instance GAP edges algorithm approximation items bins set vertex Corner contacts weight problem MAX-CROWN star forests model Theorem admits graph general Semantic OPT optimum maximum graph general ALG supporting profit total planar bipartite

Approximation Algorithms for Contact Representations of Rectangles

> Michalis Bekos Thomas van Dijk Martin Fink Philipp Kindermann Stephen Kobourov Sergey Pupyrev Joachim Spoerhase Alexander Wolff

> > Universität Tübingen University of Arizona Universität Würzburg

Spiegel Online Nov. 2013

Input

- (integral) box dimensions

Input

- (integral) box dimensions
- desired contact graph

Contact Representation Of Word Networks Input Output

- (integral) box dimensions
- desired contact graph

Contact Representation Of Word Networks Input Output

- (integral) box dimensions
- desired contact graph

- placement of boxes

- (integral) box dimensions
- desired contact graph

- placement of boxes
- realized desired contacts

- (integral) box dimensions
- desired contact graph

- placement of boxes
- realized desired contacts
- profit: 1 unit / desired edge

- (integral) box dimensions
- desired contact graph

- placement of boxes
- realized desired contacts
- profit: 1 unit / desired edge

MAX-CROWN:

- (integral) box dimensions
- desired contact graph

- placement of boxes
- realized desired contacts
- profit: 1 unit / desired edge

- (integral) box dimensions
- desired contact graph

- placement of boxes
- realized desired contacts
- profit: 1 unit / desired edge

Contact Representation Of Word Networks Output Input extra contacts: not counted. not forbidden 0

- (integral) box dimensions
- desired contact graph

 \mathcal{W}

- placement of boxes
- realized desired contacts
- profit: 1 unit / desired edge

Contact Representation Of Word Networks Output Input extra contacts: not counted. not forbidden 0

- (integral) box dimensions
- desired contact graph

 \mathcal{W}

- placement of boxes
- realized desired contacts
- profit: 1 unit / desired edge

- (integral) box dimensions
- desired contact graph

- placement of boxes
- realized desired contacts
- profit: 1 unit / desired edge

- (integral) box dimensions
- desired contact graph

- placement of boxes
- realized desired contacts
- profit: 1 unit / desired edge

- (integral) box dimensions
- desired contact graph

- placement of boxes
- realized desired contacts
- profit: units / desired edge e
 p(e)

rectangle / cube representation of graphs

rectangle / cube representation of graphs

Every planar graph w/o sep. triangles
 has a touching rectangle representation

rectangle / cube representation of graphs

Every planar graph w/o sep. triangles
 has a touching rectangle representation

rectangle / cube representation of graphs

Every planar graph w/o sep. triangles
 has a touching rectangle representation
 (which can be computed in linear time).

rectangle / cube representation of graphs

Every planar graph w/o sep. triangles
 has a touching rectangle representation
 (which can be computed in linear time).

[Koźminński & Kinnen, Networks'85; He, SICOMP'93; He & Kant, TCS'97]

- Every planar graph has a touching cube representation.

[Felsner & Francis, SoCG'11]

rectangle / cube representation of graphs

Every planar graph w/o sep. triangles
 has a touching rectangle representation
 (which can be computed in linear time).

[Koźminński & Kinnen, Networks'85; He, SICOMP'93; He & Kant, TCS'97]

- Every planar graph has a touching cube representation.

[Felsner & Francis, SoCG'11]

area-preserving rectangular cartograms

rectangle / cube representation of graphs

Every planar graph w/o sep. triangles
 has a touching rectangle representation
 (which can be computed in linear time).

[Koźminński & Kinnen, Networks'85; He, SICOMP'93; He & Kant, TCS'97]

- Every planar graph has a touching cube representation.

[Felsner & Francis, SoCG'11]

area-preserving rectangular cartograms

- introduced by Raisz [1934]
- area-universal rectangular layouts

rectangle / cube representation of graphs

Every planar graph w/o sep. triangles
 has a touching rectangle representation
 (which can be computed in linear time).

[Koźminński & Kinnen, Networks'85; He, SICOMP'93; He & Kant, TCS'97]

- Every planar graph has a touching cube representation.

[Felsner & Francis, SoCG'11]

area-preserving rectangular cartograms

- introduced by Raisz [1934]
- area-universal rectangular layouts

rectangle / cube representation of graphs

Every planar graph w/o sep. triangles
 has a touching rectangle representation
 (which can be computed in linear time).

[Koźminński & Kinnen, Networks'85; He, SICOMP'93; He & Kant, TCS'97]

- Every planar graph has a touching cube representation.

[Felsner & Francis, SoCG'11]

area-preserving rectangular cartograms

- introduced by Raisz [1934]
- area-universal rectangular layouts

rectangle / cube representation of graphs

Every planar graph w/o sep. triangles
 has a touching rectangle representation
 (which can be computed in linear time).

[Koźminński & Kinnen, Networks'85; He, SICOMP'93; He & Kant, TCS'97]

- Every planar graph has a touching cube representation.

[Felsner & Francis, SoCG'11]

area-preserving rectangular cartograms

- introduced by Raisz [1934]
- area-universal rectangular layouts

rectangle / cube representation of graphs

- Every planar graph w/o sep. triangles
 has a touching rectangle representation
 (which can be computed in linear time).
- Every planar graph has a touching cube representation.

[Felsner & Francis, SoCG'11]

area-preserving rectangular cartograms

- introduced by Raisz [1934]
- area-universal rectangular layouts

[Eppstein et al., SICOMP'12]

rectangle representations with edge weights

rectangle / cube representation of graphs

- Every planar graph w/o sep. triangles
 has a touching rectangle representation
 (which can be computed in linear time).
- Every planar graph has a touching cube representation.

[Felsner & Francis, SoCG'11]

area-preserving rectangular cartograms

- introduced by Raisz [1934]
- area-universal rectangular layouts

rectangle representations with edge weights

- edge weights prescribe length of contact

[Eppstein et al., SICOMP'12]

[Nöllenburg et al., GD'12]

Our Results – Approximation Factors

	Weighted		
Graph class	old*	new [°]	
cycle, path	1		
star	lpha	1+arepsilon	
tree	2α , NP-hard	2+arepsilon	
max-degree Δ	$\lfloor (\varDelta+1)/2 floor$		
planar max-deg. $arDelta$			
outerplanar		$3 + \varepsilon$	
planar	5lpha	$5+\varepsilon$	
bipartite		16lpha/3~pprox 8.4	
		APX-hard	
general		rand.: 32 $lpha/$ 3 $pprox$ 16.9	
		det.: 40 $lpha/3pprox 21.1$	

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt, Wolff – LATIN'14]
 ^o) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted]

lpha=e/(e-1)pprox 1.58

Our Results – Approximation Factors

	Weighted		Unweighted
Graph class	old*	new ^o	new°
cycle, path	1		
star	lpha	1+arepsilon	
tree	2α , NP-hard	2+arepsilon	2
max-degree Δ	$\lfloor (\varDelta + 1)/2 floor$		
planar max-deg. $arDelta$			$1 + \varepsilon$
outerplanar		$3+\varepsilon$	
planar	5lpha	5+arepsilon	
bipartite		16lpha/3~pprox 8.4	
		APX-hard	
general		rand.: $32lpha/3pprox 16.9$ det.: $40lpha/3pprox 21.1$	$5+16lpha/3\ pprox$ 13.4

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt, Wolff – LATIN'14]

 $^{\rm O}$) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted]

lpha=e/(e-1)pprox 1.58

Our Results – Approximation Factors

	Weighted		Unweighted
Graph class	old*	new ^o	new°
cycle, path	1		
star	α	1+arepsilon	
tree	2α , NP-hard	$2+\varepsilon$	2
max-degree Δ	$\lfloor (\Delta + 1)/2 \rfloor$		
planar max-deg. $arDelta$			$1 + \varepsilon$
outerplanar		$3+\varepsilon$	
planar	5α	5+arepsilon	
bipartite		16lpha/3~pprox 8.4	
		APX-hard	
general		rand.: $32lpha/3pprox 16.9$ det.: $40lpha/3pprox 21.1$	$5+16lpha/3\ pprox$ 13.4

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt, Wolff – LATIN'14]

^o) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted]

lpha=e/(e-1)pprox 1.58
Our Results – Approximation Factors

	Weighted		Unweighted
Graph class	old*	new ^o	new°
cycle, path	1		
star	α	1+arepsilon	
tree	2α , NP-hard	$2+\varepsilon$	2
max-degree Δ	$\lfloor (\Delta + 1)/2 \rfloor$		
planar max-deg. $arDelta$			$1 + \varepsilon$
outerplanar		$3+\varepsilon$	
planar	5α	5+arepsilon	
bipartite		16lpha/3~pprox 8.4	
		APX-hard	
general		rand.: $32lpha/3pprox 16.9$ det.: $40lpha/3pprox 21.1$	$5+16lpha/3\ pprox$ 13.4

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt, Wolff – LATIN'14]

^o) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted]

Tool #1: GAP

Tool #1: GAP

items

- size s_i
- value v_i

Tool #1: GAP

- $\operatorname{size} s_i$ $\operatorname{bin} has capacity c$
- value v_i

Tool #1: GAP

- size s_i bin has capacity c
- value v_i

Tool #1: GAP

- size s_i – bin has capacity c

- value v_i maximize total value packed

Tool #1: GAP

GENERALIZED ASSIGNMENT PROB.

