Maximum Betweenness Centrality:

 Approximability and Tractable CasesMartin Fink and Joachim Spoerhase
Universität Würzburg

A Centrality Problem

Imagine an abstract network.

- computer network
- transportation network

This network can be modeled by a graph.

A Centrality Problem

Imagine an abstract network.

- computer network

O transportation network
This network can be modeled by a graph.

- Occupy some of the nodes.
- As much communication as possible should be detected.

Overview

- Maximum Betweenness Centrality
- Approximating MBC
- APX-Completeness
- MBC on Trees
- Conclusion

Shorest Path Betweenness Centrality

Given a graph $G=(V, E)$ and a node $v \in V$

Shorest Path Betweenness Centrality

Given a graph $G=(V, E)$ and a node $v \in V$

- choose communicating pair $s, t \in V$ uniformly at random

Shortest Path Betweenness Centrality

Given a graph $G=(V, E)$ and a node $v \in V$
O choose communicating pair $s, t \in V$ uniformly at random

- choose one shortest s-t path P uniformly at random

Shortest Path Betweenness Centrality

Given a graph $G=(V, E)$ and a node $v \in V$

- choose communicating pair $s, t \in V$ uniformly at random
- choose one shortest $s-t$ path P uniformly at random
- probability that v lies on P ?

Group Betweenness Centrality

Given a graph $G=(V, E)$ and a node $V \in V$ set $C \subseteq V$
O choose communicating pair $s, t \in V$ uniformly at random

- choose one shortest $s-t$ path P uniformly at random

O probability that vlieson P ? a node $v \in C$ lies on P ?

Group Betweenness Centrality

Given a graph $G=(V, E)$ and a node $V \in V$ set $C \subseteq V$
O choose communicating pair $s, t \in V$ uniformly at random

- choose one shortest $s-t$ path P uniformly at random

O probability that vlies on P ? a node $v \in C$ lies on P ?

$$
\frac{\sigma_{s, t}(C)}{\sigma_{s, t}}
$$

$\sigma_{s, t}, \sigma_{s, t}(C)$: \#shortest $s-t$ paths (using a node of C)

Group Betweenness Centrality

Given a graph $G=(V, E)$ and a node $V \in V$ set $C \subseteq V$
O choose communicating pair $s, t \in V$ uniformly at random

- choose one shortest $s-t$ path P uniformly at random

O probability that vlies on P ? a node $v \in C$ lies on P ?

$$
\operatorname{GBC}(C):=\sum_{s, t \in V \mid s \neq t} \frac{\sigma_{s, t}(C)}{\sigma_{s, t}}
$$

Previous Results

Theorem. [Brandes, 2001]
The Shortest Path Betweenness Centrality of all nodes can be computed in $O(n m)$ time.

Theorem. [Puzis et. al., 2007]
The Group Betweenness Centrality of one set $C \subseteq V$ can be computed in $O\left(n^{3}\right)$ time.

Previous Results

Theorem. [Brandes, 2001]

The Shortest Path Betweenness Centrality of all nodes can be computed in $O(n m)$ time.

Theorem. [Puzis et. al., 2007]
The Group Betweenness Centrality of one set
$C \subseteq V$ can be computed in $O\left(n^{3}\right)$ time.
Method: iteratively add nodes, $O\left(n^{2}\right)$ update time for each step

Maximum Betweenness Centrality

Input: \quad A Graph $G=(V, E)$, node costs $c: V \rightarrow \mathbb{R}_{0}^{+}$, budget $b \in \mathbb{R}_{0}^{+}$

Maximum Betweenness Centrality

Input: \quad A Graph $G=(V, E)$, node costs $c: V \rightarrow \mathbb{R}_{0}^{+}$, budget $b \in \mathbb{R}_{0}^{+}$

Task: \quad Find a set $C \subseteq V$ with $c(C) \leq b$ maximizing GBC(C)

Maximum Betweenness Centrality

Input: \quad A Graph $G=(V, E)$, node costs $c: V \rightarrow \mathbb{R}_{0}^{+}$, budget $b \in \mathbb{R}_{0}^{+}$

Task: \quad Find a set $C \subseteq V$ with $c(C) \leq b$ maximizing GBC(C)

Theorem. [Puzis et al., 2007] (unit-cost) MBC is NP-hard.

Theorem. [Dolev et al., 2009]
A simple greedy-algorithm computes a ($1-1 / e$)-approximation for unit-cost MBC in $O\left(n^{3}\right)$ time.

