Drawing Graphs with

Vertices at Specified Positions and

 Crossings at Large AnglesMartin Fink
Lehrstuhl für Informatik I
Universität Würzburg

Joint work with

Jan Haunert, Tamara Mchedlidze, Joachim Spoerhase \& Alexander Wolff

Vertices at Specified Positions

Gritzmann, Mohar, Pach, Pollack 1991:
graph

Vertices at Specified Positions

Gritzmann, Mohar, Pach, Pollack 1991:

Vertices at Specified Positions

Gritzmann, Mohar, Pach, Pollack 1991:

Vertices at Specified Positions

Gritzmann, Mohar, Pach, Pollack 1991:

Vertices at Specified Positions

Gritzmann, Mohar, Pach, Pollack 1991:

any outerplanar graph
(can be drawn s.t. every vertex lies at the outer face)

Vertices at Specified Positions

Gritzmann, Mohar, Pach, Pollack 1991:

any outerplanar graph \longrightarrow any pt set in general position
(can be drawn s.t. every (no three pts on a straight line)

Vertices at Specified Positions

Gritzmann, Mohar, Pach, Pollack 1991:

any outerplanar graph \longrightarrow any pt set in general position
(can be drawn s.t. every vertex lies at the outer face)

Note: Largest class of graphs with this property!

Vertices at Specified Positions

Gritzmann, Mohar, Pach, Pollack 1991:

any outerplanar graph \longrightarrow any pt set in general position (can be drawn s.t. every vertex lies at the outer face)

Note: Largest class of graphs with this property!

Vertices at Specified Positions

Gritzmann, Mohar, Pach, Pollack 1991:

any outerplanar graph \longrightarrow any pt set in general position (can be drawn s.t. every vertex lies at the outer face)

Note: Largest class of graphs with this property!

Vertices at Specified Positions

Gritzmann, Mohar, Pach, Pollack 1991:

any outerplanar graph \longrightarrow any pt set in general position (can be drawn s.t. every vertex lies at the outer face)
Note: Largest class of graphs with this property!

Vertices at Specified Positions

Gritzmann, Mohar, Pach, Pollack 1991:

any outerplanar graph \longrightarrow any pt set in general position (can be drawn s.t. every vertex lies at the outer face)

Note: Largest class of graphs with this property!

Vertices at Specified Positions

Gritzmann, Mohar, Pach, Pollack 1991:

any outerplanar graph \longrightarrow any pt set in general position
(can be drawn s.t. every vertex lies at the outer face)
Note: Largest class of graphs with this property!

Cabello, 2006: NP-hard for general graphs

Few Bends Suffice

Kaufmann \& Wiese 2002: Allow 2 bends per edge! Then...

Few Bends Suffice

Kaufmann \& Wiese 2002: Allow 2 bends per edge! Then. . .
any planar graph \longrightarrow any point set

Few Bends Suffice

Kaufmann \& Wiese 2002: Allow 2 bends per edge! Then. . . any planar graph \longrightarrow any point set

Few Bends Suffice

Kaufmann \& Wiese 2002: Allow 2 bends per edge! Then... any planar graph \longrightarrow any point set

Few Bends Suffice

Kaufmann \& Wiese 2002: Allow 2 bends per edge! Then... any planar graph \longrightarrow any point set

Few Bends Suffice

Kaufmann \& Wiese 2002: Allow 2 bends per edge! Then. . .
any planar graph \longrightarrow any point set

Few Bends Suffice

Kaufmann \& Wiese 2002: Allow 2 bends per edge! Then... any planar graph \longrightarrow any point set

Few Bends Suffice

Kaufmann \& Wiese 2002: Allow 2 bends per edge! Then... any planar graph \longrightarrow any point set

Few Bends Suffice

Kaufmann \& Wiese 2002: Allow 2 bends per edge! Then... any planar graph \longrightarrow any point set

Any drawing of G on P has an edge with at least 2 bends!

The Bad News Is...

Pach \& Wenger 2001:
a path \longrightarrow a pt set in convex position

The Bad News Is...

Pach \& Wenger 2001:
a path \longrightarrow a pt set in convex position
"with mapping"

The Bad News Is...

