edges algorithm approximation set vertex ${ }^{\text {PTAS }}$ cornercontacts star forests model weight problem MAX-CROWN Star forestsmode optimum maximum graph supporting
 solution profit total planar bipartite

Approximation Algorithms

for Contact Representations of Rectangles

Michalis Bekos Thomas van Dijk
Martin Fink Philipp Kindermann
Stephen Kobourov Sergey Pupyrev
Joachim Spoerhase Alexander Wolff

Universität Tübingen
University of Arizona
Universität Würzburg

عIO乙 Кұеәл ио!ұ!ןеоว

Spiegel
Online

Contact Representation Of Word Networks

Input

- (integral) box dimensions

Contact Representation Of Word Networks

Input

- (integral) box dimensions
- desired contact graph

Contact Representation Of Word Networks

Input

- (integral) box dimensions
- desired contact graph

Output

Contact Representation Of Word Networks

Input

- (integral) box dimensions
- desired contact graph

Output

- placement of boxes

Contact Representation Of Word Networks

Input

- (integral) box dimensions
- desired contact graph

Output

- placement of boxes
- realized desired contacts

Contact Representation Of Word Networks

Input

- (integral) box dimensions
- desired contact graph

Output

- placement of boxes
- realized desired contacts
- profit: 1 unit / desired edge

Contact Representation Of Word Networks

Input

- (integral) box dimensions
- desired contact graph

Output

- placement of boxes
- realized desired contacts
- profit: 1 unit / desired edge

Contact Representation Of Word Networks

Input

- (integral) box dimensions
- desired contact graph

Output

- placement of boxes
- realized desired contacts
- profit: 1 unit / desired edge

Contact Representation Of Word Networks

Input

- (integral) box dimensions
- desired contact graph

Output

- placement of boxes
- realized desired contacts
- profit: 1 unit / desired edge

Contact Representation Of Word Networks

Input

- (integral) box dimensions
- desired contact graph

Output

- placement of boxes
- realized desired contacts
- profit: 1 unit / desired edge

Contact Representation Of Word Networks

Input

- (integral) box dimensions
- desired contact graph

Output

- placement of boxes
- realized desired contacts
- profit: 1 unit / desired edge

Contact Representation Of Word Networks

Input

- placement of boxes
- realized desired contacts
- profit: 1 unit / desired edge

Contact Representation Of Word Networks

Input

- (integral) box dimensions
- desired contact graph

Output

0

- placement of boxes
- realized desired contacts
- profit: 1 unit / desired edge

Contact Representation Of Word Networks

Input

W

- (integral) box dimensions
- desired contact graph

Output

- placement of boxes
- realized desired contacts
- profit: \nsucceq units / desired edge e $p(e)$
MAX-Crown: Maximize profit!

Related Work

O rectangle / cube representation of graphs

Related Work

O rectangle / cube representation of graphs

- Every planar graph w/o sep. triangles has a touching rectangle representation
[Koźminński \& Kinnen, Networks'85;
$\mathrm{He}, \mathrm{SICOMP}$ '93;
He \& Kant, TCS'97]

Related Work

O rectangle / cube representation of graphs

- Every planar graph w/o sep. triangles has a touching rectangle representation

[Koźminński \& Kin-
nen, Networks'85;
He, SICOMP'93;
He \& Kant, TCS'97]

Related Work

O rectangle / cube representation of graphs

- Every planar graph w/o sep. triangles has a touching rectangle representation (which can be computed in linear time).

[Koźminński \& Kin-
nen, Networks'85;
He, SICOMP'93;
He \& Kant, TCS'97]

Related Work

O rectangle / cube representation of graphs

- Every planar graph w/o sep. triangles has a touching rectangle representation (which can be computed in linear time).

[Koźminński \& Kin-
nen, Networks'85;
He, SICOMP'93;
He \& Kant, TCS'97]
- Every planar graph has a touching cube representation.
[Felsner \& Francis, SoCG'11]

Related Work

O rectangle / cube representation of graphs

- Every planar graph w/o sep. triangles has a touching rectangle representation (which can be computed in linear time).

[Koźminński \& Kinnen, Networks'85;
He, SICOMP'93;
He \& Kant, TCS'97]
- Every planar graph has a touching cube representation.
[Felsner \& Francis, SoCG'11]
O area-preserving rectangular cartograms

Related Work

O rectangle / cube representation of graphs

- Every planar graph w/o sep. triangles has a touching rectangle representation (which can be computed in linear time).

[Koźminński \& Kinnen, Networks'85; He, SICOMP'93;
He \& Kant, TCS'97]
- Every planar graph has a touching cube representation.
[Felsner \& Francis, SoCG'11]
- area-preserving rectangular cartograms
- introduced by Raisz [1934]
- area-universal rectangular layouts
[Eppstein et al., SICOMP'12]

Related Work

O rectangle / cube representation of graphs

- Every planar graph w/o sep. triangles has a touching rectangle representation (which can be computed in linear time).

[Koźminński \& Kinnen, Networks'85; He, SICOMP'93;
He \& Kant, TCS'97]
- Every planar graph has a touching cube representation.
[Felsner \& Francis, SoCG'11]
- area-preserving rectangular cartograms
- introduced by Raisz [1934]
- area-universal rectangular layouts
[Eppstein et al., SICOMP'12]

Related Work

- rectangle / cube representation of graphs
- Every planar graph w/o sep. triangles has a touching rectangle representation (which can be computed in linear time).

[Koźminński \& Kinnen, Networks'85; He, SICOMP'93;
He \& Kant, TCS'97]
- Every planar graph has a touching cube representation.
[Felsner \& Francis, SoCG'11]
- area-preserving rectangular cartograms
- introduced by Raisz [1934]
- area-universal rectangular layouts

Related Work

- rectangle / cube representation of graphs
- Every planar graph w/o sep. triangles has a touching rectangle representation (which can be computed in linear time).

[Koźminński \& Kinnen, Networks'85; He, SICOMP'93;
He \& Kant, TCS'97]
- Every planar graph has a touching cube representation.
[Felsner \& Francis, SoCG'11]
- area-preserving rectangular cartograms
- introduced by Raisz [1934]
- area-universal rectangular layouts

Related Work

- rectangle / cube representation of graphs
- Every planar graph w/o sep. triangles has a touching rectangle representation (which can be computed in linear time).

[Koźminński \& Kinnen, Networks'85; He, SICOMP'93;
He \& Kant, TCS'97]
- Every planar graph has a touching cube representation.
[Felsner \& Francis, SoCG'11]
- area-preserving rectangular cartograms
- introduced by Raisz [1934]
- area-universal rectangular layouts

- rectangle representations with edge weights

Related Work

- rectangle / cube representation of graphs
- Every planar graph w/o sep. triangles has a touching rectangle representation (which can be computed in linear time).

[Koźminński \& Kinnen, Networks'85; He, SICOMP'93;
He \& Kant, TCS'97]
- Every planar graph has a touching cube representation.
[Felsner \& Francis, SoCG'11]
O area-preserving rectangular cartograms
- introduced by Raisz [1934]
- area-universal rectangular layouts

- rectangle representations with edge weights
- edge weights prescribe length of contact

Our Results - Approximation Factors

	Weighted	
Graph class	old *	new $^{\circ}$
cycle, path	1	
star	α	$1+\varepsilon$
tree	$2 \alpha, N P-$ hard	$2+\varepsilon$
max-degree Δ	$\lfloor(\Delta+1) / 2\rfloor$	
planar max-deg. Δ		$3+\varepsilon$
outerplanar		$5+\varepsilon$
planar	5α	$16 \alpha / 3 \approx 8.4$
bipartite		APX-hard
		rand.: $32 \alpha / 3 \approx 16.9$ deneral
		$40 \alpha / 3 \approx 21.1$

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt, Wolff - LATIN'14]
${ }^{\circ}$) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff - submitted]

$$
\alpha=e /(e-1) \approx 1.58
$$

Our Results - Approximation Factors

Graph class	Weighted		Unweighted
	old*	new ${ }^{\circ}$	new ${ }^{\circ}$
cycle, path	1		
star	α	$1+\varepsilon$	
tree	2α, NP-hard	$2+\varepsilon$	2
max-degree Δ	$\lfloor(\Delta+1) / 2\rfloor$		
planar max-deg. Δ			$1+\varepsilon$
outerplanar		$3+\varepsilon$	
planar	5α	$5+\varepsilon$	
bipartite		$\begin{aligned} & 16 \alpha / 3 \approx 8.4 \\ & \text { APX-hard } \end{aligned}$	
general		$\begin{aligned} & \text { rand.: } 32 \alpha / 3 \approx 16.9 \\ & \text { det.: } \quad 40 \alpha / 3 \approx 21.1 \end{aligned}$	$\begin{gathered} 5+16 \alpha / 3 \\ \approx 13.4 \end{gathered}$

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt, Wolff - LATIN'14]
${ }^{\circ}$) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff - submitted]

$$
\alpha=e /(e-1) \approx 1.58
$$

Our Results - Approximation Factors

Graph class	Weighted		Unweighted
	old*	new ${ }^{\circ}$	new ${ }^{\circ}$
cycle, path	1		
star	α	$1+\varepsilon$	
tree	2a NP-hard	$2+\varepsilon$	2
max-degree Δ	$\lfloor(\Delta+1) / 2\rfloor$		
planar max-deg. Δ			$1+\varepsilon$
outerplanar		$3+\varepsilon$	
planar	5α	$5+\varepsilon$	
bipartite		$\frac{16 \alpha / 3}{\text { APX-hard }} \approx 8.4$	
general		$\begin{aligned} & \text { rand.: } \begin{array}{l} 32 \alpha / 3 \\ \text { det.: } \\ 40 \alpha / 3 \\ \end{array} \frac{16.9}{}=21.1 \end{aligned}$	$5+\underset{\approx 13 / 4}{16 \alpha / 3}$

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt, Wolff - LATIN'14]
${ }^{\circ}$) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff - submitted]

$$
\alpha=e /(e-1) \approx 1.58
$$

Our Results - Approximation Factors

Graph class	Weighted		Unweighted
	old*	new ${ }^{\circ}$	new ${ }^{\circ}$
cycle, path	1		
star	α	$1+\varepsilon$	
tree	2a NP-hard	$2+\varepsilon$	2
max-degree Δ	$\lfloor(\Delta+1) / 2\rfloor$		
planar max-deg. Δ			$1+\varepsilon$
outerplanar		$3+\varepsilon$	
planar	5α	$5+\varepsilon$	
bipartite		$\frac{16 \alpha / 3}{\text { APX-hard }} \approx 8.4$	
general		$\begin{aligned} & \text { rand.: } \begin{array}{l} 32 \alpha / 3 \\ \text { det.: } \\ 40 \alpha / 3 \\ \end{array} \frac{16.9}{}=21.1 \end{aligned}$	$5+\underset{\approx 13 / 4}{16 \alpha / 3}$

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt, Wolff - LATIN'14]
${ }^{\circ}$) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff - submitted]

$$
\alpha=e /(e-1) \approx 1.58
$$

Tool \#1: GAP

Tool \#1: GAP

Knapsack
items

- size s_{i}
- value v_{i}

Tool \#1: GAP

Knapsack
items
bin

$-\operatorname{size} s_{i}$

- bin has capacity c
- value v_{i}

Tool \#1: GAP

Knapsack
items
bin

- size $s_{i} \quad$ - bin has capacity c
- value v_{i}

Tool \#1: GAP

Knapsack
items
bin

$-\operatorname{size} s_{i}$

- bin has capacity c
- value v_{i}
- maximize total value packed

Tool \#1: GAP

Knapsack
Generalized Assignment Prob.
items

$-\operatorname{size} s_{i}$

- value v_{i}
bin

- bin has capacity c
- maximize total value packed

Tool \#1: GAP

Knapsack
items

- size $s_{i j}$
- value $v_{i j}$

Generalized Assignment Prob.
items

- bin_{j} has capacity c_{j}
- maximize total value packed

Tool \#1: GAP

Knapsack
items

- size $s_{i j}$
- value $v_{i j}$

Generalized Assignment Prob.

- bin $_{j}$ has capacity c_{j}
- maximize total value packed

Theorem. GAP admits an approximation algorithm with ratio $\alpha=e /(e-1) \approx 1.58$.

