclude the leader from this rectangle. We
determine if two labels overlap by inspecting whether their screen-space projections
overlap. To ease further discussion, we refer to the label in screen space simply as
the label projection and again denote it by A;.

xt-oooTT T

Fig. 5 Projecting points lying in the currently visible part of the map from world space to screen
space

One last note before we move on: we say the algorithms in this section are frame-
based. In each new frame, pointer and camera may have moved, labels may be
seen from a different perspective, labels may have been moved up or down by their
leaders, auxiliary algorithms take the new data into account, and the force-directed
algorithm runs. Frames may coincide with rendered frames or they may be timer-
based. The only requirement is that changes in leader height are reflected in the
screen-space projection in the next frame. Since the information the algorithms need
is primarily for the current frame, we elide the time ¢, so that for frame-bound value,
say h;(t) for example, we write h; := h;(t).

In the following, we discuss how the various forces are computed and how they
change the leader height.

Labeling Streets Along a Route in Interactive 3D Maps Using Billboards 11

4.2 Spring Force

The leader of a label is modeled as a simple tension spring, which has a default
height of hg. A spring can undergo extension as well as contraction, which is nega-
tive extension. The force is given by Hooke’s law, and is simply a spring constant k
multiplied with the leader extension:

Fis = —k'(/’li—ho). (1)

Due to the way the spring force flows into the overall force acting upon a label, the
main effect k has is to affect the speed at which labels return to their default height:
the greater k is, the stronger the force.

4.3 Aggregate Repulsive Force

Principally, the aggregate repulsive force F;" for the label A; consists of the sum of
all repulsive forces r(i, j) between A; and every other placed label A;:

F=¢ Y r(i,)))
Jel\{i}

This is a slight simplification, as we shall see in Sect. but for initial understand-

ing it is sufficient. The constant { serves to weight the aggregate repulsive force.
The function r relies on several concepts we will introduce first: the relevance of

labels, the sign of labels, the distance metric, and the interplay between labels.

Sign Let u(i) be the midpoint of the projection of A; and let u,(i) be the y-
coordinate of p(i). Let the sign o(i,) of a label A; denote whether it is above
or below another label 7Lj, i#J:
.. -1 ifu,(i) < j), and
G(l,]) — l'L}() “y() (3)
1 otherwise.

We can categorize each A; in one of three categories in regard to A;: either the
midpoint of A; is below, above, or at the same height as that of A;. The function ¢
however, handles only two cases. One might ask: might not two labels, in case of
midpoint equality, move upwards at the same rate and thus arbitrarily far from their
reference point? We think this cannot happen, because multiple factors affect the
change in height, and these factors cannot all be the same, unless A; = A;, which we
disallow. Hence one label shall travel further, and in the next frame the midpoints
are different.

12 Nadine Schwartges et al.

Distance Metric We can model the repulsive force between two labels as a func-
tion of their distance to one another. This is an attractive model, as it is easy to reason
about, but it leaves us with the problem of defining a useful distance metric §.

Not all labels need repel each other. We have already ascertained that labels have
only one degree of freedom, namely in the vertical axis (y-axis). It is reasonable
therefore to allow labels to only affect each other when a movement would make
sense. This occurs only when labels intersect in the horizontal axis (x-axis). In our
distance metric then, labels that do not intersect in the horizontal axis have a distance
of oo,

What when the labels overlap? Distance between typical objects is measured
starting from O, when the objects are right next to each other. To deal with this,
we can redefine a distance unit to equal the height of a label projection. Let
(i, j) € [0,1] denote the percentage that A; is occluded by A;, that is, @ = 1 iff
A; is completely covered by A;. Note that @ is asymmetric. Further, let y(i, j) de-
note the y-offset between A; and A;, in the case that they do not overlap. This leads
us to the following definition of &:

oo if A; and A; do not intersect in x-axis,
8G,j)):={1-w(ij) ife,j) >0, and @)
1+1v(i,j)/h; otherwise.

Note that this definition is somewhat inconsistent, because 8 € [0, 1] is a measure of
area, while 6 > 1 a measure of height. This is intentional. If two labels overlap by
one pixel in the horizontal axis, they cannot by the above Eq.[4]have a distance of 0.
This behavior is useful, as it differentiates between full and partial occlusions.