Approximating MBC

- Reduce MBC to (budgeted) Maximum Coverage.
- Use existing results for Maximum Coverage.
- implicit reduction

(budgeted) Maximum Coverage

Input: set S, weight function $w: S \rightarrow \mathbb{R}_{0}^{+}$
family \mathcal{F} of subsets of S;
costs $c^{\prime}: \mathcal{F} \rightarrow \mathbb{R}_{0}^{+}$and a budget $b \geq 0$

(budgeted) Maximum Coverage

Input: set S, weight function $w: S \rightarrow \mathbb{R}_{0}^{+}$ family \mathcal{F} of subsets of S; costs $c^{\prime}: \mathcal{F} \rightarrow \mathbb{R}_{0}^{+}$and a budget $b \geq 0$

Task: Find a collection $C^{\prime} \subseteq \mathcal{F}$ with $c^{\prime}\left(C^{\prime}\right) \leq b$ maximizing the total weight $w\left(C^{\prime}\right)$ of the ground elements covered by C^{\prime}

(budgeted) Maximum Coverage and MBC

 Input: set S, weight function $w: S \rightarrow \mathbb{R}_{0}^{+}$ family \mathcal{F} of subsets of S; costs $c^{\prime}: \mathcal{F} \rightarrow \mathbb{R}_{0}^{+}$and a budget $b \geq 0$Task: Find a collection $C^{\prime} \subseteq \mathcal{F}$ with $c^{\prime}\left(C^{\prime}\right) \leq b$ maximizing the total weight $w\left(C^{\prime}\right)$ of the ground elements covered by C^{\prime}
shortest s-t path P
weight $w(P):=\frac{1}{\sigma_{s, t}}$

(budgeted) Maximum Coverage and MBC

 Input: set S, weight function $w: S \rightarrow \mathbb{R}_{0}^{+}$ family \mathcal{F} of subsets of S; costs $c^{\prime}: \mathcal{F} \rightarrow \mathbb{R}_{0}^{+}$and a budget $b \geq 0$Task: Find a collection $C^{\prime} \subseteq \mathcal{F}$ with $c^{\prime}\left(C^{\prime}\right) \leq b$ maximizing the total weight $w\left(C^{\prime}\right)$ of the ground elements covered by C^{\prime}
$v \in V$: set $S(v)$ of all shortest costs $c^{\prime}(S(v))=c(v)$ paths containing v
shortest $s-t$ path P
weight $w(P):=\frac{1}{\sigma_{s, t}}$

(budgeted) Maximum Coverage and MBC

 Input: set S, weight function $w: S \rightarrow \mathbb{R}_{0}^{+}$ family \mathcal{F} of subsets of S; costs $c^{\prime}: \mathcal{F} \rightarrow \mathbb{R}_{0}^{+}$and a budget $b \geq 0$Task: Find a collection $C^{\prime} \subseteq \mathcal{F}$ with $c^{\prime}\left(C^{\prime}\right) \leq b$ maximizing the total weight $w\left(C^{\prime}\right)$ of the ground elements covered by C^{\prime}
$v \in V:$ set $S(v)$ of all shortest $\quad \operatorname{costs} c^{\prime}(S(v))=c(v)$ paths containing v

$$
\text { for set } C \subseteq V: \quad w(S(C))=\operatorname{GBC}(C)
$$

shortest $s-t$ path P

Approximation Algorithms for MBC

$U:=V$
while $U \neq \emptyset$ do
$u=$ node with maximal $\frac{\operatorname{GBC}(C+u)-\operatorname{GBC}(C)}{C(u)}$
if $c(C+u) \leq b$ then
$C:=C+u$
$U:=U-u$

Approximation Algorithms for MBC

Theorem. [Dolev et al., 2009]
($1-1 / e$)-approximation for unit-cost MBC in $O\left(n^{3}\right)$ time.
$U:=V$
while $U \neq \emptyset$ do
$u=$ node with maximal $\frac{\operatorname{GBC}(C+u)-\operatorname{GBC}(C)}{C(u)}$
if $c(C+u) \leq b$ then
$C:=C+u$
$U:=U-u$

Approximation Algorithms for MBC

Theorem. [Dolev et al., 2009]
($1-1 / e$)-approximation for unit-cost MBC in $O\left(n^{3}\right)$ time.

$$
U:=V
$$

while $U \neq \emptyset$ do
reduction to Maximum Coverage simplifies the proof
$u=$ node with maximal $\frac{\operatorname{GBC}(C+u)-\operatorname{GBC}(C)}{c(u)}$
if $c(C+u) \leq b$ then
$C:=C+u$
$U:=U-u$
Theorem. [Khuller et al., 1999]
simple greedy approach: $(1-1 / \sqrt{e})$-approximation for Maximum Coverage ($(1-1 / e)$ for unit-cost version)

Approximation Algorithms for MBC

Theorem. [Dolev et al., 2009]
($1-1 / e$)-approximation for unit-cost MBC in $O\left(n^{3}\right)$ time.

$$
U:=V
$$

while $U \neq \emptyset$ do
reduction to Maximum
Coverage simplifies the proof
$u=$ node with maximal $\frac{\mathrm{CDC}(C+u)-\mathrm{GBC}(C)}{C(u)}$
if $c(C+u) \leq b$ then
$C:=C+u$
$U:=U-u$
better approximation for arbitrary costs?