Max-Crown for Stars

Max-Crown for Stars

Max-Crown for Stars

Max-Crown for Stars

Max-Crown for Stars

Max-Crown for Stars

Max-Crown for Stars

Max-Crown for Stars

Set up Gap:

- eight bins (for the 4 sides and the 4 corners of B_{1})
- corner bins have capacity $1 / 2$
- the capacity of side bins is their "free" length

Max-Crown for Stars

Set up GAP:

- eight bins (for the 4 sides and the 4 corners of B_{1})
- corner bins have capacity $1 / 2$
- the capacity of side bins is their "free" length
- items $2, \ldots, n$; one for each leaf

Max-Crown for Stars

Set up GAP:

- eight bins (for the 4 sides and the 4 corners of B_{1})
- corner bins have capacity $1 / 2$
- the capacity of side bins is their "free" length
- items $2, \ldots, n$; one for each leaf
- the value of item i is $p\left(v_{1} v_{i}\right)$, the profit of edge $v_{1} v_{i}$

Max-Crown for Stars

Set up GAP:

- eight bins (for the 4 sides and the 4 corners of B_{1})
- corner bins have capacity $1 / 2$
- the capacity of side bins is their "free" length
- items $2, \ldots, n$; one for each leaf
- the value of item i is $p\left(v_{1} v_{i}\right)$, the profit of edge $v_{1} v_{i}$

- item i has size $1 / 2$ in corner bins, w_{i} in top/bottom side bins, h_{i} in left/right side bins

Max-Crown for Stars

Set up GAP:

- eight bins (for the 4 sides and the 4 corners of B_{1})
- corner bins have capacity $1 / 2$
- the capacity of side bins is their "free" length
- items $2, \ldots, n$; one for each leaf
- the value of item i is $p\left(v_{1} v_{i}\right)$, the profit of edge $v_{1} v_{i}$

- item i has size $1 / 2$ in corner bins, w_{i} in top/bottom side bins, h_{i} in left/right side bins
Algorithm:

Max-Crown for Stars

Set up GAP:

- eight bins (for the 4 sides and the 4 corners of B_{1})
- corner bins have capacity $1 / 2$
- the capacity of side bins is their "free" length
- items $2, \ldots, n$; one for each leaf
- the value of item i is $p\left(v_{1} v_{i}\right)$, the profit of edge $v_{1} v_{i}$

- item i has size $1 / 2$ in corner bins, w_{i} in top/bottom side bins, h_{i} in left/right side bins
Algorithm:
- Assume that the 4 corner rectangles have contacts of length $\frac{1}{2}$ in a fixed optimal solution.

Max-Crown for Stars

Set up GAP:

- eight bins (for the 4 sides and the 4 corners of B_{1})
- corner bins have capacity $1 / 2$
- the capacity of side bins is their "free" length
- items $2, \ldots, n$; one for each leaf
- the value of item i is $p\left(v_{1} v_{i}\right)$, the profit of edge $v_{1} v_{i}$

- item i has size $1 / 2$ in corner bins, w_{i} in top/bottom side bins, h_{i} in left/right side bins
Algorithm:
- Assume that the 4 corner rectangles have contacts of length $\frac{1}{2}$ in a fixed optimal solution.

Max-Crown for Stars

Set up GAP:

- eight bins (for the 4 sides and the 4 corners of B_{1})
- corner bins have capacity $1 / 2$
- the capacity of side bins is their "free" length
- items $2, \ldots, n$; one for each leaf
- the value of item i is $p\left(v_{1} v_{i}\right)$, the profit of edge $v_{1} v_{i}$

- item i has size $1 / 2$ in corner bins, w_{i} in top/bottom side bins, h_{i} in left/right side bins
Algorithm:
- Assume that the 4 corner rectangles have contacts of length $\frac{1}{2}$ in a fixed optimal solution.
- Each contact may be horizontal or vertical.

Max-Crown for Stars

Set up GAP:

- eight bins (for the 4 sides and the 4 corners of B_{1})
- corner bins have capacity $1 / 2$
- the capacity of side bins is their "free" length
- items $2, \ldots, n$; one for each leaf
- the value of item i is $p\left(v_{1} v_{i}\right)$, the profit of edge $v_{1} v_{i}$

- item i has size $1 / 2$ in corner bins, w_{i} in top/bottom side bins, h_{i} in left/right side bins
Algorithm:
- Assume that the 4 corner rectangles have contacts of length $\frac{1}{2}$ in a fixed optimal solution.
- Each contact may be horizontal or vertical.
- Try all 2^{4} possibilities

Max-Crown for Stars

Set up GAP:

- eight bins (for the 4 sides and the 4 corners of B_{1})
- corner bins have capacity $1 / 2$
- the capacity of side bins is their "free" length
- items $2, \ldots, n$; one for each leaf
- the value of item i is $p\left(v_{1} v_{i}\right)$, the profit of edge $v_{1} v_{i}$

- item i has size $1 / 2$ in corner bins, w_{i} in top/bottom side bins, h_{i} in left/right side bins
Algorithm:
- Assume that the 4 corner rectangles have contacts of length $\frac{1}{2}$ in a fixed optimal solution.
- Each contact may be horizontal or vertical.
- Try all 2^{4} possibilities by calling α-approx. for GAP.

Max-Crown for Stars

Set up Gap:

- eight bins (for the 4 sides and the 4 corners of B_{1})
- corner bins have capacity $1 / 2$
- the capacity of side bins is their "free" length
- items $2, \ldots, n$; one for each leaf
- the value of item i is $p\left(v_{1} v_{i}\right)$, the profit of edge $v_{1} v_{i}$

- item i has size $1 / 2$ in corner bins, w_{i} in top/bottom side bins, h_{i} in left/right side bins
Algorithm:
- Assume that the 4 corner rectangles have contacts of length $\frac{1}{2}$ in a fixed optimal solution.
- Each contact may be horizontal or vertical.
- Try all 2^{4} possibilities by calling α-approx. for GAP.
$\Rightarrow \alpha$-approx. algorithm for MAX-Crown on stars \square

Overview

Graph class	Weighted		Unweighted
	old*	new ${ }^{\circ}$	new ${ }^{\circ}$
cycle, path	1		
star	α	$1+\varepsilon$	
tree	2a NP-hard	$2+\varepsilon$	2
max-degree Δ	$\lfloor(\Delta+1) / 2\rfloor$		
planar max-deg. Δ			$1+\varepsilon$
outerplanar		$3+\varepsilon$	
planar	5α	$5+\varepsilon$	
bipartite		$\frac{16 \alpha / 3}{\text { APX-hard }} \approx 8.4$	
general		rand.: $32 \alpha / 3 \approx 16.9$ det.: $40 \alpha / 3 \approx 21.1$	$\begin{gathered} 5+16 \alpha / 3 \\ \approx 13.4 \end{gathered}$

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt \& Wolff, LATIN'14]
${ }^{\circ}$) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff - submitted]

$$
\alpha=e /(e-1) \approx 1.58
$$

Overview

Graph class	Weighted		Unweighted
	old*	new ${ }^{\circ}$	new ${ }^{\circ}$
cycle, path	1		
star	α	$1+\varepsilon$	
tree	2a NP-hard	$2+\varepsilon$	2
max-degree Δ	$\lfloor(\Delta+1) / 2\rfloor$		
planar max-deg. Δ			$1+\varepsilon$
outerplanar		$3+\varepsilon$	
planar	$5 a$	$5+\varepsilon$	
bipartite		$\frac{16 \alpha / 3}{\text { APX-hard }} \approx 8.4$	
general		$\begin{aligned} & \text { rand.: } \begin{array}{l} 32 \alpha / 3 \\ \text { det.: } \\ 40 \alpha / 3 \\ \end{array} \frac{16.9}{} 21.1 \end{aligned}$	$\begin{gathered} 5+16 \alpha / 3 \\ \approx 13.4 \end{gathered}$

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt \& Wolff, LATIN'14]
${ }^{\circ}$) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff - submitted]

$$
\alpha=e /(e-1) \approx 1.58
$$

Overview

Graph class	Weighted		Unweighted
	old*	new ${ }^{\circ}$	new ${ }^{\circ}$
cycle, path	1		
star	α	$1+\varepsilon$	
tree	2a, NP-hard	$2+\varepsilon$	2
max-degree Δ	$\lfloor(\Delta+1) / 2\rfloor$		
planar max-deg. Δ			$1+\varepsilon$
outerplanar	3α	$3+\varepsilon$	
planar	5α	$5+\varepsilon$	
bipartite		$\frac{16 \alpha / 3}{\text { APX-hard }} \approx 8.4$	
general			$5+\underset{\approx 13 / 4}{16 \alpha / 3}$

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt \& Wolff, LATIN'14]
${ }^{\circ}$) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff - submitted]

$$
\alpha=e /(e-1) \approx 1.58
$$

Tool \#2: The Combination Lemma

 Lemma. Let $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right), G=\left(V, E_{1} \cup E_{2}\right)$.
Tool \#2: The Combination Lemma

Lemma. Let $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right), G=\left(V, E_{1} \cup E_{2}\right)$.
If MAX-CROWN admits an α_{i}-approx. on G_{i},

Tool \#2: The Combination Lemma

Lemma. Let $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right), G=\left(V, E_{1} \cup E_{2}\right)$.
If MAX-CROWN admits an α_{i}-approx. on G_{i}, then Max-Crown admits $\left(\alpha_{1}+\alpha_{2}\right)$-approx. on G.

Tool \#2: The Combination Lemma

Lemma. Let $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right), G=\left(V, E_{1} \cup E_{2}\right)$.
If Max-Crown admits an α_{i}-approx. on G_{i}, then Max-Crown admits $\left(\alpha_{1}+\alpha_{2}\right)$-approx. on G.

Proof. Algorithm.

Analysis.

Tool \#2: The Combination Lemma

Lemma. Let $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right), G=\left(V, E_{1} \cup E_{2}\right)$.
If Max-Crown admits an α_{i}-approx. on G_{i}, then Max-Crown admits ($\alpha_{1}+\alpha_{2}$)-approx. on G.

Proof. Algorithm.
Apply α_{1}-approx. to G_{1} and α_{2}-approx. to G_{2}.

Analysis.

Tool \#2: The Combination Lemma

Lemma. Let $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right), G=\left(V, E_{1} \cup E_{2}\right)$.
If Max-Crown admits an α_{i}-approx. on G_{i}, then Max-Crown admits $\left(\alpha_{1}+\alpha_{2}\right)$-approx. on G.

Proof. Algorithm.
Apply α_{1}-approx. to G_{1} and α_{2}-approx. to G_{2}.
Return result with larger profit for G.
Analysis.

Tool \#2: The Combination Lemma

Lemma. Let $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right), G=\left(V, E_{1} \cup E_{2}\right)$.
If Max-Crown admits an α_{i}-approx. on G_{i}, then Max-Crown admits $\left(\alpha_{1}+\alpha_{2}\right)$-approx. on G.

Proof. Algorithm.
Apply α_{1}-approx. to G_{1} and α_{2}-approx. to G_{2}.
Return result with larger profit for G.
Analysis. For G, G_{1}, G_{2},

Tool \#2: The Combination Lemma

Lemma. Let $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right), G=\left(V, E_{1} \cup E_{2}\right)$.
If Max-Crown admits an α_{i}-approx. on G_{i}, then Max-Crown admits $\left(\alpha_{1}+\alpha_{2}\right)$-approx. on G.

Proof. Algorithm.
Apply α_{1}-approx. to G_{1} and α_{2}-approx. to G_{2}.
Return result with larger profit for G.
Analysis. For G, G_{1}, G_{2},

- let OPT, OPT, OPT_{2} be the optimum profits,

Tool \#2: The Combination Lemma

Lemma. Let $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right), G=\left(V, E_{1} \cup E_{2}\right)$.
If Max-Crown admits an α_{i}-approx. on G_{i}, then Max-Crown admits $\left(\alpha_{1}+\alpha_{2}\right)$-approx. on G.

Proof. Algorithm.
Apply α_{1}-approx. to G_{1} and α_{2}-approx. to G_{2}.
Return result with larger profit for G.
Analysis. For G, G_{1}, G_{2},

- let OPT, OPT, OPT_{2} be the optimum profits,
- let $A L G, A L G_{1}, A L G_{2}$ be the profits of the approx. alg.

Tool \#2: The Combination Lemma

Lemma. Let $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right), G=\left(V, E_{1} \cup E_{2}\right)$.
If Max-Crown admits an α_{i}-approx. on G_{i}, then Max-Crown admits $\left(\alpha_{1}+\alpha_{2}\right)$-approx. on G.

Proof. Algorithm.
Apply α_{1}-approx. to G_{1} and α_{2}-approx. to G_{2}.
Return result with larger profit for G.
Analysis. For G, G_{1}, G_{2},

- let OPT, OPT, OPT_{2} be the optimum profits,
- let ALG, $\mathrm{ALG}_{1}, \mathrm{ALG}_{2}$ be the profits of the approx. alg.

By def., $\mathrm{ALG}_{i}>\mathrm{OPT}_{i} / \alpha_{i}$.

Tool \#2: The Combination Lemma

Lemma. Let $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right), G=\left(V, E_{1} \cup E_{2}\right)$.
If Max-Crown admits an α_{i}-approx. on G_{i}, then Max-Crown admits $\left(\alpha_{1}+\alpha_{2}\right)$-approx. on G.

Proof. Algorithm.
Apply α_{1}-approx. to G_{1} and α_{2}-approx. to G_{2}.
Return result with larger profit for G.
Analysis. For G, G_{1}, G_{2},

- let OPT, OPT, OPT_{2} be the optimum profits,
- let ALG, ALG,$A_{1} G_{2}$ be the profits of the approx.alg.

By def., $\mathrm{ALG}_{i}>\mathrm{OPT}_{i} / \alpha_{i}$. Clearly, $\mathrm{OPT} \leq \mathrm{OPT}_{1}+\mathrm{OPT}_{2}$.

Tool \#2: The Combination Lemma

Lemma. Let $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right), G=\left(V, E_{1} \cup E_{2}\right)$.
If Max-Crown admits an α_{i}-approx. on G_{i}, then Max-Crown admits $\left(\alpha_{1}+\alpha_{2}\right)$-approx. on G.

Proof. Algorithm.
Apply α_{1}-approx. to G_{1} and α_{2}-approx. to G_{2}.
Return result with larger profit for G.
Analysis. For G, G_{1}, G_{2},

- let OPT, OPT, OPT_{2} be the optimum profits,
- let ALG, ALG,$A_{1} \mathrm{AL}_{2}$ be the profits of the approx. alg.