Resulting Force When the label 4; is fully occluded by 4;, we let the force be a
constant Fjipmie; when 8 = 1, we let the force equal F;'. The force grows quadratically
for 6 < 1, and linearly when & € [1,2]. Finally, we restrict that labels that have
8 > 2 do not affect each other. Any label farther away need not have an effect,
and if it should come closer, then at some point 6 < 2 will hold. We describe the
entire algorithm that computes the resulting force r(i, j) that A; exerts upon 4; in
Algorithm T}

The function r is monotonic and continuous, despite potentially flattening out
before § = 0. Fig.[6] shows the graph of r. We could define the function to approach
Fimit when 8 — 0, however it would provide only questionable benefit while requir-
ing more computational power.

This function definition has the fortunate property that the force acting upwards
on label A; from a lower label A; will equal the spring force pulling A; down precisely
when A is right next to A;. This provides just the right amount of force to prevent
occlusions, while allowing labels to return to their default height when possible.

Labeling Streets Along a Route in Interactive 3D Maps Using Billboards 13

Algorithm 1: ResultingForce

input :labels A; and A;
output: force that A; exerts upon A;
d <+ 8(i,j)
if d = 0 then
| return o (i, j) - Fiimit
else if d < 1 then
v (1/8(i,)j)* = (1-F))
if v > Fjnj then
| return 6(i,) - Fimit
else
| returno(i,j)-v
else if d < 2 then
| return o(i,j) - F - (1-8(i,)))*

return 0

Fimit 1

F’ 4

0

|
|
1
|
1

0

Fig. 6 The graph of function r, with the distance between two labels in the x-axis

4.4 Aggregate Force

Intuitively, the overall force F; acting on a single label A; consists of the sum of the
repulsive forces F;" (with constant factor {) and the spring force F}*:

F:=F'+F'. (5)

This turned out to be too simplistic. What happens to A, when three labels 4, A5,
and A3 are stacked? If A; exerts the same force on A, as A3 does, then the forces
cancel each other out and the remaining force is F;, which causes A, to descend
into A3, thereby causing a collision.

Hence we need to keep positive forces F;™ and negative forces F, separate, so
that we can handle this case specially:

14 Nadine Schwartges et al.

F = Yjen . rip>0r (i)
F =Y jentiy. lijy<o (i 1)

Since if r(i, j) = 0 it affects nothing, we can ignore it in the above definitions. With
now two sets of repulsive forces, we include F? iff at least ;" =0 or F;_ = 0. The
formula is now

_ JF+F"+F~ ifF"=0orF~ =0, and ©)
l_ Fr+F~ otherwise.

If a label is surrounded by two labels, the spring force is thus ignored.

4.5 Temperature

For each label A;, we define a temperature 7; that acts as a factor in scaling the force.
The default temperature is defined by a constant T'; this is the temperature that la-
bels have when first placed. We track the aggregate force of the label between two
frames; if the sign of the force changes, we reset the temperature to a constant Tjage.
To prevent two labels from jumping too quickly away from each other, a negative
force (pushing the label downwards) counts as a sign change from a force of 0. If the
sign remains the same, we multiply the temperature by a constant Ty, thereby in-
creasing the temperature slightly. In order to prevent the temperature from becoming
arbitrarily large, we limit it to a constant Tjjp;;. It is assumed that 7', Tyse > 0 holds.

4.6 Leader-Height Change

The combination of aggregate force and temperature let us derive either an extension
or contraction A; of the leader of label A;, which we can (again) scale by a constant
factor x:

A= -Ti-F. (N

Because of rounding error, it is unlikely that F; will ever reach an equilibrium be-
tween different forces. To prevent labels from always moving, we only apply a
leader-height change when F; is greater than a constant Fiy;j,.

4.7 Complexity and Runtime

The setup time complexity for all the algorithms is linear in the size of the input. We
consider the complexity of the algorithm for a single frame. The auxiliary algorithms

Labeling Streets Along a Route in Interactive 3D Maps Using Billboards 15

require at most O(n) time, where n is the maximum number of placed labels in a
frame.

The force directed algorithm considers each of the labels in /, and performs for
each the following:

1. Calculates the spring force in O(1) time (Eq. .
2. Calculates the repulsive force in O(n) time (Eq.[2]and Alg.[I).
3. Calculates the leader change and applies it in O(1) time (Eq. .

