Computing Optimal Tangles Faster

Oksana Firman*!, Philipp Kindermann!, Alexander Ravsky2,
Alexander Wolff!, and Johannes Zink!

1 Institut fiir Informatik, Universitdt Wiirzburg
firstname.lastname@uni-wuerzburg.de

2 Pidstryhach Institute for Applied Problems of Mechanics and Mathematics,
National Academy of Sciences of Ukraine, Lviv, Ukraine
alexander.ravsky@uni-wuerzburg.de

—— Abstract

We study the following combinatorial problem. Given a set of n y-monotone wires, a tangle

determines the order of the wires on a number of horizontal layers such that the orders of the
wires on any two consecutive layers differ only in swaps of neighboring wires. Given a multiset L
of swaps (that is, unordered pairs of numbers between 1 and n) and an initial order of the wires,
a tangle realizes L if each pair of wires changes its order exactly as many times as specified by L.
The aim is to find a tangle that realizes L using the smallest number of layers. We show that
this problem is NP-hard, and we give an algorithm that computes an optimal tangle for n wires
and a given list L of swaps in O((2|L|/n2 +1)""/2¢"n) time, where ¢ ~ 1.618 is the golden ratio.
We can treat lists where every swap occurs at most once in O(nle™) time. We implemented the
algorithm for the general case and compared it to an existing algorithm.

1 Introduction

Our research is based on a recent paper of Olszewski et al. [4] who use tangles (which they
call templates) to visualize chaotic attractors, which occur in chaotic dynamic systems. Such
systems are considered in physics, celestial mechanics, electronics, fractals theory, chemistry,
biology, genetics, and population dynamics. In the framework of Olszewski et al., one is
given a set of wires that hang off a horizontal line in a fixed order, and a multiset of swaps
between the wires; a tangle then is a visualization of these swaps, i.e., an order in which
the swaps are performed, where only adjacent wires can be swapped and disjoint swaps can
be done simultaneously. Olszewski et al. gave an algorithm for minimizing the height of
a tangle. They didn’t analyze the asymptotic running time of their algorithm (which we
estimate below), but tested it on a set of benchmarks.

Wang [5] used the same optimization criterion for tangles, given only the final permutation.
She showed that, in an optimal tangle, no swap occurs more than once. She used odd-even
sort, a parallel variant of bubble sort, to compute tangles with at most one layer more than
the minimum. Bereg et al. [1, 2] showed, given a final permutation, how to minimize the
number of bends or moves (which are maximal “diagonal” segments of the wires).

Framework, Terminology, and Notation. We modify the terminology of Olszewski et al. [4]
in order to introduce a formal algebraic framework for the problem. Given a natural number n
of wires, a (swap) list L = (l;;) of order n is a symmetric n x n matrix with non-negative
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Figure 1 A list L,, for n wires (left) and the unique tangle of minimum height realizing L,, (right)
for the start permutation id, = 123...n. Here, n = 7. The tangle is not simple because w2 = 74.

entries and zero diagonal. The length of L is defined as |[L| = >, _; li;. Alist L' = (I};) is a
sublist of L if Ij; < l;; for each 4,j € [n]. A list is simple if all its entries are zeroes or ones.

A permutation is a bijection of the set [n] = {1,...,n} onto itself. The set S, of all
permutations of the set [n] is a group whose multiplication is a composition of maps (i.e.,
(wo)(i) = w(o(i)) for each pair of permutations m,0 € S,, and each i € [n]). The identity
of the group S, is the identity permutation id,. We write a permutation © € S,, as the
sequence of numbers 7=1(1)7~1(2)...7~!(n). For instance, the permutation 7 of [4] with
m(1l) =3, 7(2) =4, 7(3) = 2, and 7(4) = 1 is written as 4312. We denote the set of all
permutations of order 2 in S,, by S 2, i.e., m € Sy, o if and only if 7w =id,,, e.g., 2143 € Sy 5.

