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Introduction

Graph Drawing is an interesting subfield of Graph Theory. It is related to different aspects of

science such as social network analysis, cartography, linguistics, and bioinformatics.

Why it is so useful to research this area of mathematics and computer science? Graphs are used

for solving different problems. Computational problems in industry are such. For example: traffic

organization, social relations, artificial intelligence and so on. One real-world problem solved by

graph theory is finding the shortest path between two given nodes. Shortest path algorithms are

widely used due to their generality. We can find an optimal solution for given problem using

graphs.

One of the questions in this field is: which drawing of graph is the best for a given application.

An (undirected) graph is a pair G = (V,E) where V is a set of vertices and E ⊆ {{u, v} ⊆ V |

u 6= v} is a set of edges.

The drawing of a graph is a pictorial representation of the vertices and edges of a graph.

An abstract graph can have many different concrete drawings. For instance, the complete graph

K4 with four vertices can be drawn in many ways, see Fig. 1. But, for the sake of convenience

sometimes we shall identify a graph with its fixed drawing.

Figure 1: Different drawings of K4.

A drawing of a given graph can be evaluated by many different quality measures depending

on concrete purpose of the visual representation and different layouts optimizing values of these

measures are devised. For example, Hoffmann et al. [1] compared different styles of graph drawing
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and Marc van Kreveld [2] studied right-angled crossing (RAC) drawings of planar graphs.

In this paper we shall consider only finite simple graphs, that is the graphs with finitely many

vertices and edges and without loops and multiple edges. And all graph drawings are crossing-free,

that is drawings without intersection of its edges (excluding the only case of an intersection of

endpoints of two edges incident to the same vertex, at that vertex).

Basic Information about Planar Graphs. Planar graph is a graph that can be drawn on

a plane without intersection of edges. Many people investigated it. There was a question which

graphs are planar. In 1930 Kazimierz Kuratowski proved that a graph is planar iff neither K5 nor

K3,3 is its minor, see Fig. 2 (A graph H is called a minor of the graph G if H can be obtained

from G by deleting edges and vertices and by contracting edges).

(a) (b)

Figure 2: Non-planar graphs: (a) K5 and (b) K3,3.

Also we can quickly test whether a given graph G is planar or not. Hopcroft and Tarjan (1974)

showed that it takes O(n) time to test whether G is planar, where n is the number of nodes.

The following theorem is fundamental for graph drawing. Klaus Wagner (1936), Fáry (1948),

and Stein (1951) proved independently that every planar graph can be drawn with straight-line

edges. But in the same year 1936, Koebe showed that every planar graph can be represented

as the contact graph of disks (coin graph). Koebe’s circle packing theorem implies Wagner’s.

Indeed, if we connect the centers of disks in a coin graph G by straight-line segments, we obtain

a straight-line drawing of G, see Fig. 3.
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Figure 3: A circle packing for a five-vertex planar graph.

Unfortunately, coin graphs are not always applicable for real visual representations, because

they may contain very small circles, which are hard to see.

From the other hand, in 1990 Schnyder showed that any planar graph with n ≥ 3 vertices has

a straight-line drawing with vertices placed at the nodes of a grid of size (n− 2)× (n− 2).

So, straight-line drawings of planar graphs are rather investigated. Dealing with non-planar

graphs, first of all we remark that each graph can be drawn straight-line in space (R3) without

crossings. In fact, any placement of vertices with no four at one plane generates such a drawing.

Such generic drawings do not reveal any structural information about the graph.

My master thesis consists of an introduction, three chapters and conclusions.

The first chapter describes some information about drawing graphs on few objects, including

straight-line drawings on few lines or few planes. There are shown some examples of optimal

drawings of certain graphs. There is shown the connection of this paper with the work of various

scientists.

The second chapter contains information about platonic graphs. There are shown the minimum

numbers of straight lines which cover all vertices of platonic graphs (π1
2 and π1

3). It is proved that

these values are optimal.

The third chapter contains two examples of graphs with unbounded π1
2. The first example

Ex. 3.1 show that the value of π1
2(G) is unbounded on a class of graphs of treewidth 3, and the
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second one Ex. 3.2 show that the value of π1
2(G) is unbounded on a class of graphs of treewidth 4

and maximal vertex degree 9.

