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Abstract17

We show NP-completeness for a variant of Steiner Orientation on mixed, planar graphs.18
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1 Introduction25

The Steiner Orientation problem is defined as follows: given a mixed graph G = (V, E∪A)26

with both undirected edges E and directed arcs A and a set T ⊆ V × V of k terminal pairs,27

is there an orientation of all edges in E, such that for every terminal pair (s, t) ∈ T there is28

an s-t-path in the resulting directed graph?29

In general, this problem was shown to be NP-complete by Arkin and Hassin [1]. Cygan et30

al. [3] gave an nO(k)-time algorithm, showing it is in XP in k. Pilipczuk and Wahlström [6]31

improved the hardness result showing it to be W [1]-hard in k. For A = ∅, however, Hassin32

and Megiddo [5] give a polynomial time algorithm. This raises the following question: how33

do restrictions on G influence complexity of Steiner Orientation? These hardness proofs34

utilize non-planar instances. Chitnis and Feldmann [2] showed that under the Exponential35

Time Hypothesis, Steiner Orientation cannot be solved in f(k) · no(k) time, even when36

restricting to graphs of genus 1.37

In this work, we consider the Planar Steiner Orientation problem where G is a38

planar graph. As a first result on computational complexity, we show the following:39

I Theorem 1. Planar Steiner Orientation is NP-complete.40

© Moritz Beck, Johannes Blum, Myroslav Kryven, Andre Löffler and Johannes Zink;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:5

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:beck@informatik.uni-wuerzburg.de
mailto:blum@informatik.uni-wuerzburg.de
mailto:kryven@informatik.uni-wuerzburg.de
mailto:loeffler@informatik.uni-wuerzburg.de
mailto:zink@informatik.uni-wuerzburg.de
http://dx.doi.org/10.4230/LIPIcs.CVIT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


23:2 NP-completeness of Planar Steiner Orientation

2 Hardness Proof41

To prove Theorem 1, we give a reduction from Planar Monotone 3-SAT, introduced42

by de Berg et al. [4] and known to be NP-complete. We use different gadgets for variables,43

clauses and edges. These are stitched together at shared undirected edges. Given a planar44

monotone 3-SAT formula F , we use these gadgets to create an instance of Planar Steiner45

Orientation resembling the incidence graph of F with |T | polynomial in |F |. Without loss46

of generality we assume that every variable of F occurs both negated and unnegated.47

Figure 1a shows a flip gadget, a building block used in other gadgets. It contains two48

terminal pairs (s1, t1) and (s2, t2) and two undirected (red) edges. Connecting both pairs49

will result in opposing directions for the two undirected edges.50

For every variable x in F , we have a variable gadget (Figure 1b). It mimics the flip51

gadget, providing an undirected edge ex
C for every positive/negative clause C containing x52

above/below the pairs respectively. We say that the gadget is (false) true if the undirected53

edges are oriented (counter-)clockwise. No other orientation allows connecting both pairs.54

We use two stacked flip gadgets as an edge gadget: by reversing direction twice, we55

synchronize the outer red edges. We attach this edge to a variable and a clause gadget.56

For every clause C, we have a clause gadget (Figure 1c). It contains a terminal pair (s, t)57

and has an undirected edge ew
C for each variable w it contains. The undirected edge ey

C in58

the middle is flipped to get a consistent orientation for variables set to true. The edges f59

and g are synchronized by two flip gadgets to ensure that at most one of them is used to60

connect (s, t). For the clause gadgets, we get the following Lemma:61

I Lemma 2. All pairs of clause gadgets are connected iff ≥ 1 edge eC is directed to the right.62

Proof. In our construction all gadgets are self-contained and the terminal pairs of the flip63

gadgets can be connected (Appendix B). The edges f and g are both directed upwards or64

downwards. Hence it suffices to show the equivalence for the pair (s, t). “⇐”: Case 1: If ex
C65

is directed to the right, orient the edge f away from s. Case 2: If ey
C is directed to the right,66