- bin has capacity *c*
- value *v*i

– size s_i

- maximize total value packed

Tool #1: GAP

- size s_{ij}
- value v_{ij}
- bin_j has capacity c_j
- maximize total value packed

Tool #1: GAP

– size s_{ij}

- value v_{ij}

- bin_j has capacity c_j
- maximize total value packed

Theorem. GAP admits an approximation algorithm with ratio $\alpha = e/(e-1) \approx 1.58$. [Fleischer et al., MOR'11]

Set up GAP:

- eight bins (for the 4 sides and the 4 corners of B_1)

Set up GAP:

- eight bins (for the 4 sides and the 4 corners of B_1)

– corner bins have capacity 1/2

- eight bins (for the 4 sides and the 4 corners of B_1)
- corner bins have capacity $1/2\,$
- the capacity of side bins is their "free" length

- eight bins (for the 4 sides and the 4 corners of B_1)
- corner bins have capacity $1/2\,$
- the capacity of side bins is their "free" length
- items 2, . . . , *n*; one for each leaf

- eight bins (for the 4 sides and the 4 corners of B_1)
- corner bins have capacity $1/2\,$
- the capacity of side bins is their "free" length
- items 2, . . . , *n*; one for each leaf
- the value of item i is $p(v_1v_i)$, the profit of edge v_1v_i

- eight bins (for the 4 sides and the 4 corners of B_1)
- corner bins have capacity 1/2
- the capacity of side bins is their "free" length
- items 2, . . . , *n*; one for each leaf
- the value of item i is $p(v_1v_i)$, the profit of edge v_1v_i
- item *i* has size 1/2 in corner bins,
 - w_i in top/bottom side bins, h_i in left/right side bins

Set up GAP:

- eight bins (for the 4 sides and the 4 corners of B_1)
- corner bins have capacity 1/2
- the capacity of side bins is their "free" length
- items 2, . . . , *n*; one for each leaf
- the value of item i is $p(v_1v_i)$, the profit of edge v_1v_i
- item *i* has size 1/2 in corner bins,

 w_i in top/bottom side bins, h_i in left/right side bins

Set up GAP:

- eight bins (for the 4 sides and the 4 corners of B_1)
- corner bins have capacity $1/2\,$
- the capacity of side bins is their "free" length
- items 2, . . . , *n*; one for each leaf
- the value of item i is $p(v_1v_i)$, the profit of edge v_1v_i
- item *i* has size 1/2 in corner bins,

 w_i in top/bottom side bins, h_i in left/right side bins

Algorithm:

• Assume that the 4 corner rectangles have contacts of length $\frac{1}{2}$ in a fixed optimal solution.

Set up GAP:

- eight bins (for the 4 sides and the 4 corners of B_1)
- corner bins have capacity 1/2
- the capacity of side bins is their "free" length
- items 2, . . . , *n*; one for each leaf
- the value of item i is $p(v_1v_i)$, the profit of edge v_1v_i
- item *i* has size 1/2 in corner bins,

 w_i in top/bottom side bins, h_i in left/right side bins

Algorithm:

• Assume that the 4 corner rectangles have contacts of length $\frac{1}{2}$ in a fixed optimal solution.

B₃ B₄ B₁ B₂ B₅ Set up GAP:

- eight bins (for the 4 sides and the 4 corners of B_1)
- corner bins have capacity $1/2\,$
- the capacity of side bins is their "free" length
- items 2, . . . , *n*; one for each leaf
- the value of item i is $p(v_1v_i)$, the profit of edge v_1v_i
- item i has size 1/2 in corner bins,
 - w_i in top/bottom side bins, h_i in left/right side bins

- Assume that the 4 corner rectangles have contacts of length $\frac{1}{2}$ in a fixed optimal solution.
- Each contact may be horizontal or vertical.

B₃ B₄ B₁ B₂ B₅ Set up GAP:

- eight bins (for the 4 sides and the 4 corners of B_1)
- corner bins have capacity $1/2\,$
- the capacity of side bins is their "free" length
- items 2, . . . , *n*; one for each leaf
- the value of item i is $p(v_1v_i)$, the profit of edge v_1v_i
- item i has size 1/2 in corner bins,
 - w_i in top/bottom side bins, h_i in left/right side bins

- Assume that the 4 corner rectangles have contacts of length $\frac{1}{2}$ in a fixed optimal solution.
- Each contact may be horizontal or vertical.
- Try all 2⁴ possibilities

B₃ B₄ B₁ B₂ B₅ Set up GAP:

- eight bins (for the 4 sides and the 4 corners of B_1)
- corner bins have capacity $1/2\,$
- the capacity of side bins is their "free" length
- items 2, . . . , *n*; one for each leaf
- the value of item i is $p(v_1v_i)$, the profit of edge v_1v_i
- item i has size 1/2 in corner bins,
 - w_i in top/bottom side bins, h_i in left/right side bins

- Assume that the 4 corner rectangles have contacts of length $\frac{1}{2}$ in a fixed optimal solution.
- Each contact may be horizontal or vertical.
- Try all 2⁴ possibilities by calling α -approx. for GAP.

 B_{3} B_{4} B_{1} B_{2} B_{5}

Set up GAP:

- eight bins (for the 4 sides and the 4 corners of B_1)
- corner bins have capacity $1/2\,$
- the capacity of side bins is their "free" length
- items 2, . . . , *n*; one for each leaf
- the value of item i is $p(v_1v_i)$, the profit of edge v_1v_i
- item i has size 1/2 in corner bins,
 - w_i in top/bottom side bins, h_i in left/right side bins

- Assume that the 4 corner rectangles have contacts of length $\frac{1}{2}$ in a fixed optimal solution.
- Each contact may be horizontal or vertical.
- Try all 2⁴ possibilities by calling α -approx. for GAP.
- $\Rightarrow \alpha$ -approx. algorithm for MAX-CROWN on stars

Overview

	Weighted		Unweighted
Graph class	old*	new ^o	new [°]
cycle, path	1		
star	α	1+arepsilon	
tree	2α , NP-hard	2+arepsilon	2
max-degree $arDelta$	$\lfloor (\Delta + 1)/2 \rfloor$		
planar max-deg. $arDelta$			$1 + \varepsilon$
outerplanar		$3+\varepsilon$	
planar	5α	5+arepsilon	
bipartite		16lpha/3~pprox 8.4	
		APX-hard	
general		rand.: $32lpha/3pprox 16.9$ det.: $40lpha/3pprox 21.1$	$5+16lpha/3\ pprox$ 13.4

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN'14]
 ^o) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted]

Overview

	Weighted		Unweighted
Graph class	old*	new ^o	new [°]
cycle, path	1		
star	α	1+arepsilon	
tree	2α , NP-hard	2+arepsilon	2
max-degree $arDelta$	$\lfloor (\Delta+1)/2 floor$		
planar max-deg. $arDelta$			$1 + \varepsilon$
outerplanar		$3+\varepsilon$	
planar	5α	5+arepsilon	
bipartite		16lpha/3~pprox 8.4	
		APX-hard	
general		rand.: $32lpha/3pprox 16.9$ det.: $40lpha/3pprox 21.1$	$5+16lpha/3\ pprox$ 13.4

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN'14]
 ^o) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted]

Overview

	Weighted		Unweighted
Graph class	old*	new ^o	new°
cycle, path	1		
star	α	1+arepsilon	
tree	2α , NP-hard	2+arepsilon	2
max-degree $arDelta$	$\lfloor (\Delta + 1)/2 \rfloor$		
planar max-deg. $arDelta$			$1 + \varepsilon$
outerplanar	3α	$3+\varepsilon$	
planar	5α	5+arepsilon	
bipartite		16lpha/3~pprox 8.4	
		APX-hard	
general		rand.: $32lpha/3pprox 16.9$ det.: $40lpha/3pprox 21.1$	$5+16lpha/3\ pprox$ 13.4

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN'14]
 ^o) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted]

Lemma. Let $G_1 = (V, E_1), G_2 = (V, E_2), G = (V, E_1 \cup E_2).$

Lemma. Let $G_1 = (V, E_1)$, $G_2 = (V, E_2)$, $G = (V, E_1 \cup E_2)$. If MAX-CROWN admits an α_i -approx. on G_i ,

Lemma. Let $G_1 = (V, E_1)$, $G_2 = (V, E_2)$, $G = (V, E_1 \cup E_2)$. If MAX-CROWN admits an α_i -approx. on G_i , then MAX-CROWN admits ($\alpha_1 + \alpha_2$)-approx. on G.

Lemma. Let $G_1 = (V, E_1)$, $G_2 = (V, E_2)$, $G = (V, E_1 \cup E_2)$. If MAX-CROWN admits an α_i -approx. on G_i , then MAX-CROWN admits $(\alpha_1 + \alpha_2)$ -approx. on G.

Proof. Algorithm.

Analysis.

Lemma. Let $G_1 = (V, E_1)$, $G_2 = (V, E_2)$, $G = (V, E_1 \cup E_2)$. If MAX-CROWN admits an α_i -approx. on G_i , then MAX-CROWN admits $(\alpha_1 + \alpha_2)$ -approx. on G.

Proof. Algorithm. Apply α_1 -approx. to G_1 and α_2 -approx. to G_2 .

Analysis.

Lemma. Let $G_1 = (V, E_1)$, $G_2 = (V, E_2)$, $G = (V, E_1 \cup E_2)$. If MAX-CROWN admits an α_i -approx. on G_i , then MAX-CROWN admits $(\alpha_1 + \alpha_2)$ -approx. on G.

Proof. Algorithm. Apply α_1 -approx. to G_1 and α_2 -approx. to G_2 . Return result with larger profit for G. Analysis.
Lemma. Let $G_1 = (V, E_1)$, $G_2 = (V, E_2)$, $G = (V, E_1 \cup E_2)$. If MAX-CROWN admits an α_i -approx. on G_i , then MAX-CROWN admits $(\alpha_1 + \alpha_2)$ -approx. on G.

Proof.Algorithm.Apply α_1 -approx. to G_1 and α_2 -approx. to G_2 .Return result with larger profit for G.Analysis.For G, G_1 , G_2 ,

Lemma. Let $G_1 = (V, E_1)$, $G_2 = (V, E_2)$, $G = (V, E_1 \cup E_2)$. If MAX-CROWN admits an α_i -approx. on G_i , then MAX-CROWN admits $(\alpha_1 + \alpha_2)$ -approx. on G.

Proof.Algorithm.Apply α_1 -approx. to G_1 and α_2 -approx. to G_2 .Return result with larger profit for G.Analysis.For G, G_1 , G_2 ,- let OPT, OPT $_1$, OPT $_2$ be the optimum profits,

Lemma. Let $G_1 = (V, E_1)$, $G_2 = (V, E_2)$, $G = (V, E_1 \cup E_2)$. If MAX-CROWN admits an α_i -approx. on G_i , then MAX-CROWN admits $(\alpha_1 + \alpha_2)$ -approx. on G.

Proof. Algorithm.

Apply α_1 -approx. to G_1 and α_2 -approx. to G_2 .

Return result with larger profit for G.

Analysis. For G, G_1 , G_2 ,

– let OPT, OPT_1 , OPT_2 be the optimum profits,

– let ALG, ALG_1 , ALG_2 be the profits of the approx. alg.

