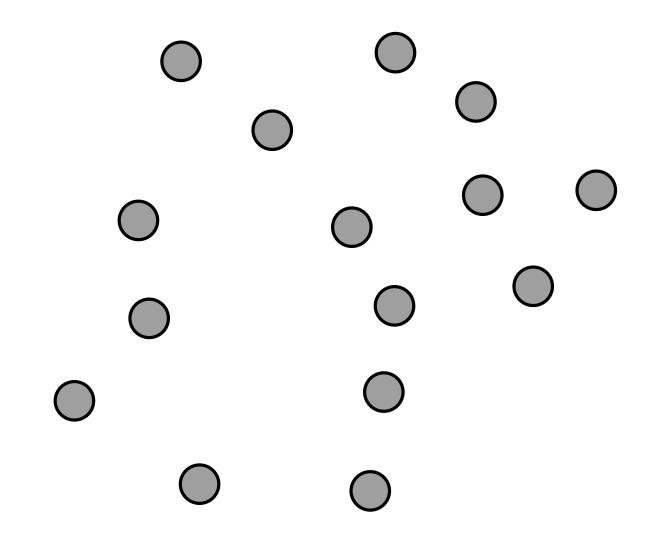


FernUniversität in Hagen Fakultät für Mathematik und Informatik

Colored Non-Crossing Euclidean Steiner Forest

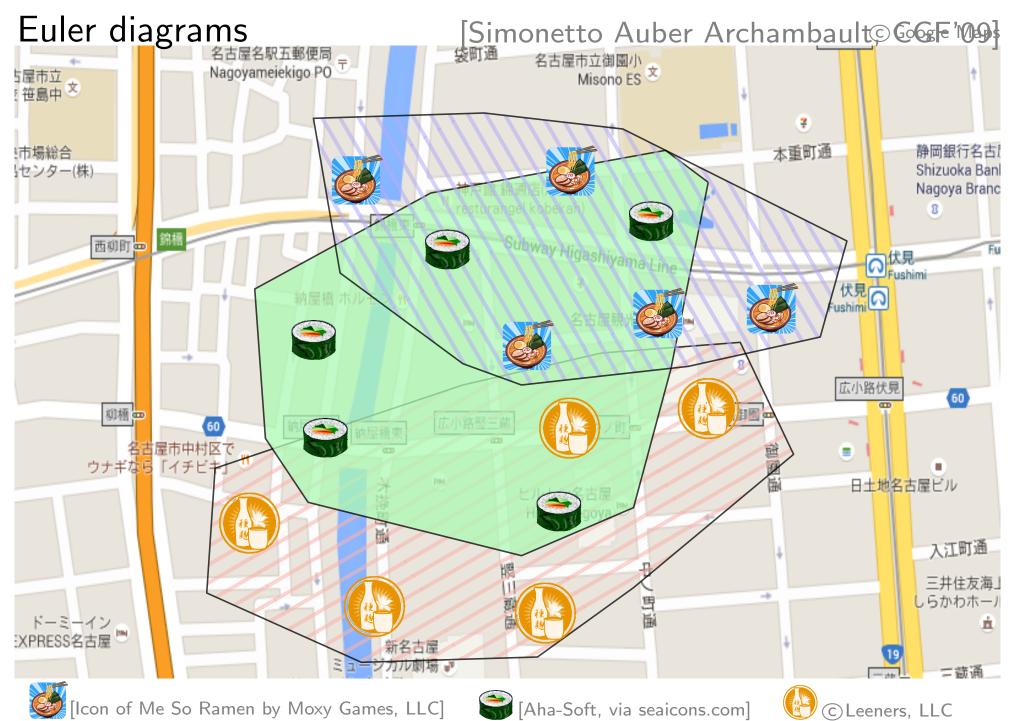
Philipp Kindermann LG Theoretische Informatik FernUniversität in Hagen

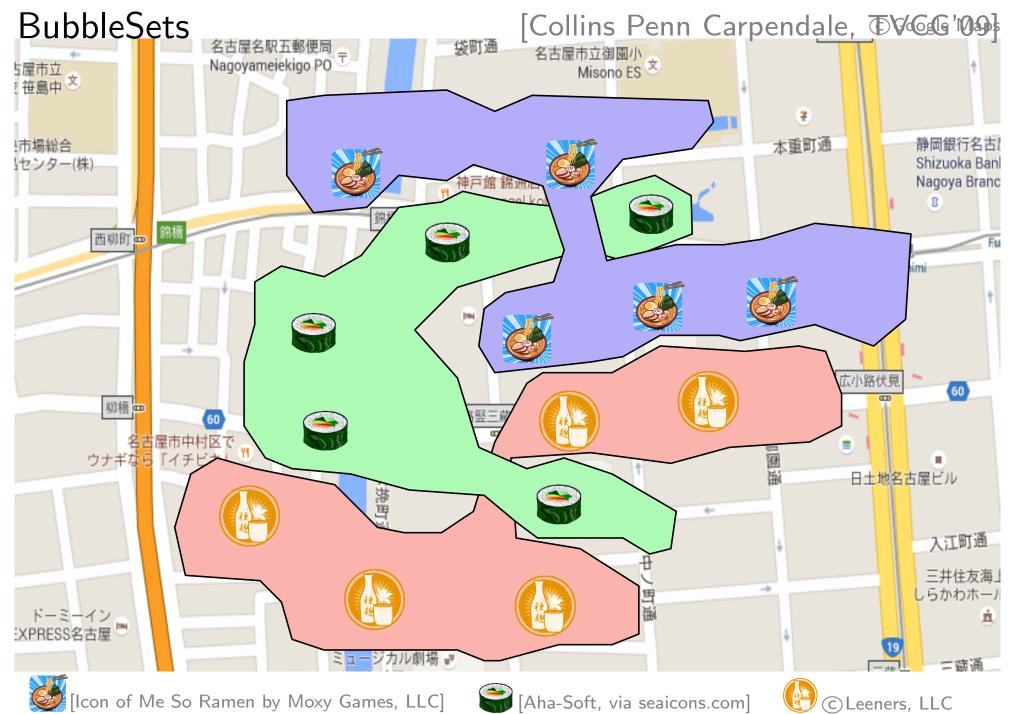
Joint work with Sergey Bereg, Krzysztof Fleszar, Sergey Pupyrev, Joachim Spoerhase & Alexander Wolff

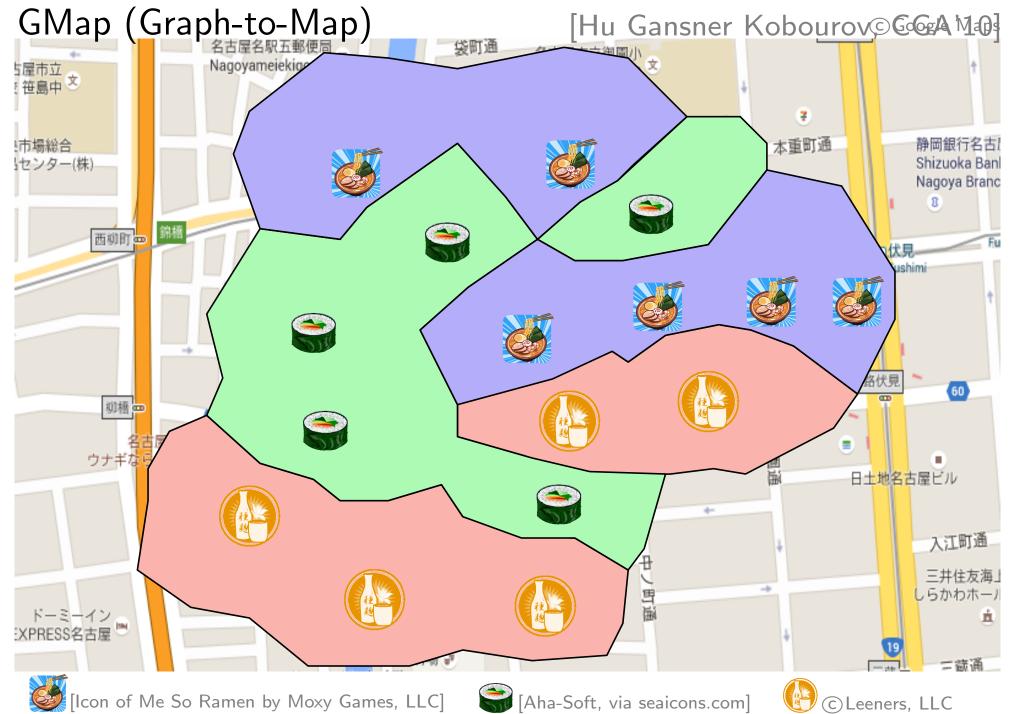


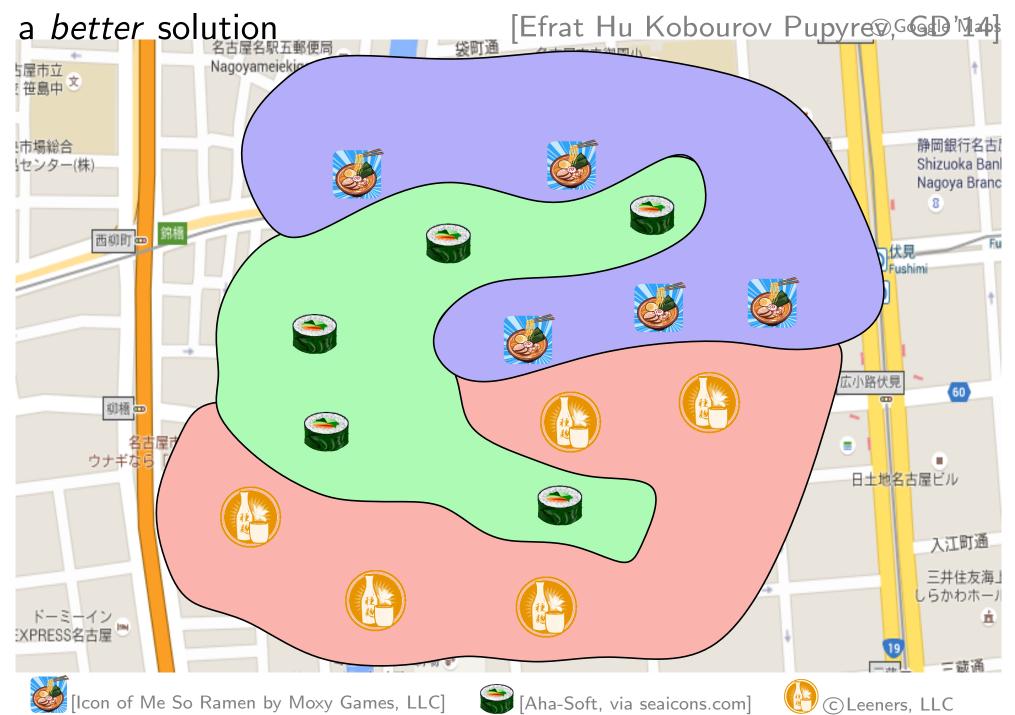
[Icon of Me So Ramen by Moxy Games, LLC]