Theorem. [Khuller et al., 1999]
simple greedy approach: $(1-1 / \sqrt{e})$-approximation for Maximum Coverage ($(1-1 / e)$ for unit-cost version)

Approximation Algorithms for MBC

Extended greedy approach
$H:=\emptyset$
foreach $C \subseteq V$ with $|C| \leq 3$ and $c(C) \leq b$ do $U:=V \backslash C$
while $U \neq \emptyset$ do $u=$ node with maximal $\frac{\operatorname{GBC}(C+u)-\operatorname{GBC}(C)}{C(u)}$ if $c(C+u) \leq b$ then
$C:=C+u$
$U:=U-u$
if $\operatorname{GBC}(C)>\operatorname{GBC}(H)$ then $H:=C$
return H

Approximation Algorithms for MBC

Theorem. [Khuller et al., 1999]
The extended greedy approach yields an approximation factor of ($1-1 / e$) for Maximum Coverage.

Approximation Algorithms for MBC

Theorem. [Khuller et al., 1999]
The extended greedy approach yields an approximation factor of ($1-1 / e$) for Maximum Coverage. reduction
Theorem. A (1-1/e)-approximative solution for MBC can be computed in $O\left(n^{6}\right)$ using the extended greedy approach.

Approximation Algorithms for MBC

Theorem. [Khuller et al., 1999]
The extended greedy approach yields an approximation factor of ($1-1 / e$) for Maximum Coverage. reduction
Theorem. A (1-1/e)-approximative solution for MBC can be computed in $O\left(n^{6}\right)$ using the extended greedy approach.

Theorem. [Khuller et al., 1999]
The approximation factor of $(1-1 / e)$ of the greedy algorithm for Maximum Coverage is tight.

Approximation Algorithms for MBC

Theorem. [Khuller et al., 1999]
The extended greedy approach yields an approximation factor of ($1-1 / e$) for Maximum Coverage. reduction
Theorem. A (1-1/e)-approximative solution for MBC can be computed in $O\left(n^{6}\right)$ using the extended greedy approach.

Theorem. [Khuller et al., 1999]
The approximation factor of $(1-1 / e)$ of the greedy algorithm for Maximum Coverage is tight.

Theorem. The approximation factor of $(1-1 / e)$ of the greedy algorithm for MBC is tight.

MBC is APX-complete

Maximum Vertex Cover:

Input: Graph $G=(V, E)$, number $k \leq n=|V|$
Task: find a set $C \subseteq V$ with $|C|=k$ maximizing the number of covered edges

MBC is APX-complete

Maximum Vertex Cover:
Input: Graph $G=(V, E)$, number $k \leq n=|V|$
Task: find a set $C \subseteq V$ with $|C|=k$ maximizing the number of covered edges

Maximum Vertex Cover

${ }^{W}$

MBC is APX-complete

Maximum Vertex Cover:
Input: Graph $G=(V, E)$, number $k \leq n=|V|$
Task: find a set $C \subseteq V$ with $|C|=k$ maximizing the number of covered edges

Maximum Vertex Cover MBC copies u_{1}, \ldots, u_{l} in a clique

${ }^{W}$

MBC is APX-complete

Maximum Vertex Cover:
Input: Graph $G=(V, E)$, number $k \leq n=|V|$
Task: find a set $C \subseteq V$ with $|C|=k$ maximizing the number of covered edges

Maximum Vertex Cover
MBC
copies u_{1}, \ldots, u_{l} in a clique

w

MBC is APX -complete

- Only paths between copies of distinct nodes are essential (for large $/$):
- u covers shortest path for all I^{2} pairs $\left(u_{i}, v_{j}\right)$
- number of other pairs only linear in I

$$
u_{1}, \ldots, u_{l}
$$

MBC is APX-complete

- Only paths between copies of distinct nodes are essential (for large $/$):
- u covers shortest path for all I^{2} pairs $\left(u_{i}, v_{j}\right)$
- number of other pairs only linear in I
- Only original nodes from G are relevant candidates for the inclusion in set C with high GBC.

$$
u_{1}, \ldots, u_{l}
$$

MBC is APX-complete

- Only paths between copies of distinct nodes are essential (for large $/$):
- u covers shortest path for all I^{2} pairs $\left(u_{i}, v_{j}\right)$
- number of other pairs only linear in I
- Only original nodes from G are relevant candidates for the inclusion in set C with high GBC.

