

Maximum Betweenness Centrality: Approximability and Tractable Cases

Martin Fink and Joachim Spoerhase

Universität Würzburg

A Centrality Problem

Imagine an abstract network.

- computer network
- transportation network

This network can be modeled by a graph.

A Centrality Problem

Imagine an abstract network.

- computer network
- transportation network

This network can be modeled by a graph.

- Occupy some of the nodes.
- As much communication as possible should be detected.

Overview

- Maximum Betweenness Centrality
- Approximating MBC
- APX-Completeness
- MBC on Trees
- Conclusion

Given a graph G = (V, E) and a node $v \in V$

Given a graph G = (V, E) and a node $v \in V$

• choose communicating pair $s, t \in V$ uniformly at random

Given a graph G = (V, E) and a node $v \in V$

- choose communicating pair $s, t \in V$ uniformly at random
- choose one shortest s-t path P uniformly at random

Given a graph G = (V, E) and a node $v \in V$

- choose communicating pair $s, t \in V$ uniformly at random
- choose one shortest s-t path P uniformly at random
- \bigcirc probability that v lies on P?

Group Betweenness Centrality

Given a graph G = (V, E) and a node $v \in V$ set $C \subseteq V$

- \bigcirc choose communicating pair *s*, *t* \in *V* uniformly at random
- choose one shortest s-t path P uniformly at random
- probability that v lies on P? a node $v \in C$ lies on P?

Group Betweenness Centrality

Given a graph G = (V, E) and a node $v \in V$ set $C \subseteq V$

- \bigcirc choose communicating pair *s*, *t* \in *V* uniformly at random
- choose one shortest s-t path P uniformly at random
- probability that v lies on P? a node $v \in C$ lies on P? $\frac{\sigma_{s,t}(C)}{\sigma_{s,t}}$

Group Betweenness Centrality

Given a graph G = (V, E) and a node $v \in V$ set $C \subseteq V$

- \bigcirc choose communicating pair *s*, *t* \in *V* uniformly at random
- choose one shortest s-t path P uniformly at random
- probability that v lies on P? a node $v \in C$ lies on P?

$$\mathsf{GBC}(C) := \sum_{s,t \in V | s \neq t} \frac{\sigma_{s,t}(C)}{\sigma_{s,t}}$$

t

Previous Results

Theorem. [Brandes, 2001] The Shortest Path Betweenness Centrality of all nodes can be computed in O(nm) time.

Theorem. [Puzis et. al., 2007] The Group Betweenness Centrality of one set $C \subseteq V$ can be computed in $O(n^3)$ time.

Previous Results

Theorem. [Brandes, 2001] The Shortest Path Betweenness Centrality of all nodes can be computed in O(nm) time.

Theorem. [Puzis et. al., 2007] The Group Betweenness Centrality of one set $C \subseteq V$ can be computed in $O(n^3)$ time.

> Method: iteratively add nodes, $O(n^2)$ update time for each step

Maximum Betweenness Centrality

Input:

A Graph G = (V, E), node costs $c : V \to \mathbb{R}_0^+$, budget $b \in \mathbb{R}_0^+$

Maximum Betweenness Centrality

Input: A Graph G = (V, E), node costs $c : V \to \mathbb{R}_0^+$, budget $b \in \mathbb{R}_0^+$

Task: Find a set $C \subseteq V$ with $c(C) \leq b$ maximizing GBC(C)

Maximum Betweenness Centrality

- Input: A Graph G = (V, E), node costs $c : V \to \mathbb{R}_0^+$, budget $b \in \mathbb{R}_0^+$
- Task: Find a set $C \subseteq V$ with $c(C) \leq b$ maximizing GBC(C)
- Theorem. [Puzis et al., 2007] (unit-cost) MBC is NP-hard.
- Theorem. [Dolev et al., 2009] A simple greedy-algorithm computes a (1-1/e)-approximation for *unit-cost* MBC in $O(n^3)$ time.

