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Abstract
We propose a new representation of k-partite, k-uniform hypergraphs (which we call k-hypergraphs
for short) by a finite set P of points in Rd and a parameter ` ≤ d − 1. Each point in P is covered
by k =

(
d
`

)
many axis-aligned affine `-dimensional subspaces of Rd, which we call `-subspaces for

brevity. We interpret each point in P as a hyperedge that contains each of the covering `-subspaces
as a vertex. The class of (d, `)-hypergraphs is the class of k-hypergraphs that can be represented in
this way, where k =

(
d
`

)
. The resulting classes of hypergraphs are fairly rich: Every k-hypergraph is

a (k, k − 1)-hypergraph. On the other hand, (d, `)-hypergraphs form a proper subclass of the class
of all

(
d
`

)
-hypergraphs for ` < d − 1.

We are able to give a natural structural characterization of (d, `)-hypergraphs based on vertex
cuts. This characterization leads to a polynomial-time recognition algorithm that decides for a
given

(
d
`

)
-hypergraph whether or not it is a (d, `)-hypergraph and that computes a representation

if existing. We assume that the dimension d is constant and that the partitioning of the vertex
set is prescribed. For the sake of presentation, we describe in this paper our result for the case
of (d, 1)-hypergraphs, that is, for covering points with axis-parallel lines. This special case can be
naturally extended to the general case.

1 Introduction

Motivation and Related Work. Geometric representations of graphs or hypergraphs is wide
and intensively studied field of research. Well-known examples are geometric intersection or
incidence graphs with a large body of literature [12, 5, 13]. The benefit of studying geometric
graph representations is two-fold. On the one hand, knowing that a given graph can be
represented geometrically may give new insights because the geometric perspective is often
more intuitive. On the other hand, giving a graphical characterization for certain types of
geometric objects may help pin down the essential combinatorial properties that can be
exploited in the geometric setting.

One example of this interplay is the study of geometric set cover and geometric hitting
set problems in geometric optimization [2, 14, 3]. In this important branch of computational
geometry, incidence relations of two types of geometric objects are studied where one object
type is represented by vertices of a hypergraph whose hyperedges are, in turn, represented by
the other object type. In this representation a vertex is contained in a hyperedge if and only
if the corresponding geometric objects have a certain geometric relation such as containment
or intersection. The objective is to find the minimum number of nodes hitting all hyperedges1.
In this line of research, the goal is to exploit the geometry in order to improve upon the
state of the art for general hypergraphs. This is known to be surprisingly challenging even in
many seemingly elementary settings.

1 For the sake of presentation, we use here the representation as hitting set problem rather than the
equivalent and maybe more common geometric set cover interpretation.
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For example, in the well-studied point line cover problem [8, 10] we are given a set of
points in the plane and a set of lines. The goal is to identify a smallest subset of the lines to
cover all the points. This problem can be cast as a hypergraph vertex cover problem. Points
can be viewed as hyperedges containing the incident lines as vertices. The objective is to
cover all the hyperedges by the smallest number of vertices.

It seems quite clear that point line cover instances form a heavily restricted subclass of
general hypergraph vertex cover. For example, they have the natural intersection property
that two lines can intersect in at most one point. However, somewhat surprisingly, in terms of
approximation algorithms, no worst-case result improving the ratios for general hypergraph
vertex cover [1, 7, 4] is known. In fact, it has been shown that merely exploiting the
above intersection property in the hypergraph vertex cover is not sufficient to give improved
approximations [11]. Giving a simple combinatorial characterization of the point line cover
instances seems to be an intriguing task.

In this paper, we study a representation of hypergraphs that arises from a natural variant
of point line cover where we want to cover a given set P of points in Rd by axis-parallel lines.
While the axis-parallel case of point line cover has been considered before [6] the known
algorithms do not improve upon the general case of hypergraph vertex cover [1, 4]. More
generally, we investigate the generalization where we are additionally given a parameter
` ≤ d− 1 and we would like to cover P by axis-aligned affine `-dimensional subspaces of Rd,
which we call `-subspaces. The resulting classes of hypergraphs is fairly rich as any k-partite
k-uniform hypergraph (i.e. a hypergraph with a partition of vertices into k parts such that
each hyperedge contains at most one vertex of each type and together exactly k vertices)
can be represented by a set of points in Rk to be covered by (k− 1)-subspaces. On the other
hand for ` < d− 1 we obtain proper subclasses of all k-hypergraphs.

We remark that our representation does not exploit the geometry of the Euclidean Rd.
Rather, the representation can also be considered on a hypercube Xd for some set X where
subspaces are subsets of Xd fixing certain coordinates. We feel that the usage of the geometric
language is more intuitive.