Lemma. Let $G_1 = (V, E_1)$, $G_2 = (V, E_2)$, $G = (V, E_1 \cup E_2)$. If MAX-CROWN admits an α_i -approx. on G_i , then MAX-CROWN admits $(\alpha_1 + \alpha_2)$ -approx. on G.

Proof. Algorithm.

Apply α_1 -approx. to G_1 and α_2 -approx. to G_2 .

Return result with larger profit for G.

Analysis. For G, G_1 , G_2 ,

- let OPT, OPT_1 , OPT_2 be the optimum profits,

– let ALG, ALG₁, ALG₂ be the profits of the approx. alg. By def., ALG_i > OPT_i / α_i .

Lemma. Let $G_1 = (V, E_1)$, $G_2 = (V, E_2)$, $G = (V, E_1 \cup E_2)$. If MAX-CROWN admits an α_i -approx. on G_i , then MAX-CROWN admits $(\alpha_1 + \alpha_2)$ -approx. on G.

Proof. Algorithm.

Apply α_1 -approx. to G_1 and α_2 -approx. to G_2 .

Return result with larger profit for G.

Analysis. For G, G_1 , G_2 ,

- let OPT, OPT_1 , OPT_2 be the optimum profits,

– let ALG, ALG₁, ALG₂ be the profits of the approx. alg. By def., ALG_i > OPT_i / α_i . Clearly, OPT \leq OPT₁ + OPT₂.

Lemma. Let $G_1 = (V, E_1)$, $G_2 = (V, E_2)$, $G = (V, E_1 \cup E_2)$. If MAX-CROWN admits an α_i -approx. on G_i , then MAX-CROWN admits $(\alpha_1 + \alpha_2)$ -approx. on G.

Proof. Algorithm.

Apply α_1 -approx. to G_1 and α_2 -approx. to G_2 .

Return result with larger profit for G.

Analysis. For G, G_1 , G_2 ,

- let OPT, OPT_1 , OPT_2 be the optimum profits,

- let ALG, ALG₁, ALG₂ be the profits of the approx. alg. By def., ALG_i > OPT_i / α_i . Clearly, OPT \leq OPT₁ + OPT₂. Assume OPT₁ / $\alpha_1 \geq$ OPT₂ / α_2 .

Lemma. Let $G_1 = (V, E_1)$, $G_2 = (V, E_2)$, $G = (V, E_1 \cup E_2)$. If MAX-CROWN admits an α_i -approx. on G_i , then MAX-CROWN admits $(\alpha_1 + \alpha_2)$ -approx. on G.

Proof. Algorithm.

Apply α_1 -approx. to G_1 and α_2 -approx. to G_2 .

Return result with larger profit for G.

Analysis. For G, G_1 , G_2 ,

- let OPT, OPT_1 , OPT_2 be the optimum profits,

– let ALG, ALG₁, ALG₂ be the profits of the approx. alg. By def., ALG_i > OPT_i / α_i . Clearly, OPT \leq OPT₁ + OPT₂. Assume OPT₁ / $\alpha_1 \geq$ OPT₂ / α_2 . Then

Lemma. Let $G_1 = (V, E_1)$, $G_2 = (V, E_2)$, $G = (V, E_1 \cup E_2)$. If MAX-CROWN admits an α_i -approx. on G_i , then MAX-CROWN admits $(\alpha_1 + \alpha_2)$ -approx. on G.

Proof. Algorithm.

Apply α_1 -approx. to G_1 and α_2 -approx. to G_2 .

Return result with larger profit for G.

Analysis. For G, G_1 , G_2 ,

- let OPT, OPT_1 , OPT_2 be the optimum profits,

– let ALG, ALG₁, ALG₂ be the profits of the approx. alg. By def., ALG_i > OPT_i / α_i . Clearly, OPT \leq OPT₁ + OPT₂. Assume OPT₁ / $\alpha_1 \geq$ OPT₂ / α_2 . Then

 $\mathsf{ALG} \geq$

Lemma. Let $G_1 = (V, E_1)$, $G_2 = (V, E_2)$, $G = (V, E_1 \cup E_2)$. If MAX-CROWN admits an α_i -approx. on G_i , then MAX-CROWN admits ($\alpha_1 + \alpha_2$)-approx. on G.

Proof. Algorithm.

Apply α_1 -approx. to G_1 and α_2 -approx. to G_2 .

Return result with larger profit for G.

Analysis. For G, G_1 , G_2 ,

- let OPT, OPT_1 , OPT_2 be the optimum profits,

– let ALG, ALG₁, ALG₂ be the profits of the approx. alg. By def., ALG_i > OPT_i / α_i . Clearly, OPT \leq OPT₁ + OPT₂. Assume OPT₁ / $\alpha_1 \geq$ OPT₂ / α_2 . Then

 $ALG \ge ALG_1 \ge$

Lemma. Let $G_1 = (V, E_1)$, $G_2 = (V, E_2)$, $G = (V, E_1 \cup E_2)$. If MAX-CROWN admits an α_i -approx. on G_i , then MAX-CROWN admits $(\alpha_1 + \alpha_2)$ -approx. on G.

Proof. Algorithm.

Apply α_1 -approx. to G_1 and α_2 -approx. to G_2 .

Return result with larger profit for G.

Analysis. For G, G_1 , G_2 ,

 $ALG \ge ALG_1 \ge \frac{OPT_1}{}$

- let OPT, OPT_1 , OPT_2 be the optimum profits,

- let ALG, ALG₁, ALG₂ be the profits of the approx. alg.

By def., $ALG_i > OPT_i / \alpha_i$. Clearly, $OPT \le OPT_1 + OPT_2$. Assume $OPT_1 / \alpha_1 \ge OPT_2 / \alpha_2$. Then

Lemma. Let $G_1 = (V, E_1)$, $G_2 = (V, E_2)$, $G = (V, E_1 \cup E_2)$. If MAX-CROWN admits an α_i -approx. on G_i , then MAX-CROWN admits $(\alpha_1 + \alpha_2)$ -approx. on G.

Proof. Algorithm.

Apply α_1 -approx. to G_1 and α_2 -approx. to G_2 .

Return result with larger profit for G.

Analysis. For G, G_1 , G_2 ,

- let OPT, OPT_1 , OPT_2 be the optimum profits,

- let ALG, ALG₁, ALG₂ be the profits of the approx. alg.

By def., $ALG_i > OPT_i / \alpha_i$. Clearly, $OPT \le OPT_1 + OPT_2$. Assume $OPT_1 / \alpha_1 \ge OPT_2 / \alpha_2$. Then $ALG \ge ALG_1 \ge \frac{OPT_1}{\alpha_1} \ge \frac{OPT_1 + OPT_2}{\alpha_1 + \alpha_2} \ge$

Lemma. Let $G_1 = (V, E_1)$, $G_2 = (V, E_2)$, $G = (V, E_1 \cup E_2)$. If MAX-CROWN admits an α_i -approx. on G_i , then MAX-CROWN admits $(\alpha_1 + \alpha_2)$ -approx. on G.

Proof. Algorithm.

Apply α_1 -approx. to G_1 and α_2 -approx. to G_2 .

Return result with larger profit for G.

Analysis. For G, G_1 , G_2 ,

- let OPT, OPT_1 , OPT_2 be the optimum profits,

- let ALG, ALG₁, ALG₂ be the profits of the approx. alg.

By def., $ALG_i > OPT_i / \alpha_i$. Clearly, $OPT \le OPT_1 + OPT_2$. Assume $OPT_1 / \alpha_1 \ge OPT_2 / \alpha_2$. Then $ALG \ge ALG_1 \ge \frac{OPT_1}{\alpha_1} \ge \frac{OPT_1 + OPT_2}{\alpha_1 + \alpha_2} \ge \frac{OPT}{\alpha_1 + \alpha_2}$.

Lemma. Let $G_1 = (V, E_1)$, $G_2 = (V, E_2)$, $G = (V, E_1 \cup E_2)$. If MAX-CROWN admits an α_i -approx. on G_i , then MAX-CROWN admits ($\alpha_1 + \alpha_2$)-approx. on G.

Algorithm. Proof. Apply α_1 -approx. to G_1 and α_2 -approx. to G_2 . Return result with larger profit for G. Analysis. For G, G_1 , G_2 , - let OPT, OPT_1 , OPT_2 be the optimum profits, - let ALG, ALG₁, ALG₂ be the profits of the approx. alg. By def., $ALG_i > OPT_i / \alpha_i$. Clearly, $OPT \leq OPT_1 + OPT_2$. Assume $OPT_1 / \alpha_1 \ge OPT_2 / \alpha_2$. Then $ALG \ge ALG_1 \ge \frac{OPT_1}{\alpha_1} \ge \frac{OPT_1 + OPT_2}{\alpha_1 + \alpha_2} \ge$

Def. A *star forest* is the disjoint union of a set of stars.

Def. A *star forest* is the disjoint union of a set of stars.

Thm. MAX-CROWN admits an α -approx. on star forests.

Def. A *star forest* is the disjoint union of a set of stars.

Thm. MAX-CROWN admits an α -approx. on star forests.

Proof.

Def. A *star forest* is the disjoint union of a set of stars.

Thm. MAX-CROWN admits an α -approx. on star forests.

Proof. Use the α -approx. alg. for stars.

Def. A *star forest* is the disjoint union of a set of stars.

Thm. MAX-CROWN admits an α -approx. on star forests.

Proof. Use the α -approx. alg. for stars. Treat each star indep.

Def. A *star forest* is the disjoint union of a set of stars.

Thm. MAX-CROWN admits an α -approx. on star forests.

Proof. Use the α -approx. alg. for stars. Treat each star indep.

- Thm. MAX-CROWN admits
 - a 2α -approx. on trees,
 - a 3α -approx. on outerplanar graphs,
 - a 5 α -approx. on planar graphs.

Def. A *star forest* is the disjoint union of a set of stars.

Thm. MAX-CROWN admits an α -approx. on star forests.

Proof. Use the α -approx. alg. for stars. Treat each star indep.

- Thm. MAX-CROWN admits
 - a 2α -approx. on trees,
 - a 3α -approx. on outerplanar graphs,
 - a 5 α -approx. on planar graphs.

Proof.

Def. A *star forest* is the disjoint union of a set of stars.

Thm. MAX-CROWN admits an α -approx. on star forests.

Proof. Use the α -approx. alg. for stars. Treat each star indep.

