Simultaneous Orthogonal Drawing

Patrizio Angelini, Steve Chaplick, Sabine Cornelsen, Giordano Da Lozzo, Giuseppe Di Battista, Peter Eades, Philipp Kindermann, Jan Kratochvíl, Fabian Lipp, Ignaz Rutter

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$. Are there drawings of G_{1} and G_{2} that coincide on G ?

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$.
Are there drawings of G_{1} and G_{2} that coincide on G ?

$$
\begin{aligned}
& G=G_{1} \cap G_{2} \\
& \text { common graph }
\end{aligned}
$$

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$. Are there drawings of G_{1} and G_{2} that coincide on G ?

$$
G=G_{1} \cap G_{2}
$$

common graph

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$. Are there drawings of G_{1} and G_{2} that coincide on G ?

What kind of drawings?
It depends:
$G=G_{1} \cap G_{2}$
common graph

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$. Are there drawings of G_{1} and G_{2} that coincide on G ?

What kind of drawings?
It depends:

- planar, straight-line
$G=G_{1} \cap G_{2}$
common graph

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$. Are there drawings of G_{1} and G_{2} that coincide on G ?

It depends:
$G=G_{1} \cap G_{2}$
common graph

- planar, straight-line

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$.
Are there drawings of G_{1} and G_{2} that coincide on G ?

It depends:
$G=G_{1} \cap G_{2}$
common graph

- planar, straight-line

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$. Are there drawings of G_{1} and G_{2} that coincide on G ?

It depends:
$G=G_{1} \cap G_{2}$
common graph

- planar, straight-line

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$.
Are there drawings of G_{1} and G_{2} that coincide on G ?
What kind of drawings?
It depends:
$G=G_{1} \cap G_{2}$
common graph

- planar, straight-line

- NP-hard [Estrella-Balderrama et al. '07]

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$.
Are there drawings of G_{1} and G_{2} that coincide on G ?
What kind of drawings?
It depends:
$G=G_{1} \cap G_{2}$
common graph

- planar, straight-line

- NP-hard [Estrella-Balderrama et al. '07]
- There exist a tree and a path that don't work

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$. Are there drawings of G_{1} and G_{2} that coincide on G ?

What kind of drawings?
It depends:

- planar, straight-line
- planar, topological
$G=G_{1} \cap G_{2}$
common graph

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$. Are there drawings of G_{1} and G_{2} that coincide on G ?

What kind of drawings?
It depends:
$G=G_{1} \cap G_{2}$
common graph

- planar, straight-line
- planar, topological

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$. Are there drawings of G_{1} and G_{2} that coincide on G ?

What kind of drawings?
It depends:
$G=G_{1} \cap G_{2}$
common graph

- planar, straight-line
- planar, topological

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$. Are there drawings of G_{1} and G_{2} that coincide on G ?

What kind of drawings?
It depends:
$G=G_{1} \cap G_{2}$
common graph

- planar, straight-line
- planar, topological

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$.
Are there drawings of G_{1} and G_{2} that coincide on G ?
What kind of drawings?
It depends:
$G=G_{1} \cap G_{2}$
common graph

- planar, straight-line
- planar, topological

Efficiently solvable if...

- G is biconnected

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$.
Are there drawings of G_{1} and G_{2} that coincide on G ?
What kind of drawings?
It depends:
$G=G_{1} \cap G_{2}$
common graph

- planar, straight-line
- planar, topological

Efficiently solvable if...

- G is biconnected
[Haeupler et al. '13]
- G is a star

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$.
Are there drawings of G_{1} and G_{2} that coincide on G ?
What kind of drawings?
It depends:

- planar, straight-line
- planar, topological
$G=G_{1} \cap G_{2}$
common graph

Efficiently solvable if...

- G is biconnected [Haeupler et al. '13]
- G is a star [Angelini et al. '12]
- G_{1}, G_{2} are biconnected,
G is connected [Bläsius \& Rutter '16]

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$. Are there drawings of G_{1} and G_{2} that coincide on G ?

What kind of drawings?
It depends:

- planar, straight-line
- planar, topological
- planar, hierarchical
$G=G_{1} \cap G_{2}$
common graph
$\begin{array}{lllll} & 0 & & 0 & \\ 0 & 0 & & 0 & \\ & & 0 & & 0 \\ & & 0 & & \end{array}$

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$. Are there drawings of G_{1} and G_{2} that coincide on G ?