By def., $\mathrm{ALG}_{i}>\mathrm{OPT}_{i} / \alpha_{i}$. Clearly, OPT $\leq \mathrm{OPT}_{1}+\mathrm{OPT}_{2}$.
Assume $\mathrm{OPT}_{1} / \alpha_{1} \geq \mathrm{OPT}_{2} / \alpha_{2}$.

Tool \#2: The Combination Lemma

Lemma. Let $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right), G=\left(V, E_{1} \cup E_{2}\right)$.
If Max-Crown admits an α_{i}-approx. on G_{i}, then Max-Crown admits $\left(\alpha_{1}+\alpha_{2}\right)$-approx. on G.

Proof. Algorithm.
Apply α_{1}-approx. to G_{1} and α_{2}-approx. to G_{2}.
Return result with larger profit for G.
Analysis. For G, G_{1}, G_{2},

- let OPT, OPT, OPT_{2} be the optimum profits,
- let ALG, ALG,$A_{1} \mathrm{AL}_{2}$ be the profits of the approx. alg.

By def., $\mathrm{ALG}_{i}>\mathrm{OPT}_{i} / \alpha_{i}$. Clearly, $\mathrm{OPT} \leq \mathrm{OPT}_{1}+\mathrm{OPT}_{2}$.
Assume $\mathrm{OPT}_{1} / \alpha_{1} \geq \mathrm{OPT}_{2} / \alpha_{2}$. Then

Tool \#2: The Combination Lemma

Lemma. Let $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right), G=\left(V, E_{1} \cup E_{2}\right)$.
If Max-Crown admits an α_{i}-approx. on G_{i}, then Max-Crown admits $\left(\alpha_{1}+\alpha_{2}\right)$-approx. on G.

Proof. Algorithm.
Apply α_{1}-approx. to G_{1} and α_{2}-approx. to G_{2}.
Return result with larger profit for G.
Analysis. For G, G_{1}, G_{2},

- let OPT, OPT, OPT_{2} be the optimum profits,
- let ALG, ALG,$A_{1} G_{2}$ be the profits of the approx. alg.

By def., $\mathrm{ALG}_{i}>\mathrm{OPT}_{i} / \alpha_{i}$. Clearly, $\mathrm{OPT} \leq \mathrm{OPT}_{1}+\mathrm{OPT}_{2}$.
Assume $\mathrm{OPT}_{1} / \alpha_{1} \geq \mathrm{OPT}_{2} / \alpha_{2}$. Then
ALG \geq

Tool \#2: The Combination Lemma

Lemma. Let $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right), G=\left(V, E_{1} \cup E_{2}\right)$.
If Max-Crown admits an α_{i}-approx. on G_{i}, then Max-Crown admits $\left(\alpha_{1}+\alpha_{2}\right)$-approx. on G.

Proof. Algorithm.
Apply α_{1}-approx. to G_{1} and α_{2}-approx. to G_{2}.
Return result with larger profit for G.
Analysis. For G, G_{1}, G_{2},

- let OPT, OPT, OPT_{2} be the optimum profits,
- let ALG, ALG,$A_{1} G_{2}$ be the profits of the approx.alg.

By def., $\mathrm{ALG}_{i}>\mathrm{OPT}_{i} / \alpha_{i}$. Clearly, $\mathrm{OPT} \leq \mathrm{OPT}_{1}+\mathrm{OPT}_{2}$.
Assume $\mathrm{OPT}_{1} / \alpha_{1} \geq \mathrm{OPT}_{2} / \alpha_{2}$. Then
$\mathrm{ALG} \geq \mathrm{ALG}_{1} \geq$

Tool \#2: The Combination Lemma

Lemma. Let $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right), G=\left(V, E_{1} \cup E_{2}\right)$.
If Max-Crown admits an α_{i}-approx. on G_{i}, then Max-Crown admits $\left(\alpha_{1}+\alpha_{2}\right)$-approx. on G.

Proof. Algorithm.
Apply α_{1}-approx. to G_{1} and α_{2}-approx. to G_{2}.
Return result with larger profit for G.
Analysis. For G, G_{1}, G_{2},

- let OPT, OPT, OPT_{2} be the optimum profits,
- let ALG, ALG,$A_{1} \mathrm{AL}_{2}$ be the profits of the approx. alg.

By def., $\mathrm{ALG}_{i}>\mathrm{OPT}_{i} / \alpha_{i}$. Clearly, $\mathrm{OPT} \leq \mathrm{OPT}_{1}+\mathrm{OPT}_{2}$.
Assume $\underbrace{\mathrm{OPT}_{1} \geq \frac{\mathrm{PT}_{1}}{\alpha_{1}} \geq}_{\mathrm{APT}_{1} / \alpha_{1} \geq \mathrm{OPT}_{2}}$

Tool \#2: The Combination Lemma

Lemma. Let $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right), G=\left(V, E_{1} \cup E_{2}\right)$.
If Max-Crown admits an α_{i}-approx. on G_{i}, then Max-Crown admits $\left(\alpha_{1}+\alpha_{2}\right)$-approx. on G.

Proof. Algorithm.
Apply α_{1}-approx. to G_{1} and α_{2}-approx. to G_{2}.
Return result with larger profit for G.
Analysis. For G, G_{1}, G_{2},

- let OPT, OPT, OPT_{2} be the optimum profits,
- let ALG, ALG,$A_{1} G_{2}$ be the profits of the approx. alg.

By def., $\mathrm{ALG}_{i}>\mathrm{OPT}_{i} / \alpha_{i}$. Clearly, $\mathrm{OPT} \leq \mathrm{OPT}_{1}+\mathrm{OPT}_{2}$.
Assume $\underbrace{\mathrm{ALG}_{1} \geq \frac{\mathrm{OPT}_{1}}{\alpha_{1}} \geq \frac{\mathrm{OPT}_{1}+\mathrm{OPT}_{2}}{\alpha_{1}+\alpha_{2}} \geq}_{\mathrm{ALG} T_{1} / \alpha_{1} \geq \mathrm{OPT}_{2} / \alpha_{2} \text {. Then }}$

Tool \#2: The Combination Lemma

Lemma. Let $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right), G=\left(V, E_{1} \cup E_{2}\right)$.
If Max-Crown admits an α_{i}-approx. on G_{i}, then Max-Crown admits $\left(\alpha_{1}+\alpha_{2}\right)$-approx. on G.

Proof. Algorithm.
Apply α_{1}-approx. to G_{1} and α_{2}-approx. to G_{2}.
Return result with larger profit for G.
Analysis. For G, G_{1}, G_{2},

- let OPT, OPT, OPT_{2} be the optimum profits,
- let ALG, ALG ${ }_{1}, \mathrm{ALG}_{2}$ be the profits of the approx. alg.

By def., $\mathrm{ALG}_{i}>\mathrm{OPT}_{i} / \alpha_{i}$. Clearly, $\mathrm{OPT} \leq \mathrm{OPT}_{1}+\mathrm{OPT}_{2}$.
Assume $\overbrace{\mathrm{OPT}}^{1} /$
$\mathrm{ALG} \geq \alpha_{1} \geq \mathrm{ALG}_{1} \geq \frac{\mathrm{OPT}_{2} / \alpha_{2} \text {. Then }}{\mathrm{OPT}_{1}} \geq \frac{\mathrm{OPT}_{1}+\mathrm{OPT}_{2}}{\alpha_{1}} \geq \frac{\mathrm{OPT}}{\alpha_{1}+\alpha_{2}}$.

Tool \#2: The Combination Lemma

Lemma. Let $G_{1}=\left(V, E_{1}\right), G_{2}=\left(V, E_{2}\right), G=\left(V, E_{1} \cup E_{2}\right)$.
If Max-Crown admits an α_{i}-approx. on G_{i}, then Max-Crown admits $\left(\alpha_{1}+\alpha_{2}\right)$-approx. on G.

Proof. Algorithm.
Apply α_{1}-approx. to G_{1} and α_{2}-approx. to G_{2}.
Return result with larger profit for G.
Analysis. For G, G_{1}, G_{2},

- let OPT, OPT, OPT_{2} be the optimum profits,
- let ALG, ALG ${ }_{1}, \mathrm{ALG}_{2}$ be the profits of the approx. alg.

By def., $\mathrm{ALG}_{i}>\mathrm{OPT}_{i} / \alpha_{i}$. Clearly, $\mathrm{OPT} \leq \mathrm{OPT}_{1}+\mathrm{OPT}_{2}$.

Star Forests, Trees, (Outer-) Planar Graphs

Def. A star forest is the disjoint union of a set of stars.

Star Forests, Trees, (Outer-) Planar Graphs

Def. A star forest is the disjoint union of a set of stars.
Thm. Max-Crown admits an α-approx. on star forests.

Star Forests, Trees, (Outer-) Planar Graphs

Def. A star forest is the disjoint union of a set of stars.
Thm. Max-Crown admits an α-approx. on star forests.
Proof.

Star Forests, Trees, (Outer-) Planar Graphs

Def. A star forest is the disjoint union of a set of stars.
Thm. Max-Crown admits an α-approx. on star forests.
Proof. Use the α-approx. alg. for stars.

Star Forests, Trees, (Outer-) Planar Graphs

Def. A star forest is the disjoint union of a set of stars.
Thm. Max-Crown admits an α-approx. on star forests.
Proof. Use the α-approx. alg. for stars. Treat each star indep.

Star Forests, Trees, (Outer-) Planar Graphs

Def. A star forest is the disjoint union of a set of stars.
Thm. Max-Crown admits an α-approx. on star forests.
Proof. Use the α-approx. alg. for stars. Treat each star indep.
Thm. Max-Crown admits

- a 2α-approx. on trees,
- a 3α-approx. on outerplanar graphs,
- a 5α-approx. on planar graphs.

Star Forests, Trees, (Outer-) Planar Graphs

Def. A star forest is the disjoint union of a set of stars.
Thm. Max-Crown admits an α-approx. on star forests.
Proof. Use the α-approx. alg. for stars. Treat each star indep.
Thm. Max-Crown admits

- a 2α-approx. on trees,
- a 3α-approx. on outerplanar graphs,
- a 5α-approx. on planar graphs.

Proof.

Star Forests, Trees, (Outer-) Planar Graphs

Def. A star forest is the disjoint union of a set of stars.
Thm. Max-Crown admits an α-approx. on star forests.
Proof. Use the α-approx. alg. for stars. Treat each star indep.
Thm. Max-Crown admits

- a 2α-approx. on trees,
- a 3α-approx. on outerplanar graphs,
- a 5α-approx. on planar graphs.

Proof. Can cover any tree by 2 star forests ("star arboricity 2").

Star Forests, Trees, (Outer-) Planar Graphs

Def. A star forest is the disjoint union of a set of stars.
Thm. Max-Crown admits an α-approx. on star forests.
Proof. Use the α-approx. alg. for stars. Treat each star indep.
Thm. Max-Crown admits

- a 2α-approx. on trees,
- a 3α-approx. on outerplanar graphs,
- a 5α-approx. on planar graphs.

Proof. Can cover any tree by 2 star forests ("star arboricity 2").

Star Forests, Trees, (Outer-) Planar Graphs

Def. A star forest is the disjoint union of a set of stars.
Thm. Max-Crown admits an α-approx. on star forests.
Proof. Use the α-approx. alg. for stars. Treat each star indep.
Thm. Max-Crown admits

- a 2α-approx. on trees,
- a 3α-approx. on outerplanar graphs,
- a 5α-approx. on planar graphs.

Proof. Can cover any tree by 2 star forests ("star arboricity 2").

Now apply the combination lemma.

Star Forests, Trees, (Outer-) Planar Graphs

Def. A star forest is the disjoint union of a set of stars.
Thm. Max-Crown admits an α-approx. on star forests.
Proof. Use the α-approx. alg. for stars. Treat each star indep.
Thm. Max-Crown admits

- a 2α-approx. on trees,
- a 3α-approx. on outerplanar graphs,
- a 5α-approx. on planar graphs.

Proof. Can cover any tree by 2 star forests ("star arboricity 2").

