Finding Tutte Paths in Linear Time

Philipp Kindermann
Universität Würzburg

joint work with Therese Biedl
University of Waterloo
Tutte Paths

Planar graph G

X to Y via α

Tutte path: Path from X to Y via α
Tutte Paths

Planar graph G

Tutte path: Path from X to Y via α
Tutte Paths

Planar graph G

Tutte path: Path from X to Y via α
Tutte Paths

Planar graph G

Tutte path: Path from X to Y via α
Tutte Paths

Planar graph G

Tutte path: Path from X to Y via α

Every comp. attached to ≤ 3 vtc's of P
Tutte Paths

Planar graph G

Tutte path: Path from X to Y via α

Every comp. attached to ≤ 3 vtc's of P
Tutte Paths

Tutte path: Path from X to Y via α

Every component attached to ≤ 3 vertices of P

Every outer component attached to 2 vertices of P
Tutte Paths

Planar graph G

Tutte path: Path from X to Y via α

Every comp. attached to ≤ 3 vtcs of P
Every outer comp. attached to 2 vtcs of P
What is known?
What is known?

[Tutte ’77]

G 2-conn., X, Y, α on outer face \Rightarrow Tutte path
What is known?

[Tutte '77]
G 2-conn., X, Y, α on outer face \Rightarrow Tutte path

[Thomassen '83]
G 2-conn., X, X, α on outer face \Rightarrow Tutte path
What is known?

[Tutte '77]
G 2-conn., X, Y, α on outer face ⇒ Tutte path

[Thomassen '83]
G 2-conn., X, \(\times\), α on outer face ⇒ Tutte path

[Sanders '96]
G 2-conn., \(\times\), \(\times\), α on outer face ⇒ Tutte path
What is known?

[Tutte ‘77]
G 2-conn., X, Y, α on outer face ⇒ Tutte path

[Thomassen ‘83]
G 2-conn., X, X, α on outer face ⇒ Tutte path

[Sanders ‘96]
G 2-conn., X, X, α on outer face ⇒ Tutte path

[Gao, Richter & Yu ‘95, ‘06]
G 3-conn., X, Y, α on outer face ⇒ T_{SDR}-path
Tutte Paths

Planar graph G

Tutte path: Path from X to Y via α

Every comp. attached to ≤ 3 vtc\$s of P

Every outer comp. attached to 2 vtc\$s of P
Planar graph G

Tutte path: Path from X to Y via α
Every comp. attached to ≤ 3 vtc's of P
Every outer comp. attached to 2 vtc's of P

T_{SDR}-path: Tutte path + System of Distinct Representatives:
Tutte Paths

Planar graph G

Tutte path: Path from X to Y via α
Every comp. attached to ≤ 3 vtcs of P
Every outer comp. attached to 2 vtcs of P

T_{SDR}-path: Tutte path + System of Distinct Representatives:
Injective assignment of comp. to attachment pts
Tutte Paths

Planar graph G

Tutte path: Path from X to Y via α
Every comp. attached to ≤ 3 vtcs of P
Every outer comp. attached to 2 vtcs of P

T_{SDR}-path: Tutte path + System of Distinct Representatives:
Injective assignment of comp. to attachment pts
Tutte Paths

Planar graph G

Tutte path: Path from X to Y via α
- Every comp. attached to ≤ 3 vtc.s of P
- Every outer comp. attached to 2 vtc.s of P

T_{SDR}-path: Tutte path + System of Distinct Representatives:
- Injective assignment of comp. to attachment pts
What is known?

[Tutte ’77]
G 2-conn., X, Y, α on outer face \Rightarrow Tutte path

[Thomassen ’83]
G 2-conn., X, X, α on outer face \Rightarrow Tutte path

[Sanders ’96]
G 2-conn., X, X, α on outer face \Rightarrow Tutte path

[Gao, Richter & Yu ’95, ’06]
G 3-conn., X, Y, α on outer face \Rightarrow T_{SDR}-path
What is known?