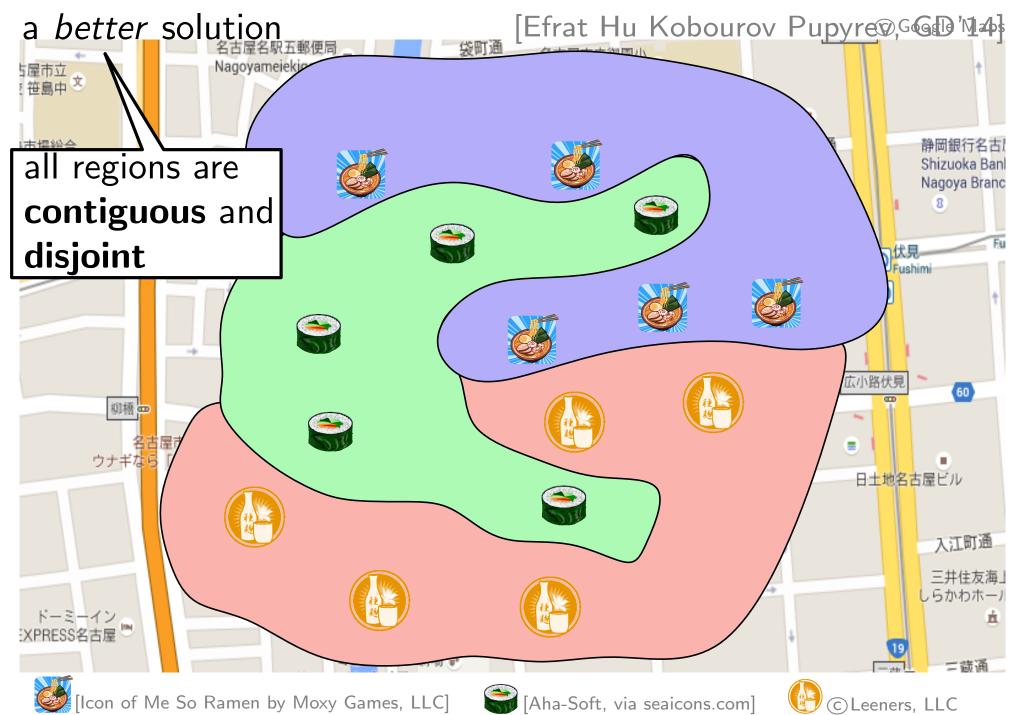






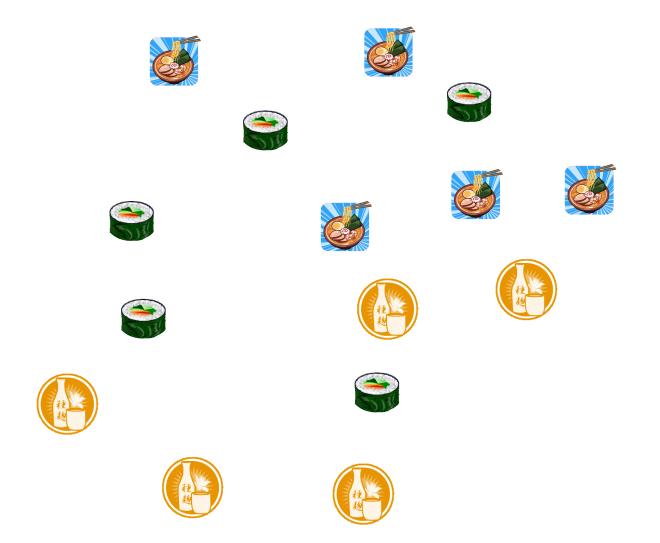








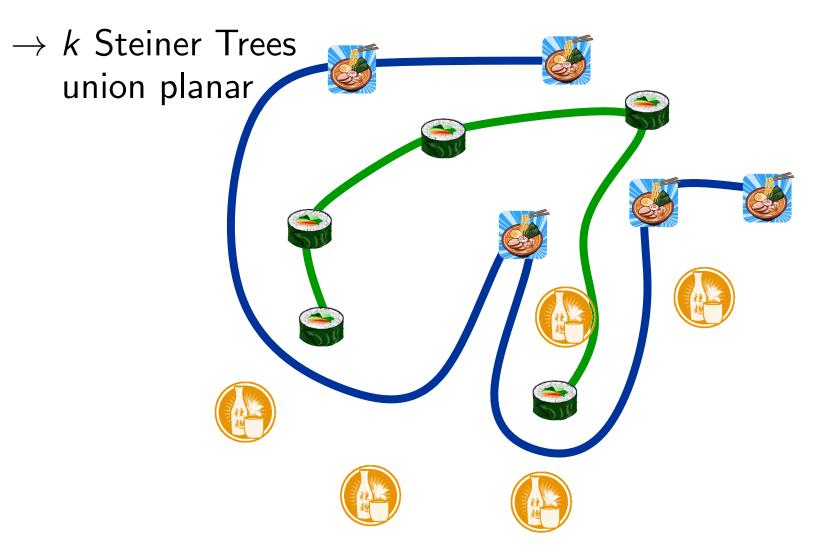
n points, k colors



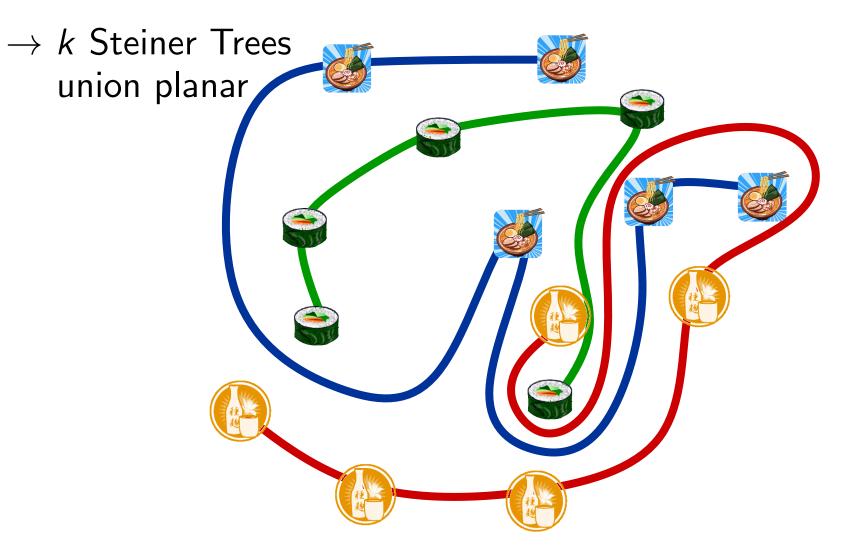
n points, k colors

 $\rightarrow k$ Steiner Trees

n points, k colors

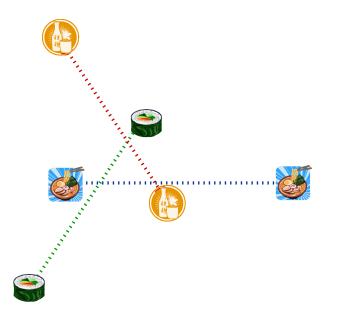


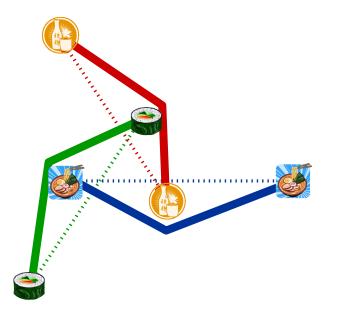
n points, k colors

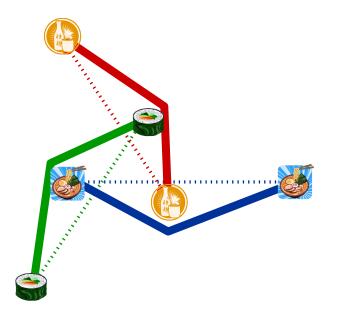


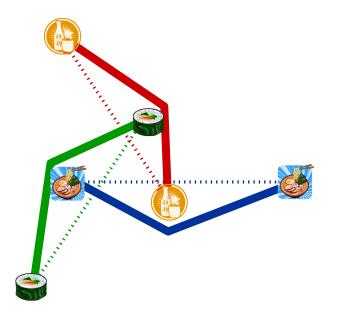
n points, k colors

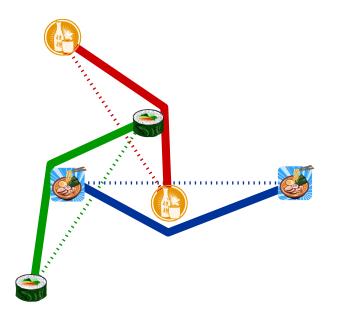
 \rightarrow *k* Steiner Trees union planar

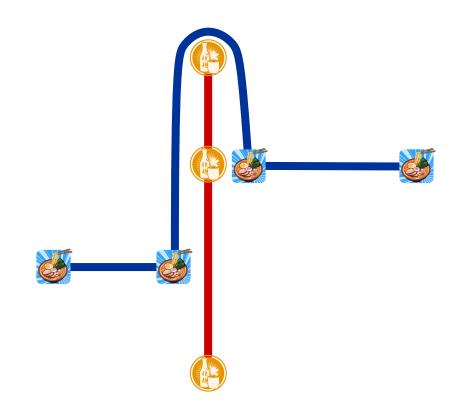


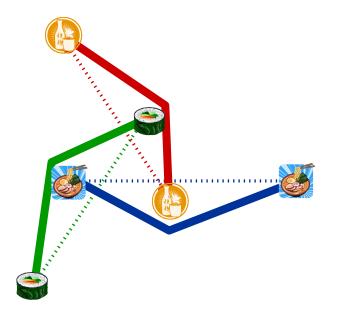




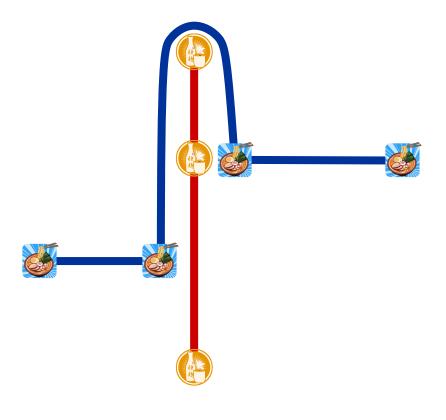


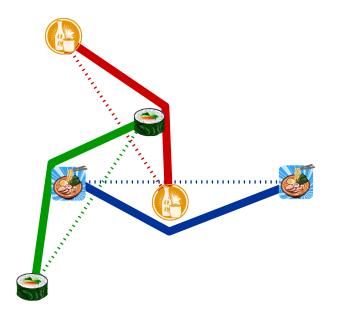


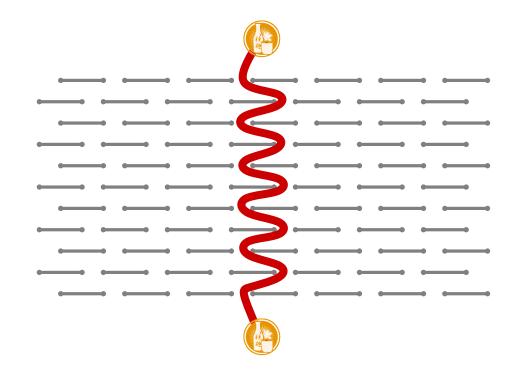


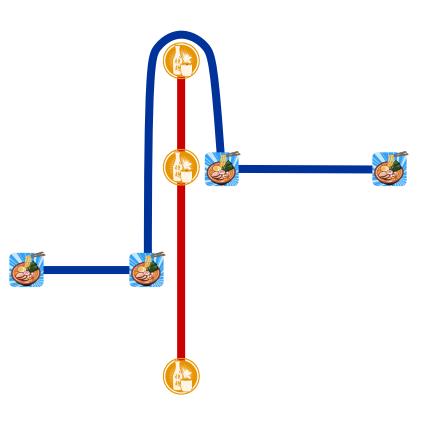


$\longleftrightarrow \\ \longleftrightarrow \\$
$\longleftrightarrow \\ \longleftrightarrow \\$
$\longleftrightarrow \\ \longleftrightarrow \\$
$\longleftrightarrow \\ \longleftrightarrow \\$
$\longleftrightarrow \\ \longleftrightarrow \\$
$\longleftrightarrow \\ \longleftrightarrow \\$
$\longleftrightarrow \\ \longleftrightarrow \\$
$\longleftrightarrow \\ \longleftrightarrow \\$
$\longleftrightarrow \\ \longleftrightarrow \\$
$\longleftrightarrow \\ \longleftrightarrow \\$
$\longmapsto \longmapsto \longmapsto \longmapsto \longmapsto \longmapsto \longmapsto \longmapsto \longmapsto$









1-CESF (= Euclidean Steiner Tree)

1-CESF (= Euclidean Steiner Tree)is NP-hard

[Garey Johnson, 1979]

1-CESF (= Euclidean Steiner Tree)

- is NP-hard
- admits a PTAS

[Garey Johnson, 1979] [Arora, JACM'98][Mitchell, SICOMP'99]

1-CESF (= Euclidean Steiner Tree)

- is NP-hard
- admits a PTAS

[Garey Johnson, 1979] [Arora, JACM'98][Mitchell, SICOMP'99]

n/2-CESF (= Euclidean Matching)

1-CESF (= Euclidean Steiner Tree) is NP-hard [Garey Johnson, 1979] admits a PTAS [Arora, JACM'98][Mitchell, SICOMP'99] n/2-CESF (= Euclidean Matching) is NP-hard [Bastert Fekete, TR'98]

1-CESF (= Euclidean Steiner Tree) is NP-hard [Garey Johnson, 1979] admits a PTAS [Arora, JACM'98][Mitchell, SICOMP'99]

n/2-CESF (= Euclidean Matching)

- is NP-hard [Bastert Fekete, TR'98]
- $O(n \log \sqrt{n})$ -approx. [Chan Hoffmann Kiazyk Lubiw, GD'13]

1-CESF (= Euclidean Steiner Tree)• is NP-hard• admits a PTAS[Arora, JACM'98][Mitchell, SICOMP'99]

n/2-CESF (= Euclidean Matching)

- is NP-hard [Bastert Fekete, TR'98]
- $O(n \log \sqrt{n})$ -approx. [Chan Hoffmann Kiazyk Lubiw, GD'13]

k-CESF

1-CESF (= Euclidean Steiner Tree)• is NP-hard• admits a PTAS[Arora, JACM'98][Mitchell, SICOMP'99]

n/2-CESF (= Euclidean Matching)

- is NP-hard [Bastert Fekete, TR'98]
- $O(n \log \sqrt{n})$ -approx. [Chan Hoffmann Kiazyk Lubiw, GD'13]

k-CESF

• has a $k\rho$ -approximation [Efrat Hu Kobourov Pupyrev, GD'14]

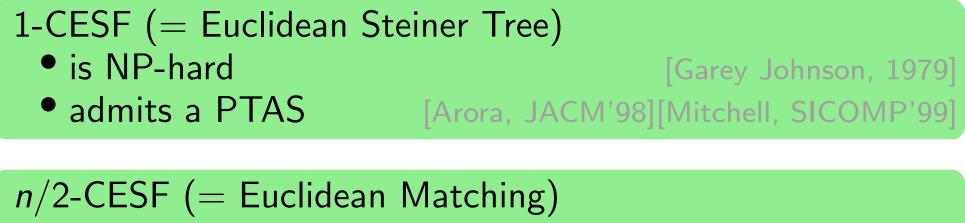
1-CESF (= Euclidean Steiner Tree) is NP-hard [Garey Johnson, 1979] admits a PTAS [Arora, JACM'98][Mitchell, SICOMP'99]

n/2-CESF (= Euclidean Matching)

- is NP-hard [Bastert Fekete, TR'98]
- $O(n \log \sqrt{n})$ -approx. [Chan Hoffmann Kiazyk Lubiw, GD'13]

k-CESF
 has a kρ-approximation [Efrat Hu Kobourov Pupyrev, GD'14]
 Steiner ratio

Known Results

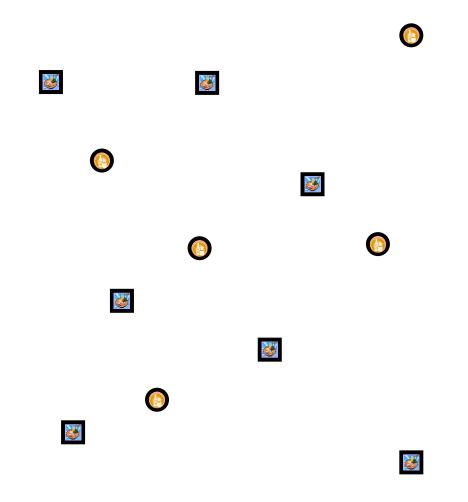


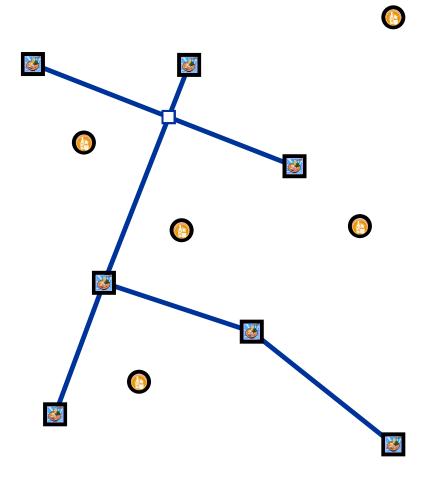
- is NP-hard [Bastert Fekete, TR'98]
- $O(n \log \sqrt{n})$ -approx. [Chan Hoffmann Kiazyk Lubiw, GD'13]

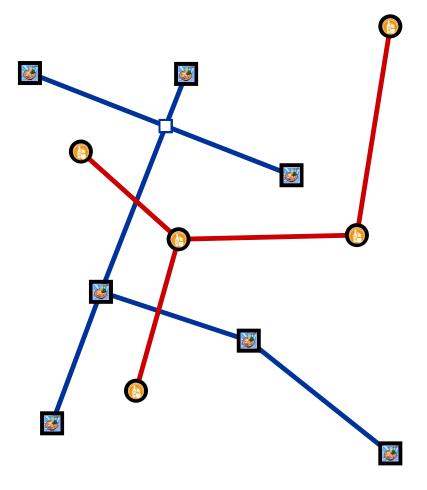
 $ho \leq 1.21$

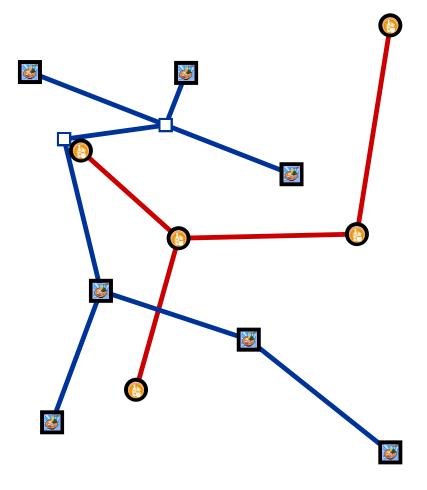
[Chung Graham, ANYAS'85]