Pach \& Wenger 2001:

The Bad News Is...

Pach \& Wenger 2001:

The Bad News Is...

Pach \& Wenger 2001:

The Bad News Is...

Pach \& Wenger 2001:

The Bad News Is...

Pach \& Wenger 2001:

The Bad News Is...

Pach \& Wenger 2001:

The Bad News Is. . .

Pach \& Wenger 2001:

The Bad News Is...

Pach \& Wenger 2001:

The Bad News Is...

Pach \& Wenger 2001:

Thm. For embedding an n-vertex graph on n pts with mapping, $\Theta(n)$ bends per edge always suffice -

The Bad News Is...

Pach \& Wenger 2001:

Thm. For embedding an n-vertex graph on n pts with mapping, $\Theta(n)$ bends per edge always suffice and are sometimes necessary!

A New Trick!

Huang, Hong, Eades 2008: Forget planarity!

A New Trick!

Huang, Hong, Eades 2008: Forget planarity!
Allow (some kinds of) crossings:

A New Trick!

Huang, Hong, Eades 2008: Forget planarity!
Allow (some kinds of) crossings:

A New Trick!

Huang, Hong, Eades 2008: Forget planarity!
Allow (some kinds of) crossings:

A New Trick!

Huang, Hong, Eades 2008: Forget planarity!

Allow (some kinds of) crossings:

A New Trick!

Huang, Hong, Eades 2008: Forget planarity!
Allow (some kinds of) crossings:

Didimo, Eades, Liotta 2009: 90° crossings \& 3 bends per edge

A New Trick!

Huang, Hong, Eades 2008: Forget planarity!
Allow (some kinds of) crossings:

$R A C_{3}$ drawings

Didimo, Eades, Liotta 2009: 90° crossings \& 3 bends per edge

A New Trick!

Huang, Hong, Eades 2008: Forget planarity!
Allow (some kinds of) crossings:

user studies

$R A C_{3}$ drawings

Didimo, Eades, Liotta 2009: 90° crossings \& 3 bends per edge 1. any plaXar graph $\xrightarrow{\mathrm{RAC}_{3}}$ grid of size $O(m) \times O(m)$

A New Trick!

Huang, Hong, Eades 2008: Forget planarity!
Allow (some kinds of) crossings:

user studies

$R A C_{3}$ drawings

Didimo, Eades, Liotta 2009: 90° crossings \& 3 bends per edge

$$
\begin{gathered}
\text { 1. any ploXar graph } \xrightarrow{\mathrm{RAC}_{3}} \text { grid of size } O(m) \times O(m) \\
\text { bends on grid points! }
\end{gathered}
$$

A New Trick!

Huang, Hong, Eades 2008: Forget planarity!
Allow (some kinds of) crossings:

user studies

$R A C_{3}$ drawings

Didimo, Eades, Liotta 2009: 90° crossings \& 3 bends per edge

1. any plXar graph $\xrightarrow{\mathrm{RAC}_{3}}$ grid of size $O(m) \times O(m)$
2. some graphs need grid size $\Omega\left(n^{2}\right)$ for RAC_{3} drawings

A New Trick!

Huang, Hong, Eades 2008: Forget planarity!
Allow (some kinds of) crossings:

user studies

$R A C_{3}$ drawings

Didimo, Eades, Liotta 2009: 90° crossings \& 3 bends per edge

1. any ploWar graph $\xrightarrow{\mathrm{RAC}_{3}}$ grid of size $O(m) \times O(m)$
2. some graphs need grid size $\Omega\left(n^{2}\right)$ for $R A C_{3}$ drawings
3. only graphs with $O(n)$ edges can be drawn RAC_{2}

Our contribution

Combine point-set embeddability \& RAC.

Our contribution

Combine point-set embeddability \& RAC. our general position:

We assume that our n input points lie on an
$n \times n$ grid and that no two points lie on the same
horizontal or vertical line.

Our contribution

Combine point-set embeddability \& RAC.

our general position: We assume that our n input points lie on an
$n \times n$ grid and that no two points lie on the same horizontal or vertical line.