What kind of drawings?
It depends:

- planar, straight-line
- planar, topological
- planar, hierarchical

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$. Are there drawings of G_{1} and G_{2} that coincide on G ?

What kind of drawings?
It depends:

- planar, straight-line
- planar, topological
- planar, hierarchical

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$. Are there drawings of G_{1} and G_{2} that coincide on G ?

What kind of drawings?
It depends:

- planar, straight-line
- planar, topological
- planar, hierarchical

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$.
Are there drawings of G_{1} and G_{2} that coincide on G ?
What kind of drawings?
It depends:
$G=G_{1} \cap G_{2}$
common graph

- planar, straight-line
- planar, topological
- planar, hierarchical

- efficiently solvable for 2 levels

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$.
Are there drawings of G_{1} and G_{2} that coincide on G ?
What kind of drawings?
It depends:
$G=G_{1} \cap G_{2}$
common graph

- planar, straight-line
- planar, topological
- planar, hierarchical

- efficiently solvable for 2 levels
- NP-hard for 3 levels [Angelini et al. '16]

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$. Are there drawings of G_{1} and G_{2} that coincide on G ?

What kind of drawings?
It depends:

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

$$
\begin{aligned}
& G=G_{1} \cap G_{2} \\
& \text { common graph }
\end{aligned}
$$

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$. Are there drawings of G_{1} and G_{2} that coincide on G ?

What kind of drawings?
It depends:
$G=G_{1} \cap G_{2}$
common graph

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$. Are there drawings of G_{1} and G_{2} that coincide on G ?

What kind of drawings?
It depends:
$G=G_{1} \cap G_{2}$
common graph

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$. Are there drawings of G_{1} and G_{2} that coincide on G ?

What kind of drawings?
It depends:
$G=G_{1} \cap G_{2}$
common graph

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$. Are there drawings of G_{1} and G_{2} that coincide on G ?

What kind of drawings?
It depends:
$G=G_{1} \cap G_{2}$ common graph

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

Necessary Conditions:

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$.
Are there drawings of G_{1} and G_{2} that coincide on G ?
What kind of drawings?
It depends:
$G=G_{1} \cap G_{2}$ common graph

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

Necessary Conditions:

- combinatorial embeddings of G_{1}, G_{2} coincide on G

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$.
Are there drawings of G_{1} and G_{2} that coincide on G ?
What kind of drawings?
It depends:

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

Necessary Conditions:

- combinatorial embeddings of
$G=G_{1} \cap G_{2}$ common graph
G_{1}, G_{2} coincide on G

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$.
Are there drawings of G_{1} and G_{2} that coincide on G ?
What kind of drawings?
It depends:

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

Necessary Conditions:

- combinatorial embeddings of
$G=G_{1} \cap G_{2}$ common graph
G_{1}, G_{2} coincide on G

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$.
Are there drawings of G_{1} and G_{2} that coincide on G ?
What kind of drawings?
It depends:

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

Necessary Conditions:

- combinatorial embeddings of
$G=G_{1} \cap G_{2}$ common graph
G_{1}, G_{2} coincide on G
- embeddings allow orthogonal vertex drawings

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$.
Are there drawings of G_{1} and G_{2} that coincide on G ?
What kind of drawings?
It depends:
$G=G_{1} \cap G_{2}$ common graph

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

Necessary Conditions:

- combinatorial embeddings of G_{1}, G_{2} coincide on G
- embeddings allow orthogonal
 vertex drawings

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$.
Are there drawings of G_{1} and G_{2} that coincide on G ?
What kind of drawings?
It depends:
$G=G_{1} \cap G_{2}$ common graph

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

Necessary Conditions:

- combinatorial embeddings of G_{1}, G_{2} coincide on G
- embeddings allow orthogonal

 vertex drawings

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$.
Are there drawings of G_{1} and G_{2} that coincide on G ?
What kind of drawings?
It depends:

$$
G=G_{1} \cap G_{2}
$$ common graph

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

Necessary Conditions:

- combinatorial embeddings of G_{1}, G_{2} coincide on G
- embeddings allow orthogonal vertex drawings

Simultaneous Drawing

Given two graphs $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$.
Are there drawings of G_{1} and G_{2} that coincide on G ?