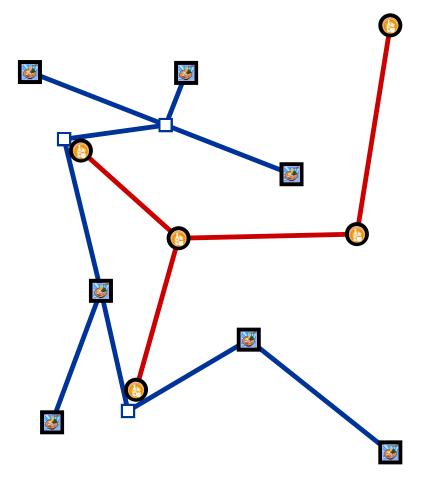
6		Ś		
	3		6	

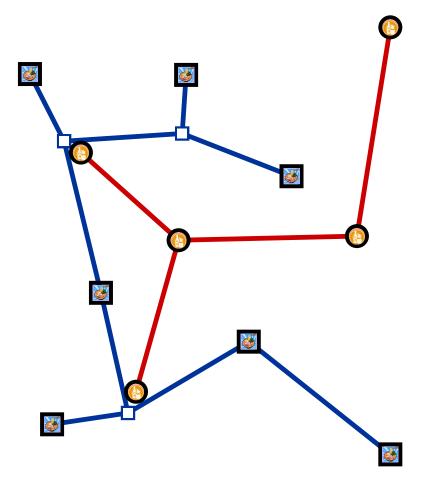


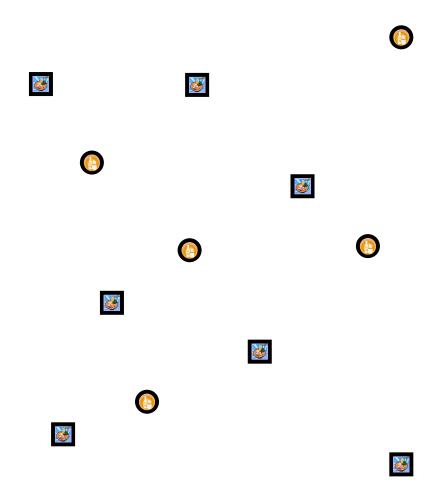


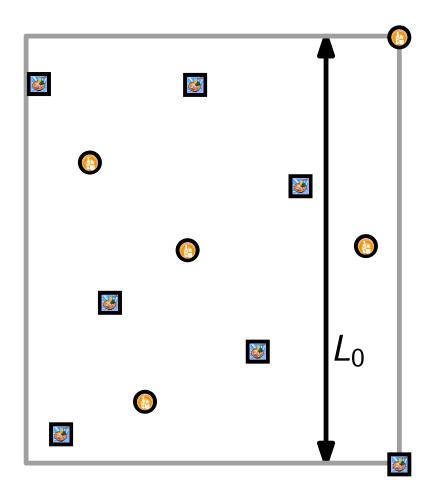




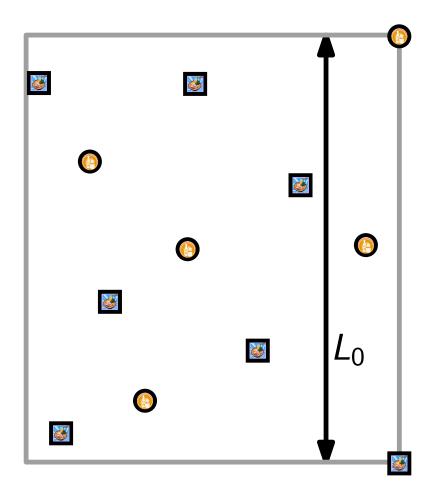




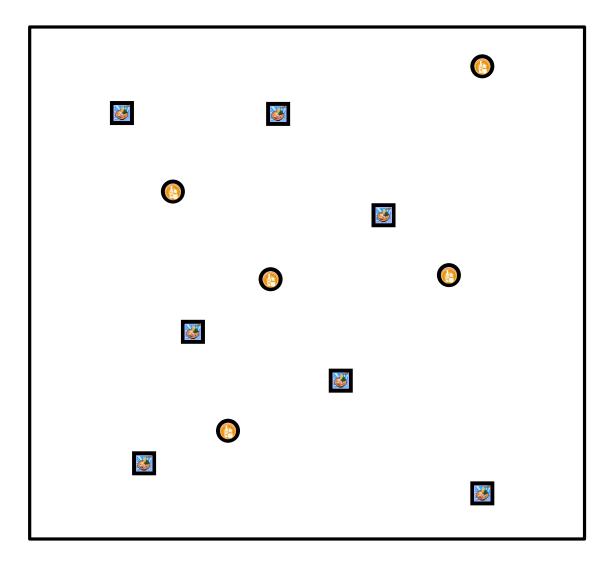




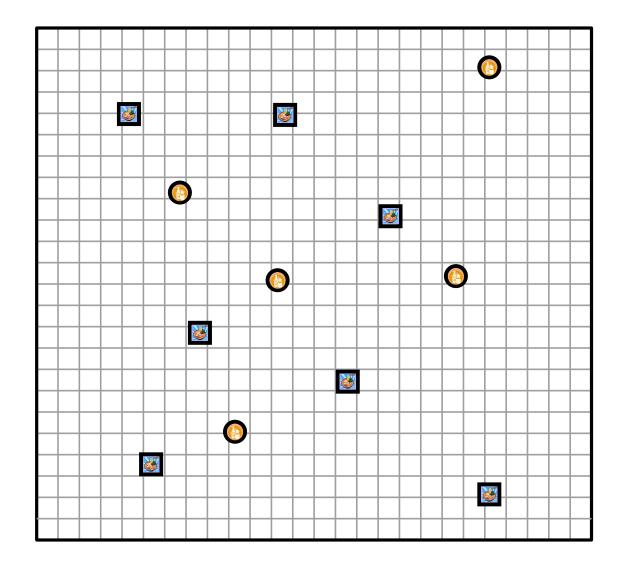
• L₀ diameter of smallest bounding box



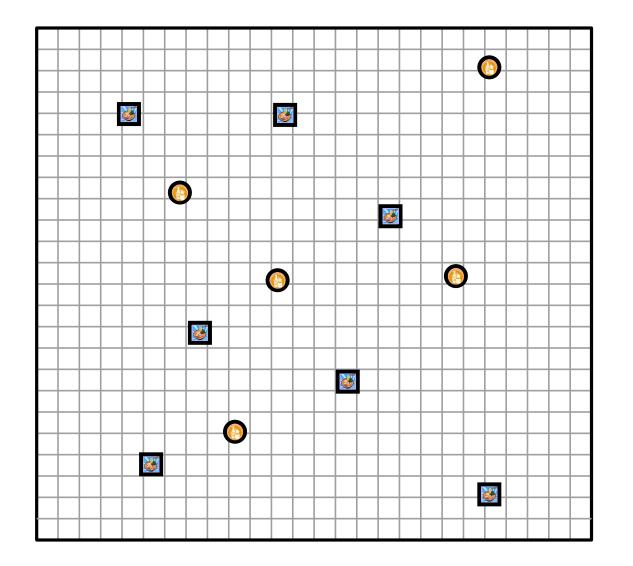
- L₀ diameter of smallest bounding box
- $3\sqrt{2}n/\varepsilon \leq L \leq 6\sqrt{2}n/\varepsilon$



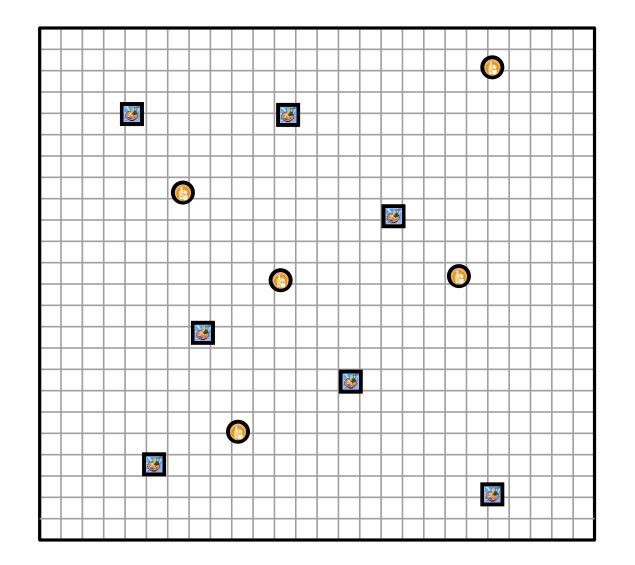
- L₀ diameter of smallest bounding box
- $3\sqrt{2}n/\varepsilon \leq L \leq 6\sqrt{2}n/\varepsilon$
- $(L \times L)$ -grid



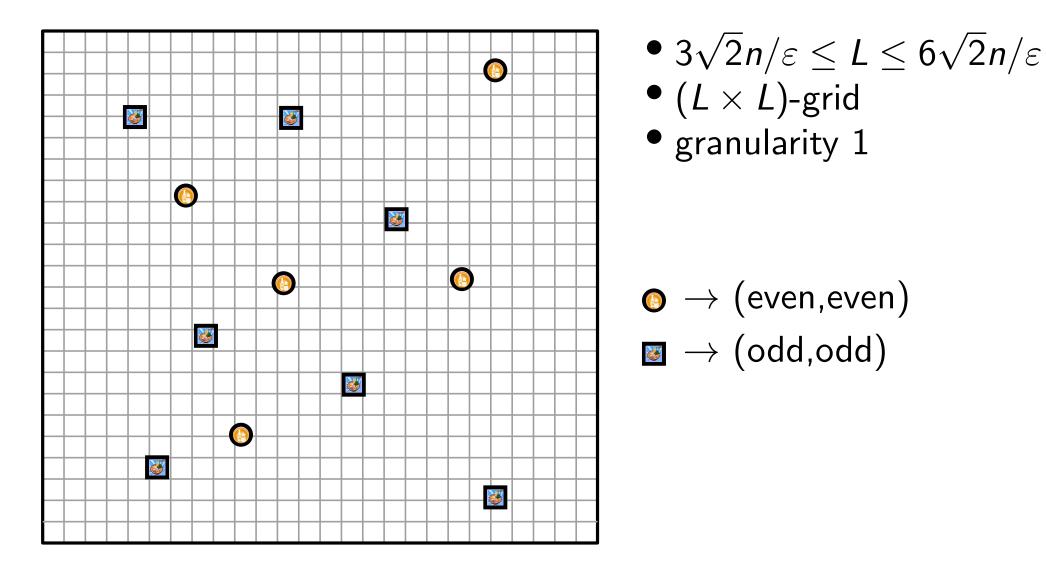
- L₀ diameter of smallest bounding box
- $3\sqrt{2}n/\varepsilon \leq L \leq 6\sqrt{2}n/\varepsilon$
- $(L \times L)$ -grid
- granularity L_0/L

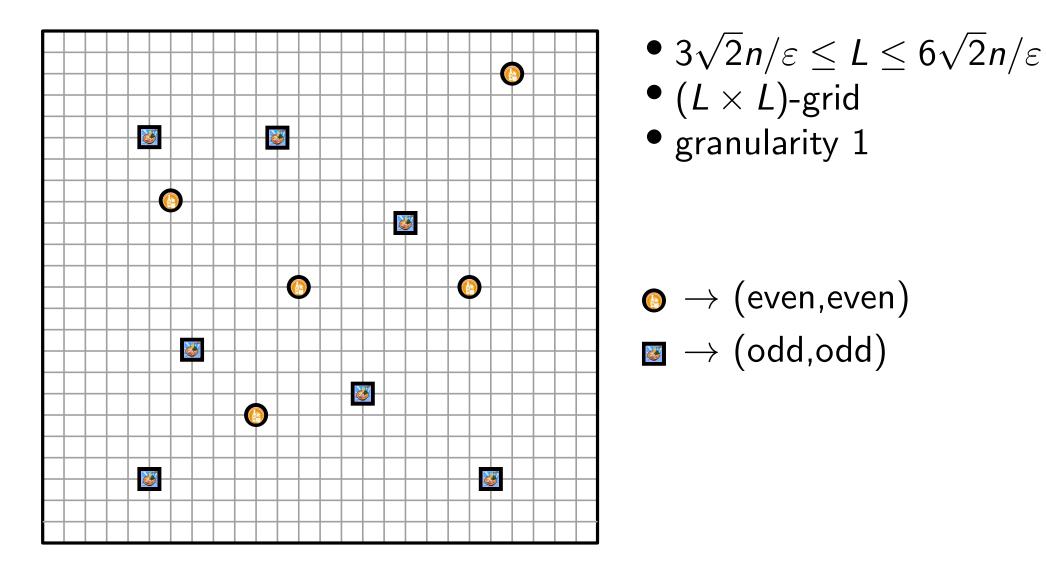


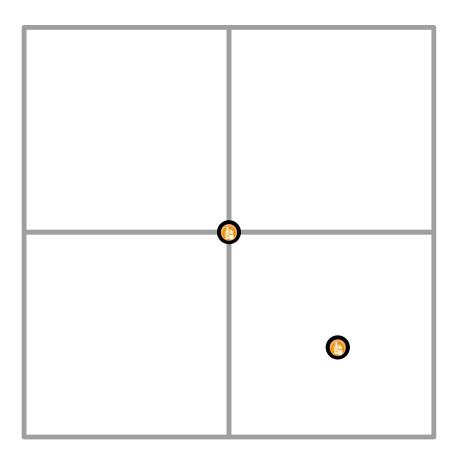
- L₀ diameter of smallest bounding box
- $3\sqrt{2}n/\varepsilon \leq L \leq 6\sqrt{2}n/\varepsilon$
- $(L \times L)$ -grid
- granularity Lot 1



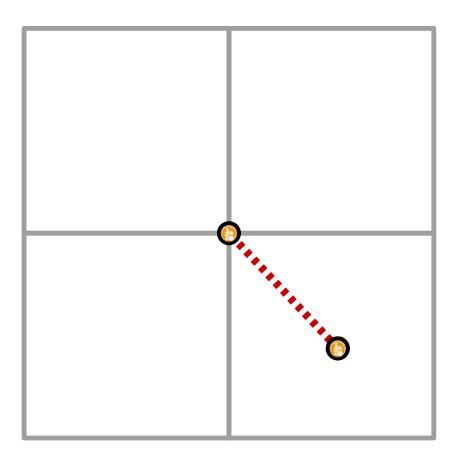
- $3\sqrt{2}n/\varepsilon \leq L \leq 6\sqrt{2}n/\varepsilon$
- $(L \times L)$ -grid
- granularity 1



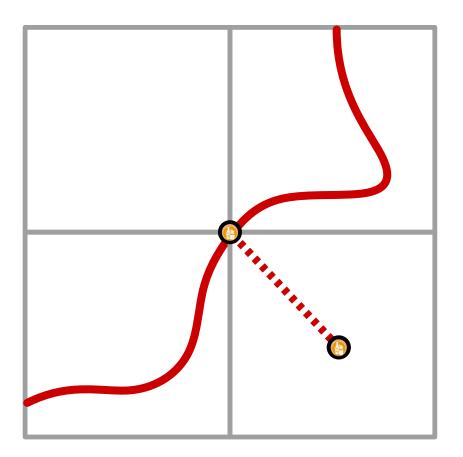




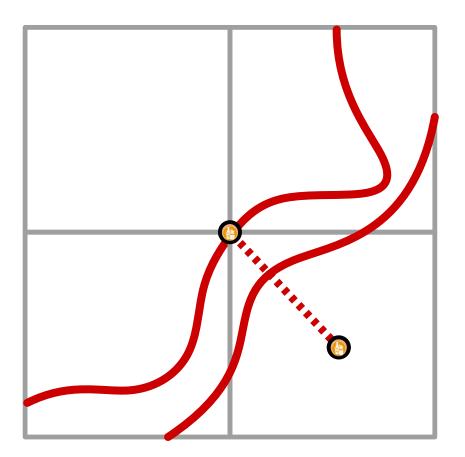
- $3\sqrt{2}n/\varepsilon \leq L \leq 6\sqrt{2}n/\varepsilon$
- $(L \times L)$ -grid
- granularity 1



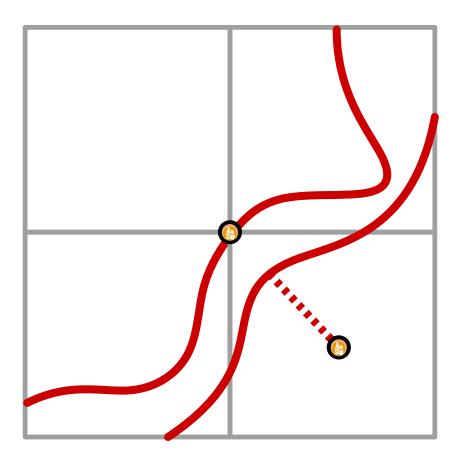
- $3\sqrt{2}n/\varepsilon \leq L \leq 6\sqrt{2}n/\varepsilon$
- $(L \times L)$ -grid
- granularity 1