- Thm. MAX-CROWN admits
 - a 2α -approx. on trees,
 - a 3α -approx. on outerplanar graphs,
 - a 5 α -approx. on planar graphs.

Proof. Can cover any tree by 2 star forests ("star arboricity 2").

Def. A *star forest* is the disjoint union of a set of stars.

Thm. MAX-CROWN admits an α -approx. on star forests.

Proof. Use the α -approx. alg. for stars. Treat each star indep.

- Thm. MAX-CROWN admits
 - a 2α -approx. on trees,
 - a 3α -approx. on outerplanar graphs,
 - a 5 α -approx. on planar graphs.

Proof. Can cover any tree by 2 star forests ("star arboricity 2").

Def. A *star forest* is the disjoint union of a set of stars.

Thm. MAX-CROWN admits an α -approx. on star forests.

Proof. Use the α -approx. alg. for stars. Treat each star indep.

- Thm. MAX-CROWN admits
 - a 2α -approx. on trees,
 - a 3α -approx. on outerplanar graphs,
 - a 5 α -approx. on planar graphs.

Proof. Can cover any tree by 2 star forests ("star arboricity 2").

Now apply the combination lemma.

Def. A *star forest* is the disjoint union of a set of stars.

Thm. MAX-CROWN admits an α -approx. on star forests.

Proof. Use the α -approx. alg. for stars. Treat each star indep.

- Thm. MAX-CROWN admits
 - a 2α -approx. on trees,
 - a 3α -approx. on outerplanar graphs,
 - a 5 α -approx. on planar graphs.

Proof. Can cover any tree by 2 star forests ("star arboricity 2").

Now apply the combination lemma.

Outerplanar | planar graphs have star arboricity 3 [5. [Hakimi et al., DM'96]

	Weighted		Unweighted
Graph class	old*	new ^o	new°
cycle, path	1		
star	α	1+arepsilon	
tree	2α NP-hard	2+arepsilon	2
max-degree $arDelta$	$\lfloor (\Delta + 1)/2 \rfloor$		
planar max-deg. $arDelta$			$1 + \varepsilon$
outerplanar	3α	$3+\varepsilon$	
planar	5α	5+arepsilon	
bipartite		16lpha/3~pprox 8.4	
		APX-hard	
general		rand.: $32lpha/3pprox 16.9$ det.: $40lpha/3pprox 21.1$	$5+16lpha/3\ pprox$ 13.4

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN'14]
 ^o) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted]

lpha=e/(e-1)pprox 1.58

	Weighted		Unweighted
Graph class	old*	new ^o	new°
cycle, path	1		
star	$\alpha \checkmark$	1+arepsilon	
tree 🗸	2α , NP-hard	2+arepsilon	2
max-degree Δ	$\lfloor (\varDelta + 1)/2 floor$		
planar max-deg. $arDelta$	/		$1 + \varepsilon$
outerplanar	3α	$3+\varepsilon$	
planar	5α \checkmark	5+arepsilon	
bipartite		16lpha/3~pprox 8.4	
		APX-hard	
general		rand.: $32lpha/3pprox 16.9$ det.: $40lpha/3pprox 21.1$	$5+16lpha/3\ pprox$ 13.4

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN'14]
 ^o) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted]

lpha = e/(e-1) pprox 1.58

	Weighted		Unweighted
Graph class	old*	new°	new°
cycle, path	1		
star	$\alpha \checkmark$	1+arepsilon	
tree 🗸	2α , NP-hard	$2 + \varepsilon$	2
max-degree Δ	$\lfloor (\Delta+1)/2 floor$		
planar max-deg. $arDelta$	/		1+arepsilon
outerplanar	3α V	$3+\varepsilon$	
planar	5α \checkmark	$5+\varepsilon$	
bipartite		16lpha/3 $pprox$ 8.4	
		APX-hard	
general		rand.: $32\alpha/3 \approx 16.9$ det.: $40\alpha/3 \approx 21.1$	$5+16lpha/3\pprox13.4$

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN'14]
 ^o) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted]

lpha = e/(e-1) pprox 1.58

Tool #1⁺⁺: PTAS for GAP with O(1) bins

Theorem. GAP with O(1) bins admits a PTAS.

[Briest, Krysta Vöcking: SIAM J. Comput.'11]

Tool #1⁺⁺: PTAS for GAP with O(1) bins

Theorem. GAP with O(1) bins admits a PTAS. [Briest, Krysta Vöcking: SIAM J. Comput.'11]

Theorem.GAP with O(1) bins does not admit an FPTAS
(unless...).[Chekuri & Khanna: SIAM J. Comput.'05]

	١	Weighted	
Graph class	old*	new°	new ^o
cycle, path	1		
star	α \checkmark	1+arepsilon	
tree	\checkmark 2 α , NP-hard	$2+\varepsilon$	2
max-degree $arDelta$	$\lfloor (\Delta+1)/2 floor$		
planar max-deg. ⊿	Δ		1+arepsilon
outerplanar	3α 🗸	$3+\varepsilon$	
planar	5α \checkmark	$5+\varepsilon$	
bipartite		16lpha/3 $pprox$	8.4
		APX-hard	
general		rand.: $32lpha/3 pprox$ det.: $40lpha/3 pprox$	$\begin{array}{ccc} 16.9 & {\bf 5} + {\bf 16}\alpha/3 \\ {\bf 21.1} & {}^{\approx 13.4} \end{array}$

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN'14]
 ^o) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted]

lpha = e/(e-1) pprox 1.58

	V	Weighted	
Graph class	old*	new ^o	new°
cycle, path	1		
star	α \checkmark	$1 + \varepsilon \checkmark$	
tree	$\sqrt{2\alpha}$, NP-hard	$2+\varepsilon$ 🗸	2
max-degree $arDelta$	$\lfloor (\Delta + 1)/2 \rfloor$		
planar max-deg. 2	2		1+arepsilon
outerplanar	3α 🗸	$3 + \varepsilon$	
planar	5α \checkmark	$5+\varepsilon$ 🗸	
bipartite		16lpha/3~pprox 8.4	
		APX-hard	
general		rand.: $32lpha/3pprox 16.9$ det.: $40lpha/3pprox 21.1$	$5+16lpha/3\ pprox$ 13.4

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN'14]
 ^o) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted]

lpha = e/(e-1) pprox 1.58

	V	Weighted	
Graph class	old*	new ^o	new°
cycle, path	1		
star	$\alpha \checkmark$	$1 + \varepsilon \checkmark$	
tree	$\sqrt{2\alpha}$, NP-hard	$2 + \varepsilon \checkmark$	2
max-degree $arDelta$	$\lfloor (\varDelta + 1)/2 floor$		
planar max-deg. A	Δ		$1 + \varepsilon$
outerplanar	3α 🗸	$3 + \varepsilon$	
planar	5α \checkmark	$5+\varepsilon$ 🗸	
bipartite		16lpha/3~pprox 8.4	
		APX-hard	
general		rand.: $32lpha/3pprox 16.9$ det.: $40lpha/3pprox 21.1$	$5+16lpha/3\ pprox$ 13.4

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN'14]
 ^o) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted]

lpha=e/(e-1)pprox 1.58

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

Proof. Let $G = (V_1 \cup V_2, E)$ with $E \subseteq V_1 \cup V_2$.

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

Proof. Let $G = (V_1 \cup V_2, E)$ with $E \subseteq V_1 \cup V_2$. Idea: Realize stars!

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

Proof. Let $G = (V_1 \cup V_2, E)$ with $E \subseteq V_1 \cup V_2$. Idea: Realize stars!

First, find a good solution with all star centers in V_1 :
Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

Let $G = (V_1 \cup V_2, E)$ with $E \subseteq V_1 \cup V_2$. Idea: Realize stars!

First, find a good solution with all star centers in V_1 :

- for each $u \in V_1$, make 8 bins as for star centers,

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

Proof.

U

Let $G = (V_1 \cup V_2, E)$ with $E \subseteq V_1 \cup V_2$. Idea: Realize stars!

First, find a good solution with all star centers in V_1 :

- for each $u \in V_1$, make 8 bins as for star centers,
- for each $v \in V_2$, make 1 item as for star leaves.

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

Duca	1
Proo	Τ.

U

Let $G = (V_1 \cup V_2, E)$ with $E \subseteq V_1 \cup V_2$. Idea: Realize stars!

First, find a good solution with all star centers in V_1 :

- for each $u \in V_1$, make 8 bins as for star centers,
- for each $v \in V_2$, make 1 item as for star leaves.

GAP yields a solution of profit $ALG'_1 \ge OPT'_1 / \alpha$,

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

Proof.

U

Let $G = (V_1 \cup V_2, E)$ with $E \subseteq V_1 \cup V_2$. Idea: Realize stars!

First, find a good solution with all star centers in V_1 :

- for each $u \in V_1$, make 8 bins as for star centers,
- for each $v \in V_2$, make 1 item as for star leaves.

GAP yields a solution of profit $ALG'_1 \ge OPT'_1 / \alpha$, where OPT'_1 is profit of an opt. sol. with centers in V_1 .

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

U

Let $G = (V_1 \cup V_2, E)$ with $E \subseteq V_1 \cup V_2$. Idea: Realize stars!

First, find a good solution with all star centers in V_1 :

- for each $u \in V_1$, make 8 bins as for star centers,
- for each $v \in V_2$, make 1 item as for star leaves.

GAP yields a solution of profit $ALG'_1 \ge OPT'_1 / \alpha$, where OPT'_1 is profit of an opt. sol. with centers in V_1 . This solution may have *corner contacts* :-(

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

D	ra	~f
	O(ור.

U

Let $G = (V_1 \cup V_2, E)$ with $E \subseteq V_1 \cup V_2$. Idea: Realize stars!

First, find a good solution with all star centers in V_1 :

- for each $u \in V_1$, make 8 bins as for star centers,
- for each $v \in V_2$, make 1 item as for star leaves.

GAP yields a solution of profit $ALG'_1 \ge OPT'_1 / \alpha$, where OPT'_1 is profit of an opt. sol. with centers in V_1 . This solution may have *corner contacts* :-(No slack?

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

Proof.

U

Let $G = (V_1 \cup V_2, E)$ with $E \subseteq V_1 \cup V_2$. Idea: Realize stars!

First, find a good solution with all star centers in V_1 :

- for each $u \in V_1$, make 8 bins as for star centers,
- for each $v \in V_2$, make 1 item as for star leaves.