Our Contribution To the best of our knowledge, we are the first to study the representation
of k-hypergraphs via axis-aligned point subspace cover instance in this generality. Our main
insight is that the axis-aligned case of point subspace cover allows for a natural, combinatorial
characterization contrasting what is known for the non-aligned case. The characterization is
based on vertex cuts and can be leveraged to obtain a polynomial time recognition algorithm
for such hypergraphs assuming the dimension d is a constant and that we are given the
partition of the vertices (which is NP-hard to compute for k ≥ 3 [9]). We believe that it is
an interesting research direction to exploit these combinatorial properties in order to obtain
improved results for various optimization problems in (d, `)-hypergraphs such as hypergraph
vertex cover or hypergraph matching.

2 Point Line Cover and Hypergraph Representation

For the sake of an easier presentation, we describe the result for the special case of point
line covers. We give later some intuition how to generalize the results to high-dimensional
axis-aligned affine subspaces.

Let P be a finite set of points in Rd. Then we define the hypergraph GP as follows. The
vertex set of GP is the set of axis-parallel lines containing at least one point in P . The
hyperedges in GP correspond to the points in P where the hyperedge corresponding to some
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Figure 1 A graph (a) and a hypergraph (b) and their representations in 2D and 3D, respectively.

p ∈ P contains the k axis-parallel lines incident on p as vertices. Note that GP is k-partite
and k-uniform (that is GP is a k-hypergraph) where the k groups of the partition correspond
to the k dimensions.

Our main task is to decide for a given hypergraph G whether there is a point line cover
instance P such that G and GP are isomorphic. We say that G is represented by P and,
thus, representable. We assume that the partition of G into k groups is given.

More formally, we want to compute for a given k-hypergraph G = (V1 ∪ V2∪, . . . ,∪Vk, E)
a point line cover instance P such that each e = (v1, . . . , vk) ∈ E corresponds to some
pe = (xe

1, . . . , xe
k) ∈ P and where vi ∈ Vi corresponds to the line lvi that is parallel to the

ith coordinate axis and contains pe, that is, for all j 6= i, we fix the coordinates xe
j , j 6= i

whereas the ith coordinate is free, see Fig. 1 for examples.
We remark that every bipartite graph is representable in R2 because any adjacency matrix

can be represented by a grid-like construction as shown in Fig. 1a. Therefore, from now on
we consider the case k ≥ 3.

3 Characterization of Representable Hypergraphs

We use the notation [k] = {1, . . . , k} for k ∈ N. Let G = (V = V1 ∪ · · · ∪ Vk, E) be a
k-hypergraph.

I Definition 3.1. Let s, t ∈ V . An s–t path is a sequence of vertices s = v1, . . . , vr = t such
that vi and vi+1 are both contained in some hyperedge e ∈ E for all i ∈ [r − 1]. Similarly, if
e, e′ ∈ E then an e–e′ path is a v–v′ path such that v ∈ e and v′ ∈ e′. we were not

consistent
with the hy-
phen in vertex
separability
and edge sepa-
rability. Smth
to change in
the full ver-
sion.

I Definition 3.2 (Vertex separability). For a given k-hypergraph G two distinct vertices v

and v′ from the same group Vi, i ∈ [k] are separable if there exists some j ∈ [k] with j 6= i

such that every v–v′ path contains a vertex in Vj . (Informally, removing Vj from the vertex
set and from the edges separates v and v′.) A hypergraph is called vertex-separable if every
two vertices from the same group are separable.

I Definition 3.3 (Edge separability). For a given k-hypergraph G two distinct hyperedges e

and e′ are separable if there exists some j ∈ [k] such that every e–e′ path contains a vertex
in Vj . A hypergraph is called edge separable if every two hyperedges are separable.

Note that any pair of hyperedges sharing two or more vertices are not separable. Therefore,
edge-separable hypergraphs do not contain such hyperedge pairs.

I Lemma 3.4. Vertex separability implies edge separability.

Proof. Assume that a given k-hypergraph G is not edge-separable. This means that there
are two distinct hyperedges e and e′ that are not separable. Then ∀j ∈ [k] there is an e–e′
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Figure 2 A hypergraph (on the left) that is edge-separable, but not vertex-separable (the vertices
from V2 are not separable). The line `v′

(on the right) must simultaneously intersect `u and `u′
and

therefore must be equal to `v. A contradiction.

path that does not contain a vertex from Vj . Because e and e′ are distinct there are distinct
vertices v and v′ with v ∈ e and v′ ∈ e′ from the same group Vi for some i ∈ [k]. Now, for
each j ∈ [k], j 6= i there exists an e–e′ path Pj that does not contain any vertex from Vj .
But then v, Pj , v′ forms a v–v′ path not containing any vertex from Vj . This means that G

is not vertex-separable. J

The converse is not true, see Fig. 2. In the instance depicted, the two red edges, for
example, are separated by removing the orange vertex part V1 and the two black edges are
separated by removing the green vertex part V3.

