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—— Abstract

An obstacle representation of a graph G consists of a set of polygonal obstacles and a drawing
of G as a wvisibility graph with respect to the obstacles: vertices are mapped to points and edges
to straight-line segments such that each edge avoids all obstacles whereas each non-edge intersects
at least one obstacle. Obstacle representations have been investigated quite intensely over the
last few years. Here we focus on outside-obstacle representations that use only one obstacle in the
outer face of the drawing. It is known that every outerplanar graph admits such a representation
[Alpert, Koch, Laison; DCG 2010]. We strengthen this result by showing that every partial 2-tree
has an outside-obstacle representation. We also consider a restricted version of outside-obstacle
representations where the vertices lie on a regular polygon. We construct such regular representations
for partial outerpaths, partial cactus graphs, and partial grids.

1 Introduction

Recognizing graphs that have a certain type of geometric representation is a well-established
field of research dealing with, for example, interval graphs, unit disk graphs, coin graphs, and
visibility graphs. Given a set C of obstacles (in our case: polygons) and a set P of points in
the plane, the visibility graph G¢(P) has a vertex for each point in P and an edge pq for any
two points p and ¢ in P that can see each other, that is, the line segment pg that connects p
and ¢ does not intersect any obstacle in C. An obstacle representation of a graph G consists
of a set C of obstacles in the plane and a mapping of the vertices of G to a set P of points
such that G = G¢(P). Drawing the edges of the visibility graph as straight-line segments
allows us to differentiate between two types of obstacles: outside obstacles lie in the outer
face of the drawing, and inside obstacles lie in the complement of the outer face; see Fig. 1.

Every graph trivially admits an obstacle representation: take an arbitrary drawing and
“fill” each face with an obstacle. However, this can lead to a large number of obstacles. Hence,
it makes sense to consider the optimization problem of finding an obstacle representation

Figure 1 Two representations of Cs: with an inside obstacle (left) and an outside obstacle (right).
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Figure 2 The wheel graph Ws admits an outside-obstacle representation — but not a convex one
(see full version [6]). Non-edges are dashed.

with the minimum number of obstacles. For a graph G, the obstacle number obs(G) is the
smallest number of obstacles that suffice to represent G as a visibility graph.

In this paper, we focus on outside-obstacle representations, that is, obstacle representations
with a single outside obstacle and without any inside obstacles. For such a representation,
it suffices to specify the position of the vertices. The outside obstacle is simply the whole
outer face of the straight-line drawing of the graph. We also consider three special types:
In a convex outside-obstacle representation, the vertices must be in convex position; in a
circular outside-obstacle representation, the vertices must lie on a circle; and in a regular
outside-obstacle representation, the vertices must form a regular n-gon.

In general, the class of graphs representable by outside obstacles is not closed under
taking subgraphs, but the situation is different for graphs admitting an outside-obstacle
representation that is reducible, meaning that all of its edges are incident to the outer face:

» Observation 1. If a graph G admits a reducible outside-obstacle representation, then every
subgraph of G also admits such a representation.

Previous Work. The notion of the obstacle number of a graph has been introduced by Alpert
et al. [1]. They also introduced inside-obstacle representations, i.e., representations without
an outside-obstacle. They characterized the class of graphs that have an inside-obstacle
representation with a single convex obstacle and showed that every outerplanar graph has
an outside-obstacle representation. They showed, for any m < n, that obs(Kj, ,,) < 2, where
Ky, ,, with m < n is the complete bipartite graph minus a matching of size m. They also
proved that obs(K3 ;) = 2. Pach and Sari6z [10] showed that obs(K3 5) = 2. More recently,
Berman et al. [3] suggested some necessary conditions for a graph to have obstacle number 1,
which they used to find a planar 10-vertex graph that has no 1-obstacle representation.

Obviously, any n-vertex graph has obstacle number O(n?). Balko et al. [2] improved this
to O(nlogn). For the lower bound, Dujmovi¢ and Morin [5] showed that there are n-vertex
graphs whose obstacle number is (n/(loglogn)?), improving on previous results [1,8,9].

Chaplick et al. [4] proved that the class of graphs with an inside-obstacle representation is
incomparable with the class of graphs with an outside-obstacle representation. They showed
that any graph with at most seven vertices has an outside-obstacle representation, which
does not hold for a specific graph with eight vertices.

Our Contribution. We first establish two combinatorial conditions for convex outside-
obstacle representations (see Section 2) that we later use to establish our main results. In
particular, we introduce a necessary condition that can be used to show that a given graph
does not admit a convex representation as, e.g., the graph in Fig. 2. We construct regular
reducible outside-obstacle representations for outerpaths, grids, and cacti; see Section 3.
Finally, we strengthen the result of Alpert et al. [1] about outside-obstacle representations of
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outerplanar graphs by showing that every (partial) 2-tree admits a reducible outside-obstacle
representation with all vertices on the outer face; see Section 4. We remark that outerplanar
graphs and series-parallel graphs are partial 2-trees.