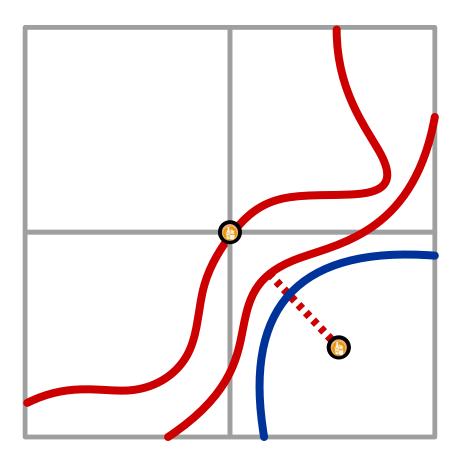
- $3\sqrt{2}n/\varepsilon \leq L \leq 6\sqrt{2}n/\varepsilon$
- $(L \times L)$ -grid
- granularity 1



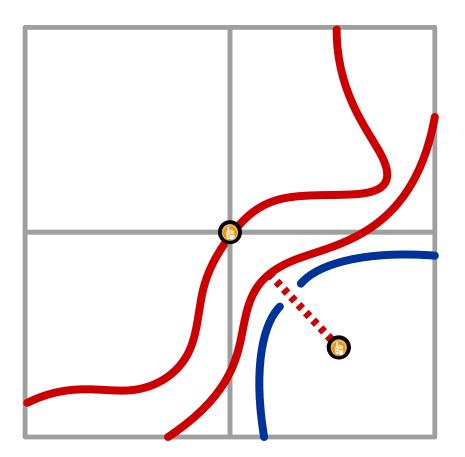
- $3\sqrt{2}n/\varepsilon \leq L \leq 6\sqrt{2}n/\varepsilon$
- $(L \times L)$ -grid
- granularity 1



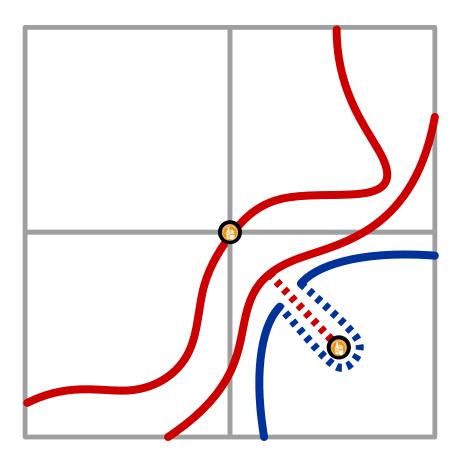
- $3\sqrt{2}n/\varepsilon \leq L \leq 6\sqrt{2}n/\varepsilon$
- $(L \times L)$ -grid
- granularity 1



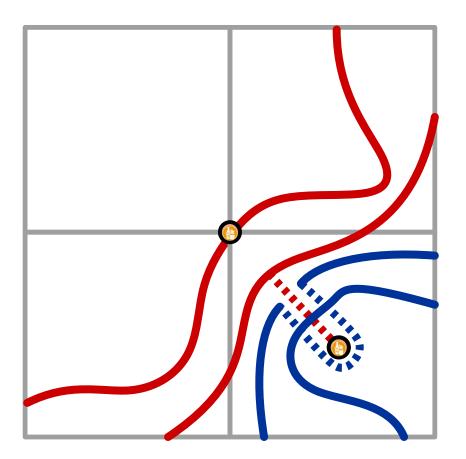
- $3\sqrt{2}n/\varepsilon \leq L \leq 6\sqrt{2}n/\varepsilon$
- $(L \times L)$ -grid
- granularity 1



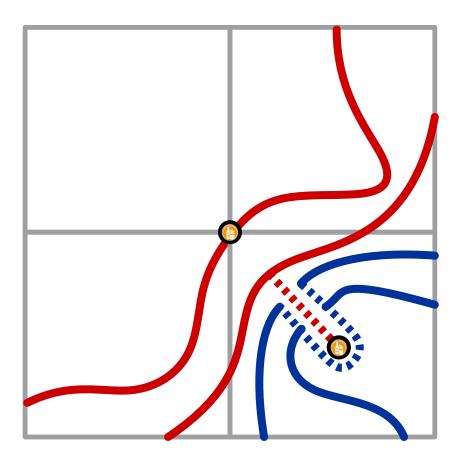
- $3\sqrt{2}n/\varepsilon \leq L \leq 6\sqrt{2}n/\varepsilon$
- $(L \times L)$ -grid
- granularity 1



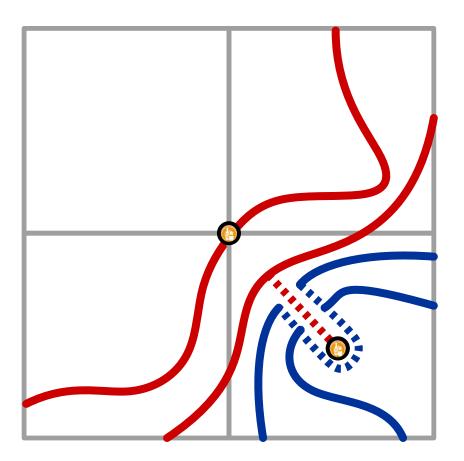
- $3\sqrt{2}n/\varepsilon \leq L \leq 6\sqrt{2}n/\varepsilon$
- $(L \times L)$ -grid
- granularity 1



- $3\sqrt{2}n/\varepsilon \leq L \leq 6\sqrt{2}n/\varepsilon$
- $(L \times L)$ -grid
- granularity 1

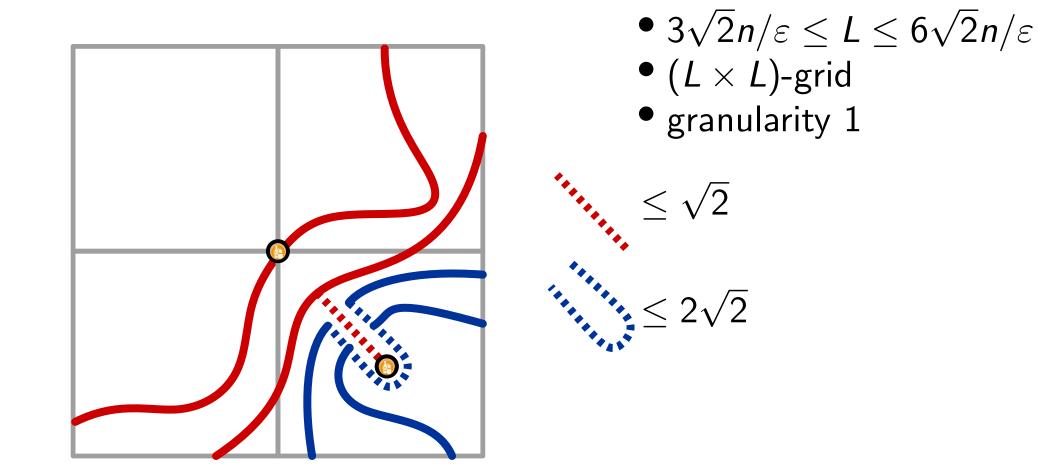


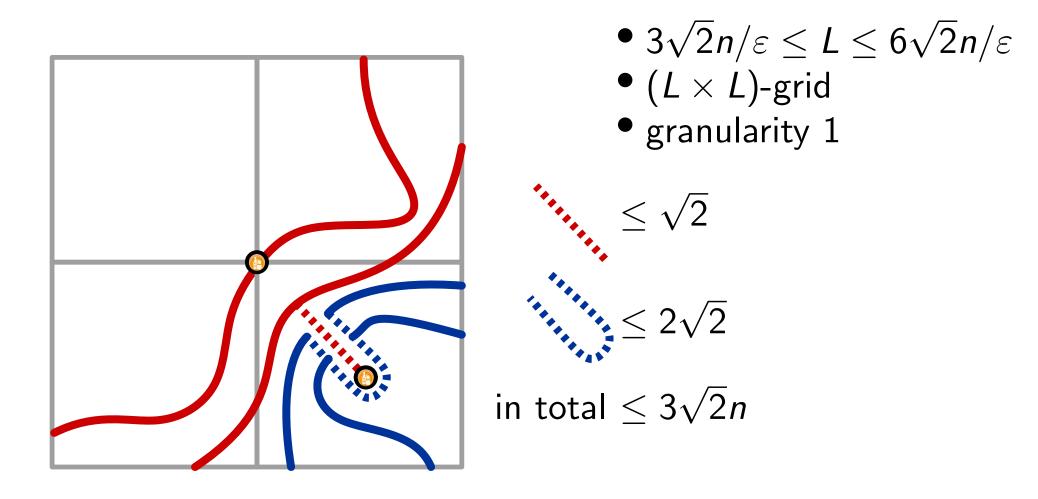
- $3\sqrt{2}n/\varepsilon \leq L \leq 6\sqrt{2}n/\varepsilon$
- $(L \times L)$ -grid
- granularity 1

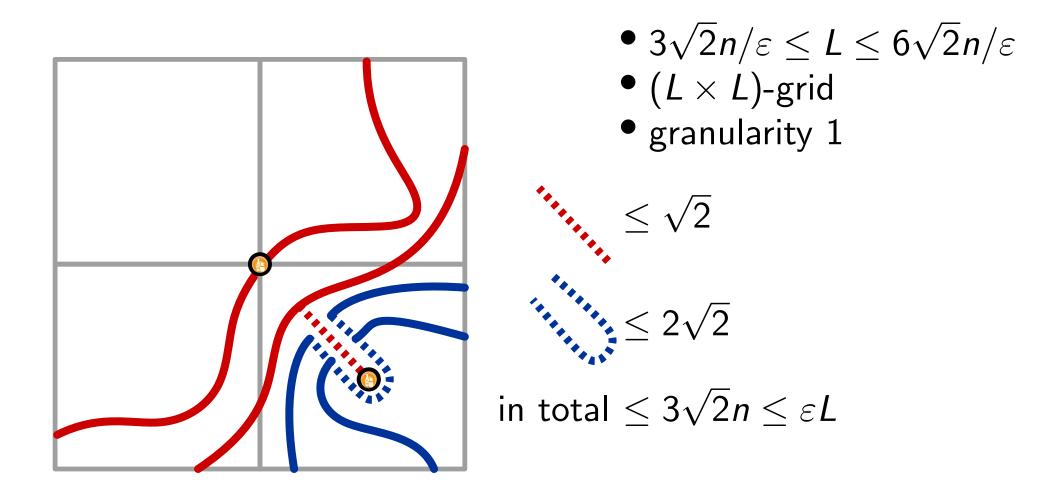


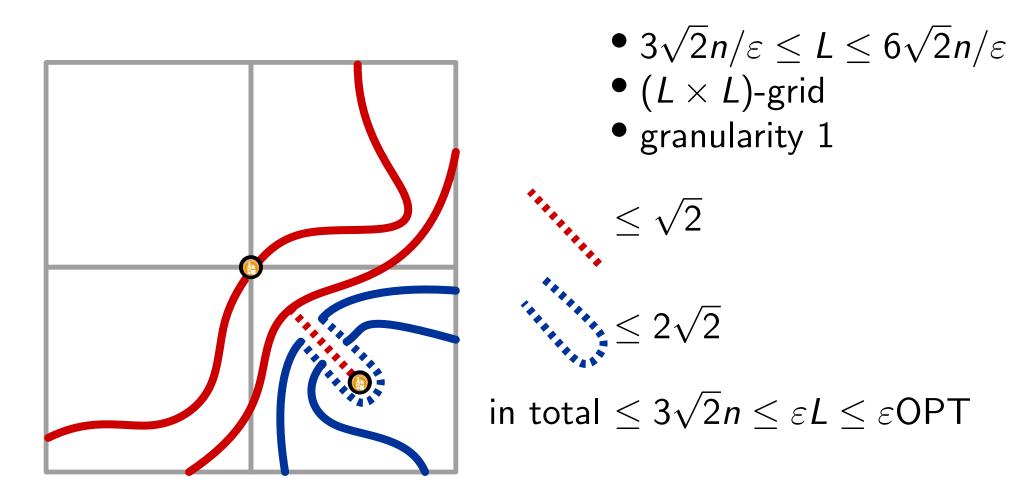
- $3\sqrt{2}n/\varepsilon \leq L \leq 6\sqrt{2}n/\varepsilon$
- $(L \times L)$ -grid
- granularity 1

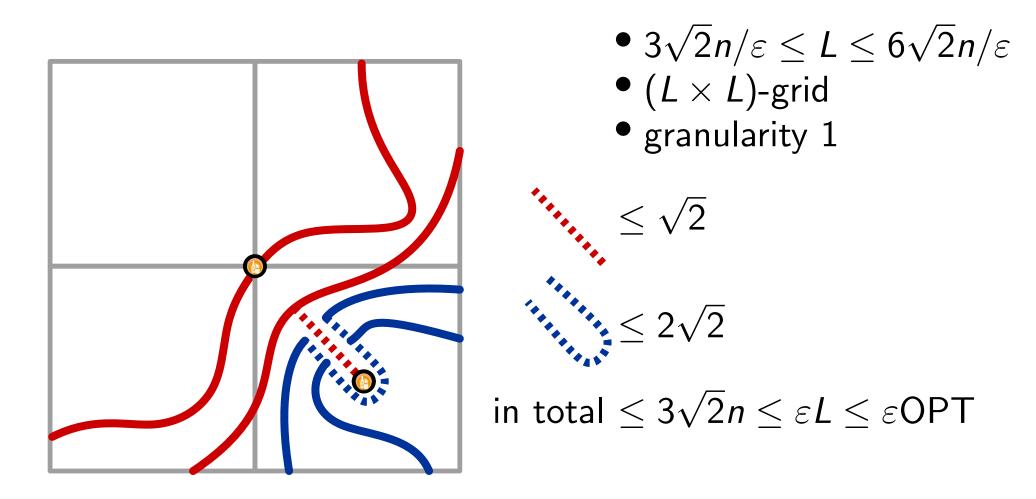
 $\leq \sqrt{2}$





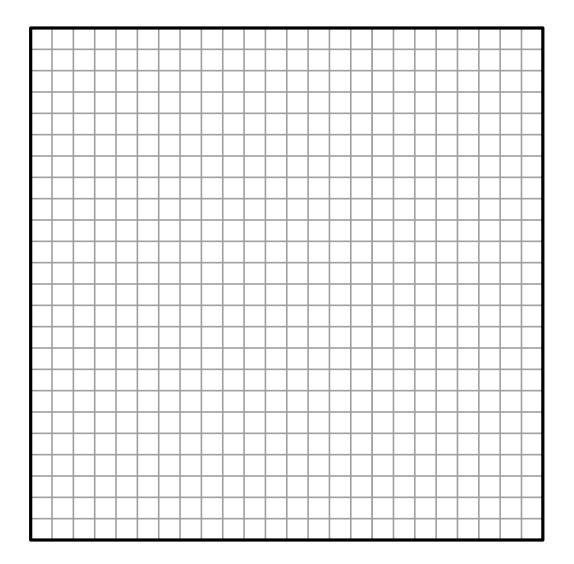




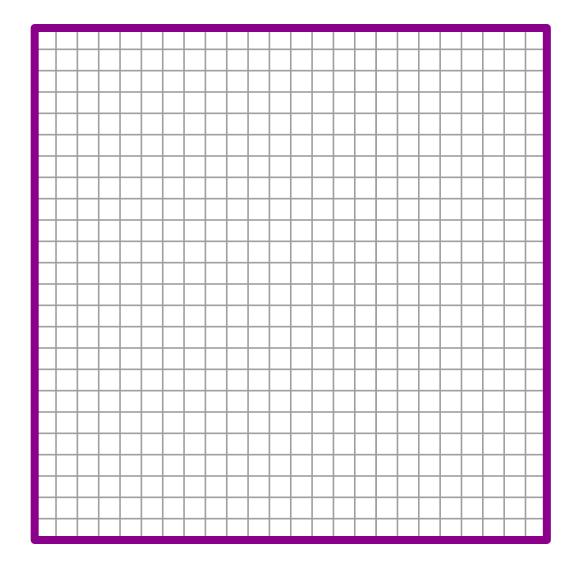


2-CESF instance $I \rightarrow$ rounded instance $I^* \rightarrow$ solution \mathcal{L}_I $|\mathcal{L}_I| \leq (1 + \varepsilon) \mathsf{OPT}_{I^*} \leq (1 + \varepsilon)^2 \mathsf{OPT}_I$