A first result:

$$
\text { any graph } \xrightarrow{\mathrm{RAC}_{3}} O(\mathrm{~m}) \times O(\mathrm{~m}) \text { grid }
$$

Our contribution

Combine point-set embeddability \& RAC.
our general position:
We assume that our n input points lie on an
$n \times n$ grid and that no two points lie on the same horizontal or vertical line.

A first result:

$$
\text { any graph } \xrightarrow{\mathrm{RAC}_{3}} O(\mathrm{~m}) \times O(\mathrm{~m}) \text { grid }
$$

Our contribution

Combine point-set embeddability \& RAC.
our general position:
We assume that our n input points lie on an
$n \times n$ grid and that no two points lie on the same
horizontal or vertical line.

A first result:

$$
\text { any graph } \xrightarrow{\mathrm{RAC}_{3}} O(\mathrm{~m}) \times O(\mathrm{~m}) \text { grid }
$$

Our contribution

Combine point-set embeddability \& RAC.
our general position:
We assume that our n input points lie on an
$n \times n$ grid and that no two points lie on the same horizontal or vertical line.

A first result:

$$
\text { any graph } \xrightarrow{\mathrm{RAC}_{3}} O(\mathrm{~m}) \times O(\mathrm{~m}) \text { grid }
$$

Our contribution

Combine point-set embeddability \& RAC.
our general position:
We assume that our n input points lie on an
$n \times n$ grid and that no two points lie on the same horizontal or vertical line.

A first result:

$$
\text { any graph } \xrightarrow{\mathrm{RAC}_{3}} O(\mathrm{~m}) \times O(\mathrm{~m}) \text { grid }
$$

Our contribution

Combine point-set embeddability \& RAC.
our general position:
We assume that our n input points lie on an
$n \times n$ grid and that no two points lie on the same horizontal or vertical line.

A first result:

$$
\text { any graph } \xrightarrow{\mathrm{RAC}_{3}} O(\mathrm{~m}) \times O(\mathrm{~m}) \text { grid }
$$

Our contribution

Combine point-set embeddability \& RAC.
our general position:
We assume that our n input points lie on an
$n \times n$ grid and that no two points lie on the same horizontal or vertical line.

A first result:

$$
\text { any graph } \xrightarrow{\mathrm{RAC}_{3}} O(\mathrm{~m}) \times O(\mathrm{~m}) \text { grid }
$$

Our contribution

Combine point-set embeddability \& RAC.
our general position:
We assume that our n input points lie on an
$n \times n$ grid and that no two points lie on the same horizontal or vertical line.

A first result:

$$
\text { any graph } \xrightarrow{\mathrm{RAC}_{3}} O(\mathrm{~m}) \times O(\mathrm{~m}) \text { grid }
$$

Our contribution

Combine point-set embeddability \& RAC.
our general position:
We assume that our n input points lie on an
$n \times n$ grid and that no two points lie on the same horizontal or vertical line.

A first result:

$$
\text { any graph } \xrightarrow{\mathrm{RAC}_{3}} O(\mathrm{~m}) \times O(\mathrm{~m}) \text { grid }
$$

Our contribution

Combine point-set embeddability \& RAC.
our general position:
We assume that our n input points lie on an
$n \times n$ grid and that no two points lie on the same horizontal or vertical line.

A first result:

$$
\text { any graph } \xrightarrow{\mathrm{RAC}_{3}} O(\mathrm{~m}) \times O(\mathrm{~m}) \text { grid }
$$

Our contribution

Combine point-set embeddability \& RAC.
our general position:
We assume that our n input points lie on an
$n \times n$ grid and that no two points lie on the same horizontal or vertical line.

A first result:

$$
\text { any graph } \xrightarrow{\mathrm{RAC}_{3}} O(\mathrm{~m}) \times O(\mathrm{~m}) \text { grid }
$$

Our contribution

Combine point-set embeddability \& RAC.
our general position:
We assume that our n input points lie on an
$n \times n$ grid and that no two points lie on the same horizontal or vertical line.

A first result:

$$
\text { any graph } \xrightarrow{\mathrm{RAC}_{3}} O(\mathrm{~m}) \times O(\mathrm{~m}) \text { grid }
$$

Our contribution

Combine point-set embeddability \& RAC.
our general position:
We assume that our n input points lie on an
$n \times n$ grid and that no two points lie on the same horizontal or vertical line.