2 Conditions for Convex Outside-Obstacle Representations

We start with a sufficient condition. Suppose that we have a convex outside-obstacle
representation of a graph G. Let ¢ be the clockwise circular order of the vertices of G along
the convex hull. If all neighbors of a vertex v of G are consecutive in o, we say that v has
the consecutive-neighbors property, which implies that all non-edges incident to v trivially
intersect the outer face in the immediate vicinity of v; see Fig. 3a.

» Lemma 2 (Consecutive-neighbors property). For a graph G, a circular vertex order o admits
a convex outside-obstacle representation if a subset of V(G) that covers all non-edges has the
consecutive-neighbors property.

Figure 3 (a) Vertex v has the consecutive-neighbors property; (b) gap g is a candidate gap for e.

Next, we derive a necessary condition. For any two consecutive vertices v and v’ on the
convex hull that are not adjacent in G, we say that the line segment g = vv’ is a gap. Then

the gap region of g is the inner face of G + vv’ incident to g; see the gray region in Fig. 3b.

(We consider the gap region open, but add to it the relative interior of the line segment vv’,
so that the non-edge vv’ actually intersects its own gap region.) Observe that each non-edge
e = zy that intersects the outer face has to intersect some gap region in an outside-obstacle
representation. For vertices a and b, the set [a,b] C V(G) consists of a and b and all vertices
that succeed a and precede b in 0. Suppose that g lies between x and y with respect to o,
that is, [v,v'] C [z, y]. We say that g is a candidate gap for e if there is no edge that connects
a vertex in [x,v] and a vertex in [v/,y]. (Otherwise € cannot intersect the gap region of g.)

» Lemma 3 (Gap condition). For a graph G, a circular vertex order o admits a convex
outside-obstacle representation only if there exists a candidate gap for each non-edge of G.

It remains an open problem whether the gap condition is also sufficient. We can use the
gap condition for no-certificates. To this end, we derived a SAT formula from the following
expression, which checks the gap condition for every non-edge of a graph G:

/\ \/ /\ uw ¢ E(G) | V \/ /\ uw ¢ E(G)

zy¢ E(G) [veElz,y) \u€lz,v],we(v,y] veEly,x) \u€ly,v],we(v,z]

We have used this formula to test whether all small cubic graphs (with up to 16 vertices)
admit convex outside-obstacle representations. The only counterexample we found was the
Petersen graph. The so-called Blanusa snarks, the Pappus graph, the dodecahedron, and the
generalized Peterson graph G(11,2) satisfy the gap condition. The latter three graphs do
admit convex outside-obstacle representations [7]. This motivates the following conjecture.
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Figure 4 Constructing a reducible regular outside-obstacle representation of a cactus.

» Conjecture 4. Every connected cubic graph except the Peterson graph admits a convex
outside-obstacle representation.

The smallest graph (and only graph with six vertices) that does not satisfy the gap
condition is the wheel graph Wg with six vertices (see the full version [6]). Obviously, Ws
does not admit a convez outside-obstacle representation, but it does admit a (non-convex)
outside-obstacle representation; see Fig. 2.

3 Regular Outside-Obstacle Representations

In this section, we show that some graph classes admit regular outside-obstacle representations.
A cactus is a connected graph where every edge is contained in at most one simple cycle. An
outerpath is an outerplanar graph that admits a drawing whose weak dual is a path. The
constructions for the following result are rather simple; see Figs. 4-6.

» Theorem 5. The following graphs have reducible regular outside-obstacle representations:
1. every cactus; 2. every grid; 3. every outerpath.

Proof sketch. We sketch our algorithms. For correctness and reducibility, see [6].

1. Let G be a cactus, and let T be the block-cut tree of G, which has a vertex for each
block (i.e., a biconnected component) and for each cut vertex. There is an edge in the
block-cut tree for each pair of a block and a cut vertex that belongs to it. We root T in
an arbitrary block vertex. We construct a drawing of G on a circle, starting with the root
block and then inserting the other blocks in the order of a BFS traversal of T'; see Fig. 4. We
insert the vertices of a block B as an interval between the cut vertex that connects B to its
parent in T" and its clockwise successor in the circular order. The resulting drawing has the
consecutive-neighbors property. Hence, by Lemma 2, it is an outside-obstacle representation.

2. Given the graph P, x P, of a square k x £ grid, we order the vertices of each copy of
the path Py in a zig-zag mannar as shown in Fig. 5. We place the copies one after the other
around the circle such that the vertices of each copy form an interval.

3. Let G be an outerpath with n vertices. Since our representation will be reducible, we
can assume that G is a mazimal outerpath, i.e., for any vertex pair {u,v}, G + uv is not
outerplanar. Let (v1,va,...,v,) be a stacking order of G, that is, for each i € {3,...,n}, the
graph G; = G[vy,v2,...,v;] is a maximal outerpath. Vertex v; (3 < j < n) is incident to an
inner edge v;v;. We place v; cyclically next to v;, avoiding the (empty) arc of the circle that
corresponds to the previous inner edge; see Fig. 6. |
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Figure 6 A maximal outerpath and its reducible regular outside-obstacle representation with
inner edges (black), outer edges (blue), weak dual (green). Vertices are numbered in stacking order.