What kind of drawings?
It depends:

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

Necessary Conditions:

- combinatorial embeddings of G_{1}, G_{2} coincide on G
- embeddings allow orthogonal vertex drawings
Conditions are sufficient!

$$
G=G_{1} \cap G_{2}
$$

common graph

$\rightarrow ?$

Special Case: Common Graph is a Cycle

 Isn't this trivial?
Special Case: Common Graph is a Cycle

 Isn't this trivial?- Instances trivially admit a SEFE. . .

Special Case: Common Graph is a Cycle

 Isn't this trivial?- Instances trivially admit a SEFE. . .
- but not necessarily an OrthoSEFE.

Special Case: Common Graph is a Cycle

Isn't this trivial?

- Instances trivially admit a SEFE. . .
- but not necessarily an OrthoSEFE.

Theorem.

It is NP-complete to decide whether three graphs G_{1}, G_{2}, G_{3} whose common graph is a cycle admit an OrthoSEFE.

Special Case: Common Graph is a Cycle
Isn't this trivial?

- Instances trivially admit a SEFE. . .
- but not necessarily an OrthoSEFE.

Theorem.

It is NP-complete to decide whether three graphs G_{1}, G_{2}, G_{3} whose common graph is a cycle admit an OrthoSEFE.

Proof:

Reduction from Nae-3Sat:

Special Case: Common Graph is a Cycle
Isn't this trivial?

- Instances trivially admit a SEFE. . .
- but not necessarily an OrthoSEFE.

Theorem.

It is NP-complete to decide whether three graphs G_{1}, G_{2}, G_{3} whose common graph is a cycle admit an OrthoSEFE.

Proof:

Reduction from NaE-3Sat:
Given: X set of variables, C set of clauses each containing 3 literals
Find: Truth assignment such that no clause in C evaluates to (True, True, True) or (False, False, False)

Variable gadget for variable x :

$$
x=\text { TRUE }
$$

Variable gadget for variable x :

$x=$ TRUE

Reduction from NAE-3SAT

$x=$ FALSE

Variable gadget for variable x :
Reduction from NAE-3SAT

$x=$ TRUE

$x=$ FALSE

Variable gadget for variable x :
Reduction from NAE-3SAT

$$
x=\text { TRUE }
$$

$x_{2}^{x_{1}} x_{2}^{x_{2}}$

Variable gadget for variable x :
Reduction from NAE-3SAT

Variable gadget for variable x :
Reduction from NAE-3SAT

Variable gadget for variable x :
Reduction from NAE-3SAT

Variable gadget for variable x :
Reduction from NAE-3SAT

$x_{1} \mathscr{L}^{2}$

Variable gadget for variable x :
Reduction from NAE-3SAT

clause $\left(x_{1}, \neg x_{2}, \neg x_{3}\right)$

Variable gadget for variable x :
Reduction from NaE-3Sat

clause $\left(x_{1}, \neg x_{2}, \neg x_{3}\right)$

Variable gadget for variable x :
Reduction from NaE-3Sat

clause $\left(x_{1}, \neg x_{2}, \neg x_{3}\right)$

Variable gadget for variable x :
Reduction from NaE-3Sat

clause $\left(x_{1}, \neg x_{2}, \neg x_{3}\right)$

Variable gadget for variable x :
Reduction from NaE-3Sat

clause $\left(x_{1}, \neg x_{2}, \neg x_{3}\right)$

Variable gadget for variable x :
Reduction from NAE-3SAT

clause $\left(x_{1}, \neg x_{2}, \neg x_{3}\right)$

Red edges on different sides \Leftrightarrow
Blue edges on different sides.

Variable gadget for variable x :

Reduction from NaE-3Sat

clause $\left(x_{1}, \neg x_{2}, \neg x_{3}\right)$

Red edges on different sides \Leftrightarrow
Blue edges on different sides.

- Blue edges cross if and only if all literals equal.

Reduction from NAE-3SAT

Reduction also works for two colors:

Reduction from NAE-3SAT

Reduction also works for two colors:

- subdivide some edges and use different colors

Reduction from NAE-3SAT

Reduction also works for two colors:

- subdivide some edges and use different colors

Reduction from NAE-3SAT

Reduction also works for two colors:

- subdivide some edges and use different colors

Reduction from NaE-3Sat

Reduction also works for two colors:

- subdivide some edges and use different colors

Reduction from NaE-3Sat

Reduction also works for two colors:

- subdivide some edges and use different colors
- common graph now is cycle + isolated vertices

Reduction from NaE-3SAT

Reduction also works for two colors:

- subdivide some edges and use different colors
- common graph now is cycle + isolated vertices

Theorem.