A first result:

$$
\text { any graph } \xrightarrow{\mathrm{RAC}_{3}} O(\mathrm{~m}) \times O(\mathrm{~m}) \text { grid }
$$

Our contribution

Combine point-set embeddability \& RAC.
our general position:
We assume that our n input points lie on an
$n \times n$ grid and that no two points lie on the same horizontal or vertical line.

A first result:

$$
\text { any graph } \xrightarrow{\mathrm{RAC}_{3}} O(\mathrm{~m}) \times O(\mathrm{~m}) \text { grid }
$$

Our contribution

Combine point-set embeddability \& RAC.
our general position:
We assume that our n input points lie on an
$n \times n$ grid and that no two points lie on the same horizontal or vertical line.

A first result:
any graph $\xrightarrow{\mathrm{RAC}_{3}} O(m) \times O(m)$ grid even with given mapping

Loosening RAC to LAC

Loosening RAC to LAC

any graph with mapping

$$
\xrightarrow{\alpha \mathrm{AC}_{2}} O(m) \times n+1 \text { grid }
$$

Loosening RAC to LAC

any graph with mapping

$$
\xrightarrow{\alpha \mathrm{AC}_{2}} O(m) \times n+1 \text { grid }
$$

Loosening RAC to LAC

any graph with mapping

$$
\xrightarrow{\alpha \mathrm{AC}_{2}} O(m) \times n+1 \text { grid }
$$

Loosening RAC to LAC

any graph with mapping

$$
\xrightarrow{\alpha \mathrm{AC}_{2}} O(m) \times n+1 \text { grid }
$$

Loosening RAC to LAC

any graph with mapping

$$
\xrightarrow{\alpha \mathrm{AC}_{2}} O(m) \times n+1 \text { grid }
$$

Loosening RAC to LAC

any graph with mapping

$$
\xrightarrow{\alpha \mathrm{AC}_{2}} O(m) \times n+1 \text { grid }
$$

Loosening RAC to LAC

any graph with mapping

$$
\xrightarrow{\alpha \mathrm{AC}_{2}} O(m) \times n+1 \text { grid }
$$

Loosening RAC to LAC

any graph with mapping

$$
\xrightarrow{\alpha \mathrm{AC}_{2}} O(m) \times n+1 \text { grid }
$$

Loosening RAC to LAC

 $\alpha \mathrm{AC}:$ all crossing angles $\geq \alpha$any graph with mapping

$$
\xrightarrow{\alpha \mathrm{AC}_{2}} O(m) \times n+1 \text { grid }
$$

$c(\alpha)$ depends only on $\alpha!$

Loosening RAC to LAC

any graph with mapping

$$
\xrightarrow{\alpha \mathrm{AC}_{2}} O(m) \times n+1 \text { grid }
$$

$c(\alpha)$ depends only on α !

Theorem $\alpha \mathrm{AC}_{0}$ PSE is NP-hard

Overview: Restricted RAC PSE

Additional restriction: keep edges on grid lines!

Overview: Restricted RAC PSE

Additional restriction: keep edges on grid lines!

1. cycle $C_{n} \xrightarrow{\mathrm{RAC}_{1}} n \times n$ grid point set

Overview: Restricted RAC PSE

Additional restriction: keep edges on grid lines!

1. cycle $C_{n} \xrightarrow{\mathrm{RAC}_{1}} n \times n$ grid point set
 check in $O(n)$ time

Overview: Restricted RAC PSE

Additional restriction: keep edges on grid lines!

1. cycle $C_{n} \xrightarrow{\mathrm{RAC}_{1}} n \times n$ grid point set
 check in $O(n)$ time
2. any binary tree $\xrightarrow{R A C_{1}} n \times n$ grid point set

Overview: Restricted RAC PSE

Additional restriction: keep edges on grid lines!