The purpose of this project is to investigate graphs with unbounded π1
2. This topic has many

open problems and there are shown example with bounded maximum vertex degree. Also there is

investigated placing vertices on few straight lines in two- and three-dimensional spaces for Platonic

graphs, which are 1-skeletons of Platonic solids. It interested me because it is connected to the

new Project Sigma, which was created by Lviv and German mathematicians. It includes Covering

of Platonic Graphs with Few Circles.
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Chapter 1

Drawing Graphs on Few Objects

Three-dimensional graph drawing on the grid has been surveyed by Wood [3] and by Dujmović

and Whitesides [4]. For example, Dujmović [5], improving on a result of Di Battista et al. [6],

showed that any planar graph can be drawn into a three-dimensional grid of volume O(n log n).

One of the problems is to study drawings whose edge sets are represented (or covered) by as

few objects as possible. The type of objects that have been used are straight-line segments [7, 8]

and circular arcs [9]. The idea behind this objective is to keep the visual complexity of a drawing

low for the observer. For example, consider dodecahedron, see Fig. 1.1. It has 20 vertices and 30

edges.

Figure 1.1: [10] A dodecahedron in R3.

Schulz [9] showed how to draw the dodecahedron using just 10 circular arcs, which is optimal,

see Fig. 1.2(a). Scherm in her bachelor thesis [11] showed how to draw the dodecahedron using

10 straight lines, see Fig. 1.2(b). Can we reduce this number using a few types of objects? For

example, Scherm showed a drawing of the dodecahedron using just 8 objects: 3 circles and 5

straight lines, see Fig. 1.2(c). Combining several types of objects, we can reduce the number of
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these objects on which we draw a graph. It is a new area for research: drawing graphs on different

objects.

(a) (b) (c)

Figure 1.2: Planar drawings of the dodecahedron: (a) on 10 circular arcs; (b) on 10 straight lines; (c)

on 3 circles and 5 straight lines.

Drawing Graphs on Few Lines or Few Planes. From now all considered graph drawings

are straight-line.

Another problem is to study graph drawings whose edges or only vertices are covered by as

few straight lines or planes as possible. Chaplick, Fleszar, Lipp, Ravsky, Verbitsky, and Wolff [12]

have introduced this problem, which is defined as follows.

Definition 1.1. Let 1 ≤ l < d, and let G be a graph. The l-dimensional affine cover number of G

in Rd, denoted by ρld(G), is defined as the minimum number of l-dimensional planes in Rd such

that G has a drawing that is contained in the union of these planes. πld(G), the weak l-dimensional

affine cover number of G in Rd, is defined similarly to ρld(G), but under the weaker restriction that

the vertices (and not necessarily the edges) of G are contained in the union of the planes. Finally,

the parallel affine cover number, π̄ld(G), is a restricted version of πld(G), in which the planes are

parallel. They consider only straight-line and crossing-free drawings.

As an example, Fig. 1.3 shows how to draw K6 in R3 such that all edges lie only on four planes.

This is optimal, that is, ρ23(K6) = 4.

Chaplick et al. remarked that for any suitable combination of l and d, it holds that πld(G) ≤

π̄ld(G) and πld(G) ≤ ρld(G). Also for any graph G, if l′ ≤ l and d′ ≤ d then πld(G) ≤ πl
′

d′(G),

ρld(G) ≤ ρl
′

d′(G), and π̄ld(G) ≤ π̄l
′

d′(G).

They also obtained the following collapsing theorem.
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Figure 1.3: K6 can be drawn straight-line and crossing-free on four planes [12].

Theorem 1.1. For any integers 1 ≤ l < 3 ≤ d and for any graph G, it holds that πld(G) = πl3(G),

π̄ld(G) = π̄l3(G), and ρld(G) = ρl3(G).

It means that Project Rho is about the following nine characteristics: π1
2, π1

3, π2
3, π̄1

2, π̄1
3, π̄2

3,

ρ12, ρ13, ρ23.

In my master thesis I focus on weak affine cover numbers of some classes of planar graphs. So

I should mention some facts which were proved before.

Chaplick et al. related the affine cover numbers to standard combinatorial characteristics of

graphs and to parameters that have been studied earlier in graph drawing.