Now apply the combination lemma.
Outerplanar|planar graphs have star arboricity 3|5. [Hakimi et al., DM'96]

Overview

Graph class	Weighted		Unweighted
	old*	new ${ }^{\circ}$	new ${ }^{\circ}$
cycle, path	1		
star	$\alpha \checkmark$	$1+\varepsilon$	
tree	2α NP-hard	$2+\varepsilon$	2
max-degree Δ	$\lfloor(\Delta+1) / 2\rfloor$		
planar max-deg. Δ			$1+\varepsilon$
outerplanar	3α	$3+\varepsilon$	
planar	5α	$5+\varepsilon$	
bipartite		$\frac{16 \alpha / 3}{\text { APX-hard }} \approx 8.4$	
general		rand.: $32 \alpha / 3 \approx 16.9$ det.: $40 \alpha / 3 \approx 21.1$	$\begin{gathered} 5+16 \alpha / 3 \\ \approx 13.4 \end{gathered}$

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt \& Wolff, LATIN'14]
${ }^{\circ}$) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff - submitted]

$$
\alpha=e /(e-1) \approx 1.58
$$

Overview

Graph class	Weighted	Unweighted
	new ${ }^{\circ}$	new ${ }^{\circ}$
cycle, path 1		
star $\quad \alpha$	$1+\varepsilon$	
tree $\quad \sqrt{2 \alpha}$ NP-hard	$2+\varepsilon$	2
max-degree $\Delta \quad\lfloor(\Delta+1) / 2\rfloor$		
planar max-deg. Δ		$1+\varepsilon$
outerplanar 3α	$3+\varepsilon$	
planar $5 a$	$5+\varepsilon$	
bipartite	$\frac{16 \alpha / 3}{\text { APX-hard }} \approx 8.4$	
general	rand.: $\begin{aligned} & 32 \alpha / 3 \\ & \text { det.: } \\ & 40 \alpha / 3 \\ & \approx 16.9\end{aligned}{ }^{21.1}$	$\begin{gathered} 5+16 \alpha / 3 \\ \approx 13.4 \end{gathered}$

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt \& Wolff, LATIN'14]
${ }^{\circ}$) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff - submitted]

$$
\alpha=e /(e-1) \approx 1.58
$$

Overview

Graph class	Weighted	Unweighted
	new ${ }^{\circ}$	new ${ }^{\circ}$
cycle, path 1		
star $\quad \alpha \checkmark$	$1+\varepsilon$	
tree $\quad \sqrt{2 \alpha}$ NP-hard	$2+\varepsilon$	2
max-degree $\Delta \quad\lfloor(\Delta+1) / 2\rfloor$		
planar max-deg. Δ		$1+\varepsilon$
outerplanar 3α	$3+\varepsilon$	
planar 5a	$5+\varepsilon$	
bipartite	$\frac{16 \alpha / 3}{\text { APX-hard }}$	
general	$\begin{aligned} & \text { rand.: } 32 \alpha / 3 \\ & \text { det.: } 40 \alpha / 3 \\ & \hline \end{aligned}$	$5+16 \alpha / 3$

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt \& Wolff, LATIN'14]
${ }^{\circ}$) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff - submitted]

$$
\alpha=e /(e-1) \approx 1.58
$$

Tool $\# 1^{++}$: PTAS for GAP with $O(1)$ bins
Theorem. GAP with $O(1)$ bins admits a PTAS.

Tool $\# 1^{++}$: PTAS for Gap with $O(1)$ bins
Theorem. GAP with $O(1)$ bins admits a PTAS.
[Briest, Krysta Vöcking: SIAM J. Comput.'11]

Theorem. GAP with $O(1)$ bins does not admit an FPTAS (unless...).

Overview

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt \& Wolff, LATIN'14]
${ }^{\circ}$) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff - submitted]

$$
\alpha=e /(e-1) \approx 1.58
$$

Overview

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt \& Wolff, LATIN'14]
${ }^{\circ}$) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff - submitted]

$$
\alpha=e /(e-1) \approx 1.58
$$

Overview

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt \& Wolff, LATIN'14]
${ }^{\circ}$) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff - submitted]

$$
\alpha=e /(e-1) \approx 1.58
$$

Bipartite Graphs

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.

Bipartite Graphs

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.
Proof. Let $G=\left(V_{1} \cup V_{2}, E\right)$ with $E \subseteq V_{1} \cup V_{2}$.

Bipartite Graphs

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.
Proof. Let $G=\left(V_{1} \cup V_{2}, E\right)$ with $E \subseteq V_{1} \cup V_{2}$. Idea: Realize stars!

Bipartite Graphs

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.
Proof. Let $G=\left(V_{1} \cup V_{2}, E\right)$ with $E \subseteq V_{1} \cup V_{2}$. Idea: Realize stars!
First, find a good solution with all star centers in V_{1} :

Bipartite Graphs

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.
Proof. Let $G=\left(V_{1} \cup V_{2}, E\right)$ with $E \subseteq V_{1} \cup V_{2}$. Idea: Realize stars!
First, find a good solution with all star centers in V_{1} :

- for each $u \in V_{1}$, make 8 bins as for star centers,

Bipartite Graphs

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.
Proof. Let $G=\left(V_{1} \cup V_{2}, E\right)$ with $E \subseteq V_{1} \cup V_{2}$. Idea: Realize stars!
First, find a good solution with all star centers in V_{1} :

- for each $u \in V_{1}$, make 8 bins as for star centers,
- for each $v \in V_{2}$, make 1 item as for star leaves.

Bipartite Graphs

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.
Proof. Let $G=\left(V_{1} \cup V_{2}, E\right)$ with $E \subseteq V_{1} \cup V_{2}$. Idea: Realize stars!
First, find a good solution with all star centers in V_{1} :

- for each $u \in V_{1}$, make 8 bins as for star centers,
- for each $v \in V_{2}$, make 1 item as for star leaves.

GAP yields a solution of profit $\mathrm{ALG}_{1}^{\prime} \geq \mathrm{OPT}_{1}^{\prime} / \alpha$,

Bipartite Graphs

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.

Proof. Let $G=\left(V_{1} \cup V_{2}, E\right)$ with $E \subseteq V_{1} \cup V_{2}$. Idea: Realize stars!
First, find a good solution with all star centers in V_{1} :

- for each $u \in V_{1}$, make 8 bins as for star centers,
- for each $v \in V_{2}$, make 1 item as for star leaves.

GAP yields a solution of profit $\mathrm{ALG}_{1}^{\prime} \geq \mathrm{OPT}_{1}^{\prime} / \alpha$, where $\mathrm{OPT}_{1}^{\prime}$ is profit of an opt. sol. with centers in V_{1}.

Bipartite Graphs

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.

Proof. Let $G=\left(V_{1} \cup V_{2}, E\right)$ with $E \subseteq V_{1} \cup V_{2}$. Idea: Realize stars!
First, find a good solution with all star centers in V_{1} :

- for each $u \in V_{1}$, make 8 bins as for star centers,
- for each $v \in V_{2}$, make 1 item as for star leaves.

GAP yields a solution of profit $\mathrm{ALG}_{1}^{\prime} \geq \mathrm{OPT}_{1}^{\prime} / \alpha$, where $\mathrm{OPT}_{1}^{\prime}$ is profit of an opt. sol. with centers in V_{1}.
This solution may have corner contacts :-(

Bipartite Graphs

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.

Proof. Let $G=\left(V_{1} \cup V_{2}, E\right)$ with $E \subseteq V_{1} \cup V_{2}$. Idea: Realize stars!
First, find a good solution with all star centers in V_{1} :

- for each $u \in V_{1}$, make 8 bins as for star centers,
- for each $v \in V_{2}$, make 1 item as for star leaves.

GAP yields a solution of profit $\mathrm{ALG}_{1}^{\prime} \geq \mathrm{OPT}_{1}^{\prime} / \alpha$, where $\mathrm{OPT}_{1}^{\prime}$ is profit of an opt. sol. with centers in V_{1}.
This solution may have corner contacts :-(
No slack?

Bipartite Graphs

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.
Proof. Let $G=\left(V_{1} \cup V_{2}, E\right)$ with $E \subseteq V_{1} \cup V_{2}$. Idea: Realize stars!
First, find a good solution with all star centers in V_{1} :

- for each $u \in V_{1}$, make 8 bins as for star centers,
- for each $v \in V_{2}$, make 1 item as for star leaves.

GAP yields a solution of profit $\mathrm{ALG}_{1}^{\prime} \geq \mathrm{OPT}_{1}^{\prime} / \alpha$, where $\mathrm{OPT}_{1}^{\prime}$ is profit of an opt. sol. with centers in V_{1}.
This solution may have corner contacts :-(
No slack? \Rightarrow Remove two cheapest items from (3 top and 3 bottom bins) or (3 left and 3 right) bins.

Bipartite Graphs

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.
Proof. Let $G=\left(V_{1} \cup V_{2}, E\right)$ with $E \subseteq V_{1} \cup V_{2}$. Idea: Realize stars!
First, find a good solution with all star centers in V_{1} :

- for each $u \in V_{1}$, make 8 bins as for star centers,
- for each $v \in V_{2}$, make 1 item as for star leaves.

GAP yields a solution of profit $\mathrm{ALG}_{1}^{\prime} \geq \mathrm{OPT}_{1}^{\prime} / \alpha$, where $\mathrm{OPT}_{1}^{\prime}$ is profit of an opt. sol. with centers in V_{1}.
This solution may have corner contacts :-(
No slack? \Rightarrow Remove two cheapest items from (3 top and 3 bottom bins) or (3 left and 3 right) bins.

Bipartite Graphs

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.

$$
\text { Proof. Let } G=\left(V_{1} \cup V_{2}, E\right) \text { with } E \subseteq V_{1} \cup V_{2} \text {. Idea: Realize stars! }
$$

First, find a good solution with all star centers in V_{1} :

- for each $u \in V_{1}$, make 8 bins as for star centers,
- for each $v \in V_{2}$, make 1 item as for star leaves.

GAP yields a solution of profit $\mathrm{ALG}_{1}^{\prime} \geq \mathrm{OPT}_{1}^{\prime} / \alpha$, where $\mathrm{OPT}_{1}^{\prime}$ is profit of an opt. sol. with centers in V_{1}.
This solution may have corner contacts :-(
No slack? \Rightarrow Remove two cheapest items from (3 top and 3 bottom bins) or (3 left and 3 right) bins.

Bipartite Graphs

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.

$$
\text { Proof. Let } G=\left(V_{1} \cup V_{2}, E\right) \text { with } E \subseteq V_{1} \cup V_{2} \text {. Idea: Realize stars! }
$$

First, find a good solution with all star centers in V_{1} :

- for each $u \in V_{1}$, make 8 bins as for star centers,
- for each $v \in V_{2}$, make 1 item as for star leaves.

GAP yields a solution of profit $\mathrm{ALG}_{1}^{\prime} \geq \mathrm{OPT}_{1}^{\prime} / \alpha$, where $\mathrm{OPT}_{1}^{\prime}$ is profit of an opt. sol. with centers in V_{1}.
This solution may have corner contacts :-(
No slack? \Rightarrow Remove two cheapest items from (3 top and 3 bottom bins) or (3 left and 3 right) bins.
$\Rightarrow \mathrm{ALG}_{1} \geq 3 / 4 \cdot \mathrm{ALG}_{1}^{\prime}$

Bipartite Graphs

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.

$$
\text { Proof. Let } G=\left(V_{1} \cup V_{2}, E\right) \text { with } E \subseteq V_{1} \cup V_{2} \text {. Idea: Realize stars! }
$$

First, find a good solution with all star centers in V_{1} :

- for each $u \in V_{1}$, make 8 bins as for star centers,
- for each $v \in V_{2}$, make 1 item as for star leaves.

GAP yields a solution of profit $\mathrm{ALG}_{1}^{\prime} \geq \mathrm{OPT}_{1}^{\prime} / \alpha$, where $\mathrm{OPT}_{1}^{\prime}$ is profit of an opt. sol. with centers in V_{1}.
This solution may have corner contacts :-(
No slack? \Rightarrow Remove two cheapest items from (3 top and 3 bottom bins) or (3 left and 3 right) bins.
$\Rightarrow \mathrm{ALG}_{1} \geq 3 / 4 \cdot \mathrm{ALG}_{1}^{\prime} \geq 3 / 4 \cdot \mathrm{OPT}_{1}^{\prime} / \alpha$

Bipartite Graphs

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.

$$
\text { Proof. Let } G=\left(V_{1} \cup V_{2}, E\right) \text { with } E \subseteq V_{1} \cup V_{2} \text {. Idea: Realize stars! }
$$

First, find a good solution with all star centers in V_{1} :

- for each $u \in V_{1}$, make 8 bins as for star centers,
- for each $v \in V_{2}$, make 1 item as for star leaves.

GAP yields a solution of profit $\mathrm{ALG}_{1}^{\prime} \geq \mathrm{OPT}_{1}^{\prime} / \alpha$, where $\mathrm{OPT}_{1}^{\prime}$ is profit of an opt. sol. with centers in V_{1}.
This solution may have corner contacts :-(
No slack? \Rightarrow Remove two cheapest items from (3 top and 3 bottom bins) or (3 left and 3 right) bins.
$\Rightarrow \mathrm{ALG}_{1} \geq 3 / 4 \cdot \mathrm{ALG}_{1}^{\prime} \geq 3 / 4 \cdot \mathrm{OPT}_{1}^{\prime} / \alpha \geq 3 / 4 \cdot \mathrm{OPT}_{1} / \alpha$.

Bipartite Graphs

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.

$$
\text { Proof. Let } G=\left(V_{1} \cup V_{2}, E\right) \text { with } E \subseteq V_{1} \cup V_{2} \text {. Idea: Realize stars! }
$$

First, find a good solution with all star centers in V_{1} :

- for each $u \in V_{1}$, make 8 bins as for star centers,
- for each $v \in V_{2}$, make 1 item as for star leaves.

GAP yields a solution of profit $\mathrm{ALG}_{1}^{\prime} \geq \mathrm{OPT}_{1}^{\prime} / \alpha$, where $\mathrm{OPT}_{1}^{\prime}$ is profit of an opt. sol. with centers in V_{1}.
This solution may have corner contacts :-(
No slack? \Rightarrow Remove two cheapest items from (3 top and 3 bottom bins) or (3 left and 3 right) bins.
$\Rightarrow \mathrm{ALG}_{1} \geq 3 / 4 \cdot \mathrm{ALG}_{1}^{\prime} \geq 3 / 4 \cdot \mathrm{OPT}_{1}^{\prime} / \alpha \geq 3 / 4 \cdot \mathrm{OPT}_{1} / \alpha$.
Analogously, find solution of profit $\mathrm{ALG}_{2} \geq 3 / 4 \cdot \mathrm{OPT}_{2} / \alpha$.