1. cycle $C_{n} \xrightarrow{\mathrm{RAC}_{1}} n \times n$ grid point set
 check in $O(n)$ time
2. any binary tree $\xrightarrow{\mathrm{RAC}}{ }_{1} n \times n$ grid point set
3. any maxdeg-3 graph $\xrightarrow{\mathrm{RAC}_{2}} \mathrm{O}(n) \times O(n)$ grid

Overview: Restricted RAC PSE

Additional restriction: keep edges on grid lines!

1. cycle $C_{n} \xrightarrow{R A C_{1}} n \times n$ grid point set with mapping
 check in $O(n)$ time
2. any binary tree $\xrightarrow{\mathrm{RAC}_{1}} n \times n$ grid point set
3. any maxdeg-3 graph $\xrightarrow{\mathrm{RAC}_{2}} \mathrm{O}(n) \times O(n)$ grid with mapping

1. RAC_{1} PSE of cycles

1. RAC_{1} PSE of cycles

1. RAC_{1} PSE of cycles

1. RAC_{1} PSE of cycles

two possibilities per edge

1. $\mathrm{RAC}_{1} \mathrm{PSE}$ of cycles

two possibilities per edge

1. RAC_{1} PSE of cycles

two possibilities per edge
. 1

$\cdot 5$
4^{\bullet}
${ }^{-3}$

1. RAC_{1} PSE of cycles

two possibilities per edge

4^{\bullet}

$$
{ }^{3}
$$

1. RAC_{1} PSE of cycles

two possibilities per edge

1. RAC_{1} PSE of cycles

two possibilities per edge

1. RAC_{1} PSE of cycles

two possibilities per edge

1. RAC_{1} PSE of cycles

two possibilities per edge

1. RAC_{1} PSE of cycles

two possibilities per edge

- leave vertices vertically

1. RAC_{1} PSE of cycles

two possibilities per edge

- leave vertices vertically
- enter vertices horizontally

2. RAC_{1} PSE with mapping

two possibilities per edge

Embeddability testing with mapping

2. $\mathrm{RAC}_{1} \mathrm{PSE}$ with mapping

two possibilities per edge

Embeddability testing with mapping

2. $\mathrm{RAC}_{1} \mathrm{PSE}$ with mapping

two possibilities per edge

Embeddability testing with mapping

2. RAC_{1} PSE with mapping

two possibilities per edge

Embeddability testing with mapping

$$
e_{t} \wedge f_{t}
$$

2. $\mathrm{RAC}_{1} \mathrm{PSE}$ with mapping

two possibilities per edge

Embeddability testing with mapping

$$
e_{b} \wedge f_{b}
$$

2. $\mathrm{RAC}_{1} \mathrm{PSE}$ with mapping

two possibilities per edge

Embeddability testing with mapping

$$
e_{b} \wedge f_{t}
$$

2. RAC_{1} PSE with mapping

two possibilities per edge

Embeddability testing with mapping

$$
\neg\left(e_{b} \wedge f_{t}\right)
$$

2. $\mathrm{RAC}_{1} \mathrm{PSE}$ with mapping

two possibilities per edge

Embeddability testing with mapping

$$
\neg\left(e_{b} \wedge f_{t}\right)
$$

2. RAC_{1} PSE with mapping

two possibilities per edge

Embeddability testing with mapping

$$
\neg\left(e_{b} \wedge f_{t}\right)
$$

2. RAC_{1} PSE with mapping

two possibilities per edge

Embeddability testing with mapping

$$
\neg\left(e_{b} \wedge f_{t}\right)
$$

$$
\begin{aligned}
& \equiv\left(\neg e_{b} \vee \neg f_{t}\right) \\
& \equiv\left(e_{t} \vee \neg f_{t}\right) \\
& \text { 2-SAT clause }
\end{aligned}
$$ local conditions are sufficient!