[Tutte ’77]
G 2-conn., X, Y, α on outer face ⇒ Tutte path

[Thomassen ’83]
G 2-conn., X, X, α on outer face ⇒ Tutte path

[Sanders ’96]
G 2-conn., X, X, α on outer face ⇒ Tutte path

[Gao, Richter & Yu ’95, ’06]
G 3-conn., X, Y, α on outer face ⇒ T_{SDR}-path

[Chiba & Nishizeki ’89]
G 4-conn. ⇒ Tutte path in $O(n)$ time
What is known?

[**Tutte ’77**]
\[G \text{ 2-conn.}, X, Y, \alpha \text{ on outer face} \Rightarrow \text{Tutte path} \]

[**Thomassen ’83**]
\[G \text{ 2-conn.}, X, X, \alpha \text{ on outer face} \Rightarrow \text{Tutte path} \]

[**Sanders ’96**]
\[G \text{ 2-conn.}, X, X, \alpha \text{ on outer face} \Rightarrow \text{Tutte path} \]

[**Gao, Richter & Yu ’95, ’06**]
\[G \text{ 3-conn.}, X, Y, \alpha \text{ on outer face} \Rightarrow T_{\text{SDR}} \text{-path} \]

[**Chiba & Nishizeki ’89**] (= Hamil. path)
\[G \text{ 4-conn.} \Rightarrow \text{Tutte path in } O(n) \text{ time} \]
What is known?

[Tutte ’77]
G 2-conn., \(X, Y, \alpha\) on outer face \(\Rightarrow\) Tutte path

[Thomassen ’83]
G 2-conn., \(X, X, \alpha\) on outer face \(\Rightarrow\) Tutte path

[Sanders ’96]
G 2-conn., \(X, X, \alpha\) on outer face \(\Rightarrow\) Tutte path

[Gao, Richter & Yu ’95, ’06]
G 3-conn., \(X, Y, \alpha\) on outer face \(\Rightarrow\) \(T_{SDR}\)-path

[Chiba & Nishizeki ’89]
(G = Hamil. path)
G 4-conn. \(\Rightarrow\) Tutte path in \(O(n)\) time

[Schmid & Schmidt ’15]
… in \(O(n^2)\) time
What is known?

[Tutte ’77]
G 2-conn., \(X, Y, \alpha\) on outer face \(\Rightarrow\) Tutte path

[Thomassen ’83]
G 2-conn., \(X, X, \alpha\) on outer face \(\Rightarrow\) Tutte path

[Sanders ’96]
G 2-conn., \(X, X, \alpha\) on outer face \(\Rightarrow\) Tutte path

[Gao, Richter & Yu ’95, ’06]
G 3-conn., \(X, Y, \alpha\) on outer face \(\Rightarrow\) \(T_{SDR}\)-path

[Chiba & Nishizeki ’89] (= Hamil. path)
G 4-conn. \(\Rightarrow\) Tutte path in \(O(n)\) time

[Schmid & Schmidt ’15]
… in \(O(n^2)\) time

[Schmid & Schmidt ’18]
… in \(O(n^2)\) time
What is known?

[Tutte '77]
\[G \text{ 2-conn., } X, Y, \alpha \text{ on outer face } \Rightarrow \text{Tutte path} \]

[Thomassen '83]
\[G \text{ 2-conn., } X, X, \alpha \text{ on outer face } \Rightarrow \text{Tutte path} \]

[Sanders '96]
\[G \text{ 2-conn., } X, X, \alpha \text{ on outer face } \Rightarrow \text{Tutte path} \]

[Gao, Richter & Yu '95, '06]
\[G \text{ 3-conn., } X, Y, \alpha \text{ on outer face } \Rightarrow T_{SDR} \text{-path} \]

[Chiba & Nishizeki '89]
\[(= \text{ Hamil. path}) \]
\[G \text{ 4-conn. } \Rightarrow \text{Tutte path in } O(n) \text{ time} \]

[Schmid & Schmidt '15]
\[\ldots \text{ in } O(n^2) \text{ time} \]

[Schmid & Schmidt '18]
\[\ldots \text{ in } O(n^2) \text{ time} \]
What is known?

