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?Conditions are sufficient!
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Special Case: Common Graph is a Cycle

Isn’t this trivial?

I Instances trivially admit a SEFE. . .
I but not necessarily an OrthoSEFE.

It is NP-complete to decide whether three graphs G1, G2, G3

whose common graph is a cycle admit an OrthoSEFE.

Theorem.

Proof:
Reduction from Nae-3Sat:

X set of variables, C set of clauses each containing 3
literals
Truth assignment such that no clause in C evaluates to
(True, True, True) or (False, False, False)

Given:

Find:
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Variable gadget for variable x:

x = True x = False

clause (x1,¬x2,¬x3)

Red edges on different sides
⇔

Blue edges on different sides.

I Blue edges cross if and only if all literals equal.

x2 x3 x4 x4 x3 x2 x1

Reduction from Nae-3Sat

x1
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Reduction from Nae-3Sat

Reduction also works for two colors:
I subdivide some edges and use different colors
I common graph now is cycle + isolated vertices

It is NP-complete to decide whether two graphs G1, G2 whose
common graph consists of a cycle plus isolated vertices admit
an OrthoSEFE.

Theorem.

x2 x3 x4 x4 x3 x2 x1x1
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I Consider G1 ∩G2 on a line and G1 above.
– Nested intersection components
– Bipartition of intersecting edges
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, which is in P! [Moret ’88]
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