GAP yields a solution of profit $ALG'_1 \ge OPT'_1 / \alpha$, where OPT'_1 is profit of an opt. sol. with centers in V_1 . This solution may have *corner contacts* :-(No slack? \Rightarrow Remove two cheapest items from (3 top and 3 bottom bins) or (3 left and 3 right) bins.

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

Proof. Let $G = (V_1 \cup V_2, E)$ with $E \subseteq V_1 \cup V_2$. Idea: Realize stars!

First, find a good solution with all star centers in V_1 :

- for each $u \in V_1$, make 8 bins as for star centers,
- for each $v \in V_2$, make 1 item as for star leaves.

GAP yields a solution of profit $ALG'_1 \ge OPT'_1 / \alpha$, where OPT'_1 is profit of an opt. sol. with centers in V_1 . This solution may have *corner contacts* :-(No slack? \Rightarrow Remove two cheapest items from (3 top and 3 bottom bins) or (3 left and 3 right) bins.

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

Proof. Let $G = (V_1 \cup V_2, E)$ with $E \subseteq V_1 \cup V_2$. Idea: Realize stars!

First, find a good solution with all star centers in V_1 :

- for each $u \in V_1$, make 8 bins as for star centers,
- for each $v \in V_2$, make 1 item as for star leaves.

GAP yields a solution of profit $ALG'_1 \ge OPT'_1 / \alpha$, where OPT'_1 is profit of an opt. sol. with centers in V_1 . This solution may have *corner contacts* :-(No slack? \Rightarrow Remove two cheapest items from (3 top and 3 bottom bins) or (3 left and 3 right) bins.

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

Proof. Let $G = (V_1 \cup V_2, E)$ with $E \subseteq V_1 \cup V_2$. Idea: Realize stars!

First, find a good solution with all star centers in V_1 :

- for each $u \in V_1$, make 8 bins as for star centers,
- for each $v \in V_2$, make 1 item as for star leaves.

GAP yields a solution of profit $ALG'_1 \ge OPT'_1 / \alpha$, where OPT'_1 is profit of an opt. sol. with centers in V_1 . This solution may have *corner contacts* :-(No slack? \Rightarrow Remove two cheapest items from 3 top and 3 bottom bins) or (3 left and 3 right) bins. $\Rightarrow ALG_1 \ge 3/4 \cdot ALG'_1$

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

Proof. Let $G = (V_1 \cup V_2, E)$ with $E \subseteq V_1 \cup V_2$. Idea: Realize stars!

First, find a good solution with all star centers in V_1 :

- for each $u \in V_1$, make 8 bins as for star centers,
- for each $v \in V_2$, make 1 item as for star leaves.

GAP yields a solution of profit $ALG'_1 \ge OPT'_1 / \alpha$, where OPT'_1 is profit of an opt. sol. with centers in V_1 . This solution may have *corner contacts* :-(No slack? \Rightarrow Remove two cheapest items from (3 top and 3 bottom bins) or (3 left and 3 right) bins. $\Rightarrow ALG_1 \ge 3/4 \cdot ALG'_1 \ge 3/4 \cdot OPT'_1 / \alpha$

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

Proof. Let $G = (V_1 \cup V_2, E)$ with $E \subseteq V_1 \cup V_2$. Idea: Realize stars!

First, find a good solution with all star centers in V_1 :

- for each $u \in V_1$, make 8 bins as for star centers,
- for each $v \in V_2$, make 1 item as for star leaves.

GAP yields a solution of profit $ALG'_1 \ge OPT'_1 / \alpha$, where OPT'_1 is profit of an opt. sol. with centers in V_1 . This solution may have *corner contacts* :-(No slack? \Rightarrow Remove two cheapest items from (3 top and 3 bottom bins) or (3 left and 3 right) bins. $\Rightarrow ALG_1 \ge 3/4 \cdot ALG'_1 \ge 3/4 \cdot OPT'_1 / \alpha \ge 3/4 \cdot OPT_1 / \alpha$.

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

Proof. Let $G = (V_1 \cup V_2, E)$ with $E \subseteq V_1 \cup V_2$. Idea: Realize stars!

First, find a good solution with all star centers in V_1 :

- for each $u \in V_1$, make 8 bins as for star centers,
- for each $v \in V_2$, make 1 item as for star leaves.

GAP yields a solution of profit $ALG'_1 \ge OPT'_1/\alpha$, where OPT'_1 is profit of an opt. sol. with centers in V_1 . This solution may have *corner contacts* :-(No slack? \Rightarrow Remove two cheapest items from 3 top and 3 bottom bins) or (3 left and 3 right) bins. $\Rightarrow ALG_1 \ge 3/4 \cdot ALG'_1 \ge 3/4 \cdot OPT'_1/\alpha \ge 3/4 \cdot OPT_1/\alpha$. Analogously, find solution of profit $ALG_2 \ge 3/4 \cdot OPT_2/\alpha$.

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

Proof. Let $G = (V_1 \cup V_2, E)$ with $E \subseteq V_1 \cup V_2$. Idea: Realize stars!

First, find a good solution with all star centers in V_1 :

- for each $u \in V_1$, make 8 bins as for star centers,
- for each $v \in V_2$, make 1 item as for star leaves.

GAP yields a solution of profit $ALG'_1 \ge OPT'_1/\alpha$, where OPT'_1 is profit of an opt. sol. with centers in V_1 . This solution may have *corner contacts* :-(No slack? \Rightarrow Remove two cheapest items from (3 top and 3 bottom bins) or (3 left) and 3 right) bins. $\Rightarrow ALG_1 \ge 3/4 \cdot ALG'_1 \ge 3/4 \cdot OPT'_1/\alpha \ge 3/4 \cdot OPT_1/\alpha$. Analogously, find solution of profit $ALG_2 \ge 3/4 \cdot OPT_2/\alpha$. Take better one!

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

Proof. Let $G = (V_1 \cup V_2, E)$ with $E \subseteq V_1 \cup V_2$. Idea: Realize stars!

First, find a good solution with all star centers in V_1 :

- for each $u \in V_1$, make 8 bins as for star centers,
- for each $v \in V_2$, make 1 item as for star leaves.

GAP yields a solution of profit $ALG'_1 \ge OPT'_1 / \alpha$, where OPT'_1 is profit of an opt. sol. with centers in V_1 . This solution may have *corner contacts* :-(No slack? \Rightarrow Remove two cheapest items from 3 top and 3 bottom bins) or (3 left) and 3 right) bins. $\Rightarrow ALG_1 \ge 3/4 \cdot ALG'_1 \ge 3/4 \cdot OPT'_1 / \alpha \ge 3/4 \cdot OPT_1 / \alpha$. Analogously, find solution of profit $ALG_2 \ge 3/4 \cdot OPT_2 / \alpha$. Take better one! \Rightarrow profit $ALG = max\{ALG_1, ALG_2\}$.

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

We know: $ALG = max{ALG_1, ALG_2}$

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

We know: $ALG = max{ALG_1, ALG_2}$ and $ALG_i \ge 3/4 \cdot OPT_i/\alpha$.

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

We know: $ALG = max{ALG_1, ALG_2}$ and $ALG_i \ge 3/4 \cdot OPT_i/\alpha$.

Now, compare with a fixed optimum solution!

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

We know: $ALG = max{ALG_1, ALG_2}$ and $ALG_i \ge 3/4 \cdot OPT_i/\alpha$.

Now, compare with a fixed optimum solution!

Let $G^{\star} = (V, E^{\star})$ be its profit graph.

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

We know: $ALG = max{ALG_1, ALG_2}$ and $ALG_i \ge 3/4 \cdot OPT_i/\alpha$.

Now, compare with a fixed optimum solution!

Let $G^* = (V, E^*)$ be its profit graph, i.e., $OPT = p(E^*)$.

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

We know: $ALG = max{ALG_1, ALG_2}$ and $ALG_i \ge 3/4 \cdot OPT_i/\alpha$.

Now, compare with a fixed optimum solution!

Let $G^* = (V, E^*)$ be its profit graph, i.e., $OPT = p(E^*)$.

 G^* is bipartite & planar

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

We know: $ALG = max{ALG_1, ALG_2}$ and $ALG_i \ge 3/4 \cdot OPT_i/\alpha$.

Now, compare with a fixed optimum solution!

Let $G^* = (V, E^*)$ be its profit graph, i.e., $OPT = p(E^*)$.

 G^* is bipartite & planar $\Rightarrow |E^*| \leq 2n - 4$.

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

We know: $ALG = max{ALG_1, ALG_2}$ and $ALG_i \ge 3/4 \cdot OPT_i/\alpha$.

Now, compare with a fixed optimum solution!

Let $G^* = (V, E^*)$ be its profit graph, i.e., $OPT = p(E^*)$.

 G^* is bipartite & planar $\Rightarrow |E^*| \leq 2n - 4$.

 $\Rightarrow E^*$ can be decomposed into two forests F_1 and F_2 . [Nash-Williams, JLMS'64]

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

We know: $ALG = max{ALG_1, ALG_2}$ and $ALG_i \ge 3/4 \cdot OPT_i/\alpha$.

Now, compare with a fixed optimum solution!

Let $G^* = (V, E^*)$ be its profit graph, i.e., $OPT = p(E^*)$.

- G^* is bipartite & planar $\Rightarrow |E^*| \leq 2n 4$.
- $\Rightarrow E^*$ can be decomposed into two forests F_1 and F_2 . [Nash-Williams, JLMS'64]
- \Rightarrow F_i can be decomposed into two star forests S_{i1} and S_{i2}

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

We know: $ALG = max{ALG_1, ALG_2}$ and $ALG_i \ge 3/4 \cdot OPT_i/\alpha$.

Now, compare with a fixed optimum solution!

Let $G^* = (V, E^*)$ be its profit graph, i.e., $OPT = p(E^*)$.

- G^* is bipartite & planar $\Rightarrow |E^*| \leq 2n 4$.
- $\Rightarrow E^*$ can be decomposed into two forests F_1 and F_2 . [Nash-Williams, JLMS'64]
- \Rightarrow F_i can be decomposed into two star forests S_{i1} and S_{i2} such that the star centers of S_{i1} are in V_1 and those of S_{i2} are in V_2

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

We know: $ALG = max{ALG_1, ALG_2}$ and $ALG_i \ge 3/4 \cdot OPT_i/\alpha$.