2. $\mathrm{RAC}_{1} \mathrm{PSE}$ with mapping

two possibilities per edge

Embeddability testing with mapping in linear time

$$
\begin{aligned}
& \neg\left(e_{b} \wedge f_{t}\right) \\
& \equiv\left(\neg e_{b} \vee \neg f_{t}\right) \\
& \equiv\left(e_{t} \vee \neg f_{t}\right) \\
& \text { 2-SAT clause } \\
& \text { In total } \leq n \cdot\binom{4}{2} \cdot 2=O(n) \text { clauses. }
\end{aligned}
$$

3. RAC_{1} PSE of binary trees

3. RAC_{1} PSE of binary trees

3. RAC_{1} PSE of binary trees

3. RAC_{1} PSE of binary trees

- does not work with every mapping

3. RAC_{1} PSE of binary trees

O does not work with every mapping

- we choose the mapping

3. RAC_{1} PSE of binary trees

3. RAC_{1} PSE of binary trees

3. RAC_{1} PSE of binary trees

3. RAC_{1} PSE of binary trees

3. RAC_{1} PSE of binary trees

3. RAC_{1} PSE of binary trees

3. RAC_{1} PSE of binary trees

3. RAC_{1} PSE of binary trees

3. RAC_{1} PSE of binary trees

3. RAC_{1} PSE of binary trees

independentely by Di Giacomo et al.

3. RAC_{1} PSE of binary trees

- What about larger classes of graphs?

3. RAC_{1} PSE of binary trees

- What about larger classes of graphs?
- What about the planar case?

3. RAC_{1} PSE of binary trees

- What about larger classes of graphs?
- What about the planar case?

3. RAC_{1} PSE of binary trees

- What about larger classes of graphs?
- What about the planar case?

3. RAC_{1} PSE of binary trees

- What about larger classes of graphs?
- What about the planar case?

3. RAC_{1} PSE of binary trees

- What about larger classes of graphs?
- What about the planar case?

3. RAC_{1} PSE of binary trees

- What about larger classes of graphs?
- What about the planar case?

3. RAC_{1} PSE of binary trees

- What about larger classes of graphs?
- What about the planar case?

4. RAC_{2} PSE of maxdeg-3 graphs

 any maxdeg-3 graph $\xrightarrow{\mathrm{RAC}_{2}} \mathrm{O}(n) \times O(n)$ grid (with mapping)

4. RAC_{2} PSE of maxdeg-3 graphs

 any maxdeg-3 graph $\xrightarrow{\mathrm{RAC}} \mathrm{O}(n) \times O(n)$ grid (with mapping)

4. RAC_{2} PSE of maxdeg-3 graphs

 any maxdeg-3 graph $\xrightarrow{\mathrm{RAC}} \mathrm{O}(n) \times O(n)$ grid (with mapping)

Vizing 1964:

maxdeg $\Delta \Rightarrow(\Delta+1)$-edge-colorable
4. RAC_{2} PSE of maxdeg-3 graphs any maxdeg-3 graph $\xrightarrow{\mathrm{RAC}} \mathrm{O}(n) \times O(n)$ grid (with mapping)

4. RAC_{2} PSE of maxdeg-3 graphs any maxdeg-3 graph $\xrightarrow{\mathrm{RAC}} \mathrm{O}(n) \times O(n)$ grid (with mapping)

4. RAC_{2} PSE of maxdeg-3 graphs any maxdeg-3 graph $\xrightarrow{\mathrm{RAC}} \mathrm{O}(n) \times O(n)$ grid (with mapping)

- Can we minimize the area?

Conclusion

- Unrestricted RAC/ α AC PSE:

Conclusion

- Unrestricted RAC/ α AC PSE:

any graph +		
grid point set	with mapping	$-\mathrm{RAC}_{3}$
	$-\alpha \mathrm{AC}_{2}$	
	$-\left[\alpha A C_{1}\right]$	

- Restricted RAC PSE
binary tree
any graph
any maxdeg-3 with mapping graph
$\longrightarrow \mathrm{RAC}_{1}$
with mapping

check RAC_{1}
RAC_{2}

Conclusion

- Unrestricted RAC/ α AC PSE:

| any graph +
 grid point set$\xrightarrow{\text { with mapping }}$ | $-\mathrm{RAC}_{3}$ |
| :--- | :--- | :--- |
| | $-\alpha \mathrm{AC}_{2}$ |
| | $-\left[\alpha A C_{1}\right]$ |

- Restricted RAC PSE
binary tree
any graph
any maxdeg-3 with mapping graph
- Many open Problems!
RAC_{2}

Thank you!