Thus we have a runtime of O(n?) in total. Since we control the value of n, we can
determine the maximum runtime of the algorithm in each frame. This is especially
useful for embedded applications. In practice, letting n = 10 seems sufficient for us
and has next to no negative impact on performance. As we show in our experiments,
even with a quite large n, we obtain interactive frame rates.

4.8 Implemented Improvements

In our description of the force-directed algorithm, we constrained ourselves to the
essential essence of the algorithm. Here we present two additional modifications.
None of the modifications change the complexity of the algorithm.

Margins In our problem definition, labels must, at least, not overlap. Sometimes it
is desirable that they maintain a margin of separation from each other. To this end,
we give each label a bottom margin of v by extending the screen-space projection
of the label by v units (for example pixels). This margin is not visible to the user.

Relevant Labels The queue 7 of placed labels is maintained by an auxiliary al-
gorithm. However, there are labels for any given frame which are not necessarily
relevant to the force-directed algorithm or even might cause undesired behavior. We
remove such labels from /. Any label that is removed has its values reset to its de-
faults. Finally, in each iteration, we use I C I as the set of relevant labels; we define
n' =1

Some labels may be so far away or out of sight, that to include them in force
calculations would seem unnecessary (see Fig. [7(a)). We define the following opti-
mization then, in which we effectively ignore from [any label that has an area less
than &. The label is still rendered, but it is not considered in any force calculation.
Further recall that our labels are placed in world space. To this end, some labels lie
behind the camera (see Fig.[7(b)). This might cause problems when projecting them
from world space to screen space. We remove labels lying behind the camera from /
and we do not render them. Last, if a future part of the route is very near to the user,
some labels become undesirably large (see Fig.[7(c)). Whenever the area of a label
becomes larger than some value o, we remove the label from / and do not render it.

16 Nadine Schwartges et al.

view

[Alameda da Universidade|

Campo Grande
T

[Alameda da Universidade]

the camera Ca m pO G

A A P —
a labels in the far back are too b labels behind the camera ¢ an adverse course of the
small to read might cause wrong projections route causes a very large label

Fig. 7 Relevant and nonrelevant labels (note: these are no screenshots!)

5 Experiments

We have implemented our force-directed algorithm from Sect.[4] a testing environ-
ment, and a static algorithm for comparisons. For our implementations and tests, we
used C++ with OpenSceneGraph 3. IEI and Boost C++ Libraries 1 .5@ on Linux 3.16
with a 2.5-GHz Intel dual-core processor, 8 GB of RAM, and an Intel HD3000
integrated graphics card. We applied the GCC-4.9.2 compiler to produce 64-bit bi-
naries with compiler optimizations. For the testing environment, we used an Open-
StreetMap data set provided by GeofabrikE] from which we extracted the downtown
street network of Wiirzburg, a town of 120,000 inhabitants in southern Germany. In
order to simulate the navigation mode, we determined three different routes through
Wiirzburg along which we created a camera path each. We tested n = 10, 25, and
50. We think, however, that n = 10 is the most reasonable value for the rather small
displays of navigational devices. Our virtual navigation system had a resolution of
1,366 <768 pixels. In order to maintain n placed labels for each frame and to guar-
antee paths of equal lengths, we stopped the camera paths as soon as |I| < 50, that is,
when the remaining part of the route had less than 50 labels left. In total, we placed
N =69, 96, and 131 labels in the first, second, and third path, respectively. (Note
that number of actually placed labels is N — 50 4 n.) The paths needed between 18s
and 68s. In our tests, we only panned and rotated the map whereas we rotated 13%
of the total time. (We do not expect that the frame rate drops for the remaining inter-
actions as there is no special handling for the different interaction types—neither in
our algorithm nor for rendering.) In the camera paths for our tests, the pointer had a
constant position and direction on the screen (as in Fig.[7). For rotations, the pointer
stopped its drive and rotated; then it continued the drive.

Our set of configurable values yielding nice-looking, smoothly moving labelings
is as follows: Ay = 5.0 units in world spaceﬂ k=0.25,{=1.0, Fjnit = 5.0, x =0.2,

3lhttp://www.openscenegraph.org/, accessed Nov. 28, 2014
“lhttp://www.boost .org/, accessed Dec. 4, 2014

5 http://download.geofabrik.de/, accessed Nov. 28, 2014

6 For comparisons: we set the font size of the label text in world space to 3 units.

http://www.openscenegraph.org/
http://www.boost.org/
http://download.geofabrik.de/

Labeling Streets Along a Route in Interactive 3D Maps Using Billboards 17

(T, Toases Tstep, Tiimit) = (1.0,0.1,1.05,5.0) , Fnin = 0.1, & = 100 pixels, v =5 pixels,
o = 0.25 of the total resolution, € = 10.0 units in world space.