A linear forest is a forest whose connected components are paths. The linear vertex arboric-

ity lvaG of a graph G equals the smallest size r of a partition V (G) = V1 ∪ · · · ∪ Vr such that

every Vi induces a linear forest.

They proved such theorem:

Theorem 1.2. For any planar graph G, it holds that π1
3(G) = lva(G).

This characterization implies that π1
3(G) is linearly related to the chromatic number of the

graph G.
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Chapter 2

Drawing Platonic Graphs

In three-dimensional space, a Platonic solid is a regular, convex polyhedron. It is constructed by

congruent regular polygonal faces with the same number of faces meeting at each vertex. Five

solids meet those criteria, see Fig. 2.1: Tetrahedron (a), Hexahedron (or Cube) (b), Octahedron (c),

Dodecahedron (d) and Icosahedron (e).

(a) (b) (c)

(d) (e)

Figure 2.1: Platonic solids in R3 [10]: (a) Tetrahedron; (b) Cube; (c) Octahedron; (d) Dodecahedron;

(e) Icosahedron.

9



A Platonic graph is a graph that has one of the Platonic solids as its skeleton. All of them are

regular, polyhedral, and also Hamiltonian graphs.

A regular graph is a graph where every vertex has the same degree i.e. the same number

of neighbors. Obviously, Tetrahedron, Cube and Dodecahedron are 3-regular (see Fig. 2.2 (a),

(c), (e) accordingly), Octahedron is 4-regular and Icosahedron is 5-regular (see Fig. 2.3 (a), (c)

accordingly).

A polyhedral graph is the undirected graph formed from the vertices and edges of a convex

polyhedron. The polyhedral graphs are the 3-vertex-connected planar graphs.

A connected graph G is said to be k-vertex-connected (or k-connected) if it has more than k

vertices and remains connected whenever fewer than k vertices are removed.

A Hamiltonian cycle is a graph cycle (i.e., closed loop) through a graph that visits each vertex

exactly once. A graph possessing a Hamiltonian cycle is said to be a Hamiltonian graph.

Because these graphs are planar we can find values π1
2 and π1

3 for them.

2.1 Placing Vertices of Platonic Graphs on Few Lines

in R2 (π1
2)

Theorem 2.1. (a) π1
2(G) = 2, if G is Tetrahedron, Cube or Dodecahedron;

(b) π1
2(G) = 3, if G is Octahedron or Icosahedron.

Proof. (a) See Fig. 2.2

(b) Let G be Octahedron or Icosahedron. Then π1
2(G) ≤ 3, see Fig. 2.3.

On the other hand π1
2(G) ≥ 3. Indeed, assume that there exists a plane drawing of G such that

all vertices of G are covered by two straight lines l1 and l2. Since the outer face of G is a triangle,

one of these straight lines, say l1 contains two vertices of the outer face. Thus l1 contains no other

vertices of G, and all of them are placed on l2. But this is impossible since the subgraph, induced

on these vertices is not a linear forest (in fact, it even contains a triangle), a contradiction.

Hence, π1
2(G) = 3.

Corollary 2.1. π1
3(G) = 2, if G is Tetrahedron, Cube or Dodecahedron.

Proof. This follows from the fact that π1
3(G) ≤ π1

2(G).
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(a) (b)

(c) (d)

(e) (f)

Figure 2.2: Tetrahedron graph (a) and placing its vertices on two straight lines (b);

Cube graph (c) and placing its vertices on two straight lines (d);

Dodecahedron graph (e) and placing its vertices on two straight lines (f).
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(a) (b)

(c) (d)

Figure 2.3: Octahedron graph (a) and placing its vertices on three straight lines (b);

Icosahedron graph (c) and placing its vertices on three straight lines (d).
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2.2 Placing Vertices of Platonic Graphs on Few Lines

in R3 (π1
3)

In the previous section we showed that π1
2(G) for platonic graphs equals two or three. But π1

3(G) for

any platonic graph equals two. Corollary 2.1 shows it for Tetrahedron, Cube and Dodecahedron.

So the task is to prove that for Octahedron and Icosahedron.

Theorem 2.2. π1
3(G) = 2, if G is Octahedron or Icosahedron.