For i,j € [n], the swap ij is the permutation that exchanges ¢ and j, whereas the other
elements of [n] remain fixed. A set S of swaps is disjoint if each element of [n] participates
in at most one swap of S. Therefore, the product [] S of all elements of a disjoint set S
of swaps does not depend on the order of factors and belongs to S, ». Conversely, for each
permutation ¢ € S, o there exists a unique disjoint set S(e) of swaps such that e = [] S(e).

A permutation 7 € S,, supports a permutation ¢ € S, o if, for each swap ij € S(e), ¢
and j are neighbors in 7. By induction, we can easily show that any permutation = € S,
supports exactly Fj,+1 — 1 permutations of order 2 where F,, is the n-th Fibonacci number.

Permutations 7 and o are adjacent if there exists a permutation € € S, 5 such that 7
supports € and ¢ = mwe. In this case, ce = mee = 7 and o supports ¢, too. A tangle T
of height h is a sequence (my,7a,...,7p) of permutations in which every two consecutive
permutations are adjacent. A subtangle of T is a sequence (7, Tg41,. .., 7) of consecutive
permutations of T. Let L(T) = (I;;) be the symmetric n x n matrix with zero diagonal
where [;; is the number of occurrences of swap ij in 7. We say that T realizes L(T); see
Fig. 1. A list is w-feasible if it can be realized by a tangle starting from a permutation 7. An
id,,-feasible list is feasible; e.g., the list defined by the swaps 13 and 24 is not feasible.

A list L = (1;;) also can be considered as a multiset of swaps, where [;; is the multiplicity
of swap ij. In particular, the notation ij € L means [;; > 0. A tangle is simple if all its
permutations are distinct. In particular, the height of a simple tangle is at most n!.
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For each permutation 7 € S,, and a list L = (;;), we define a map nL: [n] — Z,
i = mw(i) + {j: (i) <7(j) <nmandl;;isodd}| — |[{j: 1 <m(j) <n(i) and [;; is odd}|.

For each wire ¢ € [n], wL(%) is the position of the wire after all swaps in L have been
applied to w. A list L is called w-consistent if L € S,,, or, more rigorously, if 7L induces a
permutation of [n]. An id,-consistent list is consistent. For example, the list {12,23,13} is
consistent, whereas the list {13} isn’t. If L is not consistent, then it is clearly not feasible.
For a list L = (l;;), we define 1(L) = (I;; mod 2). Since id,, L = id,, 1(L), the list L is
consistent if and only if 1(L) is consistent. We can compute 1(L) and check its consistency
in O(n + [1(L)|) = O(n?) time. Hence, in the sequel we assume that all lists are consistent.

The height h(L) of a feasible list L is the minimum height of a tangle that realizes L. A
tangle T is optimal if h(T) = h(L(T)). In the TANGLE-HEIGHT MINIMIZATION problem, we
are given a swap list L and the goal is to compute an optimal tangle T realizing L. As initial
wire order, we always assume the identity id,,.

Our Contribution. We show that TANGLE-HEIGHT MINIMIZATION is NP-hard (see Sec-
tion 2). We give an exact algorithm for simple lists running in O(nlp™) time and an exact
algorithm for general lists running in O((2|L|/n? + 1)"*/2p"n) time, which is polynomial in
|L| for any fixed n > 2 (see Section 3). We implemented the algorithm for general lists and
compared it to the algorithm of Olszewski et al. [4] using their benchmark set (see Section 4).

In order to be able to also compare the asymptotic runtime behaviors, we now analyze
the algorithm of Olszewski et al. [4]. Their algorithm constructs a search tree whose height
is bounded by the height h(L) of an optimal tangle for the given list L. The tree has
1+d+d?+- - 4+d" =1 = (@"L) —1)/(d—1) vertices, where d = F}, ;.1 — 1 is a bound on the
number of edges leaving a vertex, F,, = (0" — (—¢)™™)/v/5 € O(¢™) is the n-th number in
the Fibonacci sequence, and ¢ = Y3t &~ 1.618 is the golden ratio. Since it takes O(n) time
to deal with each vertex, the total running time is O(@™ D)L= D5=((L)=1)/2p)  Since
2|L|/n < h(L) — 1 < |L|, this time is not better than O(?/F15=1X1/7n) which is exponential
with respect to |L| for fixed n > 2 and, hence, slower than our algorithm for the general case.