It is NP-complete to decide whether two graphs G_{1}, G_{2} whose common graph consists of a cycle plus isolated vertices admit an OrthoSEFE.

G cycle; G_{1} outerplanar, deg ≤ 3

- Consider $G_{1} \cap G_{2}$ on a line and G_{1} above.
- Nested intersection components
- Bipartition of intersecting edges

G cycle; G_{1} outerplanar, deg ≤ 3
- Consider $G_{1} \cap G_{2}$ on a line and G_{1} above.
- Nested intersection components
- Bipartition of intersecting edges

G cycle; G_{1} outerplanar, deg ≤ 3
- Consider $G_{1} \cap G_{2}$ on a line and G_{1} above.
- Nested intersection components
- Bipartition of intersecting edges

G cycle; G_{1} outerplanar, deg ≤ 3
- Consider $G_{1} \cap G_{2}$ on a line and G_{1} above.
- Nested intersection components
- Bipartition of intersecting edges

G cycle; G_{1} outerplanar, deg ≤ 3

- Consider $G_{1} \cap G_{2}$ on a line and G_{1} above.
- Nested intersection components
- Bipartition of intersecting edges

G cycle; G_{1} outerplanar, deg ≤ 3
- Consider $G_{1} \cap G_{2}$ on a line and G_{1} above.
- Nested intersection components
- Bipartition of intersecting edges

G cycle; G_{1} outerplanar, deg ≤ 3

- Consider $G_{1} \cap G_{2}$ on a line and G_{1} above.
- Nested intersection components
- Bipartition of intersecting edges

G cycle; G_{1} outerplanar, deg ≤ 3
- Consider $G_{1} \cap G_{2}$ on a line and G_{1} above.
- Nested intersection components
- Bipartition of intersecting edges

G cycle; G_{1} outerplanar, deg ≤ 3
- Consider $G_{1} \cap G_{2}$ on a line and G_{1} above.
- Nested intersection components
- Bipartition of intersecting edges

- Boolean variable per class: dashed up $=$ false
G cycle; G_{1} outerplanar, deg ≤ 3
- Consider $G_{1} \cap G_{2}$ on a line and G_{1} above.
- Nested intersection components
- Bipartition of intersecting edges

- Boolean variable per class: dashed up $=$ false
- Blue can be inserted iff not one end vertex up, one down

$$
\neg((\bar{\beta} \wedge \bar{\alpha} \wedge \bar{\gamma} \wedge \delta) \vee(\beta \wedge \alpha \wedge \gamma \wedge \bar{\delta}))
$$

G cycle; G_{1} outerplanar, deg ≤ 3

- Consider $G_{1} \cap G_{2}$ on a line and G_{1} above.
- Nested intersection components
- Bipartition of intersecting edges

- Boolean variable per class: dashed up $=$ false
- Blue can be inserted iff not one end vertex up, one down

$$
\neg((\bar{\beta} \wedge \bar{\alpha} \wedge \bar{\gamma} \wedge \delta) \vee(\beta \wedge \alpha \wedge \gamma \wedge \bar{\delta}))
$$

- not-all-equal SAT
G cycle; G_{1} outerplanar, deg ≤ 3
- Consider $G_{1} \cap G_{2}$ on a line and G_{1} above.
- Nested intersection components
- Bipartition of intersecting edges

- Boolean variable per class: dashed up $=$ false
- Blue can be inserted iff not one end vertex up, one down

$$
\neg((\bar{\beta} \wedge \bar{\alpha} \wedge \bar{\gamma} \wedge \delta) \vee(\beta \wedge \alpha \wedge \gamma \wedge \bar{\delta}))
$$

- not-all-equal SAT
G cycle; G_{1} outerplanar, deg ≤ 3
- Consider $G_{1} \cap G_{2}$ on a line and G_{1} above.
- Nested intersection components
- Bipartition of intersecting edges

- Boolean variable per class: dashed up $=$ false
- Blue can be inserted iff not one end vertex up, one down

$$
\neg((\bar{\beta} \wedge \bar{\alpha} \wedge \bar{\gamma} \wedge \delta) \vee(\beta \wedge \alpha \wedge \gamma \wedge \bar{\delta}))
$$

