

Simultaneous Orthogonal Drawing

Patrizio Angelini, Steve Chaplick, Sabine Cornelsen, Giordano Da Lozzo, Giuseppe Di Battista, Peter Eades, **Philipp Kindermann**, Jan Kratochvíl, Fabian Lipp, Ignaz Rutter

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$. Are there drawings of G_1 and G_2 that coincide on G?

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$. Are there drawings of G_1 and G_2 that coincide on G?

$$G = G_1 \cap G_2$$
 common graph

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$. Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

$$G=G_1\cap G_2$$
 common graph

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

$$G = G_1 \cap G_2$$
 common graph

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

It depends:

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

It depends:

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$. Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

It depends:

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

It depends:

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

It depends:

planar, straight-line

► NP-hard [Estrella-Balderrama et al. '07]

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

It depends:

- ► NP-hard [Estrella-Balderrama et al. '07]
- There exist a tree and a path that don't work [Angelini et al. '12]

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

- planar, straight-line
- planar, topological

- 0 0
- 0 0 0
 - 0 0
 - 0

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$. Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

- planar, straight-line
- planar, topological

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$. Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

- planar, straight-line
- planar, topological

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$. Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

- planar, straight-line
- planar, topological

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

It depends:

- planar, straight-line
- planar, topological

Efficiently solvable if...

ightharpoonup G is biconnected [Haeupler et al. '13]

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

It depends:

- planar, straight-line
- planar, topological

Efficiently solvable if...

- ► *G* is biconnected
- ightharpoonup G is a star

[Haeupler et al. '13]

[Angelini et al. '12]

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

It depends:

- planar, straight-line
- planar, topological

Efficiently solvable if...

- ightharpoonup G is biconnected [Haeupler et al. '13]

- ightharpoonup G is a star [Angelini et al. '12]
- $ightharpoonup G_1, G_2$ are biconnected,

 - G is connected [Bläsius & Rutter '16]

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

It depends:

- planar, straight-line
- planar, topological
- planar, hierarchical

 $G = G_1 \cap G_2$ common graph

- 0 0
- 0 0 0
 - 0 0

O

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

- planar, straight-line
- planar, topological
- planar, hierarchical

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

- planar, straight-line
- planar, topological
- planar, hierarchical

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$. Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

- planar, straight-line
- planar, topological
- planar, hierarchical

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$. Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

It depends:

- planar, straight-line
- planar, topological
- planar, hierarchical

efficiently solvable for 2 levels

[Angelini et al. '16]

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

- planar, straight-line
- planar, topological
- planar, hierarchical

- efficiently solvable for 2 levels [Angelini et al. '16]
- ▶ NP-hard for 3 levels [Angelini et al. '16]

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

It depends:

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

 $G = G_1 \cap G_2$ common graph

- 0 0
- 0 0 0
 - 0 0
 - 0

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

It depends:

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

It depends:

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

Necessary Conditions:

ightharpoonup combinatorial embeddings of G_1, G_2 coincide on G

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

It depends:

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

Necessary Conditions:

ightharpoonup combinatorial embeddings of G_1, G_2 coincide on G

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

It depends:

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

Necessary Conditions:

ightharpoonup combinatorial embeddings of G_1, G_2 coincide on G

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

It depends:

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

- ightharpoonup combinatorial embeddings of G_1, G_2 coincide on G
- embeddings allow orthogonal vertex drawings

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

It depends:

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

- ightharpoonup combinatorial embeddings of G_1, G_2 coincide on G
- embeddings allow orthogonal vertex drawings

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

It depends:

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

- ightharpoonup combinatorial embeddings of G_1, G_2 coincide on G
- embeddings allow orthogonal vertex drawings

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

It depends:

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

- ightharpoonup combinatorial embeddings of G_1, G_2 coincide on G
- embeddings allow orthogonal vertex drawings

Simultaneous Drawing

Given two graphs $G_1 = (V, E_1)$ and $G_2 = (V, E_2)$.

Are there drawings of G_1 and G_2 that coincide on G?

What kind of drawings?

It depends:

- planar, straight-line
- planar, topological
- planar, hierarchical
- planar, orthogonal

Necessary Conditions:

- ightharpoonup combinatorial embeddings of G_1, G_2 coincide on G
- embeddings allow orthogonal vertex drawings

Conditions are sufficient!

Isn't this trivial?

Isn't this trivial?

► Instances trivially admit a SEFE...

Isn't this trivial?

- ► Instances trivially admit a SEFE...
- ▶ but not necessarily an ORTHOSEFE.

Isn't this trivial?

- ► Instances trivially admit a SEFE...
- ▶ but not necessarily an ORTHOSEFE.

Theorem.

It is NP-complete to decide whether three graphs G_1, G_2, G_3 whose common graph is a cycle admit an ORTHOSEFE.

Isn't this trivial?

- ► Instances trivially admit a SEFE...
- ▶ but not necessarily an ORTHOSEFE.

Theorem.

It is NP-complete to decide whether three graphs G_1, G_2, G_3 whose common graph is a cycle admit an ORTHOSEFE.