Approximating MBC

- Reduce MBC to (budgeted) Maximum Coverage.
- Use existing results for Maximum Coverage.
- implicit reduction

(budgeted) Maximum Coverage

Input: set S, weight function $w: S \to \mathbb{R}_0^+$ family \mathcal{F} of subsets of S; costs $c': \mathcal{F} \to \mathbb{R}_0^+$ and a budget $b \ge 0$

(budgeted) Maximum Coverage

- Input: set S, weight function $w: S \to \mathbb{R}_0^+$ family \mathcal{F} of subsets of S; costs $c': \mathcal{F} \to \mathbb{R}_0^+$ and a budget $b \ge 0$
- Task: Find a collection $C' \subseteq \mathcal{F}$ with $c'(C') \leq b$ maximizing the total weight w(C') of the ground elements covered by C'

(budgeted) Maximum Coverage and MBC

Input: set S, weight function $w: S \to \mathbb{R}_0^+$ family \mathcal{F} of subsets of S; costs $c': \mathcal{F} \to \mathbb{R}_0^+$ and a budget $b \ge 0$

Task: Find a collection $C' \subseteq \mathcal{F}$ with $c'(C') \leq b$ maximizing the total weight w(C') of the ground elements covered by C'

(budgeted) Maximum Coverage and MBC

Input: set S, weight function $w: S \to \mathbb{R}_0^+$ family \mathcal{F} of subsets of S; costs $c': \mathcal{F} \to \mathbb{R}_0^+$ and a budget $b \ge 0$

Task: Find a collection $C' \subseteq \mathcal{F}$ with $c'(C') \leq b$ maximizing the total weight w(C') of the ground elements covered by C'

 $v \in V$: set S(v) of all shortest costs c'(S(v)) = c(v)paths containing v

shortest s-t path P

weight
$$w(P) := \frac{1}{\sigma_{s,t}}$$

(budgeted) Maximum Coverage and MBC

Input: set S, weight function $w: S \to \mathbb{R}^+_0$ family \mathcal{F} of subsets of S; costs $c': \mathcal{F} \to \mathbb{R}^+_0$ and a budget $b \geq 0$ Task: Find a collection $C' \subseteq \mathcal{F}$ with $c'(C') \leq b$ maximizing the total weight w(C') of the ground elements covered by C' $v \in V$: set S(v) of all shortest costs c'(S(v)) = c(v)paths containing v w(S(C)) = GBC(C)for set $C \subseteq V$: weight $w(P) := \frac{1}{\sigma}$ shortest s-t path P

$$U := V$$
while $U \neq \emptyset$ do
$$u = \text{node with maximal } \frac{\text{GBC}(C+u) - \text{GBC}(C)}{c(u)}$$
if $c(C+u) \leq b$ then
$$C := C + u$$

$$U := U - u$$

Theorem. [Dolev et al., 2009] (1 - 1/e)-approximation for *unit-cost* MBC in $O(n^3)$ time.

$$U := V$$
while $U \neq \emptyset$ do
$$u = \text{node with maximal } \frac{\text{GBC}(C+u) - \text{GBC}(C)}{c(u)}$$
if $c(C+u) \leq b$ then
$$C := C + u$$

$$U := U - u$$

Extended greedy approach

 $H := \emptyset$ foreach $C \subseteq V$ with $|C| \leq 3$ and $c(C) \leq b$ do $U := V \setminus C$ while $U \neq \emptyset$ do $u = \text{node with maximal } \frac{\text{GBC}(C+u) - \text{GBC}(C)}{c(u)}$ if $c(C + u) \leq b$ then | C := C + uU := U - uif GBC(C) > GBC(H) then H := Creturn H

Theorem. [Khuller et al., 1999] The extended greedy approach yields an approximation factor of (1 - 1/e) for Maximum Coverage.

Theorem. [Khuller et al., 1999] The extended greedy approach yields an approximation factor of (1 - 1/e) for Maximum Coverage. reduction Theorem. A (1 - 1/e)-approximative solution for MBC can be computed in $O(n^6)$ using the extended greedy approach.

Theorem. [Khuller et al., 1999] The extended greedy approach yields an approximation factor of (1 - 1/e) for Maximum Coverage. Theorem. A (1 - 1/e)-approximative solution for MBC can be computed in $O(n^6)$ using the extended greedy approach.

Theorem. [Khuller et al., 1999] The approximation factor of (1 - 1/e) of the greedy algorithm for Maximum Coverage is tight.

Theorem. [Khuller et al., 1999] The extended greedy approach yields an approximation factor of (1 - 1/e) for Maximum Coverage. Theorem. A (1 - 1/e)-approximative solution for MBC can be computed in $O(n^6)$ using the extended greedy

approach.

Theorem. [Khuller et al., 1999] The approximation factor of (1 - 1/e) of the greedy algorithm for Maximum Coverage is tight.

Theorem. The approximation factor of (1 - 1/e) of the greedy algorithm for MBC is tight.