Quadtree Placement

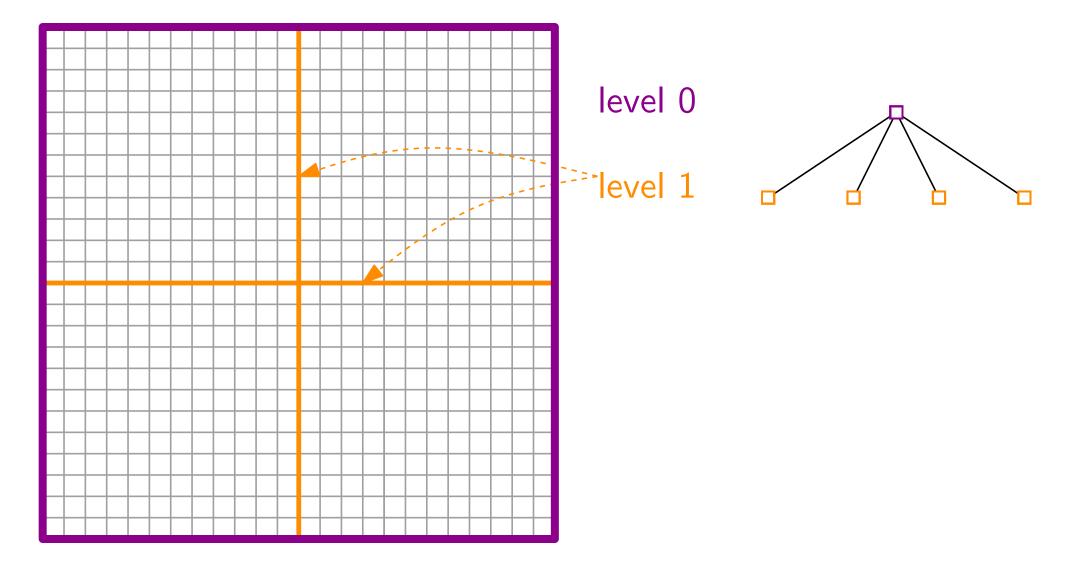


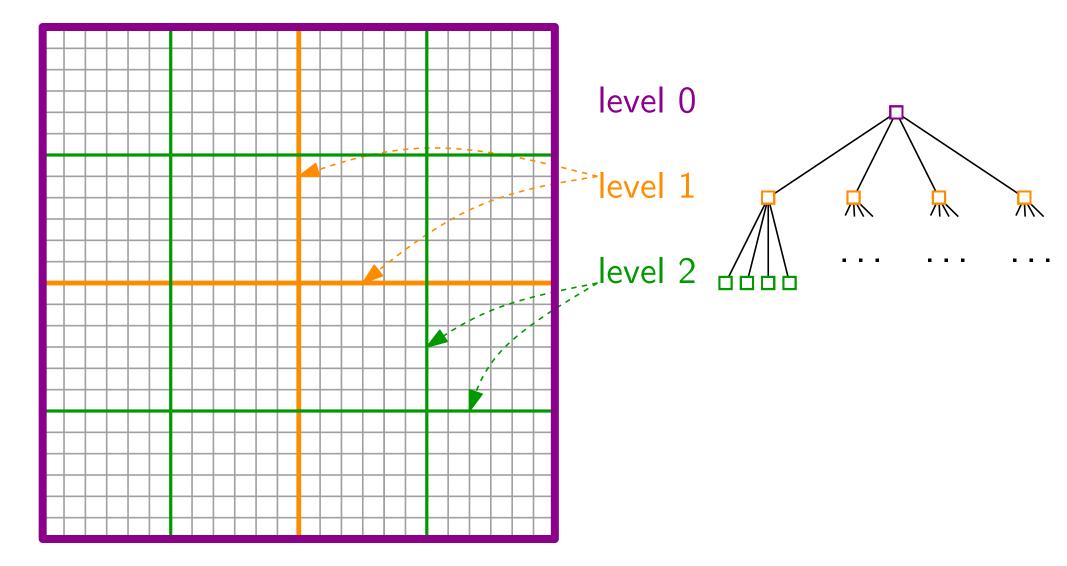
Quadtree Placement

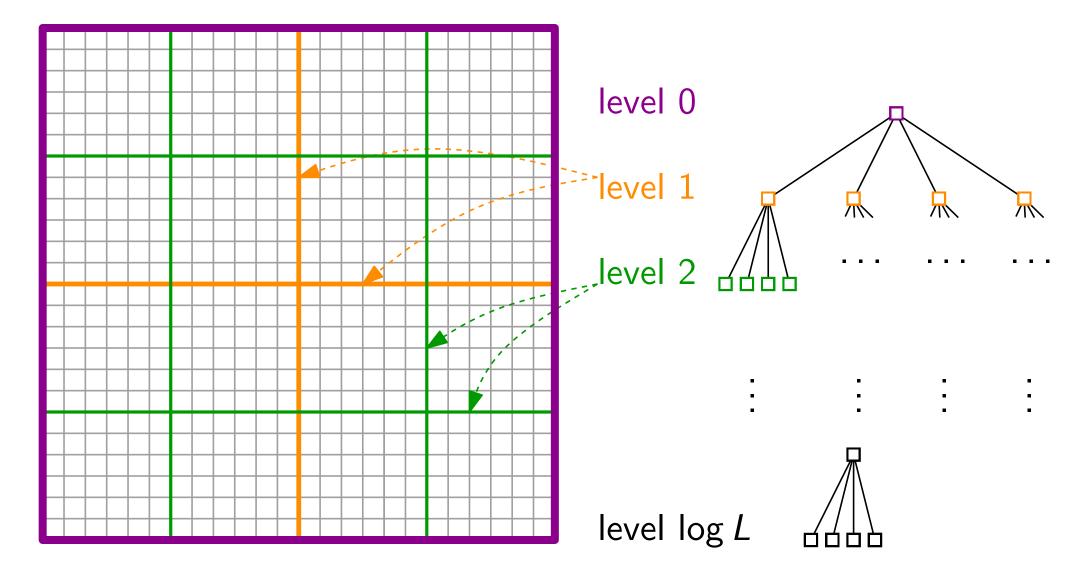


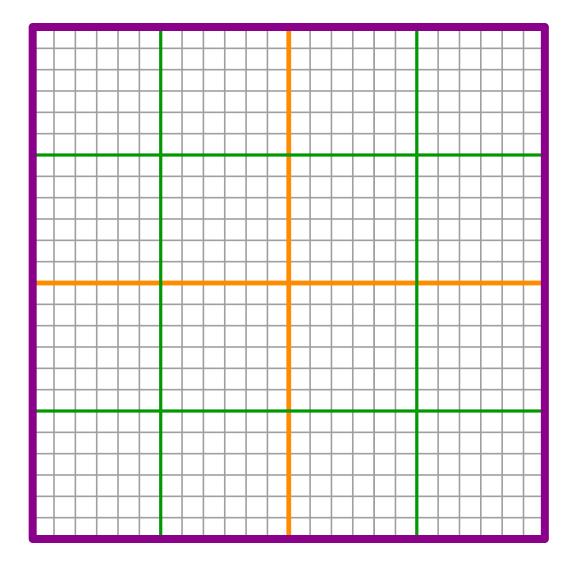
level 0

Quadtree Placement

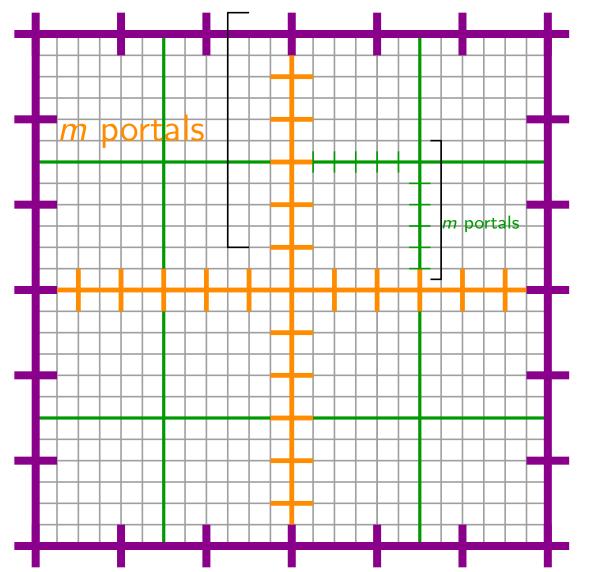




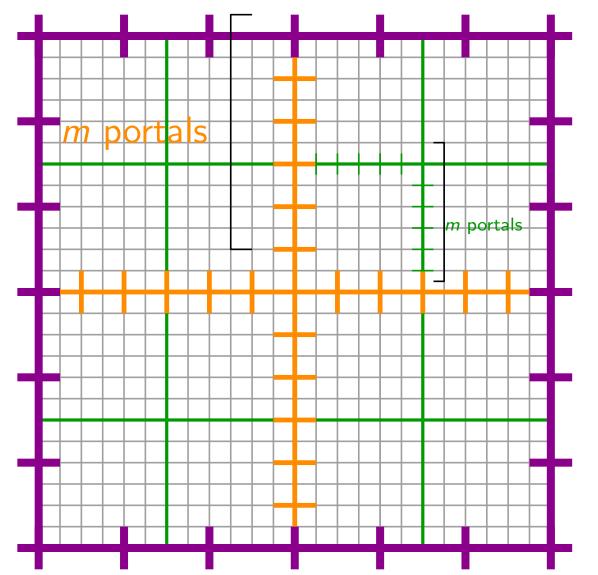




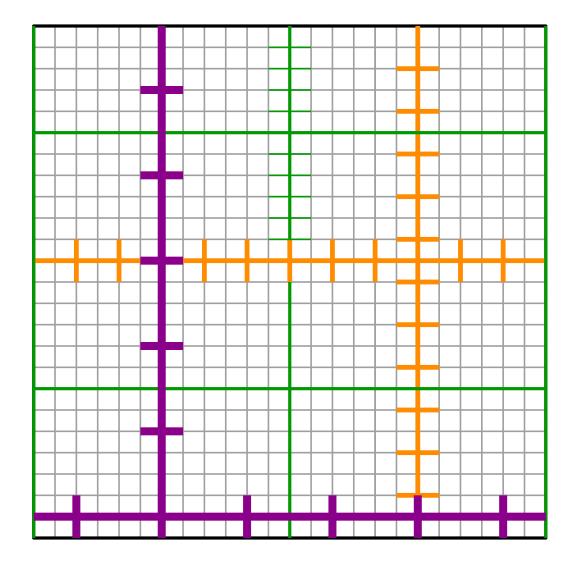
• $m = 4 \log(L) / \varepsilon$



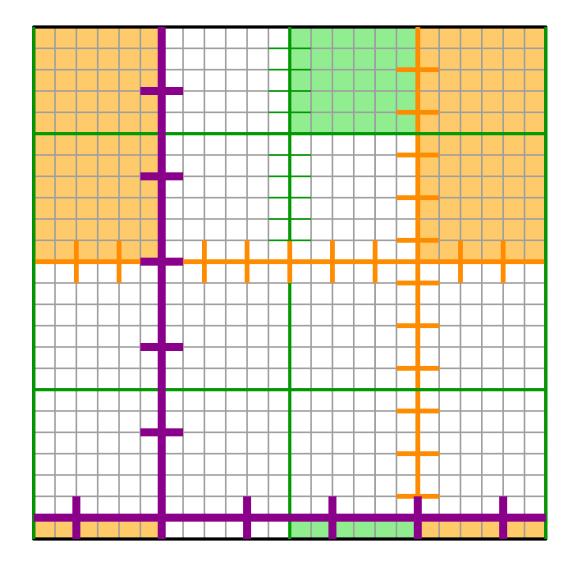
- $m = 4 \log(L) / \varepsilon$
- portals on level-*i*-line with distance $L/(2^{i}m)$



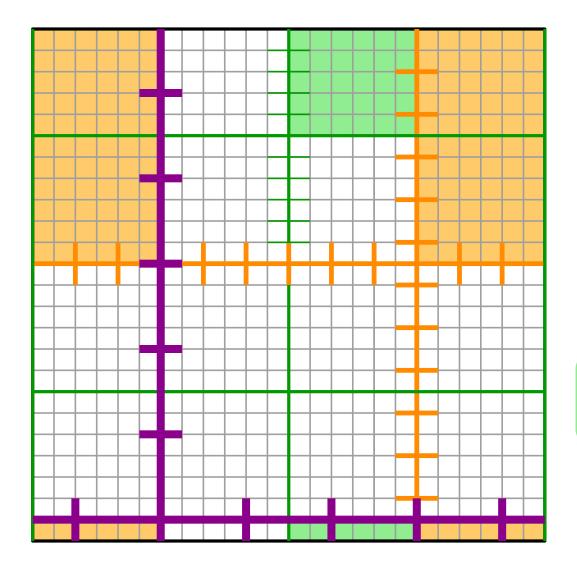
- $m = 4 \log(L) / \varepsilon$
- portals on level-*i*-line with distance $L/(2^{i}m)$
- level-*i*-square has at most
 4*m* portals on its margin



- $m = 4 \log(L) / \varepsilon$
- portals on level-*i*-line with distance $L/(2^{i}m)$
- level-*i*-square has at most
 4*m* portals on its margin
- place origin uniformly at random

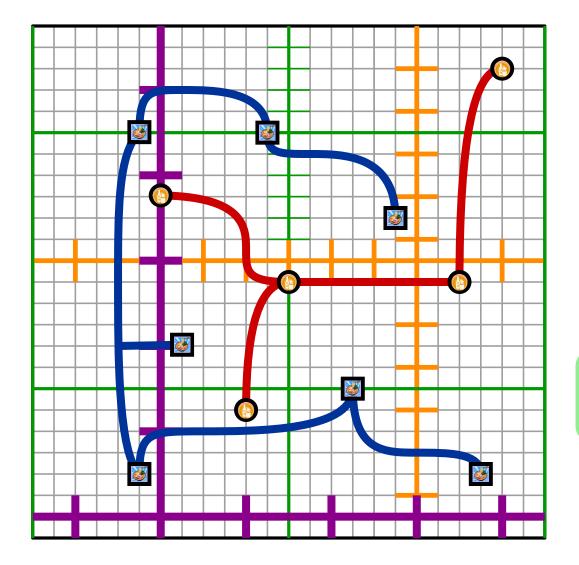


- $m = 4 \log(L) / \varepsilon$
- portals on level-*i*-line with distance $L/(2^{i}m)$
- level-*i*-square has at most
 4*m* portals on its margin
- place origin uniformly at random