<table>
<thead>
<tr>
<th>Reference</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Tutte '77]</td>
<td>G 2-conn., X, Y, α on outer face \Rightarrow Tutte path</td>
</tr>
<tr>
<td>[Thomassen '83]</td>
<td>G 2-conn., X, X, α on outer face \Rightarrow Tutte path</td>
</tr>
<tr>
<td>[Sanders '96]</td>
<td>G 2-conn., X, X, α on outer face \Rightarrow Tutte path</td>
</tr>
<tr>
<td>[Gao, Richter & Yu '95, '06]</td>
<td>G 3-conn., X, Y, α on outer face \Rightarrow T_{SDR}-path</td>
</tr>
<tr>
<td>[Chiba & Nishizeki '89]</td>
<td>($=$ Hamil. path) G 4-conn. \Rightarrow Tutte path in $O(n)$ time</td>
</tr>
<tr>
<td>[Schmid & Schmidt '15]</td>
<td>… in $O(n^2)$ time</td>
</tr>
<tr>
<td>[Schmid & Schmidt '18]</td>
<td>… in $O(n^2)$ time</td>
</tr>
</tbody>
</table>
What is known?

- [Tutte '77] \(G \text{ 2-conn., } X, Y, \alpha \text{ on outer face } \Rightarrow \text{Tutte path} \)
- [Thomassen '83] \(G \text{ 2-conn., } X, Y, \alpha \text{ on outer face } \Rightarrow \text{Tutte path} \)
- [Sanders '96] \(G \text{ 2-conn., } X, Y, \alpha \text{ on outer face } \Rightarrow \text{Tutte path} \)
- [Gao, Richter & Yu '95, '06] \(G \text{ 3-conn., } X, Y, \alpha \text{ on outer face } \Rightarrow \text{T}_{\text{int}} \text{SDR-path} \)
- [Chiba & Nishizeki '89] \((= \text{ Hamil. path}) \ \ G \text{ 4-conn. } \Rightarrow \text{Tutte path in } O(n) \text{ time} \)
- [Schmid & Schmidt '15] \(\ldots \text{in } O(n^2) \text{ time} \)
- [Schmid & Schmidt '18] \(\ldots \text{in } O(n^2) \text{ time} \)
Tutte paths

Planar graph G

Tutte path: Path from X to Y via α
- Every comp. attached to ≤ 3 vtc of P
- Every outer comp. attached to 2 vtc of P

T_{SDR}-path: Tutte path + System of Distinct Representatives:
- Injective assignment of comp. to attachment pts
Tutte paths

- **Tutte path**: Path from X to Y via α

 Every comp. attached to ≤ 3 vtc's of P
 Every outer comp. attached to 2 vtc's of P

- **T_{int}-path**: Tutte path + System of Distinct Representatives:
 Injective assignment of comp. to attachment pts

- **Planar graph G**

- **T_{SDR}-path**: Tutte path + System of Distinct Representatives:
Tutte paths

Tutte path: Path from X to Y via α
Every comp. attached to ≤ 3 vtcs of P
Every outer comp. attached to 2 vtcs of P

T_{int}-path: Tutte path + System of Distinct Representatives:
Injective assignment of comp. to attachment pts

T_{SDR}-path: Tutte path + System of Distinct Representatives:
Tutte paths

- Tutte path: Path from X to Y via α
 - Every comp. attached to ≤ 3 vtc's of P
 - Every outer comp. attached to 2 vtc's of P

- T_{int}-path:
 - T_{SDR}-path
 - visits all ext. vtc's

- T_{SDR}-path: Tutte path + System of Distinct Representatives:
 - Injective assignment of comp. to attachment pts

Planar graph G
Tutte paths

Planar graph G

T_{int}-path:
- T_{SDR}-path
- visits all ext. vtcs

T_{SDR}-path: Tutte path + System of Distinct Representatives:
Injective assignment of comp. to attachment pts
Tutte paths

Planar graph G

- **T_{int}-path:**
 - T_{SDR}-path
 - visits all ext. vtcs
 - all comp. assigned to int. vtcs

- **T_{SDR}-path:** Tutte path + System of Distinct Representatives:
 - Injective assignment of comp. to attachment pts