It is known (see, for instance, Wang [5]) that, for any simple list L, h(L) < n+ 1. This
implies that, on simple lists, the algorithm of Olszewski et al. runs in O(go(”ﬂ)"f)*"n) =0
time, whereas our algorithm for simple lists runs in O(nlp") = 21987 time.

2 Complexity

» Theorem 1. Given a list L of swaps and an integer h > 0, it is NP-hard to decide whether
there is a tangle T of height h(T) < h realizing L.

Proof sketch; for the full proof see [3]. From the given 3-PARTITION instance A, we con-
struct in polynomial time a list L that can be realized by a tangle of height at most
mM B + O(m?) if and only if A is a yes-instance. For an example instance, see Fig. 2.

In the list L we use two central wires w and w’ swapping 2m times. Two consecutive
swaps form a loop. We number the loops from top to bottom; depending on their index,
loops are even or odd. We use wires B;, 51,7, Y., 0i, 0; with i € [m] to enforce the following.
For any tangle T realizing L, the height of the subtangle from the beginning of 7" to the end
of the i-th odd loop is at least (i — 1)M B and the height of the subtangle from the (i + 1)-th
odd loop to the end of T is at least (m — i)M B, where M € ©(m?) is some large scaling
factor. For a tangle T to not exceed the maximum height, every even loop in T' must have a
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' Figure 2 Example of our reduction from 3-PARTITION to TANGLE-HEIGHT MINIMIZATION with
A1 = {n1,ns,n7}, A2 = {na2,na,no}, As = {ns,ne,ns}, m=3, B= Zf’;nl n;/m, and M = 2m>.
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height of about M B. We encode the numbers in A by introducing, for each i € [3m], two
wires o; and o that swap Mn; times. All a;—a swaps must occur inside exactly one of the
even loops, but on different layers. The combination of these blocks of swaps inside the even
loops corresponds to a partition of the given 3-PARTITION instance A. All tangles of height
at most mM B + O(m?) correspond to a solution of A, and if there is a solution of A then
there also is a tangle of height at most mM B + O(m?) realizing this solution. <

3 Exact Algorithms

The two algorithms that we describe in this section test whether a given list is feasible and,
if yes, construct an optimal tangle realizing the list. For any permutation = € S,,, we define
the simple list L(m) = (;;) such that, for 0 <i < j <, l;; =0if 7(i) < 7(j), and [;; =1
otherwise. We use the following two lemmas, which we prove in the full version [3].

» Lemma 2. For every permutation m € Sy, L(7) is the unique simple list with id,, L(7) = .

» Lemma 3. For every tangle T = (w1, 72, ..., 7)), we have m L(T) = mp,.

Simple lists. Let L be a consistent simple list. Wang’s algorithm [5] creates a simple tangle
from id,, L, so L is feasible. Let T = (id,, =m,ma,...,m,=1d, L) be any tangle such that
L(T) is simple. Then, by Lemma 3, id,, L(T') = m;,. By Lemma 2, L(7},) is the unique simple
list with id,, L(7,) = 7, = id,, L, so L(T) = L(wp) = L and thus T is a realization of L.

We compute an optimal tangle realizing L = (I;;) as follows. Consider the graph Gp,
whose vertex set V(G,) consists of all permutations = € S, with L(7) < L (componentwise).
A directed edge (, o) between vertices 7, 0 € V(Gp) exists if and only if 7 and o are adjacent
as permutations and L(7) N L(7~'o) = &; the latter means that the set of (disjoint) swaps
whose product transforms 7 to o cannot contain swaps from the set whose product transforms
id,, to m. The graph G, has at most n! vertices and maximum degree F,, 11 — 1 = O(¢"),
see Section 1. Furthermore, for each i > 0, there is a natural bijection between tangles of
height h + 1 realizing L and paths of length h in the graph G, from the initial permutation
id,, to id, L. A shortest such path can be found by BFS in O(E(GpL)) = O(nl¢™) time.