For $C \subseteq V$:

- $\operatorname{GBC}(C) \approx I^{2} \times \#$ covered edges in G

MBC is APX -complete

- Only paths between copies of distinct nodes are essential (for large $/$):
- u covers shortest path for all I^{2} pairs $\left(u_{i}, v_{j}\right)$
- number of other pairs only linear in I
- Only original nodes from G are relevant candidates for the inclusion in set C with high GBC.

For $C \subseteq V$:

- $\operatorname{GBC}(C) \approx I^{2} \times \#$ covered edges in G
- C approximative solution for $\mathrm{MBC} \Rightarrow C$ approximative solution for Maximum Vertex Cover

MBC is APX-complete

Theorem. [Petrank, 1994]
Maximum Vertex Cover is APX-complete.
Theorem. (Unit-cost) Maximum Betweenness Centrality is APX-complete.

Not much hope for a PTAS

MBC on Trees

- For tree $T=(V, E)$: Exactly one (shortest) path between each pair of nodes.
$\operatorname{GBC}(C)=$ \#paths covered by C

MBC on Trees

- For tree $T=(V, E)$: Exactly one (shortest) path between each pair of nodes.
$\operatorname{GBC}(C)=$ \#paths covered by C
- Use dynamic programming.

- $\mathrm{GBC}_{v}(C)=\#$ internal paths in T_{v} covered by C

MBC on Trees

- For tree $T=(V, E)$: Exactly one (shortest) path between each pair of nodes.

$$
\mathrm{GBC}(C)=\# \text { paths covered by } C
$$

- Use dynamic programming.

- $\mathrm{GBC}_{v}(C)=$ \#internal paths in T_{v} covered by C
- Some paths from T_{V} to nodes outside might already be covered.

MBC on Trees

MBC on Trees

$$
\sigma_{1} \leq \mathrm{GBC}_{v_{1}}(C) \leq n^{2} \text { internal } \mathrm{GBC}
$$

MBC on Trees

MBC on Trees

Computation of $B[v, \sigma, m]$:

- split m, σ among $\left.T_{v_{1}}, T_{v_{2}}, v\right\}$
- $m=0$ needs special handling $\} O\left(n^{3}\right)$ combinations

MBC on Trees

Computation of $B[v, \sigma, m]$:

- split m, σ among $\left.T_{v_{1}}, T_{v_{2}}, v\right\}$
- $m=0$ needs special handling $\}$ $O\left(n^{3}\right)$ combinations
$(v, \sigma, m): O\left(n \cdot n^{2} \cdot n\right)=O\left(n^{4}\right)$ combinations

MBC on Trees

Computation of $B[v, \sigma, m]$:

- split m, σ among $\left.T_{v_{1}}, T_{v_{2}}, v\right\}$
- $m=0$ needs special handling $\}$
$O\left(n^{3}\right)$ combinations
$(v, \sigma, m): O\left(n \cdot n^{2} \cdot n\right)=O\left(n^{4}\right)$ combinations

Theorem. MBC can be solved in $O\left(n^{7}\right)$ time on trees.

Conclusion

- Approximation Algorithm for Maximum Betweenness Centrality: tight approximation factor of $1-1 / e$

Conclusion

- Approximation Algorithm for Maximum Betweenness

Centrality: tight approximation factor of $1-1 / e$

- Approximability

$$
1-\frac{1}{e}<\quad D<\epsilon
$$

Conclusion

- Approximation Algorithm for Maximum Betweenness

Centrality: tight approximation factor of $1-1 / e$

- Approximability

$$
\begin{aligned}
& 1-\frac{1}{e}<\alpha<\square<\epsilon \\
& \text { not possible for Maximum Coverage }
\end{aligned}
$$

Conclusion

- Approximation Algorithm for Maximum Betweenness

Centrality: tight approximation factor of $1-1 / e$

- Approximability

$$
\begin{aligned}
& 1-\frac{1}{e}<\alpha<\perp<\epsilon \\
& \text { not possible for Maximum Coverage }
\end{aligned}
$$

- Polynomial-time Algorithm for trees

Also possible for other classes of graphs?

Conclusion

- Approximation Algorithm for Maximum Betweenness

Centrality: tight approximation factor of $1-1 / e$

- Approximability

$$
\begin{aligned}
& 1-\frac{1}{e}<\alpha<\perp<\epsilon \\
& \text { not possible for Maximum Coverage }
\end{aligned}
$$

- Polynomial-time Algorithm for trees

Also possible for other classes of graphs?

Thank you!