Maximum Vertex Cover:

Input: Graph G = (V, E), number $k \le n = |V|$

Task: find a set $C \subseteq V$ with |C| = k maximizing the number of covered edges

Maximum Vertex Cover:

Input: Graph G = (V, E), number $k \le n = |V|$

Task: find a set $C \subseteq V$ with |C| = k maximizing the number of covered edges

Maximum Vertex Cover

Maximum Vertex Cover:

Input: Graph G = (V, E), number $k \le n = |V|$

Task: find a set $C \subseteq V$ with |C| = k maximizing the number of covered edges

Maximum Vertex Cover:

Input: Graph G = (V, E), number $k \le n = |V|$

Task: find a set $C \subseteq V$ with |C| = k maximizing the number of covered edges

- Only paths between copies of distinct nodes are essential (for large *I*):
 - *u* covers shortest path for all l^2 pairs (u_i, v_j)
 - number of other pairs only linear in /

- Only paths between copies of distinct nodes are essential (for large *I*):
 - *u* covers shortest path for all l^2 pairs (u_i, v_j)
 - number of other pairs only linear in /
- Only original nodes from G are relevant candidates for the inclusion in set C with high GBC.

- Only paths between copies of distinct nodes are essential (for large /):
 - *u* covers shortest path for all I^2 pairs (u_i, v_j)
 - number of other pairs only linear in /
- Only original nodes from G are relevant candidates for the inclusion in set C with high GBC.

For $C \subseteq V$:

• GBC(C) $\approx I^2 \times \#$ covered edges in G

- Only paths between copies of distinct nodes are essential (for large /):
 - *u* covers shortest path for all I^2 pairs (u_i, v_j)
 - number of other pairs only linear in /
- Only original nodes from G are relevant candidates for the inclusion in set C with high GBC.

For $C \subseteq V$:

- GBC(C) $\approx I^2 \times \#$ covered edges in G
- C approximative solution for MBC ⇒ C approximative solution for Maximum Vertex Cover

Theorem. [Petrank, 1994] Maximum Vertex Cover is APX-complete.

Theorem. (Unit-cost) Maximum Betweenness Centrality is APX-complete.

Not much hope for a PTAS

• For tree T = (V, E): Exactly one (shortest) path between each pair of nodes.

GBC(C) = #paths covered by C

• For tree T = (V, E): Exactly one (shortest) path between each pair of nodes.

GBC(C) = #paths covered by C

Use dynamic programming.

• $GBC_v(C) = \#$ internal paths in T_v covered by C

• For tree T = (V, E): Exactly one (shortest) path between each pair of nodes.

GBC(C) = #paths covered by C

Ose dynamic programming.

- $GBC_v(C) = #internal paths in T_v$ covered by C
- Some paths from T_v to nodes outside might already be covered.

 $\sigma_1 \leq \mathsf{GBC}_{v_1}(C) \leq n^2$ internal GBC

 $\sigma_1 \leq \mathsf{GBC}_{v_1}(C) \leq n^2$ internal GBC

cost of cheapest set $C \subseteq V$ providing these values σ_1 , m_1

Computation of $B[v, \sigma, m]$:

• split *m*, σ among T_{v_1} , T_{v_2} , *v* • m = 0 needs special handling $O(n^3)$ combinations

$$(v, \sigma, m)$$
: $O(n \cdot n^2 \cdot n) = O(n^4)$ combinations

Computation of $B[v, \sigma, m]$:

• split *m*, σ among T_{v_1} , T_{v_2} , *v* • m = 0 needs special handling $\begin{cases} O(n^3) \text{ combinations} \end{cases}$

$$(v, \sigma, m)$$
: $O(n \cdot n^2 \cdot n) = O(n^4)$ combinations

Theorem. MBC can be solved in $O(n^7)$ time on trees.

• Approximation Algorithm for Maximum Betweenness Centrality: tight approximation factor of 1 - 1/e

- Approximation Algorithm for Maximum Betweenness Centrality: tight approximation factor of 1 - 1/e
- Approximability

- Approximation Algorithm for Maximum Betweenness Centrality: tight approximation factor of 1 - 1/e
- Approximability

- Approximation Algorithm for Maximum Betweenness Centrality: tight approximation factor of 1 - 1/e
- Approximability

Polynomial-time Algorithm for trees

Also possible for other classes of graphs?

- Approximation Algorithm for Maximum Betweenness Centrality: tight approximation factor of 1 - 1/e
- Approximability

Polynomial-time Algorithm for trees

Also possible for other classes of graphs?

Thank you!