Tutte path: Path from X to Y via α

- Every comp. attached to ≤ 3 vtcs of P
- Every outer comp. attached to 2 vtcs of P
Tutte paths

Planar graph G

Tutte path: Path from X to Y via α
Every comp. attached to ≤ 3 vtcs of P
Every outer comp. attached to 2 vtcs of P

T_{int}-path:
- T_{SDR}-path
- visits all ext. vtcs
- all comp. assigned to int. vtcs

T_{SDR}-path: Tutte path + System of Distinct Representatives:
Injective assignment of comp. to attachment pts
Tutte paths

Tutte path: Path from X to Y via α
- Every comp. attached to ≤ 3 vtc of P
- Every outer comp. attached to 2 vtc of P

T_{SDR}-path: Tutte path + System of Distinct Representatives:
- Injective assignment of comp. to attachment pts

T_{int}-path:
- \(-T_{SDR}$-path
- visits all ext. vtc
- all comp. assigned to int. vtc

Planar graph G
What is known?

- [Tutte '77] \(G\) 2-conn., \(X, Y, \alpha\) on outer face \(\Rightarrow\) Tutte path
- [Thomassen '83] \(G\) 2-conn., \(X, X, \alpha\) on outer face \(\Rightarrow\) Tutte path
- [Sanderson '96] \(G\) 2-conn., \(X, X, \alpha\) on outer face \(\Rightarrow\) Tutte path
- [Tutte '77] \(G\) 2-conn., \(X, Y, \alpha\) on outer face \(\Rightarrow\) Tutte path
- [Gao, Richter & Yu '95, '06] \(G\) 3-conn., \(X, Y, \alpha\) on outer face \(\Rightarrow\) Tutte path in \(O(n)\) time
- [Chiba & Nishizeki '89] (= Hamil. path) \(G\) 4-conn. \(\Rightarrow\) Tutte path in \(O(n)\) time
- [Schmid & Schmidt '15] \(\ldots\) in \(O(n^2)\) time
- [Schmid & Schmidt '18] \(\ldots\) in \(O(n^2)\) time
What is known?

- **[Tutte '77]**
 \[G \text{ 2-conn.}, \ X, \ Y, \ \alpha \text{ on outer face} \Rightarrow \text{Tutte path}\]

- **[Thomassen '83]**
 \[G \text{ 2-conn.}, \ X, \ Y, \ \alpha \text{ on outer face} \Rightarrow \text{Tutte path}\]

- **[Sanders '96]**
 \[G \text{ 2-conn.,} \ X, \ Y, \ \alpha \text{ on outer face} \Rightarrow \text{Tutte path}\]

- **[Chiba & Nishizeki '89]**
 \[G \text{ 4-conn.} \Rightarrow \text{Tutte path in } O(n) \text{ time}\]

- **[Gao, Richter & Yu '95, '06]**
 \[G \text{ 3-conn.,} \ X, \ Y, \ \alpha \text{ on outer face} \Rightarrow \text{TSDR-path}\]

- **[Sanders '96]**
 \[G \text{ 2-conn.,} \ X, \ Y, \ \alpha \text{ on outer face} \Rightarrow \text{Tutte path}\]

- **[Schmid & Schmidt '15]**
 \[\ldots \text{ in } O(n^2) \text{ time}\]

- **[Schmid & Schmidt '18]**
 \[\ldots \text{ in } O(n^2) \text{ time}\]

... in \(O(n)\) time
What is known?

- [Tutte '77] G 2-conn., X, Y, α on outer face \Rightarrow Tutte path
- [Thomassen '83] G 2-conn., X, X, α on outer face \Rightarrow Tutte path
- [Sanders '96] G 2-conn., X, Y, α on outer face \Rightarrow Tutte path
- [Intio, Richter & Yu '95, '06] G 3-conn., X, Y, α on outer face $\Rightarrow T_{\text{int}}$ \nRightarrow Tutte path
- [Chiba & Nishizeki '89] G 4-conn. \Rightarrow Tutte path in $O(n)$ time
- [Schmid & Schmidt '15] ... in $O(n^2)$ time
- [Schmid & Schmidt '18] ... in $O(n^2)$ time

... in $O(n)$ time
Triangulated Graphs
4-conn. triangulation \Rightarrow Hamiltonian path in $O(n)$ time.
[Asano, Kikuchi & Saito ’85]

4-conn. triangulation ⇒ Hamiltonian path in $O(n)$ time.
Triangulated Graphs

4-conn. triangulation \Rightarrow Hamiltonian path in $O(n)$ time.