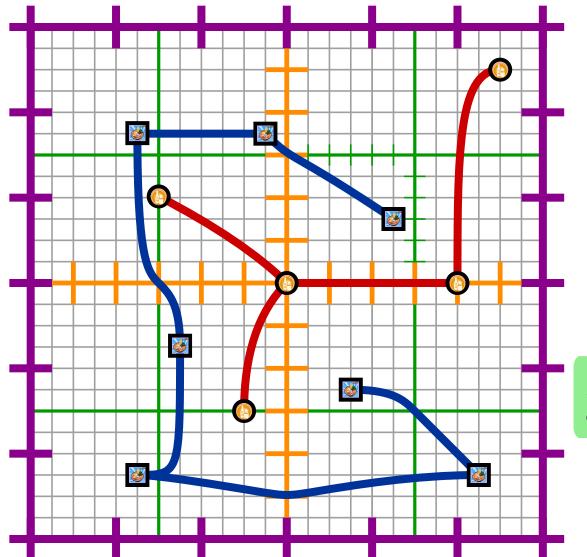
- $m = 4 \log(L) / \varepsilon$
- portals on level-*i*-line with distance $L/(2^{i}m)$
- level-*i*-square has at most
 4*m* portals on its margin
- place origin uniformly at random

portal-respecting solution: crosses grid lines only at portals



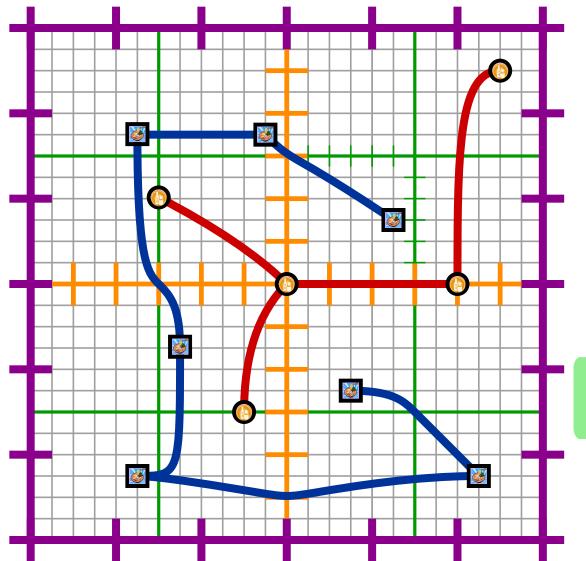
- $m = 4 \log(L) / \varepsilon$
- portals on level-*i*-line with distance $L/(2^{i}m)$
- level-*i*-square has at most
 4*m* portals on its margin
- place origin uniformly at random

portal-respecting solution: crosses grid lines only at portals



- $m = 4 \log(L) / \varepsilon$
- portals on level-*i*-line with distance $L/(2^{i}m)$
- level-*i*-square has at most
 4*m* portals on its margin
- place origin uniformly at random

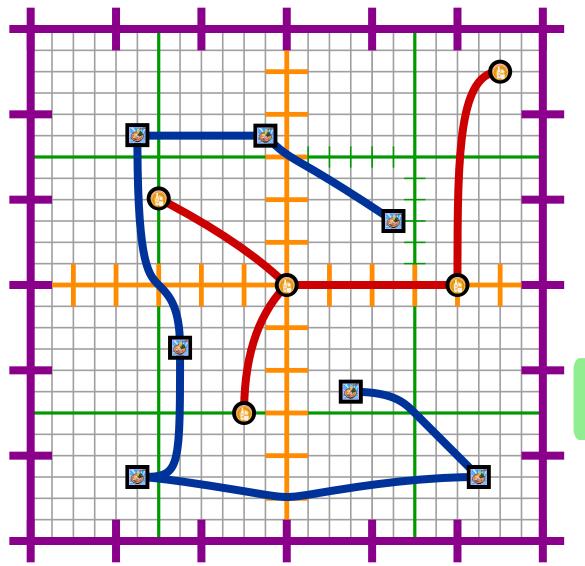
portal-respecting solution: crosses grid lines only at portals



- $m = 4 \log(L) / \varepsilon$
- portals on level-*i*-line with distance $L/(2^{i}m)$
- level-*i*-square has at most
 4*m* portals on its margin
- place origin uniformly at random

portal-respecting solution: crosses grid lines only at portals

line ℓ crosses drawing $t(\ell)$ times; expected length increase: $\leq \varepsilon \frac{t(\ell)}{4}$

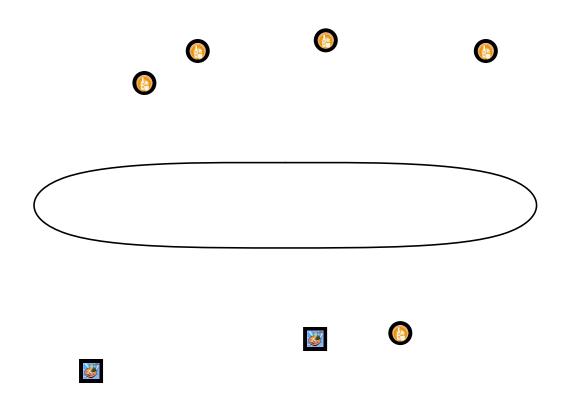


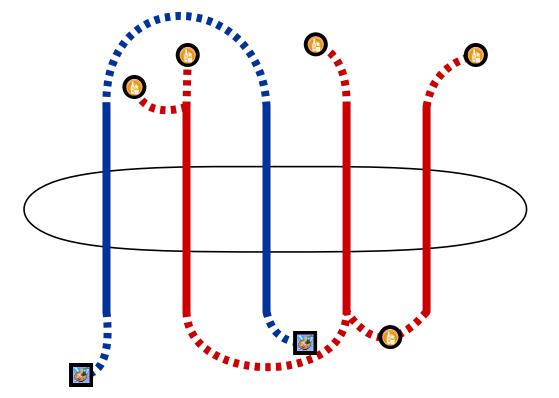
- $m = 4 \log(L) / \varepsilon$
- portals on level-*i*-line with distance $L/(2^{i}m)$
- level-*i*-square has at most
 4*m* portals on its margin
- place origin uniformly at random

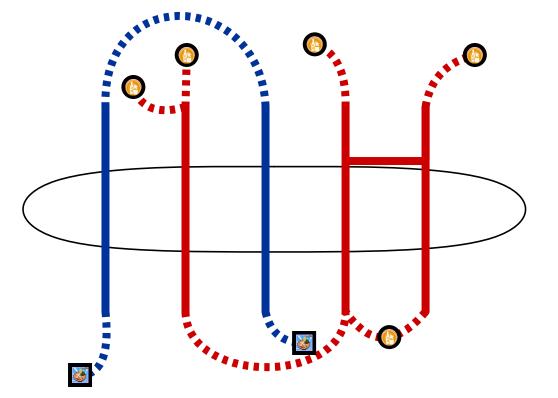
portal-respecting solution: crosses grid lines only at portals

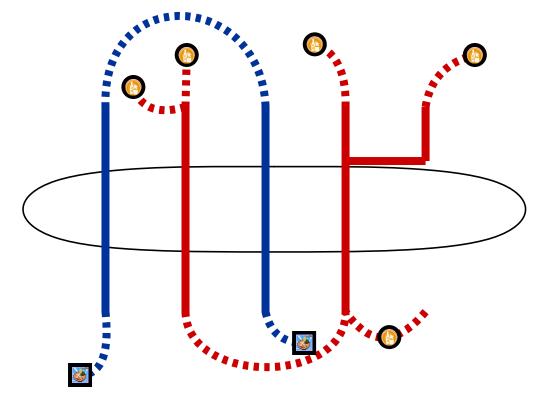
line ℓ crosses drawing $t(\ell)$ times; expected length increase: $\leq \varepsilon \frac{t(\ell)}{4}$

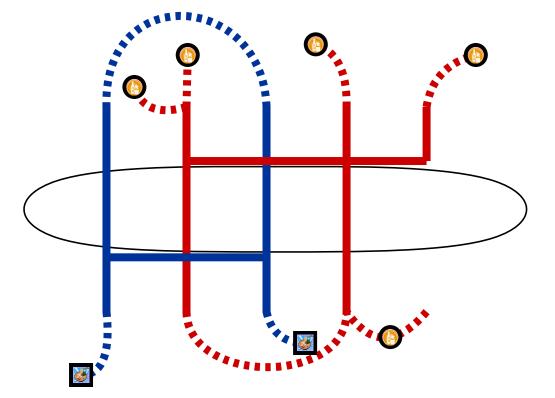
2-CESF instance $I \rightarrow$ portal-respecting solution \mathcal{L} $|\mathcal{L}| \leq (1 + \varepsilon)^3 \mathsf{OPT}_I$

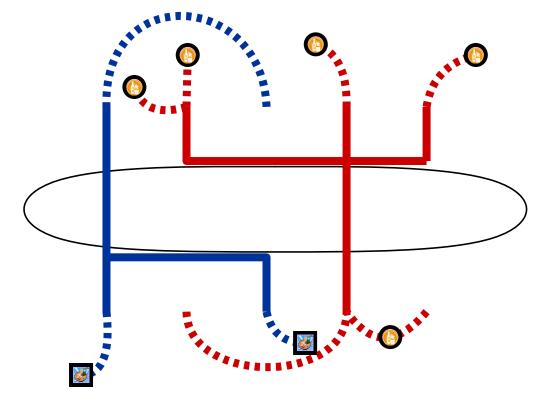


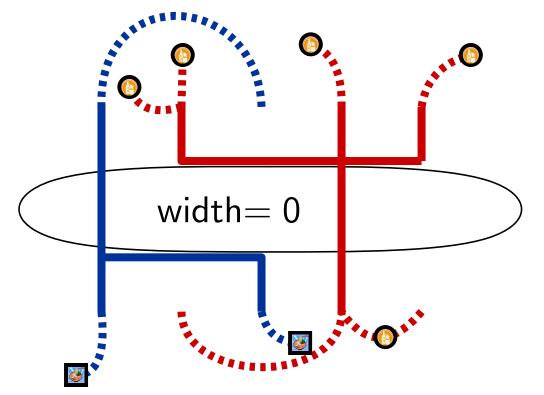




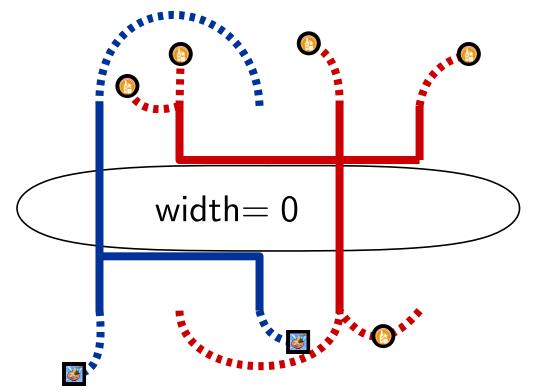






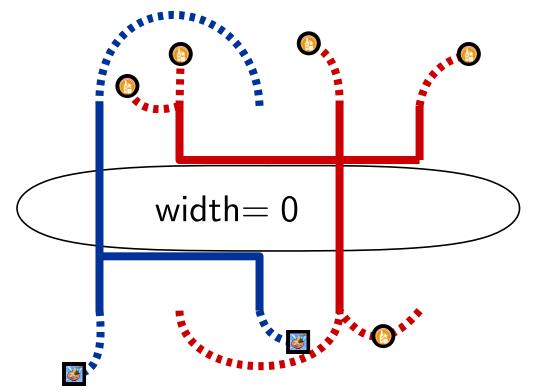


3-light solution: each portal is crossed at most 3 times



2-CESF instance $I \rightarrow$ portal-respecting 3-light solution \mathcal{L}^* $|\mathcal{L}^*| \leq (1 + \varepsilon)^3 \mathsf{OPT}_I$

3-light solution: each portal is crossed at most 3 times



2-CESF instance $I \rightarrow$ portal-respecting 3-light solution \mathcal{L}^* $|\mathcal{L}^*| \leq (1 + \varepsilon)^3 \mathsf{OPT}_I \leq (1 + \varepsilon') \mathsf{OPT}_I$

Use a dynamic program!

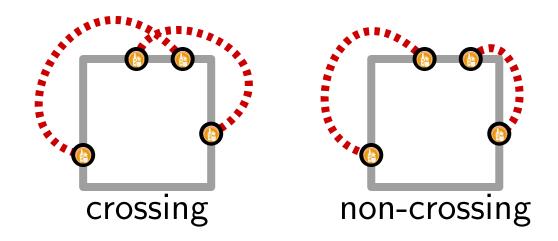
Use a dynamic program! A subproblem consists of:

• a square of the quadtree

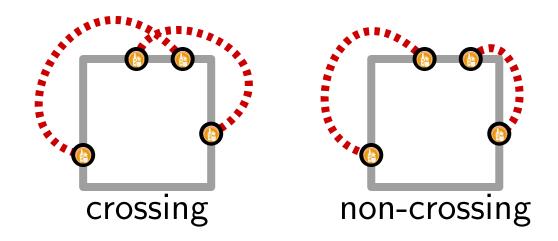
- a square of the quadtree
- up to three red and blue points on each portal

- a square of the quadtree
- up to three red and blue points on each portal
- non-crossing partition of the points into sets of same color

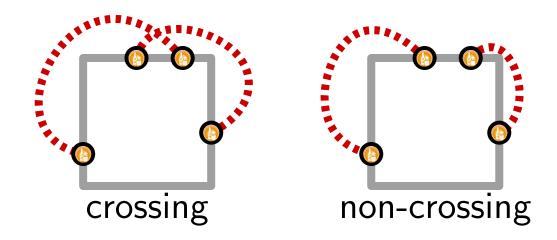
- a square of the quadtree
- up to three red and blue points on each portal
- non-crossing partition of the points into sets of same color



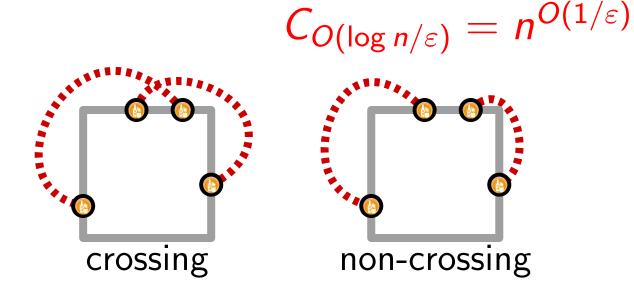
- a square of the quadtree $O(n^2)$
- up to three red and blue points on each portal
- non-crossing partition of the points into sets of same color



- a square of the quadtree $O(n^2)$ $2O(\log n/\varepsilon) = n^{O(1/\varepsilon)}$
- up to three red and blue points on each portal
- non-crossing partition of the points into sets of same color



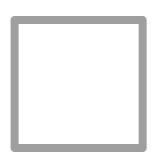
- a square of the quadtree $O(n^2)$ $2^{O(\log n/\varepsilon)} = n^{O(1/\varepsilon)}$
- up to three red and blue points on each portal
- non-crossing partition of the points into sets of same color



Use a dynamic program! A subproblem consists of:

- a square of the quadtree $O(n^2)$ $2O(\log n/\varepsilon) = n^{O(1/\varepsilon)}$
- up to three red and blue points on each portal
- non-crossing partition of the points into sets of same color $C_{O(\log n/\varepsilon)} = n^{O(1/\varepsilon)}$

Base case: unit square

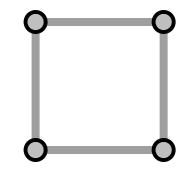


Use a dynamic program! A subproblem consists of:

- a square of the quadtree $O(n^2)$ $2O(\log n/\varepsilon) = n^{O(1/\varepsilon)}$
- up to three red and blue points on each portal
- non-crossing partition of the points into sets of same color $C_{O(\log n/\varepsilon)} = n^{O(1/\varepsilon)}$

Base case: unit square

• portals (and points) only in corners

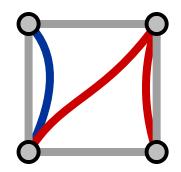


Use a dynamic program! A subproblem consists of:

- a square of the quadtree $O(n^2)$ $2O(\log n/\varepsilon) = n^{O(1/\varepsilon)}$
- up to three red and blue points on each portal
- non-crossing partition of the points into sets of same color $C_{O(\log n/\varepsilon)} = n^{O(1/\varepsilon)}$

Base case: unit square

- portals (and points) only in corners
- solve with PTAS for EST



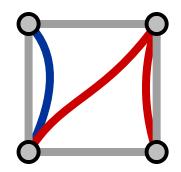
Use a dynamic program! A subproblem consists of:

- a square of the quadtree $O(n^2)$ $2O(\log n/\varepsilon) = n^{O(1/\varepsilon)}$
- up to three red and blue points on each portal
- non-crossing partition of the points into sets of same color $C_{O(\log n/\varepsilon)} = n^{O(1/\varepsilon)}$

Base case: unit square

- portals (and points) only in corners
- solve with PTAS for EST

Composite squares:



Putting Things Together

Use a dynamic program! A subproblem consists of:

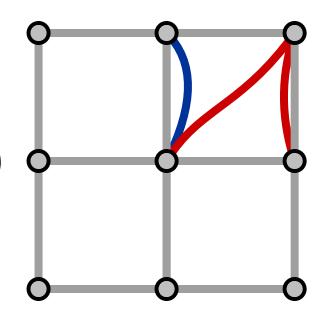
- a square of the quadtree $O(n^2)$ $2O(\log n/\varepsilon) = n^{O(1/\varepsilon)}$
- up to three red and blue points on each portal
- non-crossing partition of the points into sets of same color $C_{O(\log n/\varepsilon)} = n^{O(1/\varepsilon)}$

Base case: unit square

- portals (and points) only in corners
- solve with PTAS for EST

Composite squares:

• divide into squares (acc. to quadtree)



Putting Things Together

Use a dynamic program! A subproblem consists of:

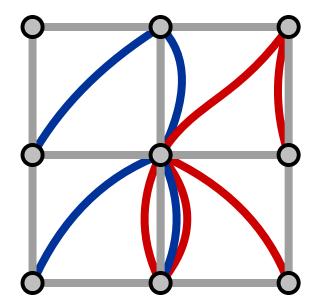
- a square of the quadtree $O(n^2)$ $2O(\log n/\varepsilon) = n^{O(1/\varepsilon)}$
- up to three red and blue points on each portal
- non-crossing partition of the points into sets of same color $C_{O(\log n/\varepsilon)} = n^{O(1/\varepsilon)}$

Base case: unit square

- portals (and points) only in corners
- solve with PTAS for EST

Composite squares:

- divide into squares (acc. to quadtree)
- solve each combination of $n^{O(1/\varepsilon)}$ compatible subproblems



Putting Things Together

Use a dynamic program! A subproblem consists of:

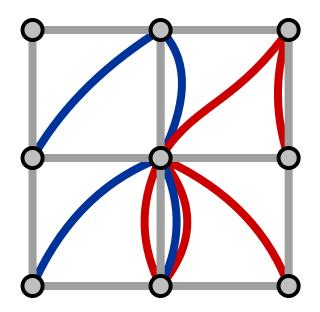
- a square of the quadtree $O(n^2)$ $2O(\log n/\varepsilon) = n^{O(1/\varepsilon)}$
- up to three red and blue points on each portal
- non-crossing partition of the points into sets of same color $C_{O(\log n/\varepsilon)} = n^{O(1/\varepsilon)}$

Base case: unit square

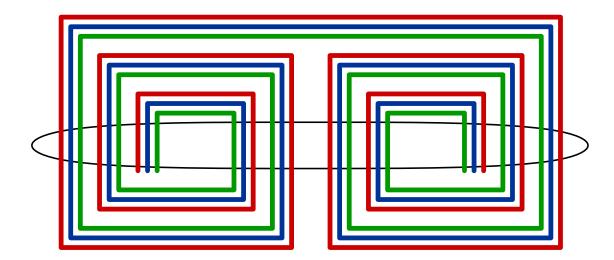
- portals (and points) only in corners
- solve with PTAS for EST

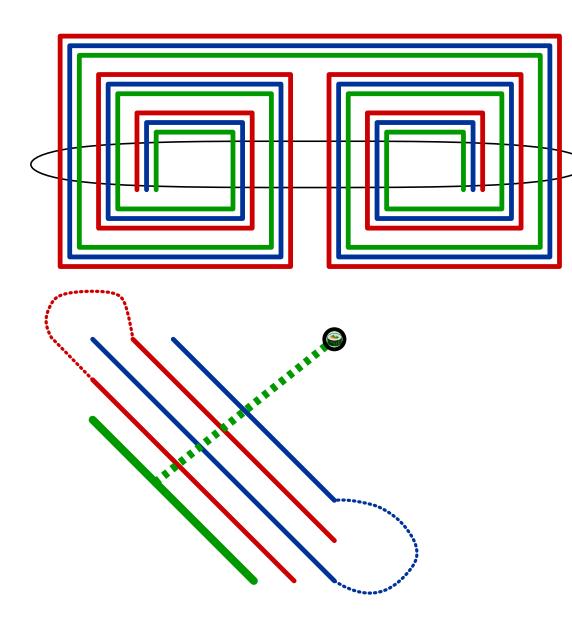
Composite squares:

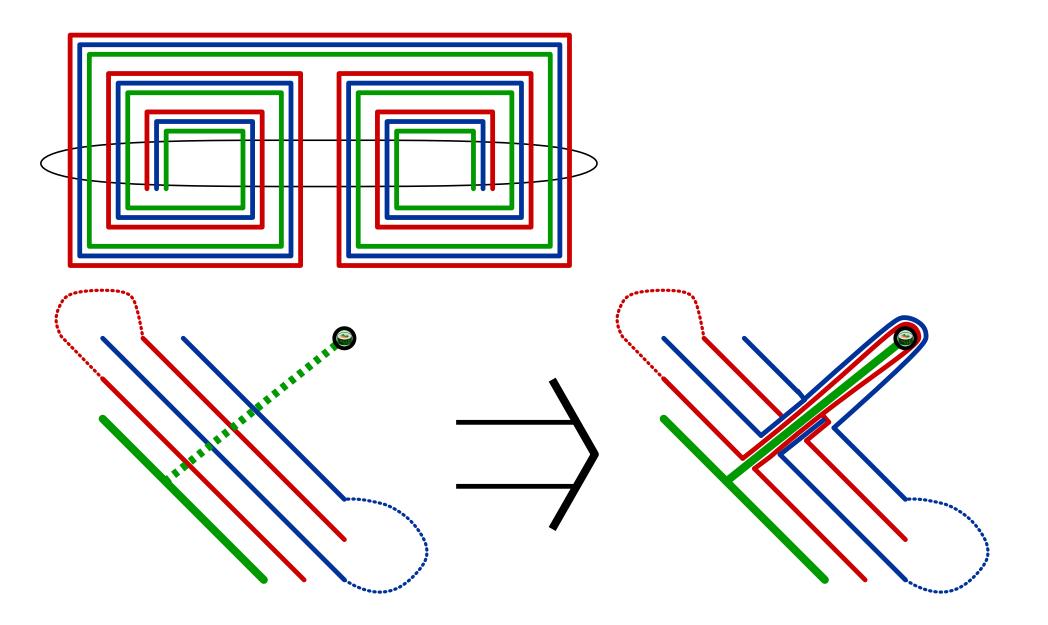
- divide into squares (acc. to quadtree)
- solve each combination of $n^{O(1/\varepsilon)}$ compatible subproblems

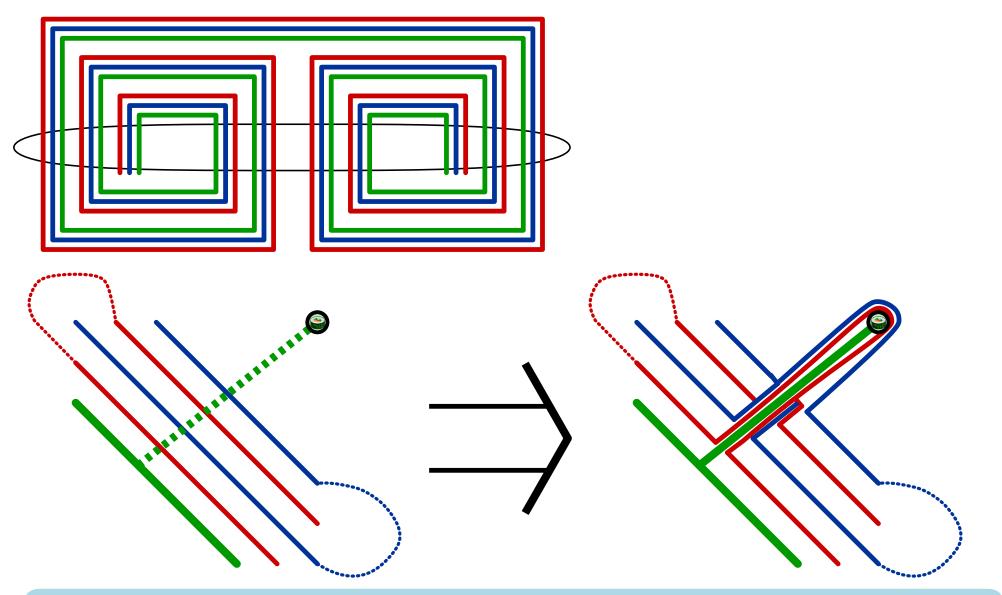


2-CESF admits a PTAS.

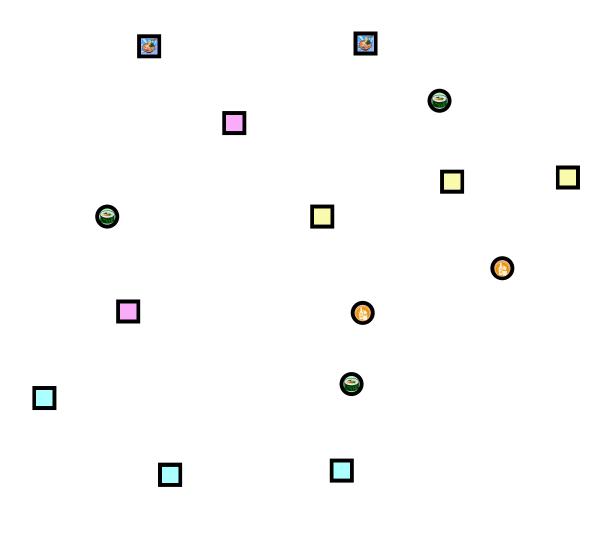


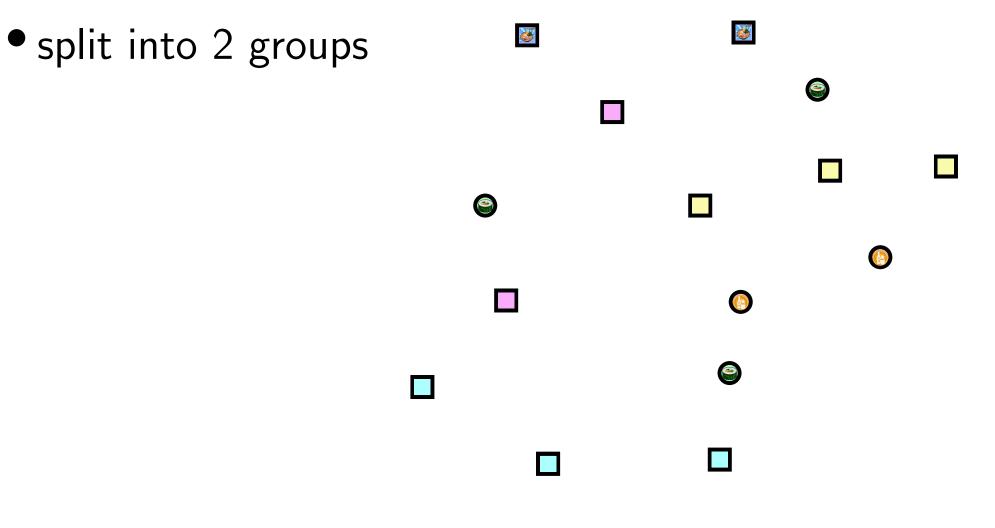


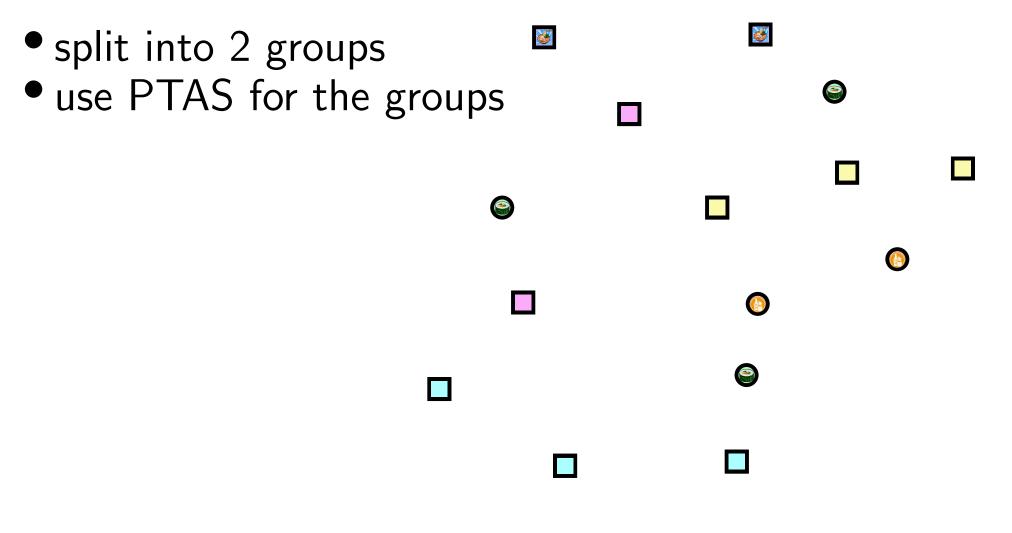


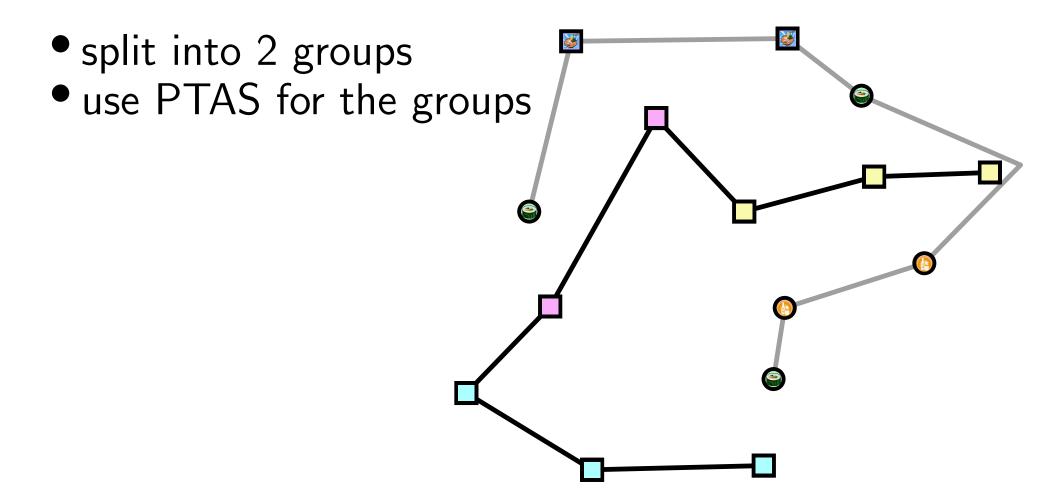


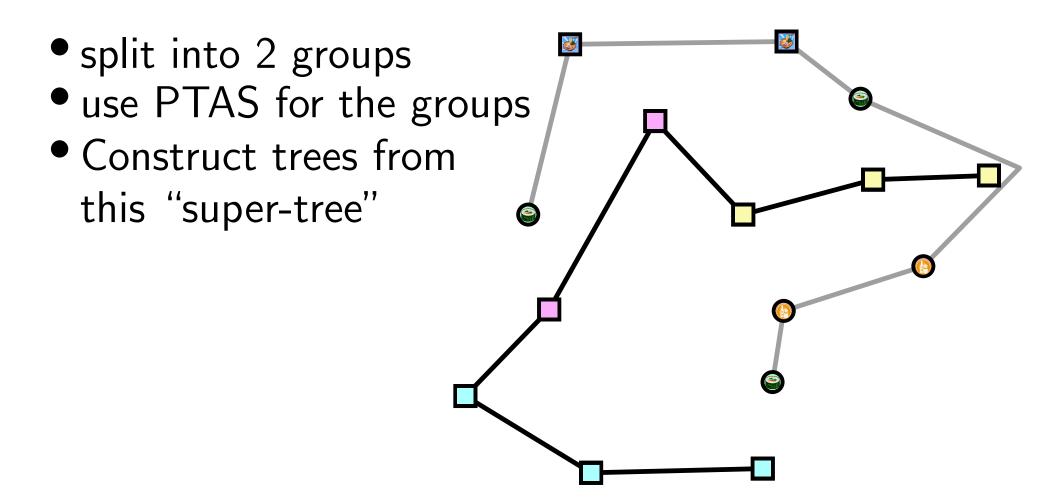
3-CESF admits a $(5/3 + \varepsilon)$ -approximation algorithm.