Our representations for cacti and outerpaths depend only on the vertex order rather than
the exact positions. Hence, for such graphs every cocircular point set is universal, i.e., every

set of n points on a circle can be used for the vertices of an outside-obstacle representation.

Every graph with up to six vertices — except for the graph in Fig. 2 — admits a regular
outside-obstacle representation [6]. The 8-vertex outerplanar graph in Fig. 7, however, does
not admit any regular outside-obstacle representation [6].

4  Outside-Obstacle Representations for Partial 2-Trees

The graph class of 2-trees is recursively defined as follows: K5 is a 2-tree. A graph obtained
from a 2-tree G by adding a new vertex x with exactly two neighbors u, v that are adjacent

Figure 7 An outerplanar graph G’ and a circular outside-obstacle representation of G’. The
dashed red non-edge uv will stop intersecting the outer face of G’ if we move v towards the point z.
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Figure 8 Step (1) in the proof of Theorem 6.

in G is a 2-tree. We say that x is stacked on the edge uv. The edges zu and zv are called
the parent edges of z. For the full proof of the following theorem, see [6].

» Theorem 6. Fvery 2-tree admits a reducible outside-obstacle representation with all vertices
on the outer face.

Proof sketch. Every 2-tree T can be constructed through the following iterative procedure:
(1) We start with one edge, called the base edge and mark its vertices as inactive. We stack
any number of vertices onto the base edge and mark them as active. During the entire
procedure, every present vertex is marked either as active or inactive. Moreover, once a
vertex is inactive, it remains inactive for the remainder of the construction. (2) We pick one
active vertex v and stack any number of vertices onto each of its two parent edges. All the
new vertices are marked as active and v is marked as inactive. (3) If there are active vertices
remaining, repeat step (2). We construct a drawing of T' by geometrically implementing this
iterative procedure, so that after every step of the algorithm the present part of the graph is
realized as a straight-line drawing satisfying the following invariants:

(i) Each vertex v not incident to the base edge is associated with an open circular arc C,
that lies completely in the outer face and whose endpoints belong to the two parent
edges of v. Moreover, v is located at the center of C, and the parent edges of v are
below v.

(ii) Each non-edge passes through the circular arc of at least one of its incident vertices.

(iii) For each active vertex v, the region R, enclosed by C, and the two parent edges of v
is empty, meaning that R, is not intersected by any edges, vertices, or circular arcs.
(iv) Every vertex is incident to the outer face.

It is easy to see that once the procedure terminates with a drawing that satisfies invariants
(i)—(iv), we have indeed obtained the desired representation (in particular, the combination
of invariants (i) and (ii) implies that each non-edge passes through the outer face).

Construction. To carry out step (1), we draw the base edge horizontally and place the
stacked vertices on a common horizontal line above the base edge, see Fig. 8. Circular arcs
that satisfy the invariants are now easy to define. Suppose we have obtained a drawing I' of
the graph obtained after step (1) and some number of iterations of step (2) such that T is
equipped with a set of circular arcs satisfying the invariants (i)—(iv). We describe how to
carry out another iteration of step (2) while maintaining the invariants. Let v be an active
vertex. By invariant (i), both parent edges of v are below v. Let ey and e, be the left and
right parent edge, respectively. Let ¢1,%q,...,¢; and 71,72,...,7; be the vertices stacked
onto e; and e,, respectively. We refer to ¢1,%s,...,¢; and r,7,...,7; as the new vertices;
the vertices of I' are called old. We place all the new vertices on a common horizontal line h
that intersects R, above v, see Fig. 9. The vertices 1, {o, ..., ¥{; are placed inside R,, to the
right of the line e; extending e,. Symmetrically, 71,72,...,7; are placed inside R,,, to the
left of the line e, extending e,.. We place {1, ¥s,...,¢; close enough to e, and r1,72,...,7;
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Figure 9 Step (2) in the proof of Theorem 6. The shaded areas do not contain any vertices.

close enough to e, such that the following properties are satisfied: (a) None of the parent
edges of the new vertices intersect C,. (b) For each new vertex, the unbounded open cone
obtained by extending its parent edges to the bottom does not contain any vertices.

Each of the old vertices retains its circular arc from I'. By invariants (i) and (iii) for T, it
is easy to define circular arcs for the new vertices that satisfy invariant (i). Using invariants
(i)—(iv) for T" and properties (a) and (b), it can be shown that all invariants are satisfied. <

5 Open Problems

(1) What is the complexity of deciding whether a given graph admits an outside-obstacle
representation? (2) Does every graph that admits a circular vertex order satisfying the gap
condition admit a convex outside-obstacle representation? (3) Does every graph that admits
a convex outside-obstacle representation also admit a circular outside-obstacle representation?
(4) Does every outerplanar graph admit a (reducible) convex outside-obstacle representation?
(5) Which other classes of graphs admit regular or circular outside-obstacle representations?
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