Bipartite Graphs

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.

$$
\text { Proof. Let } G=\left(V_{1} \cup V_{2}, E\right) \text { with } E \subseteq V_{1} \cup V_{2} \text {. Idea: Realize stars! }
$$

First, find a good solution with all star centers in V_{1} :

- for each $u \in V_{1}$, make 8 bins as for star centers,
- for each $v \in V_{2}$, make 1 item as for star leaves.

GAP yields a solution of profit $\mathrm{ALG}_{1}^{\prime} \geq \mathrm{OPT}_{1}^{\prime} / \alpha$, where $\mathrm{OPT}_{1}^{\prime}$ is profit of an opt. sol. with centers in V_{1}.
This solution may have corner contacts :-(
No slack? \Rightarrow Remove two cheapest items from (3 top and 3 bottom bins) or (3 left and 3 right bins.
$\Rightarrow \mathrm{ALG}_{1} \geq 3 / 4 \cdot \mathrm{ALG}_{1}^{\prime} \geq 3 / 4 \cdot \mathrm{OPT}_{1}^{\prime} / \alpha \geq 3 / 4 \cdot \mathrm{OPT}_{1} / \alpha$.
Analogously, find solution of profit $\mathrm{ALG}_{2} \geq 3 / 4 \cdot \mathrm{OPT}_{2} / \alpha$.
Take better one!

Bipartite Graphs

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.

$$
\text { Proof. Let } G=\left(V_{1} \cup V_{2}, E\right) \text { with } E \subseteq V_{1} \cup V_{2} \text {. Idea: Realize stars! }
$$

First, find a good solution with all star centers in V_{1} :

- for each $u \in V_{1}$, make 8 bins as for star centers,
- for each $v \in V_{2}$, make 1 item as for star leaves.

GAP yields a solution of profit $\mathrm{ALG}_{1}^{\prime} \geq \mathrm{OPT}_{1}^{\prime} / \alpha$, where $\mathrm{OPT}_{1}^{\prime}$ is profit of an opt. sol. with centers in V_{1}.
This solution may have corner contacts :-(
No slack? \Rightarrow Remove two cheapest items from (3 top and 3 bottom bins) or (3 left and 3 right bins.
$\Rightarrow \mathrm{ALG}_{1} \geq 3 / 4 \cdot \mathrm{ALG}_{1}^{\prime} \geq 3 / 4 \cdot \mathrm{OPT}_{1}^{\prime} / \alpha \geq 3 / 4 \cdot \mathrm{OPT}_{1} / \alpha$.
Analogously, find solution of profit $\mathrm{ALG}_{2} \geq 3 / 4 \cdot \mathrm{OPT}_{2} / \alpha$.
Take better one! \Rightarrow profit $A L G=\max \left\{\mathrm{ALG}_{1}, \mathrm{ALG}_{2}\right\}$.

Bipartite Graphs, Proof cont'd

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.
We know: $\mathrm{ALG}=\max \left\{\mathrm{ALG}_{1}, \mathrm{ALG}_{2}\right\}$

Bipartite Graphs, Proof cont'd

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.
We know: $\mathrm{ALG}=\max \left\{\mathrm{ALG}_{1}, \mathrm{ALG}_{2}\right\} \quad$ and $\mathrm{ALG}_{i} \geq 3 / 4 \cdot \mathrm{OPT}_{i} / \alpha$.

Bipartite Graphs, Proof cont'd

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.
We know: $\mathrm{ALG}=\max \left\{\mathrm{ALG}_{1}, \mathrm{ALG}_{2}\right\} \quad$ and $\mathrm{ALG}_{i} \geq 3 / 4 \cdot \mathrm{OPT}_{i} / \alpha$.
Now, compare with a fixed optimum solution!

Bipartite Graphs, Proof cont'd

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.
We know: $\mathrm{ALG}=\max \left\{\mathrm{ALG}_{1}, \mathrm{ALG}_{2}\right\} \quad$ and $\mathrm{ALG}_{i} \geq 3 / 4 \cdot \mathrm{OPT}_{i} / \alpha$.
Now, compare with a fixed optimum solution!
Let $G^{\star}=\left(V, E^{\star}\right)$ be its profit graph.

Bipartite Graphs, Proof cont'd

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.
We know: $\mathrm{ALG}=\max \left\{\mathrm{ALG}_{1}, \mathrm{ALG}_{2}\right\} \quad$ and $\mathrm{ALG}_{i} \geq 3 / 4 \cdot \mathrm{OPT}_{i} / \alpha$.
Now, compare with a fixed optimum solution!
Let $G^{\star}=\left(V, E^{\star}\right)$ be its profit graph, i.e., OPT $=p\left(E^{\star}\right)$.

Bipartite Graphs, Proof cont'd

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.
We know: $\mathrm{ALG}=\max \left\{\mathrm{ALG}_{1}, \mathrm{ALG}_{2}\right\} \quad$ and $\mathrm{ALG}_{i} \geq 3 / 4 \cdot \mathrm{OPT}_{i} / \alpha$.
Now, compare with a fixed optimum solution!
Let $G^{\star}=\left(V, E^{\star}\right)$ be its profit graph, i.e., OPT $=p\left(E^{\star}\right)$.
G^{\star} is bipartite \& planar

Bipartite Graphs, Proof cont'd

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.
We know: $\mathrm{ALG}=\max \left\{\mathrm{ALG}_{1}, \mathrm{ALG}_{2}\right\}$ and $\mathrm{ALG}_{i} \geq 3 / 4 \cdot \mathrm{OPT}_{i} / \alpha$.
Now, compare with a fixed optimum solution!
Let $G^{\star}=\left(V, E^{\star}\right)$ be its profit graph, i.e., OPT $=p\left(E^{\star}\right)$.
G^{\star} is bipartite \& planar $\Rightarrow\left|E^{\star}\right| \leq 2 n-4$.

Bipartite Graphs, Proof cont'd

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.
We know: $\mathrm{ALG}=\max \left\{\mathrm{ALG}_{1}, \mathrm{ALG}_{2}\right\}$ and $\mathrm{ALG}_{i} \geq 3 / 4 \cdot \mathrm{OPT}_{i} / \alpha$.
Now, compare with a fixed optimum solution!
Let $G^{\star}=\left(V, E^{\star}\right)$ be its profit graph, i.e., OPT $=p\left(E^{\star}\right)$.
G^{\star} is bipartite \& planar $\Rightarrow\left|E^{\star}\right| \leq 2 n-4$.
$\Rightarrow E^{\star}$ can be decomposed into two forests F_{1} and F_{2}. [Nash-Williams, JLMs'64]

Bipartite Graphs, Proof cont'd

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.
We know: $\mathrm{ALG}=\max \left\{\mathrm{ALG}_{1}, \mathrm{ALG}_{2}\right\}$ and $\mathrm{ALG}_{i} \geq 3 / 4 \cdot \mathrm{OPT}_{i} / \alpha$.
Now, compare with a fixed optimum solution!
Let $G^{\star}=\left(V, E^{\star}\right)$ be its profit graph, i.e., OPT $=p\left(E^{\star}\right)$.
G^{\star} is bipartite \& planar $\Rightarrow\left|E^{\star}\right| \leq 2 n-4$.
$\Rightarrow E^{\star}$ can be decomposed into two forests F_{1} and F_{2}. [Nash-Williams, JLMS'64]
$\Rightarrow F_{i}$ can be decomposed into two star forests $S_{i 1}$ and $S_{i 2}$

Bipartite Graphs, Proof cont'd

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.
We know: $\mathrm{ALG}=\max \left\{\mathrm{ALG}_{1}, \mathrm{ALG}_{2}\right\}$ and $\mathrm{ALG}_{i} \geq 3 / 4 \cdot \mathrm{OPT}_{i} / \alpha$.
Now, compare with a fixed optimum solution!
Let $G^{\star}=\left(V, E^{\star}\right)$ be its profit graph, i.e., OPT $=p\left(E^{\star}\right)$.
G^{\star} is bipartite \& planar $\Rightarrow\left|E^{\star}\right| \leq 2 n-4$.
$\Rightarrow E^{\star}$ can be decomposed into two forests F_{1} and F_{2}. [Nash-Williams, JLMS'64]
$\Rightarrow F_{i}$ can be decomposed into two star forests $S_{i 1}$ and $S_{i 2}$ such that the star centers of $S_{i 1}$ are in V_{1} and those of $S_{i 2}$ are in V_{2}

Bipartite Graphs, Proof cont'd

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.
We know: $\mathrm{ALG}=\max \left\{\mathrm{ALG}_{1}, \mathrm{ALG}_{2}\right\} \quad$ and $\mathrm{ALG}_{i} \geq 3 / 4 \cdot \mathrm{OPT}_{i} / \alpha$.
Now, compare with a fixed optimum solution!
Let $G^{\star}=\left(V, E^{\star}\right)$ be its profit graph, i.e., OPT $=p\left(E^{\star}\right)$.
G^{\star} is bipartite \& planar $\Rightarrow\left|E^{\star}\right| \leq 2 n-4$.
$\Rightarrow E^{\star}$ can be decomposed into two forests F_{1} and F_{2}. [Nash-Williams, JLMS'64]
$\Rightarrow F_{i}$ can be decomposed into two star forests $S_{i 1}$ and $S_{i 2}$ such that the star centers of $S_{i 1}$ are in V_{1} and those of $S_{i 2}$ are in V_{2}
W.I.o.g., S_{11} has profit \geq OPT $/ 4$.

Bipartite Graphs, Proof cont'd

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.
We know: $\mathrm{ALG}=\max \left\{\mathrm{ALG}_{1}, \mathrm{ALG}_{2}\right\} \quad$ and $\mathrm{ALG}_{i} \geq 3 / 4 \cdot \mathrm{OPT}_{i} / \alpha$.
Now, compare with a fixed optimum solution!
Let $G^{\star}=\left(V, E^{\star}\right)$ be its profit graph, i.e., OPT $=p\left(E^{\star}\right)$.
G^{\star} is bipartite \& planar $\Rightarrow\left|E^{\star}\right| \leq 2 n-4$.
$\Rightarrow E^{\star}$ can be decomposed into two forests F_{1} and F_{2}. [Nash-Williams, JLMs'64]
$\Rightarrow F_{i}$ can be decomposed into two star forests $S_{i 1}$ and $S_{i 2}$ such that the star centers of $S_{i 1}$ are in V_{1} and those of $S_{i 2}$ are in V_{2}
W.I.o.g., S_{11} has profit \geq OPT $/ 4$. On the other hand, $p\left(S_{11}\right) \leq \mathrm{OPT}_{1}$.

Bipartite Graphs, Proof cont'd

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.

We know: $\mathrm{ALG}=\max \left\{\mathrm{ALG}_{1}, \mathrm{ALG}_{2}\right\} \quad$ and $\mathrm{ALG}_{i} \geq 3 / 4 \cdot \mathrm{OPT}_{i} / \alpha$.
Now, compare with a fixed optimum solution!
Let $G^{\star}=\left(V, E^{\star}\right)$ be its profit graph, i.e., OPT $=p\left(E^{\star}\right)$.
G^{\star} is bipartite \& planar $\Rightarrow\left|E^{\star}\right| \leq 2 n-4$.
$\Rightarrow E^{\star}$ can be decomposed into two forests F_{1} and F_{2}. [Nash-Williams, JLMS'64]
$\Rightarrow F_{i}$ can be decomposed into two star forests $S_{i 1}$ and $S_{i 2}$ such that the star centers of $S_{i 1}$ are in V_{1} and those of $S_{i 2}$ are in V_{2}
W.I.o.g., S_{11} has profit $\geq \mathrm{OPT} / 4$. On the other hand, $p\left(S_{11}\right) \leq \mathrm{OPT}_{1}$.
$\Rightarrow A L G \geq$

Bipartite Graphs, Proof cont'd

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.

We know: $\mathrm{ALG}=\max \left\{\mathrm{ALG}_{1}, \mathrm{ALG}_{2}\right\} \quad$ and $\mathrm{ALG}_{i} \geq 3 / 4 \cdot \mathrm{OPT}_{i} / \alpha$.
Now, compare with a fixed optimum solution!
Let $G^{\star}=\left(V, E^{\star}\right)$ be its profit graph, i.e., OPT $=p\left(E^{\star}\right)$.
G^{\star} is bipartite \& planar $\Rightarrow\left|E^{\star}\right| \leq 2 n-4$.
$\Rightarrow E^{\star}$ can be decomposed into two forests F_{1} and F_{2}. [Nash-Williams, JLMS'64]
$\Rightarrow F_{i}$ can be decomposed into two star forests $S_{i 1}$ and $S_{i 2}$ such that the star centers of $S_{i 1}$ are in V_{1} and those of $S_{i 2}$ are in V_{2}
W.I.o.g., S_{11} has profit $\geq \mathrm{OPT} / 4$. On the other hand, $p\left(S_{11}\right) \leq \mathrm{OPT}_{1}$.
$\Rightarrow A L G \geq A L G_{1} \geq$

Bipartite Graphs, Proof cont'd

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.