Now, compare with a fixed optimum solution!

Let $G^* = (V, E^*)$ be its profit graph, i.e., $OPT = p(E^*)$.

 G^* is bipartite & planar $\Rightarrow |E^*| \leq 2n - 4$.

 $\Rightarrow E^*$ can be decomposed into two forests F_1 and F_2 . [Nash-Williams, JLMS'64]

⇒ F_i can be decomposed into two star forests S_{i1} and S_{i2} such that the star centers of S_{i1} are in V_1 and those of S_{i2} are in V_2 W.l.o.g., S_{11} has profit ≥ OPT /4.

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

We know: $ALG = max{ALG_1, ALG_2}$ and $ALG_i \ge 3/4 \cdot OPT_i/\alpha$.

Now, compare with a fixed optimum solution!

Let $G^* = (V, E^*)$ be its profit graph, i.e., $OPT = p(E^*)$.

 G^* is bipartite & planar $\Rightarrow |E^*| \leq 2n - 4$.

 $\Rightarrow E^*$ can be decomposed into two forests F_1 and F_2 . [Nash-Williams, JLMS'64]

⇒ F_i can be decomposed into two star forests S_{i1} and S_{i2} such that the star centers of S_{i1} are in V_1 and those of S_{i2} are in V_2 W.l.o.g., S_{11} has profit ≥ OPT /4. On the other hand, $p(S_{11}) \le \text{OPT}_1$.

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

We know: ALG = max{ALG₁, ALG₂} and ALG_i $\geq 3/4 \cdot OPT_i/\alpha$.

Now, compare with a fixed optimum solution!

Let $G^* = (V, E^*)$ be its profit graph, i.e., $OPT = p(E^*)$.

- G^* is bipartite & planar $\Rightarrow |E^*| \leq 2n 4$.
- $\Rightarrow E^*$ can be decomposed into two forests F_1 and F_2 . [Nash-Williams, JLMS'64]
- ⇒ F_i can be decomposed into two star forests S_{i1} and S_{i2}
 such that the star centers of S_{i1} are in V₁ and those of S_{i2} are in V₂
 W.I.o.g., S₁₁ has profit ≥ OPT /4. On the other hand, p(S₁₁) ≤ OPT₁.
 ⇒ ALG ≥

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

We know: ALG = max{ALG₁, ALG₂} and ALG_i \geq 3/4 \cdot OPT_i/ α .

Now, compare with a fixed optimum solution!

Let
$$G^* = (V, E^*)$$
 be its profit graph, i.e., $OPT = p(E^*)$.

- G^* is bipartite & planar $\Rightarrow |E^*| \leq 2n 4$.
- $\Rightarrow E^*$ can be decomposed into two forests F_1 and F_2 . [Nash-Williams, JLMS'64]
- ⇒ F_i can be decomposed into two star forests S_{i1} and S_{i2}
 such that the star centers of S_{i1} are in V₁ and those of S_{i2} are in V₂
 W.I.o.g., S₁₁ has profit ≥ OPT /4. On the other hand, p(S₁₁) ≤ OPT₁.
 ⇒ ALG ≥ ALG₁ ≥

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

We know: ALG = max{ALG₁, ALG₂} and ALG_i $\geq 3/4 \cdot OPT_i/\alpha$.

Now, compare with a fixed optimum solution!

Let $G^* = (V, E^*)$ be its profit graph, i.e., $OPT = p(E^*)$.

 G^* is bipartite & planar $\Rightarrow |E^*| \leq 2n - 4$.

 $\Rightarrow E^*$ can be decomposed into two forests F_1 and F_2 . [Nash-Williams, JLMS'64]

⇒ F_i can be decomposed into two star forests S_{i1} and S_{i2} such that the star centers of S_{i1} are in V_1 and those of S_{i2} are in V_2 W.I.o.g., S_{11} has profit ≥ OPT /4. On the other hand, $p(S_{11}) \leq \text{OPT}_1$. ⇒ ALG ≥ ALG₁ ≥ 3/4 · OPT₁/ α ≥

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

We know: ALG = max{ALG₁, ALG₂} and ALG_i \geq 3/4 \cdot OPT_i/ α .

Now, compare with a fixed optimum solution!

Let $G^* = (V, E^*)$ be its profit graph, i.e., $OPT = p(E^*)$.

 G^* is bipartite & planar $\Rightarrow |E^*| \leq 2n - 4$.

 $\Rightarrow E^*$ can be decomposed into two forests F_1 and F_2 . [Nash-Williams, JLMS'64]

⇒ F_i can be decomposed into two star forests S_{i1} and S_{i2} such that the star centers of S_{i1} are in V_1 and those of S_{i2} are in V_2 W.l.o.g., S_{11} has profit ≥ OPT /4. On the other hand, $p(S_{11}) \leq \text{OPT}_1$. ⇒ ALG ≥ ALG₁ ≥ 3/4 · OPT₁/ $\alpha \geq 3/4 \cdot p(S_{11})/\alpha \geq$

Thm. MAX-CROWN admits a $16\alpha/3$ -approx. on bip. graphs.

We know: ALG = max{ALG₁, ALG₂} and ALG_i \geq 3/4 \cdot OPT_i/ α .

Now, compare with a fixed optimum solution!

Let $G^* = (V, E^*)$ be its profit graph, i.e., $OPT = p(E^*)$.

 G^* is bipartite & planar $\Rightarrow |E^*| \leq 2n - 4$.

 $\Rightarrow E^*$ can be decomposed into two forests F_1 and F_2 . [Nash-Williams, JLMS'64]

⇒ F_i can be decomposed into two star forests S_{i1} and S_{i2} such that the star centers of S_{i1} are in V_1 and those of S_{i2} are in V_2 W.l.o.g., S_{11} has profit ≥ OPT /4. On the other hand, $p(S_{11}) \leq \text{OPT}_1$. ⇒ ALG ≥ ALG₁ ≥ 3/4 · OPT₁/ $\alpha \geq 3/4 \cdot p(S_{11})/\alpha \geq 3/16 \cdot \text{OPT}/\alpha$.

Overview

	V	Weighted	
Graph class	old*	new ^o	new°
cycle, path	1		
star	α \checkmark	1+arepsilon 🗸	
tree	$\sqrt{2\alpha}$, NP-hard	$2+\varepsilon$ 🗸	2
max-degree $arDelta$	$\lfloor (\varDelta + 1)/2 floor$		
planar max-deg. Δ			$1 + \varepsilon$
outerplanar	3α 🗸	$3 + \varepsilon \checkmark$	
planar	5α \checkmark	$5+\varepsilon$ 🗸	
bipartite		16lpha/3~pprox 8.4	
		APX-hard	
general		rand.: $32lpha/3pprox 16.9$ det.: $40lpha/3pprox 21.1$	$5+16lpha/3\ pprox$ 13.4

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN'14]
 ^o) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted]

lpha=e/(e-1)pprox 1.58

Overview

	١	Weighted	
Graph class	old*	new ^o	new [°]
cycle, path	1		
star	α \checkmark	1+arepsilon 🗸	
tree 🗸	2α , NP-hard	$2 + \varepsilon \checkmark$	2
max-degree Δ	$\lfloor (\Delta + 1)/2 \rfloor$		
planar max-deg. $arDelta$			$1 + \varepsilon$
outerplanar	3α 🗸	$3 + \varepsilon \checkmark$	
planar	5α \checkmark	$5 + \varepsilon \checkmark$	
bipartite		$16\alpha/3$ \star 8.4	
		APX-hard	
general		rand.: $32lpha/3pprox 16.9$ det.: $40lpha/3pprox 21.1$	$5+16lpha/3\ pprox$ 13.4

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN'14]
 ^o) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted]

lpha=e/(e-1)pprox 1.58

Overview

	V	Weighted	
Graph class	old*	new ^o	new°
cycle, path	1		
star	α \checkmark	1+arepsilon 🗸	
tree	$\sqrt{2\alpha}$, NP-hard	$2 + \varepsilon \checkmark$	2
max-degree $arDelta$	$\lfloor (\Delta + 1)/2 \rfloor$		
planar max-deg. Δ			$1 + \varepsilon$
outerplanar	3α \checkmark	$3 + \varepsilon \checkmark$	
planar	5α \checkmark	$5 + \varepsilon \checkmark$	
bipartite		$16\alpha/3$ \star 8.4	
		APX-hard	
general		rand.: $32lpha/3pprox 16.9$ det.: $40lpha/3pprox 21.1$	$5+16lpha/3\pprox$ 13.4

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN'14]
 ^o) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted]

lpha=e/(e-1)pprox 1.58

Tool #3: Randomize!

Thm. MAX-CROWN admits a randomized $32\alpha/3$ -approx.
Thm. MAX-CROWN admits a randomized $32\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph.

Thm. MAX-CROWN admits a randomized $32\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Idea: Reduce to bipartite case!

Thm. MAX-CROWN admits a randomized $32\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_1 and V_2 with $\Pr[v \in V_1] = 1/2$.

Thm. MAX-CROWN admits a randomized $32\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_1 and V_2 with $\Pr[v \in V_1] = 1/2$. Consider the *bipartite* graph G' = (V, E') induced by V_1 and V_2 .

Thm. MAX-CROWN admits a randomized $32\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_1 and V_2 with $\Pr[v \in V_1] = 1/2$. Consider the *bipartite* graph G' = (V, E') induced by V_1 and V_2 . $\| v_1 v_2 \in E \mid v_1 \in V_1, v_2 \in V_2 \}$

Thm. MAX-CROWN admits a randomized $32\alpha/3$ -approx. *Proof.* Let G = (V, E) be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_1 and V_2 with $\Pr[v \in V_1] = 1/2$. Consider the *bipartite* graph G' = (V, E') induced by V_1 and V_2 . Apply previous theorem to G'. $\{v_1v_2 \in E \mid v_1 \in V_1, v_2 \in V_2\}$

Thm. MAX-CROWN admits a randomized $32\alpha/3$ -approx. *Proof.* Let G = (V, E) be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_1 and V_2 with $\Pr[v \in V_1] = 1/2$. Consider the *bipartite* graph G' = (V, E') induced by V_1 and V_2 . Apply previous theorem to G'. $\exists v_1v_2 \in E \mid v_1 \in V_1, v_2 \in V_2$ \Rightarrow solution for G of profit ALG $\geq 3 \text{ OPT}'/(16\alpha)$.