For the static algorithm, we just fixed the leader lengths to /. We ran the same
camera paths as for the dynamic labeling algorithm.

Figure[§]shows some screenshots of our algorithm. When we start the algorithm,
the leader lengths are equal. In this example data set, the overlap resolves within
two seconds. In Tab. 3] we summarize our results for the force-directed algorithm
and the static algorithm, both applied to the real-world data set.

" homsdeep ' [Fathomsdeep
BEEE Toney Avenue Fat . Blimey Court vAvenve
e © Imey Cour Lokomative Forture==f==sm Sticks and Sfanes 1% ELE Lokiyhactaciature:

Sticks and Stana: ture—=f==c
y Speakdome Str.—=——xmi"..c & U Speakdome Str.=——omr"."'R
[Bane’s Hallway. a Dadia Portal’} AVEITE o g Dacia Portal’} G
l—/: —/_LSala aNCStarting Street __Z :E—SalamangStartin Street
| A

X Toney Avenue Fathomsdeep . Toney fvenue Fathondecy
Sticks and Stones e FoTOEVElFoTtira Sticks and Stones Lokomotive Forture
Blimey c"""__wj_whastacia Blimey Court | Whjj!iﬂa_
d S
Bane's Hallway.——Speakdome Str.—===Rext Day Avenue Bane's Hallway——SP St Next Day Avenue

Dacia Portal

: Dacia Portal
/Salla"‘jﬁtartin? Street Salamancet
L Starting Street

Fig. 8 Screenshots of our program in an artificial data set. In reading direction: Within 1.5s, the
overlap of the initial label placement is resolved. On the very first subfigure, the total overlap is
6773 pixels

Table 3 Results of our experiments for the static and the force-directed algorithm. For the frame
rate, we divided the number of frames by the running time in seconds; for the remaining values,
we averaged the numbers over the number of frames. For each measurement, we assured that at
least n streets were still ahead

static force-directed
frame rate overlap frame rate overlap
n FPS px n’ FPS px
10 453 3,190 8 452 49
25 444 4,930 19 444 91
50 435 5,980 34 431 116

n placed labels, n’ relevant labels, FPS frames per second, px pixels.

In order to evaluate the processing time of our algorithm, for each path and each
value of n, we measured the number of totally drawn frames as well as the total
running time. By these two values, we computed the frame rate as the number of

18 Nadine Schwartges et al.

drawn frames per second (FPS). Table [3| shows the frame rates for each value of n,
averaged over the three different paths.

Our algorithm yields very good frame rates of more than 400 FPS when it places
n = 50 labels or less. If we only render the active route, the billboards, and the
pointer (in other words, we do not render the street network), the frame rate in-
creases by about 54 FPS. On the other hand, Tab. 3| shows that the frame rates of
the static algorithm are only better by a few frames compared to the force-directed
algorithm. This is due to the fact, that, for the static algorithm, we have stretched
the limits of what OpenSceneGraph combined with the integrated graphics card can
achieve. To verify this, we also tested for one map the frame rate while OpenScene-
Graph idled: without any computations or rendering but with loading the map and
the route, we reached frame rates of about 450 FPS at our system.

For each path and each value of n, we recorded also the number of overlapped
pixels. We counted only the overlaps of relevant labels in the view. We divided the
total number of overlapped pixels by the total number of frames. Table [3|shows that,
compared to the static algorithm, we could reduce the number of overlapped pixels
per frame by about 98% by applying our force-directed algorithm.

Unfortunately, we cannot compare our results to [Maass and Dollner| (2006) as
they only state that their algorithm “operates in real time”. Similarly, we cannot
compare to [Gemsa et al (2013) as they compute the entire labeling in advance,
that is, the frame rate is determined by the rendering algorithm only but not by the
labeling algorithm. Vaaraniemi et al{(2012) state that their algorithm has a frame rate
of 180 FPS for computing label positions if they disable the rendering. If we only
render the important part of our visualization, that is, the route, the labels, and the
pointer, for n = 50, we obtain frame rates of almost 500 FPS. In general, however,
a frame rate of 24 FPS is qualified fluid. Thus we conclude that our algorithm for
placing billboards to active streets in an interactive navigation mode for 3D maps
yielding frame rates of more than 400 FPS is highly real-time capable and it is
really worth trying to combine it with an algorithm that labels the remaining streets
embedded.