We know: $\mathrm{ALG}=\max \left\{\mathrm{ALG}_{1}, \mathrm{ALG}_{2}\right\}$ and $\mathrm{ALG}_{i} \geq 3 / 4 \cdot \mathrm{OPT}_{i} / \alpha$.
Now, compare with a fixed optimum solution!
Let $G^{\star}=\left(V, E^{\star}\right)$ be its profit graph, i.e., OPT $=p\left(E^{\star}\right)$.
G^{\star} is bipartite \& planar $\Rightarrow\left|E^{\star}\right| \leq 2 n-4$.
$\Rightarrow E^{\star}$ can be decomposed into two forests F_{1} and F_{2}. [Nash-Williams, JLMS'64]
$\Rightarrow F_{i}$ can be decomposed into two star forests $S_{i 1}$ and $S_{i 2}$ such that the star centers of $S_{i 1}$ are in V_{1} and those of $S_{i 2}$ are in V_{2}
W.I.o.g., S_{11} has profit $\geq \mathrm{OPT} / 4$. On the other hand, $p\left(S_{11}\right) \leq \mathrm{OPT}_{1}$.
$\Rightarrow \mathrm{ALG} \geq \mathrm{ALG}_{1} \geq 3 / 4 \cdot \mathrm{OPT}_{1} / \alpha \geq$

Bipartite Graphs, Proof cont'd

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.
We know: $A L G=\max \left\{\mathrm{ALG}_{1}, \mathrm{ALG}_{2}\right\} \quad$ and $\mathrm{ALG}_{i} \geq 3 / 4 \cdot \mathrm{OPT}_{i} / \alpha$.
Now, compare with a fixed optimum solution!
Let $G^{\star}=\left(V, E^{\star}\right)$ be its profit graph, i.e., OPT $=p\left(E^{\star}\right)$.
G^{\star} is bipartite \& planar $\Rightarrow\left|E^{\star}\right| \leq 2 n-4$.
$\Rightarrow E^{\star}$ can be decomposed into two forests F_{1} and F_{2}. [Nash-Williams, JLMS'64]
$\Rightarrow F_{i}$ can be decomposed into two star forests $S_{i 1}$ and $S_{i 2}$ such that the star centers of $S_{i 1}$ are in V_{1} and those of $S_{i 2}$ are in V_{2}
W.I.o.g., S_{11} has profit $\geq \mathrm{OPT} / 4$. On the other tiond, $p\left(S_{11}\right) \leq \mathrm{OPT}_{1}$.
$\Rightarrow \mathrm{ALG} \geq \mathrm{ALG}_{1} \geq 3 / 4 \cdot \mathrm{OPT}_{1} / \alpha \geq 3 / 4 \cdot p\left(S_{11}\right) / \alpha \geq$

Bipartite Graphs, Proof cont'd

Thm. Max-Crown admits a $16 \alpha / 3$-approx. on bip. graphs.

We know: $\mathrm{ALG}=\max \left\{\mathrm{ALG}_{1}, \mathrm{ALG}_{2}\right\}$ and $\mathrm{ALG}_{i} \geq 3 / 4 \cdot \mathrm{OPT}_{i} / \alpha$.
Now, compare with a fixed optimum solution!
Let $G^{\star}=\left(V, E^{\star}\right)$ be its profit graph, i.e., OPT $=p\left(E^{\star}\right)$.
G^{\star} is bipartite \& planar $\Rightarrow\left|E^{\star}\right| \leq 2 n-4$.
$\Rightarrow E^{\star}$ can be decomposed into two forests F_{1} and F_{2}. [Nash-Williams, JLMS'64]
$\Rightarrow F_{i}$ can be decomposed into two star forests $S_{i 1}$ and $S_{i 2}$ such that the star centers of $S_{i 1}$ are in V_{1} and those of $S_{i 2}$ are in V_{2}
W.I.o.g., S_{11} has profit $\geq \mathrm{OPT} / 4$. On the other tirnd, $p\left(S_{11}\right) \leq \mathrm{OPT}_{1}$.
$\Rightarrow \mathrm{ALG} \geq \mathrm{ALG}_{1} \geq 3 / 4 \cdot \mathrm{OPT}_{1} / \alpha \geq 3 / 4 \cdot p\left(S_{11}\right) / \alpha \geq 3 / 16 \cdot \mathrm{OPT} / \alpha$.

Overview

Graph class	Weighted		Unweighted
	old*	new ${ }^{\circ}$	new ${ }^{\circ}$
cycle, path	1		
star	$\alpha \checkmark$	$1+\varepsilon \checkmark$	
tree \checkmark	\checkmark 2a, NP-hard	$2+\varepsilon \checkmark$	2
max-degree $\Delta \quad\lfloor(\Delta+1) / 2\rfloor$			
planar max-deg. Δ			$1+\varepsilon$
outerplanar	$32 \checkmark$	$3+\varepsilon \checkmark$	
planar	$5 a \checkmark$	$5+\varepsilon \checkmark$	
bipartite		$\frac{16 \alpha / 3}{\text { APX-hard }} \approx 8.4$	
general			$\begin{gathered} 5+16 \alpha / 3 \\ \approx 13.4 \end{gathered}$

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt \& Wolff, LATIN'14]
${ }^{\circ}$) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff - submitted]

$$
\alpha=e /(e-1) \approx 1.58
$$

Overview

Graph class	Weighted		Unweighted
	old*	new ${ }^{\circ}$	new ${ }^{\circ}$
cycle, path	1		
star	$\alpha \checkmark$	$1+\varepsilon \checkmark$	
tree \checkmark	\checkmark 2a, NP-hard	$2+\varepsilon \checkmark$	2
max-degree $\Delta \quad\lfloor(\Delta+1) / 2\rfloor$			
planar max-deg. Δ			$1+\varepsilon$
outerplanar	$32 \checkmark$	$3+\varepsilon \checkmark$	
planar	$5 a$	$5+\varepsilon \checkmark$	
bipartite		$\begin{aligned} & 16 \alpha / 3<8.4 \\ & \text { APX-hard } \end{aligned}$	
general		$\begin{aligned} & \text { rand.: } \frac{32 \alpha / 3}{} \begin{array}{l} 40 \alpha / 3 \\ \text { det. } \end{array} \frac{16.9}{} 21.1 \end{aligned}$	$\begin{gathered} 5+16 \alpha / 3 \\ \approx 13.4 \end{gathered}$

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt \& Wolff, LATIN'14]
${ }^{\circ}$) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff - submitted]

$$
\alpha=e /(e-1) \approx 1.58
$$

Overview

Graph class	Weighted		Unweighted
	old ${ }^{\text {* }}$	new ${ }^{\circ}$	new ${ }^{\circ}$
cycle, path	1		
star	$\alpha \checkmark$	$1+\varepsilon \checkmark$	
tree	NP-hard	$2+\varepsilon \checkmark$	2
max-degree Δ	+1)/2」		
planar max-deg. Δ			$1+\varepsilon$
outerplanar	$32 \checkmark$	$3+\varepsilon \checkmark$	
planar	$5 \alpha \checkmark$	$5+\varepsilon \checkmark$	
bipartite		$\begin{aligned} & 16 \alpha / 3 \backsim 8.4 \\ & \text { APX-hard } \end{aligned}$	
general		$\begin{aligned} & \text { rand.: } \begin{array}{l} 32 \alpha / 3 \\ \text { det.: } \\ 40 \alpha / 3 \\ \end{array} \frac{16.9}{21.1} \end{aligned}$	$\begin{gathered} 5+16 \alpha / 3 \\ \approx 13.4 \end{gathered}$

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt \& Wolff, LATIN'14]
${ }^{\circ}$) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff - submitted]

$$
\alpha=e /(e-1) \approx 1.58
$$

Tool \#3: Randomize!

Thm. MAX-CROWN admits a randomized $32 \alpha / 3$-approx.

Tool \#3: Randomize!

Thm. Max-Crown admits a randomized $32 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph.

Tool \#3: Randomize!

Thm. Max-Crown admits a randomized $32 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Idea: Reduce to bipartite case!

Tool \#3: Randomize!

Thm. Max-Crown admits a randomized $32 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_{1} and V_{2} with $\operatorname{Pr}\left[v \in V_{1}\right]=1 / 2$.

Tool \#3: Randomize!

Thm. Max-Crown admits a randomized $32 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_{1} and V_{2} with $\operatorname{Pr}\left[v \in V_{1}\right]=1 / 2$.
Consider the bipartite graph $G^{\prime}=\left(V, E^{\prime}\right)$ induced by V_{1} and V_{2}.

Tool \#3: Randomize!

Thm. Max-Crown admits a randomized $32 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_{1} and V_{2} with $\operatorname{Pr}\left[v \in V_{1}\right]=1 / 2$.
Consider the bipartite graph $G^{\prime}=\left(V, E^{\prime}\right)$ induced by V_{1} and V_{2}.

$$
\left\{v_{1} v_{2} \in E \mid v_{1} \in V_{1}, v_{2} \in V_{2}\right\}
$$

Tool \#3: Randomize!

Thm. Max-Crown admits a randomized $32 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_{1} and V_{2} with $\operatorname{Pr}\left[v \in V_{1}\right]=1 / 2$.
Consider the bipartite graph $G^{\prime}=\left(V, E^{\prime}\right)$ induced by V_{1} and V_{2}. Apply previous theorem to G^{\prime}.

```
{\mp@subsup{v}{1}{}\mp@subsup{v}{2}{}\inE|
```


Tool \#3: Randomize!

Thm. Max-Crown admits a randomized $32 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_{1} and V_{2} with $\operatorname{Pr}\left[v \in V_{1}\right]=1 / 2$.
Consider the bipartite graph $G^{\prime}=\left(V, E^{\prime}\right)$ induced by V_{1} and V_{2}.

Apply previous theorem to G^{\prime}.
$\left\{v_{1} v_{2} \in E \mid v_{1} \in V_{1}, v_{2} \in V_{2}\right\}$
\Rightarrow solution for G of profit $\mathrm{ALG} \geq 3 \mathrm{OPT}^{\prime} /(16 \alpha)$.

Tool \#3: Randomize!

Thm. Max-Crown admits a randomized $32 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_{1} and V_{2} with $\operatorname{Pr}\left[v \in V_{1}\right]=1 / 2$.
Consider the bipartite graph $G^{\prime}=\left(V, E^{\prime}\right)$ induced by V_{1} and V_{2}.

Apply previous theorem to G^{\prime}.
$\left\{v_{1} v_{2} \in E \mid v_{1} \in V_{1}, v_{2} \in V_{2}\right\}$
\Rightarrow solution for G of profit $\mathrm{ALG} \geq 3 \mathrm{OPT}^{\prime} /(16 \alpha)$.
Let $G^{\star}=\left(V, E^{\star}\right)$ be a fixed optimum solution.

Tool \#3: Randomize!

Thm. Max-Crown admits a randomized $32 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_{1} and V_{2} with $\operatorname{Pr}\left[v \in V_{1}\right]=1 / 2$.
Consider the bipartite graph $G^{\prime}=\left(V, E^{\prime}\right)$ induced by V_{1} and V_{2}. Apply previous theorem to G^{\prime}.
$\left\{v_{1} v_{2} \in E \mid v_{1} \in V_{1}, v_{2} \in V_{2}\right\}$
\Rightarrow solution for G of profit $\mathrm{ALG} \geq 3 \mathrm{OPT}^{\prime} /(16 \alpha)$.
Let $G^{\star}=\left(V, E^{\star}\right)$ be a fixed optimum solution.
Any edge of G^{\star} is contained in G^{\prime} with probability $1 / 2$.

Tool \#3: Randomize!

Thm. Max-Crown admits a randomized $32 \alpha / 3$-approx.

Proof. Let $G=(V, E)$ be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_{1} and V_{2} with $\operatorname{Pr}\left[v \in V_{1}\right]=1 / 2$.
Consider the bipartite graph $G^{\prime}=\left(V, E^{\prime}\right)$ induced by V_{1} and V_{2}.

Apply previous theorem to G^{\prime}.
$\left\{v_{1} v_{2} \in E \mid v_{1} \in V_{1}, v_{2} \in V_{2}\right\}$
\Rightarrow solution for G of profit $\mathrm{ALG} \geq 3 \mathrm{OPT}^{\prime} /(16 \alpha)$.

Let $G^{\star}=\left(V, E^{\star}\right)$ be a fixed optimum solution.
Any edge of G^{\star} is contained in G^{\prime} with probability $1 / 2$.
Let $\overline{\mathrm{OPT}}=p\left(E^{\star} \cap E^{\prime}\right)$.

Tool \#3: Randomize!

Thm. Max-Crown admits a randomized $32 \alpha / 3$-approx.

Proof. Let $G=(V, E)$ be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_{1} and V_{2} with $\operatorname{Pr}\left[v \in V_{1}\right]=1 / 2$.
Consider the bipartite graph $G^{\prime}=\left(V, E^{\prime}\right)$ induced by V_{1} and V_{2}. Apply previous theorem to G^{\prime}.

\Rightarrow solution for G of profit $\mathrm{ALG} \geq 3 \mathrm{OPT}^{\prime} /(16 \alpha)$.
Let $G^{\star}=\left(V, E^{\star}\right)$ be a fixed optimum solution.
Any edge of G^{\star} is contained in G^{\prime} with probability $1 / 2$.
Let $\overline{\mathrm{OPT}}=p\left(E^{\star} \cap E^{\prime}\right)$. Then $\mathrm{E}[\overline{\mathrm{OPT}}]=\mathrm{OPT} / 2$.

Tool \#3: Randomize!

Thm. Max-Crown admits a randomized $32 \alpha / 3$-approx.