[Asano, Kikuchi & Saito '85]
Triangulated Graphs

4-conn. triangulation ⇒ Hamiltonian path in $O(n)$ time.

[Asano, Kikuchi & Saito '85]
Triangulated Graphs

4-conn. triangulation ⇒ Hamiltonian path in $O(n)$ time.

triangulation ⇒ Tutte path in $O(n)$ time.

[Asano, Kikuchi & Saito '85]
Triangulated Graphs

4-conn. triangulation ⇒ Hamiltonian path in $O(n)$ time.

triangulation ⇒ Tutte path in $O(n)$ time.

[Asano, Kikuchi & Saito ’85]
Triangulated Graphs

k vertices
$2k - 5$ int. faces

4-conn. triangulation \Rightarrow Hamiltonian path in $O(n)$ time.

triangulation \Rightarrow Tutte path in $O(n)$ time.

[Asano, Kikuchi & Saito '85]
Triangulated Graphs

4-conn. triangulation \Rightarrow Hamiltonian path in $O(n)$ time.

triangulation \Rightarrow Tutte path in $O(n)$ time.

[Asano, Kikuchi & Saito '85]
Triangulated Graphs

k vertices

$2k - 5$ int. faces

$k - 3$ int. vtcs

$k - 2$ int. edges in P

\Rightarrow

[Asano, Kikuchi & Saito '85]

4-conn. triangulation \Rightarrow Hamiltonian path in $O(n)$ time.

triangulation \Rightarrow Tutte path in $O(n)$ time.
Triangulated Graphs

4-conn. triangulation \Rightarrow Hamiltonian path in $O(n)$ time.

triangulation \Rightarrow Tutte path in $O(n)$ time.
Triangulated Graphs

\[k \text{ vertices} \]
\[2k - 5 \text{ int. faces} \]
\[k - 3 \text{ int. vtcs} \]
\[k - 2 \text{ int. edges in } P \]

[Asano, Kikuchi & Saito ’85]

4-conn. triangulation ⇒ Hamiltonian path in \(O(n) \) time.

[Asano, Kikuchi & Saito ’85]

triangulation ⇒ Tutte path in \(O(n) \) time.
Substitution Trick
Triangulated graphs

[Asano, Kikuchi & Saito ’85]
4-conn. triangulation ⇒ Hamiltonian path in $O(n)$ time.

triangulation ⇒ Tutte path in $O(n)$ time.
Triangulated graphs

- k vertices
- $2k - 5$ faces
- $k - 2$ edges in $P - \alpha$
- $k - 3$ int. vtcs

4-conn. triangulation \Rightarrow Hamiltonian path in $O(n)$ time.

triangulation \Rightarrow Tutte path in $O(n)$ time.
Triangulated graphs

\[k \text{ vertices} \]
\[2k - 5 \text{ faces} \]
\[k - 2 \text{ edges in } P - \alpha \]
\[k - 3 \text{ int. vtcs} \]

4-conn. triangulation ⇒ Hamiltonian path in \(O(n) \) time.

triangulation ⇒ Tutte path in \(O(n) \) time.

[Asano, Kikuchi & Saito '85]
Triangulated graphs

$\begin{align*}
\text{4-conn. triangulation } &\Rightarrow \text{ Hamiltonian path in } O(n) \text{ time.} \\
\text{Triangulation } &\Rightarrow \quad T_{\text{int}}\text{-path in } O(n) \text{ time.}
\end{align*}$

[Asano, Kikuchi & Saito ’85]
Corner-3-connectivity

int. 3-conn.
Corner-3-connectivity

int. 3-conn.
Corner-3-connectivity

int. 3-conn.

corner-3-conn.
Corner-3-connectivity

int. 3-conn.

corner-3-conn.
Corner-3-connectivity

int. 3-conn.

corner-3-conn.
Corner-3-connectivity

int. 3-conn.

corner-3-conn.