ẽy
C is directed to the left. Case 3: If ez

C is directed to the right, orient the edge g pointing67

to t. In each of these cases s is connected to t. “⇒”: By contraposition. As we move away68

from s, we can neither use the edge ẽy
C nor ez

C . Thus we have to use f which means it points69

away from s. To come to t we have to use one of the edges ex
C or g. This is impossible. J70

Provided that all terminal pairs of all variable and edge gadgets are connected (which can71

always be achieved), the terminal pairs of all clause gadgets can be connected if and only if72

the formula is satisfiable. Thus, the Planar Steiner Orientation instance has a solution73

if and only if the corresponding Planar Monotone 3-SAT formula is satisfiable.74

Future work could involve proving W [1]-hardness or looking for approximation algo-75

rithms. Other graph classes – with different geometric restrictions – could also be considered.76

t2
s1 s2

t1

(a)

t2
s1 s2

t1

ex
A ex

B ex
C

ex
D ex

E

(b)

t s

g f

ẽy
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Figure 1 (a) The flip gadget, used to construct edge gadgets; (b) a variable gadget with three
positive and two negative occurrences; (c) a clause gadget (unlabeled (s, t)-pairs color-coded).
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A Full Example95

For better understanding, we want to provide a small but complete example. Consider the96

following formula:97

F = (X ∨ Y ) ∧ (¬X ∨ ¬Z ∨ ¬W ) ∧ (Y ∨ Z ∨W ) ∧ (¬X ∨ ¬Y ∨ ¬Z)98

In Figure 2 we give the incidence graph for F together with the Planar Steiner Orienta-99

tion instance corresponding to F created using the gadgets introduced above.

X Y Z W

X ∨ Y Y ∨ Z ∨W

¬X ∨ ¬Y

∨¬Z

¬X ∨ ¬Z

∨¬W

(a) Incidence graph of F (b) Corresponding Planar Steiner Orientation instance

Figure 2 A full example showing the reduction from Planar Monotone 3-SAT to Planar
Steiner Orientation. Variables and variable gadgets are highlighted in green, clauses and clause
gadgets in orange. Negative clause gadgets are mirrored vertically.

100

B Self-Containment of Gadgets101

An important property of our construction is that all the gadgets that we use are self-102

contained, which means that for each gadget any simple path connecting a terminal pair of103

the gadget stays inside the gadget. We state the following simple observation:104

I Observation 1. Every source s has indegree zero and every target t has outdegree zero.105

Using this observation, we can show now that in our construction each clause, edge, and106

variable gadget is self-contained.107

Clause gadgets. Assume there is a simple path connecting a terminal pair of a clause108

gadget, which is not fully contained within the gadget. Then there must be an edge that109

leaves the clause gadget and due to the structure, this edge must be part of an edge gadget.110

But all edges leaving a clause gadget and entering an edge gadget end in some target terminal,111

so by Observation 1 the path cannot re-enter the clause gadget.112

Edge gadgets. Consider a simple path that leaves an edge gadget. If the leaving edge113

is part of a clause gadget, the path leads to a target terminal within the clause gadget or114

within another edge gadget, from where it cannot re-enter the original edge gadget. The case115

where the leaving edge is part of a variable gadget is similar.116
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Variable gadgets. Consider a simple path that leaves a variable gadget. Then the117

leaving edge is part of an edge gadget and leads to a target terminal, so the path cannot118

re-enter the variable gadget.119

Therefore, it suffices to consider only paths within a gadget as there is a path connecting120

a terminal pair if and only if there is a simple path connecting this terminal pair.121

C Clauses with Two Variables122

For clauses with only two variables we simply replace the edge ẽy
C with an arc from left to123

right and omit the attached flip gadget (see Fig. 2b, clause (X ∨ Y )). It is easy to see that124

this way no new possibilities for s-t-paths are created, keeping the gadget valid.125
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