I Definition 3.5. Let G be a k-hypergraph. For each i ∈ [k] we construct a graph Gi =
(E, Ei) as follows: e and e′ ∈ E are adjacent if and only if e and e′ have a common vertex in
a group Vj with j 6= i.

I Theorem 3.6. A k-hypergraph G is representable if and only if it is vertex-separable.change l to `

in the proof
Proof. We construct for each hyperedge e a point pe ∈ Rk and for each vertex vi ∈ Vi with
i ∈ [k] a line lvi ⊆ Rk that is parallel to the xi-axis. We do this as follows. For G we
construct the graphs Gi, i ∈ [k]. For each graph Gi we consider the connected components
of the graph and assign to each of them a unique (integer) value.

Now, if pe
i is the value of the connected component in Gi that contains e then we let the

point pe = (pe
1, . . . , pe

k) represent the hyperedge e, see Fig. 3 for an example.
Recall that any line parallel to the xi-axis can be defined by fixing its xj-coordinate for

all j 6= i, while leaving xi free. Now, if the hyperedge e = {v1, . . . , vk} is represented by
pe = (pe

1, . . . , pe
k) then for each i ∈ [k], the line lvi that represents the vertex vi is defined

by coordinates pe
j , j 6= i while leaving the xi-coordinate free, see Fig. 3. It is important to

note, that the representation lvi is well-defined although vi may be contained in multiple
hyperedges in G. This follows from the fact that all the hyperedges containing vi belong
to the same connected component in Gj , j ∈ [k], j 6= i because each pair of them is joined
by some edge in Gj corresponding to vi and in particular these hyperedges form a clique.
Therefore, there is no disagreement in the xj-coordinate where j 6= i. Hence, we uniquely
define the coordinates that determine a line.

(⇐) Assume that G is vertex-separable. By the construction of the point line cover
instance we have:

every point pe is in fact covered by the lines lv1 , . . . , lvk where e = {v1, . . . , vk}, because
by construction every line lvi and point pe have the same xj-coordinate with j 6= i.
∀v 6= v′ ∈ V it holds lv 6= lv′ . This is obviously true if vertices belong to different groups,
because then the free coordinate of v is fixed for v′ and vice versa. If v, v′ ∈ Vi for some
i ∈ [k] then, by vertex separability, there exists j 6= i such that v and v′ are not connected
in graph Gj and get different xj-coordinates. So they represent distinct lines.
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Figure 3 The graphs G1, G2, G3 and the coordinates of the points and lines corresponding to the
hyperedges and vertices. The dots instead of coordinates mean that those coordinates are free.

∀e 6= e′ ∈ E it holds pe 6= pe′ . Indeed, by Lemma 3.4, G is edge-separable and by
definition of edge separability distinct hyperedges are not connected in at least one graph
Gi and get different xi-coordinates. So they represent distinct points.

By the above construction, for every incident vertex-hyperedge pair v ∈ V, e ∈ E, that is,
v ∈ e, the corresponding geometric objects lv and pe are incident as well. We claim that if v

and e are not incident, that is, v /∈ e then lv and pe are not incident as well. This is because
every point pe is already incident to precisely k lines lv by construction, because the lines lv

are pairwise distinct, and because pe cannot be incident on more than k axis-parallel lines.
Thus we constructed a point line cover instance that represents the hypergraph G and this
means that G is representable.

(⇒) Assume that G is not vertex-separable but that it has a point line cover representation.
This means that it contains at least two distinct vertices v and v′ from the same group
Vi that are not separable. Then for each group Vj with j 6= i, there exists a v–v′ path
v = v1, . . . , vr = v′ such that vt /∈ Vj for each t ∈ [r]. All lines lvt with t ∈ [r] that represent
the vertices v1, . . . , vr lie on the same hyperplane Hj perpendicular to the xj-axis. This
is because successive line pairs are joined by a common point (representing the hyperedge
containing both) and since none of these lines is parallel to the xj-axis and so the xj-
coordinate stays fixed. Since this holds for all j ∈ [k], j 6= i, the lines lv and lv′ lie in the
intersection

⋂
j 6=i

Hj . But the intersection of such hyperplanes is a single line. This contradicts

that v and v′ correspond to the distinct lines. J

4 Further Results and Open Questions.

In the full version of the paper, we also present a polynomial time algorithm to compute for
a vertex separable hypergraph a point line cover representation. The algorithm implements
the idea used in Theorem 3.6. We are also able to generalize the result from point line covers
to point subspace covers. That is, we provide a characterization of the more general case of
(d, `)-hypergraphs along with a recognition algorithm for constant d.

We conclude with some open questions. Can we leverage our combinatorial characteriza-
tions to give improved algorithms for classical optimization problems such as hypergraph
vertex cover or hypergraph matching for (d, `)-hypergraphs? What is the relation of such
graphs to other more well-studied graph classes? Is there a polynomial recognition algorithm
also for non-constant d? What about point line cover in the plane with a fixed number of
possible directions of the lines?

EuroCG’21
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