X

Y

α

side
Corner-3-connectivity

int. 3-conn.

corner-3-conn.
Corner-3-connectivity

int. 3-conn.
corner-3-conn.

side

X

Y

α
Corner-3-connectivity

int. 3-conn.

corner-3-conn.

side

X

Y

α
Corner-3-connectivity

int. 3-conn.

corner-3-conn.

side

X

Y

α
Corner-3-connectivity

int. 3-conn.

corner-3-conn.

side

X

Y

α
Corner-3-connectivity

int. 3-conn.

corner-3-conn.

X

Y

α

side
G is corner-3-conn., X, Y, α on outer face $\Rightarrow T_{\text{int-path}}$
Corner-3-connectivity

G is corner-3-conn., X, Y, α on outer face $\Rightarrow T_{\text{int-path}}$
Case 1: Outer Face is Triangle
Case 2: left-right cutting pair

\[G_b \]

\[G_t \]
Case 2: left-right cutting pair
Case 3: top-right cutting pair

\[G_b \]

\[G_t \]

\[\alpha \]
Case 3: top-right cutting pair
Case 3: top-right cutting pair

\[
\begin{array}{c}
X \quad \quad G_b \quad \quad \quad \quad Y \\
\alpha \\
G_t
\end{array}
\]
Case 3: top-right cutting pair
Case 3': top-left cutting pair
Case 3'': top-bottom cutting pair
Case 4: No cutting pair
Case 4: No cutting pair

Necklace $\langle Y_X = x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle$
Case 4: No cutting pair

Necklace $\langle Y_X=x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle$
Case 4: No cutting pair

Necklace $\langle Y_X = x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle$
Case 4: No cutting pair

Necklace $\langle Y_0 = x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle, x_i$ face-adj. to right side
Case 4: No cutting pair

Necklace $\langle Y_X=x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle$, x_i face-adj. to right side
Case 4: No cutting pair

Necklace $\langle Y_X = x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle, x_i \text{ face-adj. to right side}$
Case 4: No cutting pair

Necklace $\langle Y_X = x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle, x_i$ face-adj. to right side
Case 4: No cutting pair

Necklace $\langle Y_X = x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle$, x_i face-adj. to right side
Case 4: No cutting pair

Necklace $\langle Y_X=x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle$,
x_i face-adj. to right side.
Case 4: No cutting pair

Necklace $\langle Y_X = x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle, x_i$ face-adj. to right side
Case 4: No cutting pair

Necklace $\langle Y_X = x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle$, x_i face-adj. to right side, $G_1 = \emptyset$
Case 4: No cutting pair

Necklace $\langle Y_X=x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle$, x_i face-adj. to right side, $G_1 = \emptyset$
Case 4: No cutting pair

Necklace $\langle Y_X=x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle, x_i$ face-adj. to right side, $G_1 = \emptyset$
Case 4: No cutting pair

Necklace \(\langle Y_X = x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle, x_i \) face-adj. to right side, \(G_1 = \emptyset \)
Case 4: No cutting pair

Necklace $\langle Y_X = x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle, x_i \text{ face-adj. to right side}, G_1 = \emptyset$
Case 4: No cutting pair

Necklace $\langle Y_X=x_0, f_1, x_1, \ldots , x_{s-1}, f_s, x_s \rangle, x_i$ face-adj. to right side, $G_1 = \emptyset$
Case 4: No cutting pair

Necklace $\langle Y_X = x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle$, x_i face-adj. to right side, $G_1 = \emptyset$
Case 4: No cutting pair

Necklace $\langle Y_X = x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle, x_i$ face-adj. to right side, $G_1 = \emptyset$
Case 4: No cutting pair

Necklace $\langle Y_X = x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle, x_i$ face-adj. to right side, $G_1 = \emptyset$
Case 4: No cutting pair

