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nodes can be computed in O(nm) time.

Theorem. [Brandes, 2001]

Theorem.
The Group Betweenness Centrality of one set
C ⊆ V can be computed in O(n3) time.

[Puzis et. al., 2007]

Method: iteratively add nodes, O(n2) update time
for each step
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Maximum Betweenness Centrality

Input:

Task:

Theorem. [Puzis et al., 2007]
(unit-cost) MBC is NP-hard.

Theorem. [Dolev et al., 2009]
A simple greedy-algorithm computes a
(1− 1/e)-approximation for unit-cost MBC in
O(n3) time.

A Graph G = (V ,E ), node costs c : V → R+
0 ,

budget b ∈ R+
0

Find a set C ⊆ V with c(C ) ≤ b maximizing
GBC(C )



Approximating MBC

Reduce MBC to (budgeted) Maximum Coverage.

Use existing results for Maximum Coverage.

implicit reduction
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Input:

Task: Find a collection C ′ ⊆ F with c ′(C ′) ≤ b maximizing
the total weight w(C ′) of the ground elements
covered by C ′

set S , weight function w : S → R+
0

family F of subsets of S ;
costs c ′ : F → R+

0 and a budget b ≥ 0

shortest s–t path P weight w(P) := 1
σs,t

v ∈ V : set S(v) of all shortest
paths containing v

costs c ′(S(v)) = c(v)

w(S(C )) = GBC(C )for set C ⊆ V :
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proof

better approximation
for arbitrary costs?



Approximation Algorithms for MBC

H := ∅
foreach C ⊆ V with |C | ≤ 3 and c(C ) ≤ b do

U := V \ C
while U 6= ∅ do

u = node with maximal GBC(C+u)−GBC(C)
c(u)

if c(C + u) ≤ b then
C := C + u

U := U − u

if GBC(C ) > GBC(H) then H := C

return H

Extended greedy approach
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v

w
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v

w

copies u1, . . . , ul in a clique

zuw
zvw
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MBC is APX-complete

u
v

wzuw
zvw

Only paths between copies of distinct nodes are essential
(for large l):

– u covers shortest path for all l2 pairs (ui , vj)
– number of other pairs only linear in l

Only original nodes from G are relevant candidates for the
inclusion in set C with high GBC.

For C ⊆ V :

GBC(C ) ≈ l2× #covered
edges in G

C approximative solution
for MBC ⇒ C
approximative solution for
Maximum Vertex Cover



MBC is APX-complete

Theorem. [Petrank, 1994]

Maximum Vertex Cover is APX-complete.

Theorem. (Unit-cost) Maximum Betweenness Centrality is
APX-complete.

Not much hope for a PTAS
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For tree T = (V ,E ): Exactly one (shortest) path between
each pair of nodes.

GBC(C ) = #paths covered by C

Use dynamic programming.

v

Tv

GBCv (C ) = #internal paths in Tv

covered by C

Some paths from Tv to nodes
outside might already be covered.



MBC on Trees

v1

m1

external paths already covered

top nodes
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MBC on Trees

B[v1,σ1,m1]

v1

m1

σ1 ≤ GBCv1(C ) ≤ n2 internal GBC

cost of cheapest set C ⊆ V providing
these values σ1,m1
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MBC on Trees

Computation of B[v ,σ,m]:

split m, σ among Tv1 , Tv2 , v

m = 0 needs special handling

}
O(n3) combinations

Theorem. MBC can be solved in O(n7) time on trees.

(v ,σ,m): O(n · n2 · n) = O(n4) combinations
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Conclusion

Approximation Algorithm for Maximum Betweenness
Centrality: tight approximation factor of 1− 1/e

Approximability

1− 1

e
< α < 1− εα

?

not possible for Maximum Coverage

Polynomial-time Algorithm for trees

Also possible for other classes of graphs?

Thank you!
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