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University of Arizona
Universität Würzburg

Approximation Algorithms
for Contact Representations of Rectangles



2008 U.S.
Presidential
Elections

Heather Williams, June 2008



C
o
a
lit
io
n
tr
ea

ty
2
0
1
3

Spiegel
Online

Nov. 2013



C
o
a
lit
io
n
tr
ea

ty
2
0
1
3

W
o
rd
s
th
a
t
w
er
e
m
o
re

im
p
o
rt
a
n
t
in

th
e
2
0
1
3

th
a
n
in

th
e
2
0
0
9
tr
ea

ty

Spiegel
Online

Nov. 2013



C
o
a
lit
io
n
tr
ea

ty
2
0
1
3

W
o
rd
s
th
a
t
w
er
e
m
o
re

im
p
o
rt
a
n
t
in

th
e
2
0
1
3

th
a
n
in

th
e
2
0
0
9
tr
ea

ty

Spiegel
Online

Nov. 2013



C
o
a
lit
io
n
tr
ea

ty
2
0
1
3

W
o
rd
s
th
a
t
w
er
e
m
o
re

im
p
o
rt
a
n
t
in

th
e
2
0
1
3

th
a
n
in

th
e
2
0
0
9
tr
ea

ty

Spiegel
Online

Nov. 2013



C
o
a
lit
io
n
tr
ea

ty
2
0
1
3

W
o
rd
s
th
a
t
w
er
e
m
o
re

im
p
o
rt
a
n
t
in

th
e
2
0
1
3

th
a
n
in

th
e
2
0
0
9
tr
ea

ty

Spiegel
Online

Nov. 2013



Contact Representation Of Word Networks

Input

– (integral) box dimensions

h

w



Contact Representation Of Word Networks

Input

– desired contact graph

– (integral) box dimensions

h

w



Contact Representation Of Word Networks

Input Output

– desired contact graph

– (integral) box dimensions

h

w



Contact Representation Of Word Networks

Input Output

– desired contact graph

– (integral) box dimensions

h

w

– placement of boxes



Contact Representation Of Word Networks

Input Output

– desired contact graph – realized desired contacts

– (integral) box dimensions

h

w

– placement of boxes



Contact Representation Of Word Networks

Input Output

– desired contact graph – realized desired contacts

– (integral) box dimensions

h

w

– placement of boxes

– profit: 1 unit / desired edge



Contact Representation Of Word Networks

Input Output

– desired contact graph – realized desired contacts

– (integral) box dimensions

h

w

– placement of boxes

– profit: 1 unit / desired edge

Max-Crown:



Contact Representation Of Word Networks

Input Output

– desired contact graph – realized desired contacts

– (integral) box dimensions

h

w

– placement of boxes

– profit: 1 unit / desired edge

Max-Crown: Maximize profit!



Contact Representation Of Word Networks

Input Output

– desired contact graph – realized desired contacts

– (integral) box dimensions

h

w

– placement of boxes

– profit: 1 unit / desired edge

Max-Crown: Maximize profit!

!



Contact Representation Of Word Networks

Input Output

– desired contact graph – realized desired contacts

– (integral) box dimensions

h

w

– placement of boxes

– profit: 1 unit / desired edge

Max-Crown: Maximize profit!

extra contacts:
not counted,
not forbidden



Contact Representation Of Word Networks

Input Output

– desired contact graph – realized desired contacts

– (integral) box dimensions

h

w

– placement of boxes

– profit: 1 unit / desired edge

Max-Crown: Maximize profit!

extra contacts:
not counted,
not forbidden



Contact Representation Of Word Networks

Input Output

– desired contact graph – realized desired contacts

– (integral) box dimensions

h

w

– placement of boxes

– profit: 1 unit / desired edge

Max-Crown: Maximize profit!

extra contacts:
not counted,
not forbidden

corner contacts
don’t count



Contact Representation Of Word Networks

Input Output

– desired contact graph – realized desired contacts

– (integral) box dimensions

h

w

– placement of boxes

– profit: 1 unit / desired edge

Max-Crown: Maximize profit!

extra contacts:
not counted,
not forbidden

12

2

4

2 5

3
corner contacts
don’t count



Contact Representation Of Word Networks

Input Output

– desired contact graph – realized desired contacts

– (integral) box dimensions

h

w

– placement of boxes

– profit: 1 unit / desired edge

Max-Crown: Maximize profit!

extra contacts:
not counted,
not forbidden

12

2

4

2 5

3

p(e)
es

corner contacts
don’t count



Related Work

rectangle / cube representation of graphs



Related Work

rectangle / cube representation of graphs
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Theorem. Gap admits an approximation algorithm with ratio
α = e/(e − 1) ≈ 1.58. [Fleischer et al., MOR’11]
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?) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN’14]

≈ 13.4

X

3α

X
X

X

Weighted Unweighted

Graph class old? new◦ new◦

cycle, path 1
star α 1 + ε
tree 2α, NP-hard 2 + ε 2
max-degree ∆ b(∆ + 1)/2c
planar max-deg. ∆ 1 + ε
outerplanar 3 + ε
planar 5α 5 + ε
bipartite 16α/3 ≈ 8.4

APX-hard
general rand.: 32α/3 ≈ 16.9 5 + 16α/3

det.: 40α/3 ≈ 21.1

α = e/(e − 1) ≈ 1.58

◦) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted]

X

X
X

X



Overview
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?) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt & Wolff, LATIN’14]

≈ 13.4

X

3α

X
X

X

X

Weighted Unweighted

Graph class old? new◦ new◦

cycle, path 1
star α 1 + ε
tree 2α, NP-hard 2 + ε 2
max-degree ∆ b(∆ + 1)/2c
planar max-deg. ∆ 1 + ε
outerplanar 3 + ε
planar 5α 5 + ε
bipartite 16α/3 ≈ 8.4

APX-hard
general rand.: 32α/3 ≈ 16.9 5 + 16α/3

det.: 40α/3 ≈ 21.1

α = e/(e − 1) ≈ 1.58

◦) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff – submitted]

X
X

X

X
X

X



Conclusions & Open Problems

Basically, we reduced all problems to our solution for stars.



Conclusions & Open Problems

Basically, we reduced all problems to our solution for stars.

Is there any other graph class (except paths and cycles)
that we can approximate directly?



Conclusions & Open Problems

If we don’t prescribe rectangle sizes, Crown is completely
solved. [He, SICOMP’93; He & Kant, TCS’97]

Basically, we reduced all problems to our solution for stars.

Is there any other graph class (except paths and cycles)
that we can approximate directly?



Conclusions & Open Problems
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solved. [He, SICOMP’93; He & Kant, TCS’97]

What other problems have been solved combinatorially, but
are interesting to optimize when we add more constraints?
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