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[Eppstein et al., SICOMP'12]
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Our Results — Approximation Factors

Weighted
Graph class old” new"
cycle, path 1
star Q 1+4¢
tree 2c, NP-hard 2+¢€
max-degree A [(A+1)/2]
planar max-deg. A
outerplanar 3+¢
planar ba 5+¢
bipartite 16/3 ~ 8.4
APX-hard
general rand.: 32a/3 ~ 169

det.: 40a/3 ~ 211

*) [Barth, Fabrikant, Kobourov, Lubiw, Nollenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt, Wolff — LATIN'14]
O) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff — submitted]
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Tool #1: GAP

KNAPSACK (GENERALIZED ASSIGNMENT PROB.
items bin, items bin,
3 2 4 3
2 |14 2 | |4
1 1 2 4
— size s;; — bin; has capacity c;
— value v;; — maximize total value packed

Theorem. GAP admits an approximation algorithm with ratio
a=-¢e/(e—1)~1.58.
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Set up GAP:
— eight bins (for the 4 sides and the 4 corners of By)

— corner bins have capacity 1/2

— the capacity of side bins is their “free” length

—1tems 2,...,n
— the value of item i is p(vyV;)

— item / has size 1/2 in corner bins,
w; in top/bottom side bins, h; in left/right side bins

Algorithm:

@ Assume that the 4 corner rectangles have contacts
of length % in a fixed optimal solution.

@ Each contact may be horizontal or vertical.

@ Try all 2% possibilities by calling a-approx. for GAP.

= a-approx. algorithm for MAX-CROWN on stars []
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Def. A star forest is the disjoint union of a set of stars.

Thm. MAX-CROWN admits an a-approx. on star forests.

Proof. Use the a-approx. alg. for stars. Treat each star indep.

Thm. MAX-CROWN admits
— a 2c-approx. on trees,
— a 3a-approx. on outerplanar graphs,
— a ba-approx. on planar graphs.

Proof. Can cover any tree by 2 star forests ( “star arboricity 2").

Now apply the combination lemma.

Outerplanar | planar graphs have
star arboricity 3|5.[Hakimi et al., DM'96]
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Let G = (V, E) be any graph. Idea: Reduce to bipartite case!
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Conclusions & Open Problems

@ Basically, we reduced all problems to our solution for stars.

Is there any other graph class (except paths and cycles)
that we can approximate directly?

@ If we don't prescribe rectangle sizes, CROWN is completely
solved. [He, SICOMP’93; He & Kant, TCS'97]

What other problems have been solved combinatorially, but
are interesting to optimize when we add more constraints?
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