Proof. By theorem 1.2 π1
3(G) = lva(G). Obviously that lva(G) = 2 for Octahedron and Icosahe-

dron, see Fig. 2.4. Each blue and yellow set of vertices induces a linear forest.

(a) (b)

Figure 2.4: Sets of vertices which induce linear forests: (a) of Octahedron; (b) of Icosahedron.

Fig. 2.5 show drawings of Octahedron and Icosahedron on two skew lines in three-dimensional

space.

(a) (b)

Figure 2.5: Placing vertices of Octahedron (a) and Icosahedron (b) on two skew lines in R3.
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Chapter 3

Graphs with Unbounded π12

Related work. All graphs considered in this section are planar, unless the otherwise is stated.

For graph G, π1
2(G) is at most as large as ρ12(G) but it can be much smaller. For instance, for the

nested-triangles graph Tk = C3 × Pk shown in Fig. 3.1, ρ12(Tk) ≥ n/2, see [12, Theorem 3.10],

whereas π1
2(Tk) ≤ 3. Usually it is hard to find non-trivial lower bounds for π1

2(G) and one of main

open problems in this topic is whether π1
2(G) = o(n) for all graphs G, see [12, Problem 3.4]. Even

with some restrictions imposed on G the problem remains open and there are only two known

examples of graph families with unbounded π1
2.

Figure 3.1: The nested-triangles graph Tk.

The first example was constructed in Section 3 of the paper "On collinear sets in straight-line

drawings" [13] using iterative face triangulations, see Fig. 3.2. To describe it we need the following

definitions.

A graph (non necessarily planar) is k-connected if it has more than k vertices and stays

connected after removal of any k vertices. 3-connected planar graphs are called polyhedral. A

planar graph G is maximal if adding an edge between any two non-adjacent vertices of G violates

planarity. Maximal planar graphs on more than 3 vertices are 3-connected. Clearly, all facial cycles
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Figure 3.2: The beginning of the sequence G1 = K4, G2, G3, [13, Fig.1].

in such graphs have length 3. By this reason maximal planar graphs are also called triangulations.

Cubic graph is a graph in which all vertices have degree three. The circumference of a graph

G, denoted by c(G), is the length of a longest cycle in G. The shortness exponent of a class of

graphs G is the limit inferior of quotients log c(G)/ log v(G) over all G ∈ G. Let σ denotes the

shortness exponent of the class of cubic polyhedral graphs. It is known that 0.753 < σ ≤ log 22
log 23

=

= 0.985 . . .. [13, Theorem 3.3] implies that for each ε > 0 there is a sequence of triangulations G

with π1
2(G) = Ω(n1−σ−ε).

The second example is used in [12, Theorem 3.3], stating that there are infinitely many triangu-

lations G with ∆(G) ≤ 12 and π1
2(G) ≥ n0.01. I guess that 0.01 here can be replaced by 1−σ12−ε

for each ε > 0, where σ12 denotes the shortness exponent for the class of cubic 3-connected

graphs with each face incident to at most 12 edges (this parameter is well defined by the Whitney

theorem). It is known [14] that σ12 ≤ log 26
log 27

= 0.988 . . ..

We are interested in examples with bounded maximum vertex degree ∆(G) because an other

basic open problem in this topic, whether π1
2(G) = o(n) for a graph G with ∆(G) = O(1). It is

even not known whether π1
2(G) = O(1) provided ∆(G) = 3. Note that the proof of Theorem 3.3

from [12] cannot be extended to graphs of maximum vertex degree 6 because the shortness expo-

nent of the cubic 3-connected graphs with each faces incident to at most 6 edges is known to be

equal to 1 [15].

Another thread concerns boundedness of π1
2 is graphs of bounded treewidth. Recall that

a graph has threewidth at most k provided it is a subgraph of a k-tree. The class of k-trees

(consisting of not necessarily planar graphs) is defined recursively as follows. The complete graph

Kk is a k-tree; if G is a k-tree and H is obtained from G by adding a new vertex and connecting

it to a k-clique of G then H is a k-tree. Observe that 1-trees are exactly trees.
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A track drawing [16] of a graph is a plane drawing for which there are parallel lines, called

tracks, such that every edge either lies on a track or its endpoints lie on two consecutive tracks.