Necklace $\langle Y_X = x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle$, x_i face-adj. to right side, $G_1 = \emptyset$
Case 4: No cutting pair

Necklace $\langle Y_X=x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle, x_i$ face-adj. to right side, $G_1 = \emptyset$
Case 4: No cutting pair

Necklace \(\langle Y_X=x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle \), \(x_i \) face-adj. to right side, \(G_1 = \emptyset \)
Case 4: No cutting pair

Necklace $\langle Y_X=x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle, x_i$ face-adj. to right side, $G_1 = \emptyset$
Case 4: No cutting pair

Necklace \(\langle Y_X=x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle, x_i \text{ face-adj. to right side}, G_1 = \emptyset \)
Case 4: No cutting pair

Necklace $\langle Y_X = x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle$,
x_i face-adj. to right side, $G_1 = \emptyset$
Case 4: No cutting pair

Necklace $\langle Y_X=x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle, x_i$ face-adj. to right side, $G_1 = \emptyset$
Case 4: No cutting pair

Necklace \(\langle Y_X=x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle \), \(x_i \) face-adj. to right side, \(G_1 = \emptyset \)
Case 4: No cutting pair

Necklace $\langle Y_X = x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle$, x_i face-adj. to right side, $G_1 = \emptyset$
Case 4: No cutting pair

Necklace $\langle Y_X=x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle, x_i$ face-adj. to right side, $G_1 = \emptyset$
Case 4: No cutting pair

Necklace \(\langle Y_X = x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle, x_i \) face-adj. to right side, \(G_1 = \emptyset \)
Case 4: No cutting pair

Necklace $\langle Y_X = x_0, f_1, x_1, \ldots, x_{s-1}, f_s, x_s \rangle, x_i \text{ face-adj. to right side}, G_1 = \emptyset$
Running Time
5 Linear-time complexity for 3-connected graphs

Running Time

Algorithm 1: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 2: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 3: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 4: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 5: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 6: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 7: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 8: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 9: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 10: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 11: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 12: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 13: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 14: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 15: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 16: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 17: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 18: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 19: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 20: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 21: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 22: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 23: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 24: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 25: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 26: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 27: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 28: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 29: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.

Running Time

Algorithm 30: Running Time

For each non-trivial component of the graph, run a linear-time algorithm to compute the running time. Then, sum the running times of all the components.
Running Time

Store:
Running Time

Store:

• corners
Running Time

Store:

- corners
- faces: all vtcs on each side
Running Time

Store:

• corners

• faces: all vtcs on each side

• vtcs: all face-incidences to each side
Running Time

Store:

• corners

• faces: all vtcs on each side

• vtcs: all face-incidences to each side

• sides: all cutting pairs
Necklace scan

X

Y

\alpha

\gamma_Y \gamma_X
Necklace scan
Necklace scan
Necklace scan
Necklace scan

face gets scanned:
Necklace scan

face gets scanned:
Necklace scan

⇒ one vtx becomes outer

face gets scanned:

⇒ one vtx becomes outer
Necklace scan

face gets scanned:

⇒ one vtx becomes outer
Necklace scan

face gets scanned:
⇒ one vtx becomes outer
⇒ $O(1)$ times
Necklace scan

- face gets scanned:
 - \(\Rightarrow \) one vtx becomes outer
 - \(\Rightarrow O(1) \) times
 - \(\Rightarrow O(\sum_f \text{deg}(f)) = O(n) \) time
Necklace scan

face gets scanned:
⇒ one vtx becomes outer
⇒ $O(1)$ times
⇒ $O(\sum_f \deg(f)) = O(n)$ time

Theorem.
G int. 3-conn., X, Y, α on outer face ⇒ $T_{\text{int-path}}$ in $O(n)$ time.
Applications
Theorem.
G int. 3-conn. \(\Rightarrow\) binary spanning tree in \(O(n)\) time.
Theorem.
G int. 3-conn. \Rightarrow binary spanning tree in $O(n)$ time.
Applications

\[\text{Theorem.} \]
\[G \text{ int. 3-conn.} \implies \text{binary spanning tree in } O(n) \text{ time.} \]
Applications

Theorem.
G int. 3-conn. \implies binary spanning tree in $O(n)$ time.