6 Conclusion and Future Work

We have introduced a force-directed algorithm for placing billboards with lead-
ers of dynamically varying lengths to active streets in interactive 3D maps. In our
approach, each reference point tries to keep its corresponding leader at a desired
length; overlapping labels repel each other. From frame to frame, we minimize the
unbalanced forces. This yields labelings that avoid label-label overlaps of billboards
that are near to the user but accepts overlaps in the background. Our algorithm di-
rectly reacts to changes of the current view by smoothly moving overlapping labels.
In our tests on real-world data with a realistic number of labels, our implementation
reached interactive frame rates of more than 400 FPS and reduced the number of
overlapped pixels compared to the static algorithm by about 98%.

Labeling Streets Along a Route in Interactive 3D Maps Using Billboards 19

In the future, we plan to support multiple labels per street, different anchor points,
and different leader directions. Most importantly, we plan to combine our algorithm
for placing billboards along the active route with our algorithm that embeds the
labels of the remaining streets into these streets. The challenge will be to make sure
that the combined algorithm is fast enough for real-time interaction. It would also
be interesting to verify the findings of our survey (in which we used static figures)
by means of a user study that provides interactive scenarios.

References

Eades P (1984) A heuristic for graph drawing. Congressus Numerantium 42:149—
160

Gemsa A, Niedermann B, Nollenburg M (2013) Trajectory-based dynamic map la-
beling. In: Cai L, Cheng SW, Lam TW (eds) Proc 24th Int Symp Algorithms
Comput (ISAAC’13), Springer, LNCS, vol 8283, pp 413423

Imhof E (1975) Positioning names on maps. Amer Cartogr 2(2):128-144

Larson K, van Dantzich M, Czerwinski M, Robertson G (2000) Text in 3D: Some
legibility results. In: Begole J (ed) Proc 18th ACM Conf Human Factors Comput
Syst (CHI’00), pp 145-146

Maass S, Dollner J (2006) Efficient view management for dynamic annotation place-
ment in virtual landscapes. In: Butz A, Fischer B, Kriiger A, Oliver P (eds) Proc
6th Int Symp Smart Graphics (SG’06), Springer, LNCS, vol 4073, pp 1-12

Maass S, Jobst M, Déllner J (2007) Depth cue of occlusion information as criterion
for the quality of annotation placement in perspective views. In: Fabrikant SI,
Wachowicz M (eds) The European Information Society — Leading the Way with
Geo-Information, Springer, Lect Notes Geoinform Cartogr, pp 473486

Schwartges N, Wolff A, Haunert JH (2014) Labeling streets in interactive maps
using embedded labels. In: Proc 22nd ACM SIGSPATIAL Int Conf Advances in
Geogr Inform Syst (ACM-GIS’14), 4 pages

Vaaraniemi M, Treib M, Westermann R (2012) Temporally coherent real-time label-
ing of dynamic scenes. In: Proc 3rd Int Conf Comput Geospatial Research Appl
(COM.Geo’12), ACM, pp 17:1-17:10

Wigdor D, Balakrishnan R (2005) Empirical investigation into the effect of orien-
tation on text readability in tabletop displays. In: H Gellersen et al (ed) Proc 9th
Europ Conf Comput Supported Cooperative Work (ECSCW’05), Springer, pp
205-224

	Labeling Streets Along a Route in Interactive 3D Maps Using Billboards
	Nadine Schwartges, Benjamin Morgan, Jan-Henrik Haunert, and Alexander Wolff
	Introduction
	Related Work
	Survey
	Algorithm
	Force-Directed Approach
	Spring Force
	Aggregate Repulsive Force
	Aggregate Force
	Temperature
	Leader-Height Change
	Complexity and Runtime
	Implemented Improvements

	Experiments
	Conclusion and Future Work
	References

	asl_first_page.pdf
	Labeling Streets Along a Route in Interactive 3D Maps Using Billboards
	Nadine Schwartges, Benjamin Morgan, Jan-Henrik Haunert, and Alexander Wolff