Thm. MAX-CROWN admits a randomized $32\alpha/3$ -approx. *Proof.* Let G = (V, E) be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_1 and V_2 with $\Pr[v \in V_1] = 1/2$. Consider the *bipartite* graph G' = (V, E') induced by V_1 and V_2 . Apply previous theorem to G'. $\exists v_1v_2 \in E \mid v_1 \in V_1, v_2 \in V_2$ \Rightarrow solution for G of profit ALG $\geq 3 \text{ OPT}'/(16\alpha)$.

Let $G^* = (V, E^*)$ be a fixed optimum solution.

Thm. MAX-CROWN admits a randomized $32\alpha/3$ -approx. *Proof.* Let G = (V, E) be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_1 and V_2 with $\Pr[v \in V_1] = 1/2$. Consider the *bipartite* graph G' = (V, E') induced by V_1 and V_2 . Apply previous theorem to G'. $\exists v_1v_2 \in E \mid v_1 \in V_1, v_2 \in V_2$ \Rightarrow solution for G of profit ALG $\geq 3 \text{ OPT}'/(16\alpha)$.

Let $G^{\star} = (V, E^{\star})$ be a fixed optimum solution.

Any edge of G^* is contained in G' with probability 1/2.

Thm. MAX-CROWN admits a randomized $32\alpha/3$ -approx. *Proof.* Let G = (V, E) be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_1 and V_2 with $\Pr[v \in V_1] = 1/2$. Consider the *bipartite* graph G' = (V, E') induced by V_1 and V_2 . Apply previous theorem to G'. $\exists v_1v_2 \in E \mid v_1 \in V_1, v_2 \in V_2$ \Rightarrow solution for G of profit ALG ≥ 3 OPT'/(16 α).

> Let $G^* = (V, E^*)$ be a fixed optimum solution. Any edge of G^* is contained in G' with probability 1/2. Let $\overline{OPT} = p(E^* \cap E')$.

Thm. MAX-CROWN admits a randomized $32\alpha/3$ -approx. *Proof.* Let G = (V, E) be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_1 and V_2 with $\Pr[v \in V_1] = 1/2$. Consider the *bipartite* graph G' = (V, E') induced by V_1 and V_2 . Apply previous theorem to G'. $\exists v_1v_2 \in E \mid v_1 \in V_1, v_2 \in V_2$ \Rightarrow solution for G of profit ALG $\geq 3 \text{ OPT}'/(16\alpha)$.

> Let $G^* = (V, E^*)$ be a fixed optimum solution. Any edge of G^* is contained in G' with probability 1/2. Let $\overline{OPT} = p(E^* \cap E')$. Then $E[\overline{OPT}] = OPT/2$.

MAX-CROWN admits a randomized $32\alpha/3$ -approx. Thm. **Proof.** Let G = (V, E) be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_1 and V_2 with $\Pr[v \in V_1] = 1/2$. Consider the *bipartite* graph G' = (V, E') induced by V_1 and V_2 . Apply previous theorem to G'. $\{v_1v_2 \in E \mid v_1 \in V_1, v_2 \in V_2\}$ \Rightarrow solution for G of profit ALG $\geq 3 \text{ OPT}'/(16\alpha)$. Let $G^* = (V, E^*)$ be a fixed optimum solution. Any edge of G^* is contained in G' with probability 1/2. Let $\overline{OPT} = p(E^* \cap E')$. Then $E[\overline{OPT}] = OPT/2$. $\Rightarrow E[ALG] \geq$

MAX-CROWN admits a randomized $32\alpha/3$ -approx. Thm. **Proof.** Let G = (V, E) be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_1 and V_2 with $\Pr[v \in V_1] = 1/2$. Consider the *bipartite* graph G' = (V, E') induced by V_1 and V_2 . Apply previous theorem to G'. $\{v_1v_2 \in E \mid v_1 \in V_1, v_2 \in V_2\}$ \Rightarrow solution for G of profit ALG $\geq 3 \text{ OPT}'/(16\alpha)$. Let $G^* = (V, E^*)$ be a fixed optimum solution. Any edge of G^* is contained in G' with probability 1/2. Let $\overline{OPT} = p(E^* \cap E')$. Then $E[\overline{OPT}] = OPT/2$. $\Rightarrow E[ALG] \geq 3E[OPT']/(16\alpha)$

MAX-CROWN admits a randomized $32\alpha/3$ -approx. Thm. **Proof.** Let G = (V, E) be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_1 and V_2 with $\Pr[v \in V_1] = 1/2$. Consider the *bipartite* graph G' = (V, E') induced by V_1 and V_2 . Apply previous theorem to G'. $\{v_1v_2 \in E \mid v_1 \in V_1, v_2 \in V_2\}$ \Rightarrow solution for G of profit ALG $\geq 3 \text{ OPT}'/(16\alpha)$. Let $G^* = (V, E^*)$ be a fixed optimum solution. Any edge of G^* is contained in G' with probability 1/2. Let $\overline{OPT} = p(E^* \cap E')$. Then $E[\overline{OPT}] = OPT/2$. $\Rightarrow \mathsf{E}[\mathsf{ALG}] \ge 3\mathsf{E}[\mathsf{OPT}']/(16\alpha)$ $> 3E[\overline{OPT}]/(16\alpha) =$

MAX-CROWN admits a randomized $32\alpha/3$ -approx. Thm. **Proof.** Let G = (V, E) be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_1 and V_2 with $\Pr[v \in V_1] = 1/2$. Consider the *bipartite* graph G' = (V, E') induced by V_1 and V_2 . Apply previous theorem to G'. $\{v_1v_2 \in E \mid v_1 \in V_1, v_2 \in V_2\}$ \Rightarrow solution for G of profit ALG $\geq 3 \text{ OPT}'/(16\alpha)$. Let $G^* = (V, E^*)$ be a fixed optimum solution. Any edge of G^* is contained in G' with probability 1/2. Let $\overline{OPT} = p(E^* \cap E')$. Then $E[\overline{OPT}] = OPT/2$. $\Rightarrow \mathsf{E}[\mathsf{ALG}] \ge 3\mathsf{E}[\mathsf{OPT}']/(16\alpha)$ $> 3E[\overline{OPT}]/(16\alpha) \stackrel{\checkmark}{=} 3OPT/(32\alpha).$

Overview

	Weighted		Unweighted
Graph class	old*	new ^o	new [°]
cycle, path	1		
star	α \checkmark	1+arepsilon 🗸	
tree 🗸	2α , NP-hard	$2 + \varepsilon \checkmark$	2
max-degree Δ	$\lfloor (\Delta+1)/2 floor$		
planar max-deg. $arDelta$			$1 + \varepsilon$
outerplanar	3α 🗸	$3 + \varepsilon \checkmark$	
planar	5α \checkmark	$5 + \varepsilon \checkmark$	
bipartite		$16lpha/3$ \checkmark 8.4	
		APX-hard	
general		rand.: $32lpha/3pprox 16.9$ det.: $40lpha/3pprox 21.1$	$5+16lpha/3\ pprox$ 13.4

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN'14]
 ^o) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted]

lpha=e/(e-1)pprox 1.58

Overview

	V	Weighted	
Graph class	old*	new ^o	new°
cycle, path	1		
star	α \checkmark	1+arepsilon 🗸	
tree	$\sqrt{2\alpha}$, NP-hard	$2+\varepsilon$ 🗸	2
max-degree $arDelta$	$\lfloor (\varDelta + 1)/2 floor$		
planar max-deg. $arDelta$			1+arepsilon
outerplanar	3α 🗸	$3 + \varepsilon \checkmark$	
planar	5α \checkmark	$5 + \varepsilon \checkmark$	
bipartite		$16lpha/3$ \checkmark 8.4	
		APX-hard	
general		rand.: $32\alpha/3 \approx 16.9$ det.: $40\alpha/3 \approx 21.1$	$5+16lpha/3\ pprox$ 13.4

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN'14]
 ^o) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted]

lpha=e/(e-1)pprox 1.58

Overview

	V	Weighted	
Graph class	old*	new ^o	new°
cycle, path	1		
star	α \checkmark	1+arepsilon 🗸	
tree	$\checkmark 2\alpha$, NP-hard	$2+\varepsilon$ 🗸	2
max-degree $arDelta$	$\lfloor (\varDelta + 1)/2 floor$		
planar max-deg. $arDelta$			$1 + \varepsilon$
outerplanar	3α 🗸	$3 + \varepsilon \checkmark$	
planar	5α \checkmark	$5 + \varepsilon \checkmark$	
bipartite		$16lpha/3$ \checkmark 8.4	
		APX-hard	
general		rand.: $32\alpha/3 \approx 16.9$ det.: $40\alpha/3 \approx 21.1$	$5+16lpha/3\pprox$ 13.4

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN'14]
 ^o) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted]

lpha=e/(e-1)pprox 1.58

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph.

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Use GAP - as in bipartite case!

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Use GAP – as in bipartite case! New:

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Use GAP - as in bipartite case! New: for every vertex, we construct both 8 bins *and* 1 item.

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Use GAP - as in bipartite case! New: for every vertex, we construct both 8 bins *and* 1 item. Let OPT_{GAP} be the value of an opt. sol. of our GAP instance.

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Use GAP - as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let OPT_{GAP} be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Use GAP - as in bipartite case! New: for every vertex, we construct both 8 bins *and* 1 item. Let OPT_{GAP} be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests.

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Use GAP - as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let OPT_{GAP} be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance.

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof.Let G = (V, E) be any graph. Use GAP – as in bipartite case!New:for every vertex, we construct both 8 bins and 1 item.Let OPT_{GAP} be the value of an opt. sol. of our GAP instance.Opt. sol. is planar ⇒ can be decomposed into 5 star forests.Any star forest is a feasible solution to our GAP instance.⇒ $OPT_{GAP} \ge OPT / 5$.

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Use GAP - as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let OPT_{GAP} be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance. $\Rightarrow OPT_{GAP} \ge OPT/5$. Use α -approx. alg. for GAP.