We call a graph track drawable if it has a track drawing. Observe that any tree is track drawable:

two vertices are aligned on the same track iff they are at the same distance from an arbitrarily

assigned root. Moreover, any outerplanar graph is track drawable [16]. In Theorem 3.5 [12] it is

proved that π1
2(G) ≤ 2 for each track drawable graph G. On the other hand, as is well known, the

treewidth of an outerplanar graph is at most 2, and all graphs of treewidth 2 are planar but not

all of them are track drawable (for example, the graph consisting of three triangles that share one

edge). This suggested the following (still open) problem from [12], whether π1
2(G) = O(1) for all

graphs of treewidth 2. This problem is also motivated by an inequality π1
2(G) ≥ n/v̄(G), where

v̄(G) denote the maximum k such that G has a straight-line plane drawing with k collinear vertices,

as Verbitsky [13, Theorem 4.5] showed that v̄(G) > n/30 for all n-vertex graphs of treewidth at

most 2. Moreover, the linear lower bound was extended to all graph G of treewidth at most 3 by

Da Lozzo et al. [17].

Our contribution. Nevertheless, our Example 3.1 will show that the value of π1
2(G) is un-

bounded on a class of graphs of treewidth 3, whereas Example 3.2 will show that the value

of π1
2(G) is unbounded on a class of graphs of treewidth 4 and maximal vertex degree 9. In

both examples we recurrently construct a sequence {Gi} of triangulations with unbounded values

of π1
2(Gi).

We say that two plane graphs are strongly equivalent if they are obtainable from one another

by a plane homeomorphism, and are equivalent if they are obtainable from one another by a plane

homeomorphism, up to the choice of the outer face.

We start from a meeting with our old friend.

Example 3.1. As the base of the induction we start from a triangulation G1 = K4. Let H1 be

a plane drawing of G1. At the induction step i ≥ 1 we obtain Gi+1 from Gi by triangulating each

face of Gi by a new vertex, see Fig. 3.3.

Similarly, we obtain Hi+1 from Hi by triangulating each inner face of Hi by a new vertex. The

construction of Gi shows that its treewidth is 3. On the other hand, tw(Gi) ≥ min degGi = 3.

Since Gi is a triangulation, it is 3-connected, so, by Whitney’s theorem, all its plane embeddings

are equivalent. But, independently of the choice of outer face for this equivalence, for each plane

drawing d of Gi there exists a homeomorphism δ of the plane such that δ ◦ d(Gi) contains Hi as
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`

`

Figure 3.3: Graph Gi+1 obtained from Gi by

triangulating each face of Gi by a new vertex.

Figure 3.4: Straight line ` intersects all faces

of the graph.

a subgraph. We need at least 2 straight lines to cover all vertices of H1. If i ≥ 4 then we can

easily check that for each straight line ` containing the central vertex of the graph Hi there exists

a subgraph strongly equivalent to Hi−3 (drawn inside of one of the grey triangles at Fig. 3.3)

disjoint from `. This observation inductively implies that we need at least i/3 + 1 straight lines

to cover all vertices of Hi. Thus π1
2(Gi) ≥ i/3 + 1.

On the other hand, v̄(Gi) ≥ 3
4
n − 2 for each i ≥ 2. Indeed, we can choose a straight-line `

and then consecutively draw graphs G1, . . . , Gi−1 in such a manner that ` intersects all their faces,

see Fig. 3.4. So at the last step we shall be able to place all vertices of Gi on `, which yield the

claimed lower bound.

Example 3.2. As the base of the induction we start from a graph G1, constructed by gluing an

octahedron O to each face of a regular tetrahedron T , see Fig. 3.5 (a). It has four special faces,

which are disjoint with T (at the drawing they are three grey regular triangles and the outer face).

Let H1 be a plane graph, see Fig. 3.5 (b), with three special faces (at the drawing they are three

grey regular triangles).

Assume that at the induction step i ≥ 1 we are given a triangulation Gi and a plane graph

Hi with 4 · 3i−1 and 3i special faces, respectively. We construct a triangulation Gi+1 from Gi and

a plane graph Hi+1 from Hi by replacing each of its special faces by a copy of the graph H1,

see Fig. 3.6.