- not-all-equal SAT
G cycle; G_{1} outerplanar, deg ≤ 3
- Consider $G_{1} \cap G_{2}$ on a line and G_{1} above.
- Nested intersection components
- Bipartition of intersecting edges

- Boolean variable per class: dashed up $=$ false
- Blue can be inserted iff not one end vertex up, one down

$$
\neg((\bar{\beta} \wedge \bar{\alpha} \wedge \bar{\gamma} \wedge \delta) \vee(\beta \wedge \alpha \wedge \gamma \wedge \bar{\delta}))
$$

- not-all-equal SAT
G cycle; G_{1} outerplanar, deg ≤ 3
- Consider $G_{1} \cap G_{2}$ on a line and G_{1} above.
- Nested intersection components
- Bipartition of intersecting edges

- Boolean variable per class: dashed up $=$ false
- Blue can be inserted iff not one end vertex up, one down

$$
\neg((\bar{\beta} \wedge \bar{\alpha} \wedge \bar{\gamma} \wedge \delta) \vee(\beta \wedge \alpha \wedge \gamma \wedge \bar{\delta}))
$$

- not-all-equal SAT
G cycle; G_{1} outerplanar, deg ≤ 3
- Consider $G_{1} \cap G_{2}$ on a line and G_{1} above.
- Nested intersection components
- Bipartition of intersecting edges

- Boolean variable per class: dashed up = false
- Blue can be inserted iff not one end vertex up, one down

$$
\neg((\bar{\beta} \wedge \bar{\alpha} \wedge \bar{\gamma} \wedge \delta) \vee(\beta \wedge \alpha \wedge \gamma \wedge \bar{\delta}))
$$

- planar not-all-equal SAT
G cycle; G_{1} outerplanar, deg ≤ 3
- Consider $G_{1} \cap G_{2}$ on a line and G_{1} above.
- Nested intersection components
- Bipartition of intersecting edges

- Boolean variable per class: dashed up = false
- Blue can be inserted iff not one end vertex up, one down

$$
\neg((\bar{\beta} \wedge \bar{\alpha} \wedge \bar{\gamma} \wedge \delta) \vee(\beta \wedge \alpha \wedge \gamma \wedge \bar{\delta}))
$$

- planar not-all-equal SAT, which is in \mathcal{P} ! [Moret '88]

Our Results reduces to

G cycle, 3 colors

two colors maxdeg-3 + outerplanar
NAE-3SAT
G cycle + isolated vertices, 2 colors

Making a Maxdeg-3 Graph Outerplanar Theorem.

G cycle
G_{1} maxdeg-3 + outerplanar

Making a Maxdeg-3 Graph Outerplanar
Theorem.

G cycle
G_{1} maxdeg-3 + outerplanar

Proof:

Making a Maxdeg-3 Graph Outerplanar

Theorem.

G cycle

G_{1} maxdeg-3 + outerplanar

Proof:

pick u, z as close as possible

Making a Maxdeg-3 Graph Outerplanar

Theorem.

G cycle

G_{1} maxdeg-3 + outerplanar

Proof:

pick u, z as close as possible

Making a Maxdeg-3 Graph Outerplanar

Theorem.

G cycle

G_{1} maxdeg-3 + outerplanar

Proof:

pick u, z as close as possible

Making a Maxdeg-3 Graph Outerplanar

Theorem.

G cycle

G_{1} maxdeg-3 + outerplanar

Proof:

pick u, z as close as possible

- \square outerplanar,
- no edge between \square and u, z

Making a Maxdeg-3 Graph Outerplanar

Theorem.

Proof:

Our Results reduces to

NAE-3SAT
G cycle + isolated vertices, 2 colors

From G_{\cap} maxdeg-5 to G_{1} maxdeg-3

Theorem.

From G_{\cap} maxdeg-5 to G_{1} maxdeg-3
Theorem.

Proof:

From G_{\cap} maxdeg-5 to G_{1} maxdeg-3
Theorem.

Proof:

From G_{\cap} maxdeg-5 to G_{1} maxdeg-3
Theorem.

Proof:

From G_{\cap} maxdeg-5 to G_{1} maxdeg-3
Theorem.

Proof:

From G_{\cap} maxdeg-5 to G_{1} maxdeg-3
Theorem.

Proof:

From G_{\cap} maxdeg-5 to G_{1} maxdeg-3
Theorem.