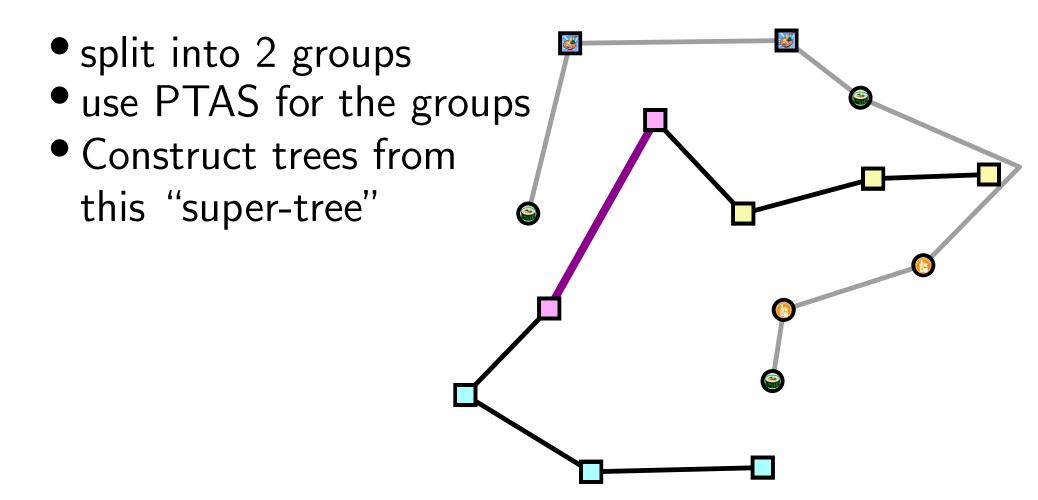


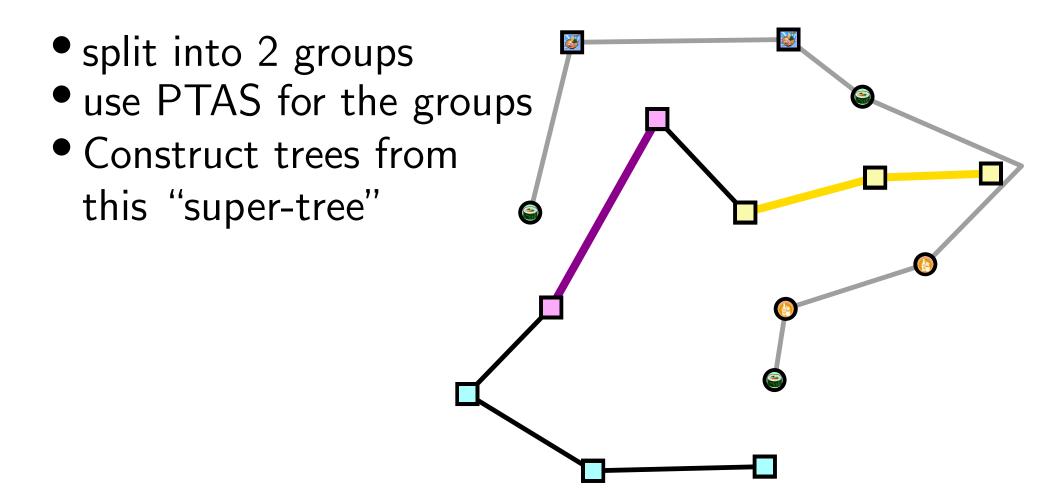


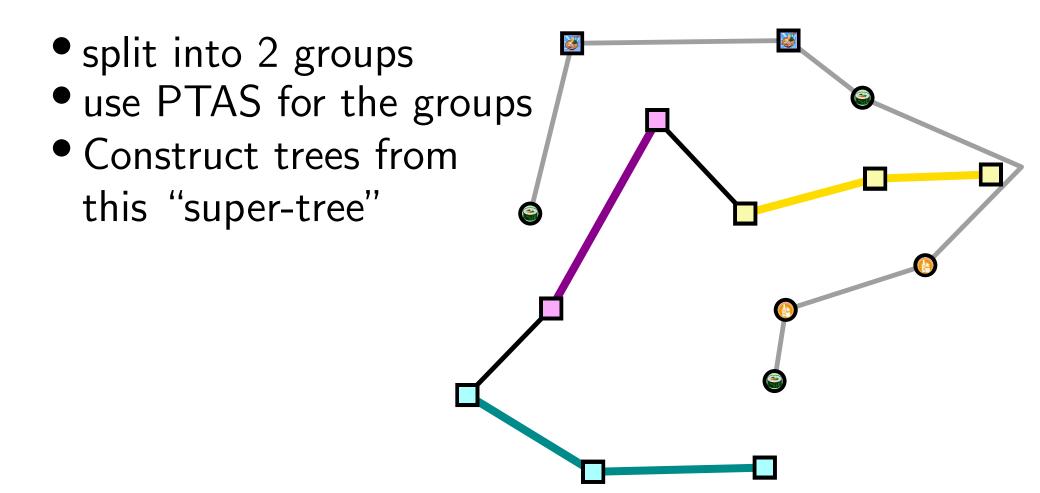


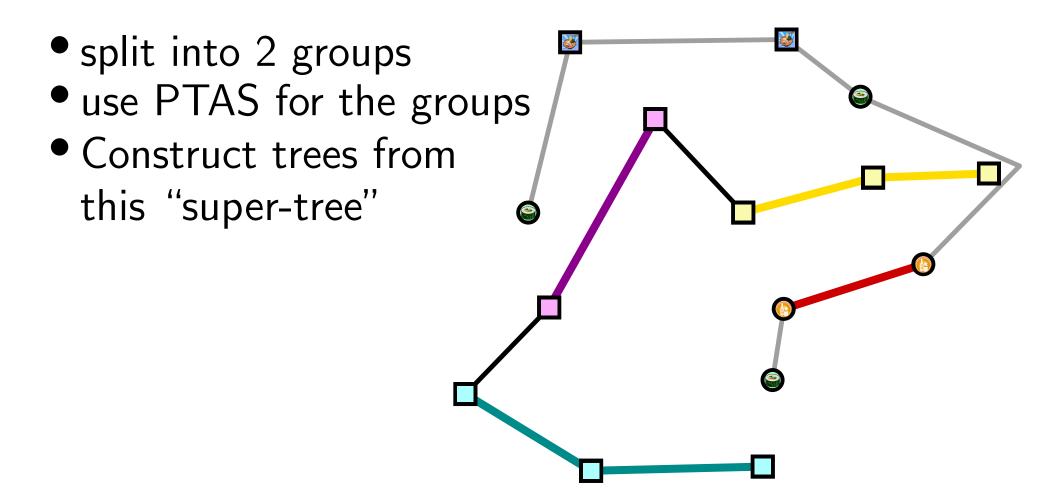


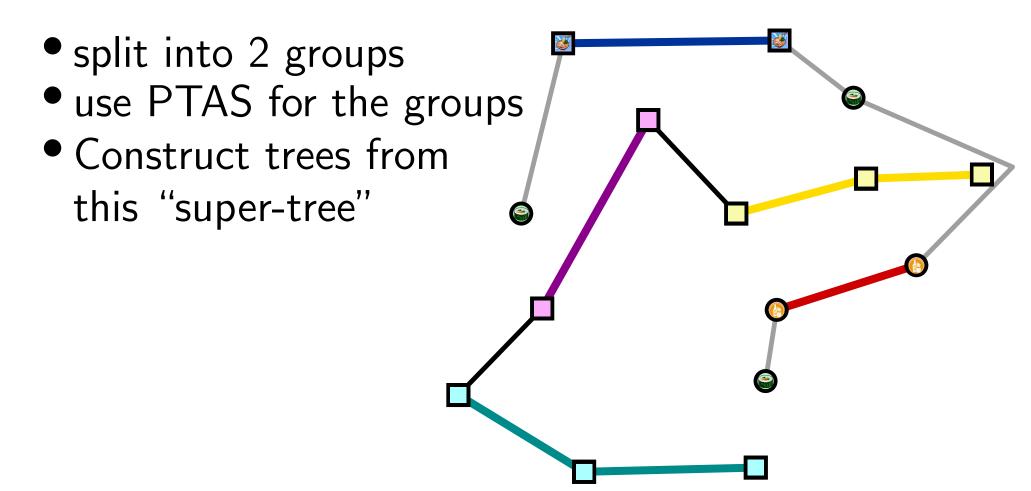


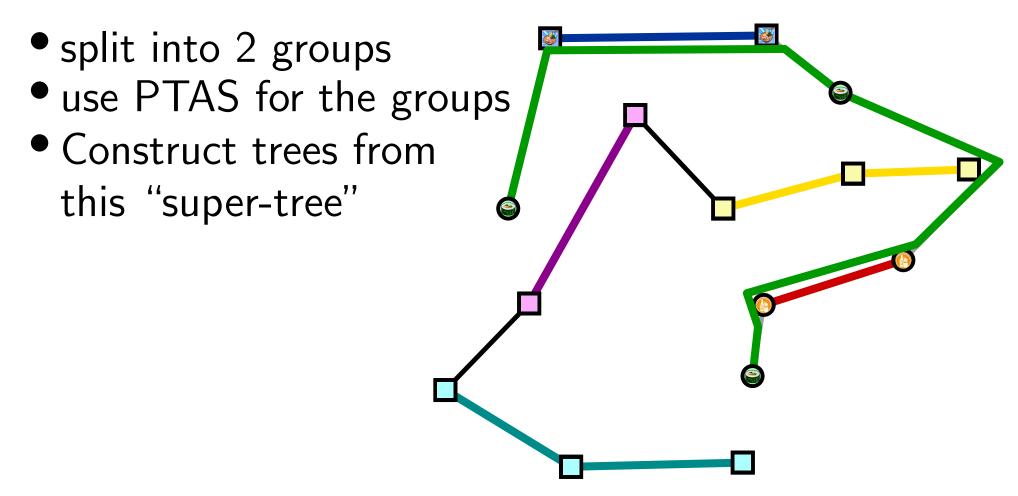


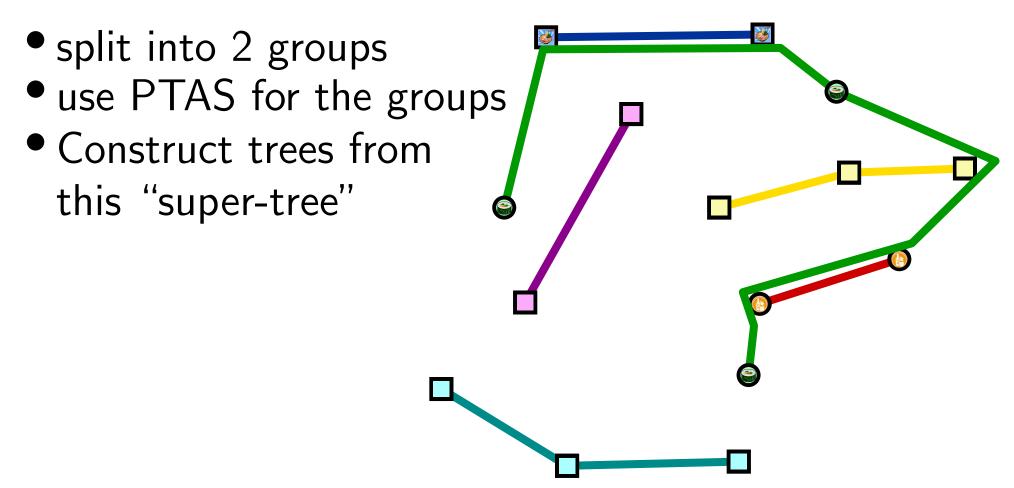


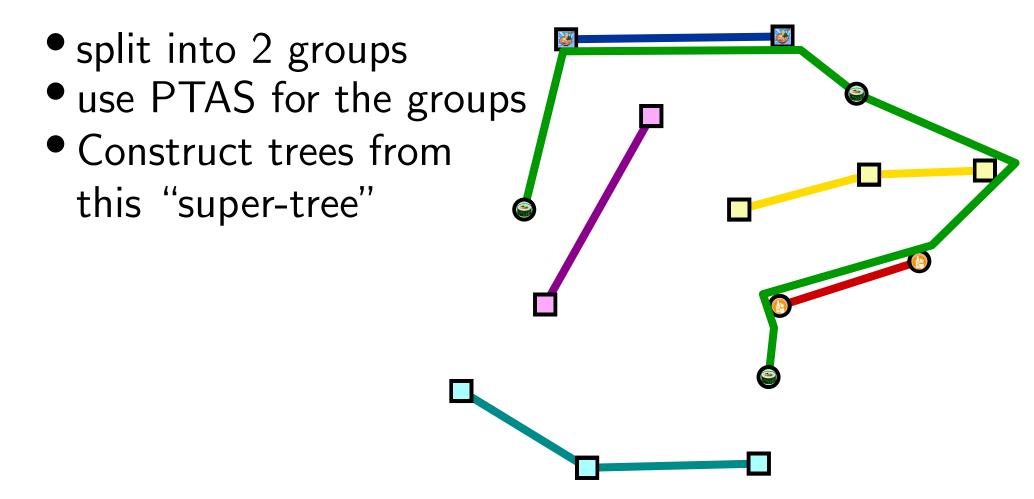












k-CESF admits an

- $(k + \varepsilon)$ -approximation algorithm is k is odd
- $(k 1 + \varepsilon)$ -approximation algorithm is k is even