Thus the triangulation Gi+1 and the plane graph Hi+1 have 4 · 3i and 3i+1 special faces,

respectively. Using the fact that special faces of Gi+1 are disjoint with Gi, we can easily show that

∆(Gi+1) = 9. Since Gi is a triangulation, it is 3-connected, so, by Whitney’s theorem, all its plane
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(a) (b)

Figure 3.5: Graphs G1 (a) and H1 (b) with special faces (grey regular triangles).

Figure 3.6: The plane graph H2 from Example 3.2 constructed by replacing each of special faces of

graph H1 by a copy of the graph H1.

embeddings are equivalent. But, independently of the choice of outer face for this equivalence,

for each plane drawing d of Gi there exists a homeomorphism δ of the plane such that δ ◦ d(Gi)

contains Hi as a subgraph.

Clearly, tw(Gi) ≥ min degGi = 4. On the other hand, Fig. 3.7 shows a way to construct

from K4 a (not necessarily planar) 4-tree F1 containing the graph G1 as a subgraph. Remark that

for each grey triangle graph inherited by F1 from G1 there exists a vertex adjacent to all vertices

of triangle. This allows us to use the same construction for each of grey triangle graph, finally

obtaining (not necessarily planar) 4-tree F2 containing the graph G2 as a subgraph and so forth.

Thus tw(Gi) ≤ 4.

18



1

2 3

0

Figure 3.7: A way to construct from K4 a 4-tree F1 containing the graph G1 as a subgraph.

For each i let πi be a minimum number of straight lines needed to cover all vertices of a plane

straight-line graph H ′i strongly equivalent to Hi. As the base of the induction we start from

a graph H ′1. Assume that a family L consisting of π1 straight lines covers all vertices of H ′1.

By a crossing we shall call a pair (`, x) where ` ∈ L and x is a vertex of the red K4 subgraph

of H ′1 (see Fig. 3.5(b)) covered by ` or x is the interior of an inner face of the red K4 subgraph

intersected by `. Let C be the total number of crossings. Each of four vertices of red K4 subgraph

needs at least one crossing, and each of its three inner faces needs at least two crossings, because

its interior contains a grey triangle, which needs at least two straight lines to cover all its vertices.

Thus C ≥ 4 + 3 · 2 = 10. On the other hand, it is easy to check that each straight line can

participate in at most 3 crossings. Then 3π1 ≥ C. Combining the inequalities, we obtain π1 ≥ 4.

The induction step is similar. Assume that i ≥ 2 and a family L consisting of πi straight lines

covers all vertices of H ′i. By a crossing we shall call a pair (`, x) where ` ∈ L and x is a vertex of

the red K4 subgraph of H ′i (see Fig. 3.6) covered by ` or x is the interior of an inner face of the

red K4 subgraph intersected by `. Let C be the total number of crossings. Each of four vertices

of red K4 subgraph needs at least one crossing, and each of its three inner faces needs at least

πi−1 crossings, because its interior contains a subgraph strongly equivalent to Hi−1 drawn inside

a grey triangle. Thus C ≥ 4 + 3πi−1. On the other hand, it is easy to check that each straight

line can participate in at most 3 crossings. Then 3πi ≥ C. Combining the inequalities, we obtain

πi ≥ πi−1 + 2. Induction implies that πi ≥ 2i+ 2, so π1
2(Gi) ≥ 2i+ 2 too.

19



Conclusion

In this paper I investigated drawing graphs in R2 and R3 such that their vertices can be covered

by few straight lines (π1
2 and π1

3). I found these values for Platonic graphs:

Platonic graph |V| |E| |F| π1
2 π1

3

Tetrahedron 4 6 4 2 2

Cube 8 12 6 2 2

Octahedron 6 12 8 3 2

Dodecahedron 20 30 12 2 2

Icosahedron 12 30 20 3 2

But the main result of this paper is two recurrently constructed triangulations with unbounded

values of π1
2. For the sequence {Gi} of triangulations from Example 3.1, which has treewidth 3,

it is proved that π1
2(Gi) ≥ i/3 + 1, and from Example 3.2, which has treewidth 4 and maximal

vertex degree 9, it is proved that π1
2(Gi) ≥ 2i+ 2.
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