Proof. Let $G=(V, E)$ be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_{1} and V_{2} with $\operatorname{Pr}\left[v \in V_{1}\right]=1 / 2$.
Consider the bipartite graph $G^{\prime}=\left(V, E^{\prime}\right)$ induced by V_{1} and V_{2}. Apply previous theorem to G^{\prime}.
$\left\{v_{1} v_{2} \in E \mid v_{1} \in v_{1}, v_{2} \in v_{2}\right\}$
\Rightarrow solution for G of profit $\mathrm{ALG} \geq 3 \mathrm{OPT}^{\prime} /(16 \alpha)$.
Let $G^{\star}=\left(V, E^{\star}\right)$ be a fixed optimum solution.
Any edge of G^{\star} is contained in G^{\prime} with probability $1 / 2$.
Let $\overline{\mathrm{OPT}}=p\left(E^{\star} \cap E^{\prime}\right)$. Then $\mathrm{E}[\overline{\mathrm{OPT}}]=\mathrm{OPT} / 2$.
$\Rightarrow \mathrm{E}[\mathrm{ALG}] \geq$

Tool \#3: Randomize!

Thm. Max-Crown admits a randomized $32 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_{1} and V_{2} with $\operatorname{Pr}\left[v \in V_{1}\right]=1 / 2$.
Consider the bipartite graph $G^{\prime}=\left(V, E^{\prime}\right)$ induced by V_{1} and V_{2}. Apply previous theorem to G^{\prime}.
$\left\{v_{1} v_{2} \in E \mid v_{1} \in v_{1}, v_{2} \in v_{2}\right\}$
\Rightarrow solution for G of profit $\mathrm{ALG} \geq 3 \mathrm{OPT}^{\prime} /(16 \alpha)$.
Let $G^{\star}=\left(V, E^{\star}\right)$ be a fixed optimum solution.
Any edge of G^{\star} is contained in G^{\prime} with probability $1 / 2$.
Let $\overline{\mathrm{OPT}}=p\left(E^{\star} \cap E^{\prime}\right)$. Then $\mathrm{E}[\overline{\mathrm{OPT}}]=\mathrm{OPT} / 2$.
$\Rightarrow \mathrm{E}[\mathrm{ALG}] \geq 3 \mathrm{E}\left[\mathrm{OPT}^{\prime}\right] /(16 \alpha)$

Tool \#3: Randomize!

Thm. Max-Crown admits a randomized $32 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_{1} and V_{2} with $\operatorname{Pr}\left[v \in V_{1}\right]=1 / 2$.
Consider the bipartite graph $G^{\prime}=\left(V, E^{\prime}\right)$ induced by V_{1} and V_{2}. Apply previous theorem to G^{\prime}.
 \Rightarrow solution for G of profit $\mathrm{ALG} \geq 3 \mathrm{OPT}^{\prime} /(16 \alpha)$.

Let $G^{\star}=\left(V, E^{\star}\right)$ be a fixed optimum solution.
Any edge of G^{\star} is contained in G^{\prime} with probability $1 / 2$.
Let $\overline{\mathrm{OPT}}=p\left(E^{\star} \cap E^{\prime}\right)$. Then $\mathrm{E}[\overline{\mathrm{OPT}}]=\mathrm{OPT} / 2$.
$\Rightarrow \mathrm{E}[\mathrm{ALG}] \geq 3 \mathrm{E}\left[\mathrm{OPT}^{\prime}\right] /(16 \alpha)$
$\geq 3 \mathrm{E}[\overline{\mathrm{OPT}}] /(16 \alpha)=$

Tool \#3: Randomize!

Thm. Max-Crown admits a randomized $32 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Idea: Reduce to bipartite case! Partition V randomly into V_{1} and V_{2} with $\operatorname{Pr}\left[v \in V_{1}\right]=1 / 2$.
Consider the bipartite graph $G^{\prime}=\left(V, E^{\prime}\right)$ induced by V_{1} and V_{2}. Apply previous theorem to G^{\prime}.
 \Rightarrow solution for G of profit $\mathrm{ALG} \geq 3 \mathrm{OPT}^{\prime} /(16 \alpha)$.

Let $G^{\star}=\left(V, E^{\star}\right)$ be a fixed optimum solution.
Any edge of G^{\star} is contained in G^{\prime} with probability $1 / 2$.
Let $\overline{\mathrm{OPT}}=p\left(E^{\star} \cap E^{\prime}\right)$. Then $\mathrm{E}[\overline{\mathrm{OPT}}]=\mathrm{OPT} / 2$.
$\Rightarrow \mathrm{E}[\mathrm{ALG}] \geq 3 \mathrm{E}_{\left[\mathrm{OPT}^{\prime}\right]} /(16 \alpha)$

$$
\geq 3 \mathrm{E}[\overline{\mathrm{OPT}}] /(16 \alpha)=3 \mathrm{OPT} /(32 \alpha) .
$$

Overview

Graph class	Weighted		Unweighted
	old ${ }^{\text {* }}$	new ${ }^{\circ}$	new ${ }^{\circ}$
cycle, path	1		
star	$\alpha \checkmark$	$1+\varepsilon \checkmark$	
tree	NP-hard	$2+\varepsilon \checkmark$	2
max-degree Δ	+1)/2」		
planar max-deg. Δ			$1+\varepsilon$
outerplanar	$32 \checkmark$	$3+\varepsilon \checkmark$	
planar	$5 a \checkmark$	$5+\varepsilon \checkmark$	
bipartite		$\begin{gathered} 16 \alpha / 3 \sqrt{\text { APX-hard }} \end{gathered}$	
general		$\begin{aligned} & \text { rand.: } \begin{array}{l} 32 \alpha / 3 \\ \text { det.: } \\ 40 \alpha / 3 \\ \end{array} \frac{16.9}{21.1} \end{aligned}$	$\begin{gathered} 5+16 \alpha / 3 \\ \approx 13.4 \end{gathered}$

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt \& Wolff, LATIN'14]
${ }^{\circ}$) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff - submitted]

$$
\alpha=e /(e-1) \approx 1.58
$$

Overview

Graph class	Weighted		Unweighted
	old ${ }^{\text {* }}$	new ${ }^{\circ}$	new ${ }^{\circ}$
cycle, path	1		
star	$\alpha \checkmark$	$1+\varepsilon \checkmark$	
tree	NP-hard	$2+\varepsilon \checkmark$	2
max-degree Δ	+1)/2 ${ }^{\text {d }}$		
planar max-deg. Δ			$1+\varepsilon$
outerplanar	$3 \alpha \checkmark$	$3+\varepsilon \checkmark$	
planar	$5 \alpha \checkmark$	$5+\varepsilon \checkmark$	
bipartite		$\begin{aligned} & 16 \alpha / 3 \sqrt{2} \approx 8.4 \\ & \text { APX-hard } \end{aligned}$	
general			$\begin{gathered} 5+16 \alpha / 3 \\ \approx 13.4 \end{gathered}$

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt \& Wolff, LATIN'14]
${ }^{\circ}$) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff - submitted]

$$
\alpha=e /(e-1) \approx 1.58
$$

Overview

Graph class	Weighted		Unweighted
	old ${ }^{\text {* }}$	new ${ }^{\circ}$	new ${ }^{\circ}$
cycle, path	1		
star	$\alpha \checkmark$	$1+\varepsilon \checkmark$	
tree	NP-hard	$2+\varepsilon \checkmark$	2
max-degree Δ	+1)/2 ${ }^{\text {d }}$		
planar max-deg. Δ			$1+\varepsilon$
outerplanar	$3 \alpha \checkmark$	$3+\varepsilon \checkmark$	
planar	$5 \alpha \checkmark$	$5+\varepsilon \checkmark$	
bipartite		$\begin{aligned} & 16 \alpha / 3 \sqrt{2} \approx 8.4 \\ & \text { APX-hard } \end{aligned}$	
general			$\begin{gathered} 5+16 \alpha / 3 \\ \approx 13.4 \end{gathered}$

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt \& Wolff, LATIN'14]
${ }^{\circ}$) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff - submitted]

$$
\alpha=e /(e-1) \approx 1.58
$$

Tool \#4: Let GaP Take the Decisions!

Thm. MAX-CROWN admits a deterministic $40 \alpha / 3$-approx.

Tool \#4: Let Gap Take the Decisions!

Thm. Max-Crown admits a deterministic $40 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph.

Tool \#4: Let Gap Take the Decisions!

Thm. Max-Crown admits a deterministic 40 $/ 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Use GAP - as in bipartite case!

Tool \#4: Let Gap Take the Decisions!

Thm. Max-Crown admits a deterministic 40 $/ 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Use GAP - as in bipartite case! New:

Tool \#4: Let Gap Take the Decisions!

Thm. Max-Crown admits a deterministic $40 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Use GAP - as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item.

Tool \#4: Let Gap Take the Decisions!

Thm. Max-Crown admits a deterministic $40 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Use Gap - as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let $\mathrm{OPT}_{\text {GaP }}$ be the value of an opt. sol. of our Gap instance.

Tool \#4: Let Gap Take the Decisions!

Thm. Max-Crown admits a deterministic $40 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Use GAP - as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let $\mathrm{OPT}_{\text {GAP }}$ be the value of an opt. sol. of our GaP instance. Opt. sol. is planar \Rightarrow

Tool \#4: Let Gap Take the Decisions!

Thm. Max-Crown admits a deterministic $40 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Use GAP - as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let OPT ${ }_{\text {GAP }}$ be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests.

Tool \#4: Let Gap Take the Decisions!

Thm. Max-Crown admits a deterministic $40 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Use Gap - as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let $\mathrm{OPT}_{\text {GAP }}$ be the value of an opt. sol. of our GaP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our Gap instance.

Tool \#4: Let Gap Take the Decisions!

Thm. Max-Crown admits a deterministic $40 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Use Gap - as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let OPT ${ }_{\text {GAP }}$ be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our Gap instance.
$\Rightarrow \mathrm{OPT}_{\mathrm{GAP}} \geq \mathrm{OPT} / 5$.

Tool \#4: Let Gap Take the Decisions!

Thm. Max-Crown admits a deterministic $40 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Use Gap - as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let OPT ${ }_{\text {GAP }}$ be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our Gap instance. $\Rightarrow \mathrm{OPT}_{\mathrm{GAP}} \geq \mathrm{OPT} / 5$. Use α-approx. alg. for GAP.

Tool \#4: Let Gap Take the Decisions!

Thm. Max-Crown admits a deterministic $40 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Use Gap - as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let OPT ${ }_{\text {GAP }}$ be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our Gap instance.
$\Rightarrow \mathrm{OPT}_{\mathrm{GAP}} \geq \mathrm{OPT} / 5$. Use α-approx. alg. for GAP.
$\Rightarrow \mathrm{ALG}_{\mathrm{GAP}} \geq$

Tool \#4: Let Gap Take the Decisions!

Thm. Max-Crown admits a deterministic $40 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Use Gap - as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let OPT ${ }_{\text {GAP }}$ be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our Gap instance.
$\Rightarrow \mathrm{OPT}_{\mathrm{GAP}} \geq \mathrm{OPT} / 5$. Use α-approx. alg. for GAP.
$\Rightarrow \mathrm{ALG}_{\mathrm{GAP}} \geq \mathrm{OPT}_{\mathrm{GAP}} / \alpha \geq$

Tool \#4: Let Gap Take the Decisions!

Thm. Max-Crown admits a deterministic $40 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Use Gap - as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let OPT ${ }_{\text {GAP }}$ be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our Gap instance.
$\Rightarrow \mathrm{OPT}_{\mathrm{GAP}} \geq \mathrm{OPT} / 5$. Use α-approx. alg. for GAP.
$\Rightarrow \mathrm{ALG}_{\mathrm{GAP}} \geq \mathrm{OPT}_{\mathrm{GAP}} / \alpha \geq \mathrm{OPT} /(5 \alpha)$.

Tool \#4: Let Gap Take the Decisions!

Thm. Max-Crown admits a deterministic $40 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Use Gap - as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let $\mathrm{OPT}_{\text {GAP }}$ be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance.
$\Rightarrow \mathrm{OPT}_{\mathrm{GAP}} \geq \mathrm{OPT} / 5$. Use α-approx. alg. for GAP.
$\Rightarrow \mathrm{ALG}_{\mathrm{GAP}} \geq \mathrm{OPT}_{\mathrm{GAP}} / \alpha \geq \mathrm{OPT} /(5 \alpha)$.

Def. $G_{G A P}$ with edge $u v$ iff item u is placed into a bin of v.

Tool \#4: Let Gap Take the Decisions!

Thm. Max-Crown admits a deterministic $40 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Use Gap - as in bipartite case! New: for every vertex, we construct both 8 bins and 1 item. Let $\mathrm{OPT}_{\text {GAP }}$ be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance.
$\Rightarrow \mathrm{OPT}_{\mathrm{GAP}} \geq \mathrm{OPT} / 5$. Use α-approx. alg. for GAP.
$\Rightarrow \mathrm{ALG}_{\mathrm{GAP}} \geq \mathrm{OPT}_{\mathrm{GAP}} / \alpha \geq \mathrm{OPT} /(5 \alpha)$.

Def. $G_{\text {Gap }}$ with edge $u v$ iff item u is placed into a bin of v. outdeg ≤ 1

Tool \#4: Let Gap Take the Decisions!

Thm. Max-Crown admits a deterministic $40 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Use Gap - as in bipartite case!
New: for every vertex, we construct both 8 bins and 1 item. Let $\mathrm{OPT}_{\text {GAP }}$ be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance.
$\Rightarrow \mathrm{OPT}_{\mathrm{GAP}} \geq \mathrm{OPT} / 5$. Use α-approx. alg. for GAP.
$\Rightarrow \mathrm{ALG}_{\mathrm{GAP}} \geq \mathrm{OPT}_{\mathrm{GAP}} / \alpha \geq \mathrm{OPT} /(5 \alpha)$.

