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• is NP-hard [Garey Johnson, 1979]
• admits a PTAS [Arora, JACM’98][Mitchell, SICOMP’99]

n/2-CESF (= Euclidean Matching)
• is NP-hard [Bastert Fekete, TR’98]
• O(n log

√
n)-approx. [Chan Hoffmann Kiazyk Lubiw, GD’13]

k-CESF
• has a kρ-approximation [Efrat Hu Kobourov Pupyrev, GD’14]

Steiner ratio

ρ ≤ 1.21 [Chung Graham, ANYAS’85]
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Going Back

≤
√

2

≤ 2
√

2

• 3
√

2n/ε ≤ L ≤ 6
√

2n/ε
• (L× L)-grid
• granularity 1

in total ≤ 3
√

2n ≤ εL ≤ εOPT

2-CESF instance I → rounded instance I ∗ → solution LI

|LI | ≤ (1 + ε)OPTI∗ ≤ (1 + ε)2OPTI
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distance L/(2im)

• level-i-square has at most
4m portals on its margin

• place origin uniformly at
random

portal-respecting solution:
crosses grid lines only at portals

line ` crosses drawing t(`) times;

expected length increase: ≤ ε
t(`)

4

2-CESF instance I → portal-respecting solution L
|L| ≤ (1 + ε)3OPTI
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3-Light Solution

3-light solution: each portal is crossed at most 3 times

width= 0

2-CESF instance I → portal-respecting 3-light solution L∗
|L∗| ≤ (1 + ε)3OPTI ≤ (1 + ε′)OPTI
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Putting Things Together

Use a dynamic program! A subproblem consists of:
• a square of the quadtree
• up to three red and blue points on each portal
• non-crossing partition of the points into sets of same color

Base case: unit square
• portals (and points) only in corners
• solve with PTAS for EST

Composite squares:
• divide into squares (acc. to quadtree)
• solve each combination of nO(1/ε)

compatible subproblems

2-CESF admits a PTAS.

O(n2) 2O(log n/ε) = nO(1/ε)

CO(log n/ε) = nO(1/ε)
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3-CESF

3-CESF admits a (5/3 + ε)-approximation algorithm.
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k-CESF

• split into 2 groups
• use PTAS for the groups
• Construct trees from
this “super-tree”

k-CESF admits an

• (k + ε)-approximation algorithm is k is odd
• (k − 1 + ε)-approximation algorithm is k is even