Proof:

Our Results reduces to

NAE-3SAT
G cycle + isolated vertices, 2 colors

Our Results reduces to

G cycle, 3 colors
two colors maxdeg-3 + outerplanar
NAE-3SAT
G cycle + isolated vertices, 2 colors

From biconnected to cycle

Theorem.

From biconnected to cycle
Theorem.

G biconnected

From biconnected to cycle

Theorem.

From biconnected to cycle
Theorem.

From biconnected to cycle

Theorem.

G biconnected

From biconnected to cycle
Theorem.

G biconnected

From biconnected to cycle
Theorem.

From biconnected to cycle
Theorem.

From biconnected to cycle
Theorem.

G cycle

From biconnected to cycle
Theorem.

G cycle

Our Results reduces to

G cycle, 3 colors
two colors maxdeg-3 + outerplanar
NAE-3SAT
G cycle + isolated vertices, 2 colors

G cycle, 3 colors
two colors maxdeg-3 + outerplanar
NAE-3SAT
G cycle + isolated vertices, 2 colors

G biconnected

G_{1} maxdeg-3

Planar NAE-SAT
G_{1} maxdeg-3 + outerplanar
G biconnected \Rightarrow
can draw simultaneous orthogonal embedding with ≤ 3 bends per edge

Drawing Algorithm

- Based on Biedl \& Kant [ESA '94, Comput. Geom. '98]

Drawing Algorithm

- Based on Biedl \& Kant [ESA '94, Comput. Geom. '98]
- Place vertices bottom-to-top by s - t-ordering on G

Drawing Algorithm

- Based on Biedl \& Kant [ESA '94, Comput. Geom. '98]
- Place vertices bottom-to-top by s - t-ordering on G

Drawing Algorithm

- Based on Biedl \& Kant [ESA '94, Comput. Geom. '98]
- Place vertices bottom-to-top by s - t-ordering on G

Drawing Algorithm

- Based on Biedl \& Kant [ESA '94, Comput. Geom. '98]
- Place vertices bottom-to-top by s - t-ordering on G

Drawing Algorithm

- Based on Biedl \& Kant [ESA '94, Comput. Geom. '98]
- Place vertices bottom-to-top by s - t-ordering on G

from

Drawing Algorithm

- Based on Biedl \& Kant [ESA '94, Comput. Geom. '98]
- Place vertices bottom-to-top by s - t-ordering on G

from

Drawing Algorithm

- Based on Biedl \& Kant [ESA '94, Comput. Geom. '98]
- Place vertices bottom-to-top by s - t-ordering on G

Drawing Algorithm

- Based on Biedl \& Kant [ESA '94, Comput. Geom. '98]
- Place vertices bottom-to-top by s - t-ordering on G

Drawing Algorithm

- Based on Biedl \& Kant [ESA '94, Comput. Geom. '98]
- Place vertices bottom-to-top by s-t-ordering on G

Drawing Algorithm

- Based on Biedl \& Kant [ESA '94, Comput. Geom. '98]
- Place vertices bottom-to-top by s-t-ordering on G

$$
1
$$

Drawing Algorithm

- Based on Biedl \& Kant [ESA '94, Comput. Geom. '98]
- Place vertices bottom-to-top by s-t-ordering on G

Drawing Algorithm

- Based on Biedl \& Kant [ESA '94, Comput. Geom. '98]
- Place vertices bottom-to-top by s-t-ordering on G

Drawing Algorithm

- Based on Biedl \& Kant [ESA '94, Comput. Geom. '98]
- Place vertices bottom-to-top by s-t-ordering on G

Drawing Algorithm

- Based on Biedl \& Kant [ESA '94, Comput. Geom. '98]
- Place vertices bottom-to-top by s-t-ordering on G

from

G cycle, 3 colors
two colors maxdeg-3 + outerplanar
NAE-3SAT
G cycle + isolated vertices, 2 colors

G biconnected

G_{1} maxdeg-3

Planar NAE-SAT
G_{1} maxdeg-3 + outerplanar
G biconnected \Rightarrow
can draw simultaneous orthogonal embedding with ≤ 3 bends per edge

Our Results $\xrightarrow{\text { reduces to }}$
G cycle, 3 colors
two colors maxdeg-3 + outerplanar
G biconnected
G_{1} maxdeg-3

Planar NAE-SAT
G_{1} maxdeg-3 + outerplanar
G biconnected \Rightarrow
can draw simultaneous orthogonal embedding with ≤ 3 bends per edge

