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A Centrality Problem

Imagine an abstract network.

@ computer network
@ transportation network

This network can be modeled by a graph.

@ Occupy some of the nodes.

@ As much communication as possible should be detected.
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Group Betweenness Centrality
Given a graph G = (V,E) and a M/ set C C V
@ choose communicating pair s, t € V uniformly at random

@ choose one shortest s—t path P uniformly at random

@ probability that i lieson P? a node v € C lies on P?
st C
BC(C):= 3 2O

o
s,teV]s£t ot

Os.t, 0st(C): #shortest s—t
paths (using a node of C)

t



Previous Results

Theorem. [Brandes, 2001]
The Shortest Path Betweenness Centrality of all

nodes can be computed in O(nm) time.
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Previous Results

Theorem. [Brandes, 2001]
The Shortest Path Betweenness Centrality of all

nodes can be computed in O(nm) time.

Theorem. [Puzis et. al., 2007]
The Group Betweenness Centrality of one set

C C V can be computed in O(n®) time.

Method: iteratively add nodes, O(n?) update time
for each step
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Maximum Betweenness Centrality

Input: A Graph G = (V, E), node costs ¢ : V — R{,
budget b € R]

Task: Find a set C C V with ¢(C) < b maximizing
GBC(C)

Theorem. [Puzis et al., 2007]
(unit-cost) MBC is NP-hard.

Theorem. [Dolev et al., 2009]
A simple greedy-algorithm computes a

(1 — 1/e)-approximation for unit-cost MBC in
O(n3) time.



Approximating MBC

@ Reduce MBC to (budgeted) Maximum Coverage.

@ Use existing results for Maximum Coverage.

@ implicit reduction
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(budgeted) Maximum Coverage and MBC

Input: set S, weight function w: S — Rf{
family F of subsets of S;:
costs ¢’: F — RJ and a budget b > 0

Task: Find a collection C" C F with ¢’(C’) < b maximizing
the total weight\w(C’) of the ground elements
covered by C’

v € V: set S(v) of all shortest costs ¢’(S(v)) = c(v)
paths containing v

for set C C V: w(S(C)) = GBC(C)

shortest s—t path P weight w(P) := -

Os.t
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Theorem. [Dolev et al., 2009]
(1 — 1/e)-approximation for unit-cost MBC in
O(n?) time.

U=V
while U # () do
u = node with maximal GBC(CJFC”()U;GBC(C)

if c(C 4+ u) < b then
LCZ:C—FU
B U:=U-—u
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Theorem. [Dolev et al., 2009]
(1 — 1/e)-approximation for unit-cost MBC in

O(n?) time.
reduction to Maximum
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Approximation Algorithms for MBC

Theorem. [Dolev et al., 2009]
(1 — 1/e)-approximation for unit-cost MBC in

O(n?) time.
reduction to Maximum
U=V Coverage simplifies the
while U # () do proof

BC(C+u)—GBC(C)

u = node with maximal =0
I <
if c(C +u) < bthen \, better approximation

L Ci=C+u for arbitrary costs?
U.=U-—-u

Theorem. [Khuller et al., 1999]

simple greedy approach: (1 — 1/4/e)-approximation
for Maximum Coverage ((1 — 1/e) for unit-cost

version)




Approximation Algorithms for MBC

Extended greedy approach

H =

foreach C C V with |[C| <3 and ¢(C) < b do
| U=V\C

while U # () do

u = node with maximal
if c(C 4+ u) < b then
L C=CHu
 U=U-u

- if GBC(C) > GBC(H) then H := C

return H

GBC(C+u)—GBC(C)
c(u)
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Approximation Algorithms for MBC

Theorem. [Khuller et al., 1999]
The extended greedy approach yields an

approximation factor of (1 — 1/e) for Maximum
Coverage. Lreduction

Theorem. A (1 — 1/e)-approximative solution for MBC can be
computed in O(n®) using the extended greedy
approach.

Theorem. [Khuller et al., 1999]
The approximation factor of (1 — 1/e) of the greedy
algorithm for Maximum Coverage is tight.

Theorem. The approximation factor of (1 — 1/e) of the greedy
algorithm for MBC is tight.
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Task: find a set C C V with |C| = k maximizing the number
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U
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MBC is APX-complete

@ Only paths between copies of distinct nodes are essential
(for large /):

— u covers shortest path for all /? pairs (uj, v})
— number of other pairs only linear in /

@ Only original nodes from G are relevant candidates for the
inclusion in set C with high GBC.

For C C V:

@ GBC(C) ~ I°x Ftcovered
edges in G

@ C approximative solution
for MBC = C
approximative solution for
Maximum Vertex Cover




MBC is APX-complete

Theorem. [Petrank, 1994]
Maximum Vertex Cover is APX-complete.

Theorem. (Unit-cost) Maximum Betweenness Centrality is
APX-complete.

Not much hope for a PTAS
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MBC on Trees

@ For tree T = (V, E): Exactly one (shortest) path between
each pair of nodes.

GBC(C) = +#paths covered by C

@ Use dynamic programming.

v . @ GBC,(C) = #internal paths in T,
covered by C

@ Some paths from T, to nodes
T, outside might already be covered.




MBC on Trees

top nodes

external paths already covered
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MBC on Trees

01 < GBC,,(C) < n? internal GBC

cost of cheapest set C C V providing
these values o1, mq

B[V1,0'1, m1]
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B[vl,al,ml] B[V2;0'2,m2]
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MBC on Trees

Computation of B|v, o, m]:
@ split m, 0 amon TV,TV,V\ L
P & T T > O(n*) combinations

@ m = 0 needs special handling )

(v,o0,m): O(n-n?-n)= 0(n*) combinations

Theorem. MBC can be solved in O(n") time on trees.
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Conclusion

@ Approximation Algorithm for Maximum Betweenness
Centrality: tight approximation factor of 1 — 1/e

@ Approximability
1 ?
1 — g < <M
not possible for Maximum Coverage

@ Polynomial-time Algorithm for trees

Also possible for other classes of graphs?

Thank youl
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