Def. $G_{\text {GAP }}$ with edge $u v$ iff item u is placed into a bin of v. outdeg $\leq 1 \Rightarrow$ connected components of $G_{\text {GAP }}$ are 1-trees.

Tool \#4: Let Gap Take the Decisions!

Thm. Max-Crown admits a deterministic $40 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Use Gap - as in bipartite case!
New: for every vertex, we construct both 8 bins and 1 item. Let OPT $_{\text {GAP }}$ be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance.
$\Rightarrow \mathrm{OPT}_{\mathrm{GAP}} \geq \mathrm{OPT} / 5$. Use α-approx. alg. for GAP.
$\Rightarrow \mathrm{ALG}_{\mathrm{GAP}} \geq \mathrm{OPT}_{\mathrm{GAP}} / \alpha \geq \mathrm{OPT} /(5 \alpha)$.

Def. $G_{\text {GAP }}$ with edge $u v$ iff item u is placed into a bin of v. outdeg $\leq 1 \Rightarrow$ connected components of $G_{\text {GAP }}$ are 1-trees. Partition each into star forest S_{1} and star forest + cycle S_{2}.

Tool \#4: Let Gap Take the Decisions!

Thm. Max-Crown admits a deterministic $40 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Use Gap - as in bipartite case!
New: for every vertex, we construct both 8 bins and 1 item. Let OPT ${ }_{\text {GAP }}$ be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance.
$\Rightarrow \mathrm{OPT}_{\mathrm{GAP}} \geq \mathrm{OPT} / 5$. Use α-approx. alg. for GAP. $\Rightarrow \mathrm{ALG}_{\mathrm{GAP}} \geq \mathrm{OPT}_{\mathrm{GAP}} / \alpha \geq \mathrm{OPT} /(5 \alpha)$.

Def. $G_{\text {Gap }}$ with edge $u v$ iff item u is placed into a bin of v. outdeg $\leq 1 \Rightarrow$ connected components of $G_{\text {GAP }}$ are 1-trees. Partition each into star forest S_{1} and star forest + cycle S_{2}. All contacts in S_{i} can be realized - with corner contacts!

Tool \#4: Let Gap Take the Decisions!

Thm. Max-Crown admits a deterministic $40 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Use Gap - as in bipartite case!
New: for every vertex, we construct both 8 bins and 1 item. Let OPT ${ }_{\text {GAP }}$ be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance.
$\Rightarrow \mathrm{OPT}_{\mathrm{GAP}} \geq \mathrm{OPT} / 5$. Use α-approx. alg. for GAP. $\Rightarrow \mathrm{ALG}_{\mathrm{GAP}} \geq \mathrm{OPT}_{\mathrm{GAP}} / \alpha \geq \mathrm{OPT} /(5 \alpha)$.

Def. $G_{G A P}$ with edge $u v$ iff item u is placed into a bin of v. outdeg $\leq 1 \Rightarrow$ connected components of $G_{\text {GAP }}$ are 1-trees. Partition each into star forest S_{1} and star forest + cycle S_{2}. All contacts in S_{i} can be realized - with corner contacts! Choose heavier of S_{1} and S_{2}.

Tool \#4: Let Gap Take the Decisions!

Thm. Max-Crown admits a deterministic $40 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Use Gap - as in bipartite case!
New: for every vertex, we construct both 8 bins and 1 item. Let OPT ${ }_{\text {GAP }}$ be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance.
$\Rightarrow \mathrm{OPT}_{\mathrm{GAP}} \geq \mathrm{OPT} / 5$. Use α-approx. alg. for GAP. $\Rightarrow \mathrm{ALG}_{\mathrm{GAP}} \geq \mathrm{OPT}_{\mathrm{GAP}} / \alpha \geq \mathrm{OPT} /(5 \alpha)$.

Def. $G_{G A P}$ with edge $u v$ iff item u is placed into a bin of v. outdeg $\leq 1 \Rightarrow$ connected components of $G_{\text {GAP }}$ are 1-trees. Partition each into star forest S_{1} and star forest + cycle S_{2}. All contacts in S_{i} can be realized - with corner contacts! Choose heavier of S_{1} and S_{2}. Remove corner contacts.

Tool \#4: Let Gap Take the Decisions!

Thm. Max-Crown admits a deterministic $40 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Use Gap - as in bipartite case!
New: for every vertex, we construct both 8 bins and 1 item. Let OPT $_{\text {GAP }}$ be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance.
$\Rightarrow \mathrm{OPT}_{\mathrm{GAP}} \geq \mathrm{OPT} / 5$. Use α-approx. alg. for GAP. $\Rightarrow \mathrm{ALG}_{\mathrm{GAP}} \geq \mathrm{OPT}_{\mathrm{GAP}} / \alpha \geq \mathrm{OPT} /(5 \alpha)$.

Def. $G_{G A P}$ with edge $u v$ iff item u is placed into a bin of v. outdeg $\leq 1 \Rightarrow$ connected components of $G_{\text {GAP }}$ are 1-trees. Partition each into star forest S_{1} and star forest + cycle S_{2}. All contacts in S_{i} can be realized - with corner contacts! Choose heavier of S_{1} and S_{2}. Remove corner contacts.
$\Rightarrow \mathrm{ALG} \geq$

Tool \#4: Let Gap Take the Decisions!

Thm. Max-Crown admits a deterministic $40 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Use Gap - as in bipartite case!
New: for every vertex, we construct both 8 bins and 1 item. Let OPT $_{\text {GAP }}$ be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance.
$\Rightarrow \mathrm{OPT}_{\mathrm{GAP}} \geq \mathrm{OPT} / 5$. Use α-approx. alg. for GAP.
$\Rightarrow \mathrm{ALG}_{\mathrm{GAP}} \geq \mathrm{OPT}_{\mathrm{GAP}} / \alpha \geq \mathrm{OPT} /(5 \alpha)$.

Def. $G_{G A P}$ with edge $u v$ iff item u is placed into a bin of v. outdeg $\leq 1 \Rightarrow$ connected components of $G_{\text {GAP }}$ are 1-trees. Partition each into star forest S_{1} and star forest + cycle S_{2}. All contacts in S_{i} can be realized - with corner contacts! Choose heavier of S_{1} and S_{2}. Remove corner contacts. $\Rightarrow A L G \geq \bigcirc A L G_{G A P}$

Tool \#4: Let Gap Take the Decisions!

Thy. Max-Crown admits a deterministic $40 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Use Gap - as in bipartite case!
New: for every vertex, we construct both 8 bins and 1 item. Let OPT ${ }_{\text {GAP }}$ be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance.
$\Rightarrow \mathrm{OPT}_{\mathrm{GAP}} \geq \mathrm{OPT} / 5$. Use α-approx. alg. for GAP.
$\Rightarrow \mathrm{ALG}_{\mathrm{GAP}} \geq \mathrm{OPT}_{\mathrm{GAP}} / \alpha \geq \mathrm{OPT} /(5 \alpha)$.

Def. $G_{G A P}$ with edge $u v$ jiff item u is placed into a bin of v. outdeg $\leq 1 \Rightarrow$ connected components of $G_{G A P}$ are 1-trees. Partition each into star forest S_{1} and star forest + cycle S_{2}. All contacts in S_{i} can be realized - with corner contacts! Choose heavier of S_{1} and S_{2}. Remove corner contacts. $\Rightarrow A L G \geq(1 / 2) \cdot(3 / 4) A L G_{G A P} \geq$

Tool \#4: Let Gap Take the Decisions!

Thm. Max-Crown admits a deterministic $40 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Use Gap - as in bipartite case!
New: for every vertex, we construct both 8 bins and 1 item. Let OPT ${ }_{\text {GAP }}$ be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance.
$\Rightarrow \mathrm{OPT}_{\mathrm{GAP}} \geq \mathrm{OPT} / 5$. Use α-approx. alg. for GAP. $\Rightarrow \mathrm{ALG}_{\mathrm{GAP}} \geq \mathrm{OPT}_{\mathrm{GAP}} / \alpha \geq \mathrm{OPT} /(5 \alpha)$.

Def. $G_{G A P}$ with edge $u v$ iff item u is placed into a bin of v. outdeg $\leq 1 \Rightarrow$ connected components of $G_{\text {GAP }}$ are 1-trees. Partition each into star forest S_{1} and star forest + cycle S_{2}. All contacts in S_{i} can be realized - with corner contacts! Choose heavier of S_{1} and S_{2}. Remove corner contacts. $\Rightarrow A L G \geq$ (1/2) (3/4) $A L G_{G A P} \geq$

Tool \#4: Let Gap Take the Decisions!

Thm. Max-Crown admits a deterministic $40 \alpha / 3$-approx.
Proof. Let $G=(V, E)$ be any graph. Use Gap - as in bipartite case!
New: for every vertex, we construct both 8 bins and 1 item. Let OPT ${ }_{\text {GAP }}$ be the value of an opt. sol. of our GAP instance. Opt. sol. is planar \Rightarrow can be decomposed into 5 star forests. Any star forest is a feasible solution to our GAP instance.
$\Rightarrow \mathrm{OPT}_{\mathrm{GAP}} \geq \mathrm{OPT} / 5$. Use α-approx. alg. for GAP. $\Rightarrow \mathrm{ALG}_{\mathrm{GAP}} \geq \mathrm{OPT}_{\mathrm{GAP}} / \alpha \geq \mathrm{OPT} /(5 \alpha)$.

Def. $G_{G A P}$ with edge $u v$ iff item u is placed into a bin of v. outdeg $\leq 1 \Rightarrow$ connected components of $G_{\text {GAP }}$ are 1-trees. Partition each into star forest S_{1} and star forest + cycle S_{2}. All contacts in S_{i} can be realized - with corner contacts! Choose heavier of S_{1} and S_{2}. Remove corner contacts. $\Rightarrow \mathrm{ALG} \geq$ (1/2) (3/4) $\mathrm{ALG}_{G A P} \geq 3 \mathrm{OPT} /(40 \alpha)$.

Overview

Graph class	Weighted		Unweighted
	old ${ }^{\text {® }}$	new ${ }^{\circ}$	new ${ }^{\circ}$
cycle, path	1		
star	$\alpha \checkmark$	$1+\varepsilon \checkmark$	
tree	NP-hard	$2+\varepsilon \checkmark$	2
max-degree Δ	(1)/2」		
planar max-deg. Δ			$1+\varepsilon$
outerplanar	$3 \alpha \checkmark$	$3+\varepsilon \checkmark$	
planar	$5 \alpha \checkmark$	$5+\varepsilon \checkmark$	
bipartite		$\begin{aligned} & 16 \alpha / 3 \sqrt{ } \approx 8.4 \\ & \text { APX-hard } \end{aligned}$	
general		$\begin{aligned} & \text { rand.: } 32 \alpha / 3 \approx 16.9 \\ & \text { det.: } 40 \alpha / 3 \approx 21.1 \end{aligned}$	$\begin{gathered} 5+16 \alpha / 3 \\ \approx 13.4 \end{gathered}$

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt \& Wolff, LATIN'14]
${ }^{\circ}$) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff - submitted]

$$
\alpha=e /(e-1) \approx 1.58
$$

Overview

Graph class	Weighted		Unweighted
	old ${ }^{\text {* }}$	new ${ }^{\circ}$	new ${ }^{\circ}$
cycle, path	1		
star	$\alpha \checkmark$	$1+\varepsilon \checkmark$	
tree	NP-hard	$2+\varepsilon \checkmark$	2
max-degree Δ	+1)/2 ${ }^{\text {d }}$		
planar max-deg. Δ			$1+\varepsilon$
outerplanar	$3 \alpha \checkmark$	$3+\varepsilon \checkmark$	
planar	$5 \alpha \checkmark$	$5+\varepsilon \checkmark$	
bipartite		$\begin{aligned} & 16 \alpha / 3 \sqrt{ } \approx 8.4 \\ & \text { APX-hard } \end{aligned}$	
general		rand.: $\quad \frac{32 \alpha / 3}{}$ det.: $46 \alpha / 3 \sqrt{21.1} 4$	$\begin{gathered} 5+16 \alpha / 3 \\ \approx 13.4 \end{gathered}$

*) [Barth, Fabrikant, Kobourov, Lubiw, Nöllenburg, Okamoto, Pupyrev, Squarcella, Ueckerdt \& Wolff, LATIN'14]
${ }^{\circ}$) [Bekos, van Dijk, Fink, Kindermann, Kobourov, Pupyrev, Spoerhase, Wolff - submitted]

$$
\alpha=e /(e-1) \approx 1.58
$$

Conclusions \& Open Problems

- Basically, we reduced all problems to our solution for stars.

Conclusions \& Open Problems

- Basically, we reduced all problems to our solution for stars.

Is there any other graph class (except paths and cycles) that we can approximate directly?

Conclusions \& Open Problems

- Basically, we reduced all problems to our solution for stars.

Is there any other graph class (except paths and cycles) that we can approximate directly?

- If we don't prescribe rectangle sizes, Crown is completely solved.

Conclusions \& Open Problems

- Basically, we reduced all problems to our solution for stars. Is there any other graph class (except paths and cycles) that we can approximate directly?
- If we don't prescribe rectangle sizes, Crown is completely solved.

What other problems have been solved combinatorially, but are interesting to optimize when we add more constraints?