Proof:

Reduction from NAE-3SAT:

Isn't this trivial?

- ► Instances trivially admit a SEFE...
- ▶ but not necessarily an ORTHOSEFE.

Theorem.

It is NP-complete to decide whether three graphs G_1, G_2, G_3 whose common graph is a cycle admit an ORTHOSEFE.

Proof:

Reduction from NAE-3SAT:

Given: X set of variables, C set of clauses each containing 3 literals

Find: Truth assignment such that no clause in C evaluates to (TRUE, TRUE, TRUE) or (FALSE, FALSE, FALSE)

$$x = \text{True}$$

$$x = \text{True}$$

$$x = \text{True}$$

Variable gadget for variable x:

Red edges on different sides

Blue edges on different sides.

Variable gadget for variable x:

Red edges on different sides

Blue edges on different sides.

Blue edges cross if and only if all literals equal.

Reduction also works for two colors:

Reduction also works for two colors:

Reduction also works for two colors:

Reduction also works for two colors:

Reduction also works for two colors:

Reduction also works for two colors:

- subdivide some edges and use different colors
- common graph now is cycle + isolated vertices

Reduction also works for two colors:

- subdivide some edges and use different colors
- common graph now is cycle + isolated vertices

Theorem.

It is NP-complete to decide whether two graphs G_1, G_2 whose common graph consists of a cycle plus isolated vertices admit an ORTHOSEFE.

- ▶ Consider $G_1 \cap G_2$ on a line and G_1 above.
 - Nested intersection components
 - Bipartition of intersecting edges

- ▶ Consider $G_1 \cap G_2$ on a line and G_1 above.
 - Nested intersection components
 - Bipartition of intersecting edges

- ▶ Consider $G_1 \cap G_2$ on a line and G_1 above.
 - Nested intersection components
 - Bipartition of intersecting edges

- ▶ Consider $G_1 \cap G_2$ on a line and G_1 above.
 - Nested intersection components
 - Bipartition of intersecting edges

- ▶ Consider $G_1 \cap G_2$ on a line and G_1 above.
 - Nested intersection components
 - Bipartition of intersecting edges

- ▶ Consider $G_1 \cap G_2$ on a line and G_1 above.
 - Nested intersection components
 - Bipartition of intersecting edges

- ▶ Consider $G_1 \cap G_2$ on a line and G_1 above.
 - Nested intersection components
 - Bipartition of intersecting edges

- ▶ Consider $G_1 \cap G_2$ on a line and G_1 above.
 - Nested intersection components
 - Bipartition of intersecting edges

- ▶ Consider $G_1 \cap G_2$ on a line and G_1 above.
 - Nested intersection components
 - Bipartition of intersecting edges

Boolean variable per class: dashed up = false

- ▶ Consider $G_1 \cap G_2$ on a line and G_1 above.
 - Nested intersection components
 - Bipartition of intersecting edges

- ► Boolean variable per class: dashed up = false
- ▶ Blue can be inserted iff not one end vertex up, one down $\neg((\overline{\beta} \wedge \overline{\alpha} \wedge \overline{\gamma} \wedge \delta) \vee (\beta \wedge \alpha \wedge \gamma \wedge \overline{\delta}))$

- ▶ Consider $G_1 \cap G_2$ on a line and G_1 above.
 - Nested intersection components
 - Bipartition of intersecting edges

- ▶ Boolean variable per class: dashed up = false
- ▶ Blue can be inserted iff not one end vertex up, one down $\neg((\overline{\beta} \wedge \overline{\alpha} \wedge \overline{\gamma} \wedge \delta) \vee (\beta \wedge \alpha \wedge \gamma \wedge \overline{\delta}))$
- not-all-equal SAT

- ▶ Consider $G_1 \cap G_2$ on a line and G_1 above.
 - Nested intersection components
 - Bipartition of intersecting edges

- Boolean variable per class: dashed up = false
- ▶ Blue can be inserted iff not one end vertex up, one down $\neg((\overline{\beta} \wedge \overline{\alpha} \wedge \overline{\gamma} \wedge \delta) \vee (\beta \wedge \alpha \wedge \gamma \wedge \overline{\delta}))$
- not-all-equal SAT

- ▶ Consider $G_1 \cap G_2$ on a line and G_1 above.
 - Nested intersection components
 - Bipartition of intersecting edges

- Boolean variable per class: dashed up = false
- ▶ Blue can be inserted iff not one end vertex up, one down $\neg((\overline{\beta} \wedge \overline{\alpha} \wedge \overline{\gamma} \wedge \delta) \vee (\beta \wedge \alpha \wedge \gamma \wedge \overline{\delta}))$
- not-all-equal SAT

- ▶ Consider $G_1 \cap G_2$ on a line and G_1 above.
 - Nested intersection components
 - Bipartition of intersecting edges

- Boolean variable per class: dashed up = false
- ▶ Blue can be inserted iff not one end vertex up, one down $\neg((\overline{\beta} \wedge \overline{\alpha} \wedge \overline{\gamma} \wedge \delta) \vee (\beta \wedge \alpha \wedge \gamma \wedge \overline{\delta}))$
- not-all-equal SAT

