Weak Line Covers with Two Lines in the Plane

Oksana Firman

Fabian Lip
Laura Straube
Alexander Wolff
Lehrstuhl für Informatik I, Universität Würzburg

Problem

We examine the problem of drawing planar graphs in the plane such that they can be drawn on few lines, that is, every vertex must lie on one of the lines. At the same time, we insist that edges are drawn as (crossing-free) straight-line segments. Here, we want to identify classes of graphs that can be drawn on two lines.

Motivation

It is NP-hard to decide whether a given planar graph can be drawn on two lines (Biedl et al., Manuscript 2018),
We implemented an ILP and a SAT formulation in order to generate and verify hypotheses about classes of graphs that can be drawn on two lines.

Running Time Comparison

I SAT parsing II LP parsing SAT solving ILP solving

All tested maximum-degree-3 graphs can be drawn on two lines.

None of the tested triangulations - with one exception for each number of vertices - can be drawn on two lines.

Archimedean Graphs

Archimedean graphs are highly symmetric 3regular graphs. All can be drawn on two lines. See the margins for the Archimedean solids and drawings on two lines. Each graph is specified by a pair (n, m), where n is the number of verrices and m is the number of edges.

Note: The time scale is logarithmic and therefore special care must be taken when comparing the parsing to the solving time.
It is easy to see that SAT is much faster than ILP and even the parsing time of ILP is longer than the complete computing time of SAT.

Computational Results

Conjecture.

Any planar graph of maximum degree 3 can be drawn on two lines

Future Work

- Prove the conjecture!

Conclusions

The complete graph K_{4} can only be drawn on two lines if the drawing is permitted to use the crossing of the lines (see the differences between columns 2 and 3 in the table to the left).

A nested triangles graph cannot be drawn on two lines if the outer face of the drawing is a triangle. For example, in the octahedron are faces are triangles; therefore it cannot be drawn on two lines (Firman et al., EuroCG 2018),

A maximum degree of 3 limits the connectivity of triangles which seem to make it always possible to remove the nesting of triangles by changing the embedding.

A graph with degree greater than 3 can contain connested tetrahedra and then it is not drawable on two lines.

Triangulations need more than two lines except for an extension of K_{4} where each triangle shares an edge with the outer face and thus has no nested triangles

There are triangle-free graphs that cannot be drawn on two lines such as this quadrangulation. Other than triangles, quadrilaterals can easily be nested in drawings on two lines. Our triangulation, however, cannot be drawn.

All outherplanar graphs can be drawn on two lines (Chaplick et al., GD 2016). We found a 2-outherplanar graph that cannot be drawn on two lines.

\qquad