Theorem.
G int. 3-conn. \implies 2-circuit in $O(n)$ time.
Theorem.
G int. 3-conn. \Rightarrow binary spanning tree in $O(n)$ time.

Theorem.
G int. 3-conn. \Rightarrow 2-circuit in $O(n)$ time.
Theorem.
\(G \text{ int. 3-conn.} \Rightarrow \text{binary spanning tree in } O(n) \text{ time.} \)

Theorem.
\(G \text{ int. 3-conn.} \Rightarrow 2\text{-circuit in } O(n) \text{ time.} \)
Theorem.
G int. 3-conn. ⇒ binary spanning tree in \(O(n) \) time.

Theorem.
G int. 3-conn. ⇒ 2-circuit in \(O(n) \) time.
Applications

Theorem.

\(G \text{ int. 3-conn.} \Rightarrow \text{binary spanning tree in } O(n) \text{ time.} \)

Theorem.

\(G \text{ int. 3-conn.} \Rightarrow 2\text{-circuit in } O(n) \text{ time.} \)
Conclusion
Conclusion

Theorem.

G int. 3-conn., X, Y, α on outer face $\Rightarrow T_{int}$-path in $O(n)$ time.
Conclusion

Theorem.

G int. 3-conn., X, Y, α on outer face $\Rightarrow T_{\text{int}}$-path in $O(n)$ time.

Theorem.

G 2-conn., X, Y, α on outer face \Rightarrow Tutte path in $O(n)$ time.
Theorem.
\[G \text{ int. 3-conn.}, X, Y, \alpha \text{ on outer face} \Rightarrow T_{\text{int}}\text{-path in } O(n) \text{ time.} \]

Theorem.
\[G \text{ 2-conn.}, X, Y, \alpha \text{ on outer face} \Rightarrow \text{Tutte path in } O(n) \text{ time.} \]

Theorem.
\[G \text{ int. 3-conn.} \Rightarrow \text{binary spanning tree in } O(n) \text{ time.} \]
Conclusion

Theorem.
G 2-conn., X, Y, α on outer face \Rightarrow Tutte path in $O(n)$ time.

Theorem.
G int. 3-conn. \Rightarrow binary spanning tree in $O(n)$ time.

Theorem.
G int. 3-conn. \Rightarrow 2-circuit in $O(n)$ time.
Conclusion

Theorem.
G int. 3-conn., X, Y, α on outer face \Rightarrow T_{int}-path in $O(n)$ time.

Theorem.
G 2-conn., X, Y, α on outer face \Rightarrow Tutte path in $O(n)$ time.

Theorem.
G int. 3-conn. \Rightarrow binary spanning tree in $O(n)$ time.

Theorem.
G int. 3-conn. \Rightarrow 2-circuit in $O(n)$ time.

X, Y, α on different faces?
Conclusion

Theorem.
\(G \) int. 3-conn., \(X, Y, \alpha \) on outer face \(\Rightarrow \) \(T_{\text{int}} \)-path in \(O(n) \) time.

Theorem.
\(G \) 2-conn., \(X, Y, \alpha \) on outer face \(\Rightarrow \) Tutte path in \(O(n) \) time.

Theorem.
\(G \) int. 3-conn. \(\Rightarrow \) binary spanning tree in \(O(n) \) time.

Theorem.
\(G \) int. 3-conn. \(\Rightarrow \) 2-circuit in \(O(n) \) time.

\(X, Y, \alpha \) on different faces?

Non-planar graphs?
Conclusion

Theorem.
G int. 3-conn., X, Y, α on outer face ⇒ T_{int}-path in $O(n)$ time.

Theorem.
G 2-conn., X, Y, α on outer face ⇒ Tutte path in $O(n)$ time.

Theorem.
G int. 3-conn. ⇒ binary spanning tree in $O(n)$ time.

Theorem.
G int. 3-conn. ⇒ 2-circuit in $O(n)$ time.

X, Y, α on different faces?

Non-planar graphs?