- ▶ Consider $G_1 \cap G_2$ on a line and G_1 above.
 - Nested intersection components
 - Bipartition of intersecting edges

- ightharpoonup Boolean variable per class: dashed up = false
- ▶ Blue can be inserted iff not one end vertex up, one down $\neg((\overline{\beta} \wedge \overline{\alpha} \wedge \overline{\gamma} \wedge \delta) \vee (\beta \wedge \alpha \wedge \gamma \wedge \overline{\delta}))$
- not-all-equal SAT

- ▶ Consider $G_1 \cap G_2$ on a line and G_1 above.
 - Nested intersection components
 - Bipartition of intersecting edges

- ightharpoonup Boolean variable per class: dashed up = false
- ▶ Blue can be inserted iff not one end vertex up, one down $\neg((\overline{\beta} \wedge \overline{\alpha} \wedge \overline{\gamma} \wedge \delta) \vee (\beta \wedge \alpha \wedge \gamma \wedge \overline{\delta}))$
- planar not-all-equal SAT

- ▶ Consider $G_1 \cap G_2$ on a line and G_1 above.
 - Nested intersection components
 - Bipartition of intersecting edges

- ightharpoonup Boolean variable per class: dashed up = false
- ▶ Blue can be inserted iff not one end vertex up, one down $\neg((\overline{\beta} \wedge \overline{\alpha} \wedge \overline{\gamma} \wedge \delta) \vee (\beta \wedge \alpha \wedge \gamma \wedge \overline{\delta}))$
- \triangleright planar not-all-equal SAT, which is in $\mathcal{P}!$ [Moret '88]

Theorem.

Theorem.

Theorem.

Proof:

Theorem.

Proof:

Theorem.

Proof:

Theorem.

Proof:

- outerplanar,
- lacktriangle no edge between lacktriangle and u,z

Theorem.

Theorem.

Theorem.

Theorem.

Theorem.

Theorem.

Theorem.

Theorem.

Theorem.

Theorem.

Theorem.

From biconnected to cycle

Theorem.

From biconnected to cycle

Theorem.

G biconnected \Rightarrow can draw simultaneous orthogonal embedding with \leq 3 bends per edge

▶ Based on Biedl & Kant [ESA '94, Comput. Geom. '98]

- ▶ Based on Biedl & Kant [ESA '94, Comput. Geom. '98]
- ightharpoonup Place vertices bottom-to-top by s-t-ordering on G

- ▶ Based on Biedl & Kant [ESA '94, Comput. Geom. '98]
- ightharpoonup Place vertices bottom-to-top by s-t-ordering on G

- Based on Biedl & Kant [ESA '94, Comput. Geom. '98]
- lacktriangle Place vertices bottom-to-top by $s ext{-}t ext{-}$ ordering on G

- ▶ Based on Biedl & Kant [ESA '94, Comput. Geom. '98]
- lacktriangle Place vertices bottom-to-top by s-t-ordering on G

- Based on Biedl & Kant [ESA '94, Comput. Geom. '98]
- lacktriangle Place vertices bottom-to-top by $s ext{-}t ext{-}$ ordering on G

- Based on Biedl & Kant [ESA '94, Comput. Geom. '98]
- lacktriangle Place vertices bottom-to-top by $s ext{-}t ext{-}$ ordering on G

- ▶ Based on Biedl & Kant [ESA '94, Comput. Geom. '98]
- lacktriangle Place vertices bottom-to-top by $s ext{-}t ext{-}$ ordering on G

- ▶ Based on Biedl & Kant [ESA '94, Comput. Geom. '98]
- lacktriangle Place vertices bottom-to-top by s-t-ordering on G

- ▶ Based on Biedl & Kant [ESA '94, Comput. Geom. '98]
- lacktriangle Place vertices bottom-to-top by $s ext{-}t ext{-}$ ordering on G

- ▶ Based on Biedl & Kant [ESA '94, Comput. Geom. '98]
- ightharpoonup Place vertices bottom-to-top by s-t-ordering on G

- Based on Biedl & Kant [ESA '94, Comput. Geom. '98]
- lacktriangle Place vertices bottom-to-top by $s ext{-}t ext{-}$ ordering on G

- ▶ Based on Biedl & Kant [ESA '94, Comput. Geom. '98]
- lacktriangle Place vertices bottom-to-top by $s ext{-}t ext{-}$ ordering on G

- ▶ Based on Biedl & Kant [ESA '94, Comput. Geom. '98]
- lacktriangle Place vertices bottom-to-top by $s ext{-}t ext{-}$ ordering on G

- ▶ Based on Biedl & Kant [ESA '94, Comput. Geom. '98]
- lacktriangle Place vertices bottom-to-top by $s ext{-}t ext{-}$ ordering on G

G biconnected \Rightarrow can draw simultaneous orthogonal embedding with \leq 3 bends per edge

G biconnected \Rightarrow can draw simultaneous orthogonal embedding with \leq 3 bends per edge