» Theorem 4. For a simple list of order n, TANGLE-HEIGHT MINIMIZATION can be solved
in O(nle™) time.

General lists. We can assume that |L| > n/2; otherwise, there is a wire k € [n] that doesn’t
belong to any swap. This wire splits L into smaller lists with independent realizations. (If
there is a swap ij with ¢ < k < j, then L is infeasible.)

Let L = (I;;) be the given list. We compute an optimal tangle realizing L (if it exists) as
follows. Let A be the number of distinct sublists of L. We consider them in order of increasing
length. Let L’ be the next list to consider. We first check its consistency by computing the
map id, L'. If L’ is consistent, then we compute an optimal realization T'(L') of L’ (if it
exists), adding a permutation id,, L’ to the end of a shortest tangle T (L") = (1, ..., m,) with
mr, adjacent to id, L' and L” 4+ L({rp,id, L')) = L’. This search also checks the feasibility
of L' because such a tangle T(L’) exists if and only if the list L’ is feasible. Since there are
F, 11 — 1 permutations adjacent to id,, L', we have to check at most F,, 1 — 1 lists L”. Hence,
in total we spend O(A(Fj,+1 — 1)n) time for L. Assuming that n > 2, we bound X as follows.

3 (3) (3) n?/2
A:H(liﬂrl)S(W) :<|({j)|+1> §<2n§|+1) <elkl.

i<j 2
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Figure 3 Comparison of our algorithm (blue circles) with the algorithm of Olszewski et al. (red
triangles). The elapsed time is plotted on a log-scale.

We obtain the first inequality from the inequality between arithmetic and geometric
means, the second one from Bernoulli’s inequality, and the third one follows from 14z < e”.

» Theorem 5. For a list L of order n, TANGLE-HEIGHT MINIMIZATION can be solved in
O((2|L|/n2 + 1)*/2"n) time.

4 Experiments

We implemented the algorithm described in Theorem 5 and compared the running time of our
implementation with the one of Olszewski et al. [4]. Their code and a database of all possible
elementary linking matrices (most of them non-simple) of 5 wires (14 instances), 6 wires
(38 instances), and 7 wires (115 instances) are available at https://gitlab.uni.1lu/PCOG.
Both their and our code is implemented in Python.

We ran our experiments on an Intel Core i7-4770K CPU with a clock speed of 3.50 GHz
and 16 GB RAM under Windows 10 64bit. We measured the time to create an optimal
tangle 5 times and took the arithmetic mean. The results are summarized in Fig. 3. For 8
of the instances with 7 wires, we stopped their algorithm after 2 hours without finding an
optimal solution. We removed these instances from the analysis (although our algorithm
found a solution all but of them in under four minutes, and the last one in 20 minutes).

On average, our algorithm was considerably faster; its running time was only 2.59% for 5
wires, 28.69% for 6 wires, and 72.85% for 7 wires of the running time of the algorithm by
Olszewski et al. Our algorithm is also more space efficient; the memory usage peaked at
1.2 GB, while Olszewski et al. reportedly used up to 1 TB of memory in their experiments.
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5

Open Problems

Is it NP-hard to test the feasibility of a given (non-simple) list? Even if feasibility turns out
to be NP-hard, can we decide it faster than finding optimal tangles?

We call a list (I;;) non-separable if, for any i<k<j, l; = lx; = 0 implies [;; = 0. Clearly,

non-separability is necessary for a list to be feasible. For lists where all entries are even, we
conjecture that this is also sufficient (which we have computer-verified for n < 8).

Acknowledgments. We thank Thomas C. van Dijk for stimulating discussions.
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