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Use GAP - as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let OPT_{GAP} be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance. $\Rightarrow OPT_{GAP} \ge OPT/5$. Use α -approx. alg. for GAP. $\Rightarrow ALG_{GAP} \ge$

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Use GAP - as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let OPT_{GAP} be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance. $\Rightarrow OPT_{GAP} \ge OPT/5$. Use α -approx. alg. for GAP. $\Rightarrow ALG_{GAP} \ge OPT_{GAP}/\alpha \ge$

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Use GAP - as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let OPT_{GAP} be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance. $\Rightarrow OPT_{GAP} \ge OPT/5$. Use α -approx. alg. for GAP. $\Rightarrow ALG_{GAP} \ge OPT_{GAP}/\alpha \ge OPT/(5\alpha)$.

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Use GAP - as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let OPT_{GAP} be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance. $\Rightarrow OPT_{GAP} \ge OPT/5$. Use α -approx. alg. for GAP. $\Rightarrow ALG_{GAP} \ge OPT_{GAP}/\alpha \ge OPT/(5\alpha)$.

Def. G_{GAP} with edge uv iff item u is placed into a bin of v.

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Use GAP - as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let OPT_{GAP} be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance. $\Rightarrow OPT_{GAP} \ge OPT/5$. Use α -approx. alg. for GAP. $\Rightarrow ALG_{GAP} \ge OPT_{GAP}/\alpha \ge OPT/(5\alpha)$.

Def. $G_{\rm GAP}$ with edge uv iff item u is placed into a bin of v. outdeg ≤ 1

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Use GAP – as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let OPT_{GAP} be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance. $\Rightarrow OPT_{GAP} \ge OPT/5$. Use α -approx. alg. for GAP. $\Rightarrow ALG_{GAP} \ge OPT_{GAP}/\alpha \ge OPT/(5\alpha)$.

Def. G_{GAP} with edge uv iff item u is placed into a bin of v. outdeg $\leq 1 \Rightarrow$ connected components of G_{GAP} are 1-trees.

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Use GAP – as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let OPT_{GAP} be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance. $\Rightarrow OPT_{GAP} \ge OPT/5$. Use α -approx. alg. for GAP. $\Rightarrow ALG_{GAP} \ge OPT_{GAP}/\alpha \ge OPT/(5\alpha)$.

Def. G_{GAP} with edge uv iff item u is placed into a bin of v. outdeg $\leq 1 \Rightarrow$ connected components of G_{GAP} are 1-trees. Partition each into star forest S_1 and star forest + cycle S_2 .
Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Use GAP - as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let OPT_{GAP} be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance. $\Rightarrow OPT_{GAP} \ge OPT/5$. Use α -approx. alg. for GAP. $\Rightarrow ALG_{GAP} \ge OPT_{GAP}/\alpha \ge OPT/(5\alpha)$.

Def. G_{GAP} with edge uv iff item u is placed into a bin of v. outdeg $\leq 1 \Rightarrow$ connected components of G_{GAP} are 1-trees. Partition each into star forest S_1 and star forest + cycle S_2 . All contacts in S_i can be realized – with corner contacts!

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Use GAP – as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let OPT_{GAP} be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance. $\Rightarrow OPT_{GAP} \ge OPT/5$. Use α -approx. alg. for GAP. $\Rightarrow ALG_{GAP} \ge OPT_{GAP}/\alpha \ge OPT/(5\alpha)$.

Def. G_{GAP} with edge uv iff item u is placed into a bin of v. outdeg $\leq 1 \Rightarrow$ connected components of G_{GAP} are 1-trees. Partition each into star forest S_1 and star forest + cycle S_2 . All contacts in S_i can be realized – with corner contacts! Choose heavier of S_1 and S_2 .

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Use GAP – as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let OPT_{GAP} be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance. $\Rightarrow OPT_{GAP} \ge OPT/5$. Use α -approx. alg. for GAP. $\Rightarrow ALG_{GAP} \ge OPT_{GAP}/\alpha \ge OPT/(5\alpha)$.

Def. G_{GAP} with edge uv iff item u is placed into a bin of v. outdeg $\leq 1 \Rightarrow$ connected components of G_{GAP} are 1-trees. Partition each into star forest S_1 and star forest + cycle S_2 . All contacts in S_i can be realized – with corner contacts! Choose heavier of S_1 and S_2 . Remove corner contacts.

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Use GAP – as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let OPT_{GAP} be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance. $\Rightarrow OPT_{GAP} \ge OPT/5$. Use α -approx. alg. for GAP. $\Rightarrow ALG_{GAP} \ge OPT_{GAP}/\alpha \ge OPT/(5\alpha)$.

Def. G_{GAP} with edge uv iff item u is placed into a bin of v. outdeg $\leq 1 \Rightarrow$ connected components of G_{GAP} are 1-trees. Partition each into star forest S_1 and star forest + cycle S_2 . All contacts in S_i can be realized – with corner contacts! Choose heavier of S_1 and S_2 . Remove corner contacts. $\Rightarrow \text{ALG} >$

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Use GAP – as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let OPT_{GAP} be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance. $\Rightarrow OPT_{GAP} \ge OPT/5$. Use α -approx. alg. for GAP. $\Rightarrow ALG_{GAP} \ge OPT_{GAP}/\alpha \ge OPT/(5\alpha)$.

Def. G_{GAP} with edge uv iff item u is placed into a bin of v. outdeg $\leq 1 \Rightarrow$ connected components of G_{GAP} are 1-trees. Partition each into star forest S_1 and star forest + cycle S_2 . All contacts in S_i can be realized – with corner contacts! Choose heavier of S_1 and S_2 . Remove corner contacts. $\Rightarrow \text{ALG} \geq \bigcirc$ ALG_{GAP}

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Use GAP - as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let OPT_{GAP} be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance. $\Rightarrow OPT_{GAP} \ge OPT/5$. Use α -approx. alg. for GAP. $\Rightarrow ALG_{GAP} \ge OPT_{GAP}/\alpha \ge OPT/(5\alpha)$.

Def. G_{GAP} with edge uv iff item u is placed into a bin of v. outdeg $\leq 1 \Rightarrow$ connected components of G_{GAP} are 1-trees. Partition each into star forest S_1 and star forest + cycle S_2 . All contacts in S_i can be realized – with corner contacts! Choose heavier of S_1 and S_2 . Remove corner contacts. $\Rightarrow \text{ALG} \geq (1/2) \cdot (3/4) \text{ALG}_{\text{GAP}} \geq$

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Use GAP - as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let OPT_{GAP} be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance. $\Rightarrow OPT_{GAP} \ge OPT/5$. Use α -approx. alg. for GAP. $\Rightarrow ALG_{GAP} \ge OPT_{GAP}/\alpha \ge OPT/(5\alpha)$.

Def. G_{GAP} with edge uv iff item u is placed into a bin of v. outdeg $\leq 1 \Rightarrow$ connected components of G_{GAP} are 1-trees. Partition each into star forest S_1 and star forest + cycle S_2 . All contacts in S_i can be realized - with corner contacts! Choose heavier of S_1 and S_2 . Remove corner contacts. $\Rightarrow \text{ALG} \geq 1/2 \cdot 3/4$ $\text{ALG}_{\text{GAP}} \geq$

Thm. MAX-CROWN admits a deterministic $40\alpha/3$ -approx.

Proof. Let G = (V, E) be any graph. Use GAP – as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let OPT_{GAP} be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance. $\Rightarrow OPT_{GAP} \ge OPT/5$. Use α -approx. alg. for GAP. $\Rightarrow ALG_{GAP} \ge OPT_{GAP}/\alpha \ge OPT/(5\alpha)$.

Def. G_{GAP} with edge uv iff item u is placed into a bin of v. outdeg $\leq 1 \Rightarrow$ connected components of G_{GAP} are 1-trees. Partition each into star forest S_1 and star forest + cycle S_2 . All contacts in S_i can be realized - with corner contacts! Choose heavier of S_1 and S_2 . Remove corner contacts. $\Rightarrow \text{ALG} \geq (1/2) \cdot (3/4) \text{ALG}_{\text{GAP}} \geq (3 \text{ OPT})/(40\alpha)$.

Overview

	Weighted		Unweighted
Graph class	old*	new ^o	new [°]
cycle, path	1		
star	α \checkmark	1+arepsilon 🗸	
tree 🗸	2α , NP-hard	$2 + \varepsilon \checkmark$	2
max-degree $arDelta$	$\lfloor (\Delta + 1)/2 \rfloor$		
planar max-deg. $arDelta$			$1 + \varepsilon$
outerplanar	3α 🗸	$3 + \varepsilon \checkmark$	
planar	5α \checkmark	$5 + \varepsilon \checkmark$	
bipartite		$16lpha/3$ \checkmark 8.4	
		APX-hard	
general		rand.: $32\alpha/3 \neq 16.9$ det.: $40\alpha/3 \approx 21.1$	$5+16lpha/3\ pprox$ 13.4

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN'14]
 ^o) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted]

lpha=e/(e-1)pprox 1.58

Overview

	١	Weighted	
Graph class	old*	new ^o	new°
cycle, path	1		
star	α \checkmark	1+arepsilon 🗸	
tree	$\sqrt{2\alpha}$, NP-hard	$2+\varepsilon$ 🗸	2
max-degree $arDelta$	$\lfloor (\Delta + 1)/2 \rfloor$		
planar max-deg.	Δ		$1 + \varepsilon$
outerplanar	3α 🗸	$3 + \varepsilon \checkmark$	
planar	5α \checkmark	$5 + \varepsilon \checkmark$	
bipartite		$16\alpha/3$ \checkmark 8.4	
		APX-hard	
general		rand.: $32\alpha/3 \neq 16.9$ det.: $40\alpha/3 \neq 21.1$	$5+16lpha/3\pprox$ 13.4

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN'14]
 ^o) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted]

lpha = e/(e-1) pprox 1.58

Sasically, we reduced all problems to our solution for stars.

 Basically, we reduced all problems to our solution for stars.
 Is there any other graph class (except paths and cycles) that we can approximate directly?

 Basically, we reduced all problems to our solution for stars.
 Is there any other graph class (except paths and cycles) that we can approximate directly?

If we don't prescribe rectangle sizes, CROWN is completely solved.
[He, SICOMP'93; He & Kant, TCS'97]

 Basically, we reduced all problems to our solution for stars.
 Is there any other graph class (except paths and cycles) that we can approximate directly?

If we don't prescribe rectangle sizes, CROWN is completely solved.
[He, SICOMP'93; He & Kant, TCS'97]

What other problems have been solved combinatorially, but are interesting to optimize when we add more constraints?